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1. Experimental Procedures

1.1 Synthesis

IH and '3C NMR spectra were recorded on a Bruker DPX 300MHz and a Bruker Ascend™ 400MHz
NMR spectrometer. Where appropriate, routine NMR assignments were confirmed by 2D *H-'H
coupling experiments (COSY, HMQC, HMBC) which were all recorded on a Bruker Ascend™ 400MHz
NMR spectrometer. 2-D ROESY H-NMR experiments were performed using a Varian Unity Inova 500
spectrometer (Varian Inc., Palo Alto, California, USA) operating at 499.97 MHz proton frequency. Data
were recorded at 298K using a 5 mm H{*3C, *N, 3!P} ID/PFG VT probe. Phase-sensitive 2D ROESY
experiments were performed with a mixing time of 300 ms, 64 transients, a relaxation delay of 4.0 s,
256 increments (states phase cycling, so 512 increments in total) and a spectral width of 6000 Hz and
2K data points. Data were processed using ACD Spectrus Processor 2015 of the ACD labs 2015
software package from Advanced Chemistry Development, (Toronto, Canada). DOSY measurements
were made on a Jeol ECA 600ii 600 MHz spectrometer operating under regulated temperature
conditions (20°C), with a 5mm probe. The pulse sequence is a bipolar pulse pair simulated echo
(BPPSTE) operating in the ONESHOT experiment and spectra were processed using the DOSY
toolbox. High-resolution electrospray mass spectra (ESI-MS) were recorded on a Bruker micro-TOF-Q
mass spectrometer and FT-IR spectra were recorded as solid phase samples using a Perkin Elmer
Spectrum One spectrometer. Melting points were recorded on a Stuart SMP3 melting point apparatus.
Samples for microanalysis were dried under vacuum before analysis and determined by services at the
University of Leeds or London Metropolitan University. UV-Visible spectra were recorded on a Lambda
900 UV/Vis spectrophotometer or an Agilent Cary 100 UV/Vis spectrophotometer.

Cyclotriguaiacylene,® 4-nitroso methylbenzoate,? p-(4-pyridylazo)phenol,® p-(3-pyridylazo)phenol,*
2,7,12-tris-(2-bromoethoxy)-3,8,13-trimethoxy-10,15-dihydro-2H-tribenzo[a,d,g]cyclononene,®
[Ir(C*"N)2(NCMe)2](BF4) where C*N = 2,phenylpyridine (ppy),® 2-(4-methylphenyl)pyridine (Meppy)’ or



2-(4,5,6-trifluorophenyl)pyridine (4,5,6-tFppy)® were synthesised by literature procedures. Where
stated, reactions were carried out under an inert atmosphere of argon using an argon/vacuum dual
manifold and standard Schlenk techniques. All chemicals and solvents were purchased from
commercial suppliers (Sigma, Fluka) and were used as received. Dry solvents were obtained by passing
through a column of activated alumina. Argon and nitrogen gas were pre-dried by passing through a
small column of P.Os before use. Coordination cages were insufficiently soluble for their 1*C NMR
spectra to be obtained.

Sodium 4-[2-(4-pyridyl)diazenyl]-benzoate (1p)

Sodium hydroxide (3.00 g, 75 mmol) was dissolved in 100 mL of water to 7 .
form a 3% NaOH solution. 4-Aminopyridine (0.52 g, 5.6 mmol) and 4-nitroso ) S O Na
methylbenzoate (0.5 g, 3.0 mmol) were added and the mixture was heated 1 _~_ N 8

to reflux overnight. The resulting bright orange solution was then cooled to
room temperature resulting in the formation of a bright orange precipitate. 3

The solid was filtered and dried in vacuo to give the product (0.53g, 2.19

mmol, 73%) as an orange solid. Single crystals with formula 1p-4(H20) were obtained by
recrystallization from water. M.pt >300°C; *H NMR (300 MHz, DMSO-d®) & pppm) 8.83 (2H, dd, J 6.0,
1.8, Ar-H (1), Ar-H (3)), 8.04 (2H, dt, J 9.0, 1.8, Ar-H (7), Ar-H (8)), 7.85 (2H, d, J 9.0, 1.8, Ar-H (5), Ar-
H (6)), 7.76 (2H, d, J 6.0, 1.8, Ar-H (2), Ar-H (4)); *C NMR (75 MHz, MeOD-d*) & (ppm) 159.26, 151.80,
131.24,123.81, 117.76. HR-MS (ES*) m/z 228.0766 {M + H}* (calculated for {C12H10N302}* 228.0768);
FT-IR (cm™) = 3241, 1676, 1591, 1536, 1381, 1306, 1224, 1095, 830, 792, 691, 598, 588. 506; CHN
analysis for Na(C12HsN302)(H20)4 (% calc.; found) C (44.86, 44.52), H (5.02, 4.67), N (13.08, 12.98);
UV-Vis (DMSO) Amax (hm) 315 (11 > 1), 445 (n > 1T%).

Sodium 4-[2-(3-pyridyl)diazenyl]-benzoate (2p)

Sodium hydroxide (3.00 g, 75 mmol) was dissolved in 100 mL of water 7 .,
to form a 3% NaOH solution. 3-Aminopyridine (1.48 g, 15.7 mmol) and 4 ° O Na
4-nitroso methylbenzoate (1.40 g, 8.47 mmol) were added and the 3 XNy 8
mixture was heated to reflux overnight. The resulting red solution was » ;
then cooled to room temperature resulting in the formation of orange- N
red crystals. The crystals were filtered and washed with acetone and diethyl ether to give the product
(2.07 g, 6.10 mmol, 72% for hydrate) as a bright orange solid. M.pt >300°C; *H NMR (300 MHz, D20) &
(ppm) 9.07 (1H, dd, J 2.4, 0.7, Ar-H (1)), 8.70 (1H, dd, J 4.9, 1.5, Ar-H (2)), 8.28 (1H, m, Ar-H (4)), 8.05
(2H, dt, J 8.7, 1.8, Ar-H (7), Ar-H (8)), 7.95 (2H, dt, J 8.7, 2.1, Ar-H (5), Ar-H (6)), 7.67 (1H, m, J 8.3, Ar-
(3)); Over time in solution also observe new peaks corresponding to cis (Z) isomer: *H NMR (300 MHz,
D20) & (ppm) 8.30 (1H, dd, J 4.2, 2.3), 8.21 (1H, dd, J 2.1, 1.2), 7.73 (2H, dt, J 8.4, 1.8), 7.34 - 7.31
(2H, m), 6.92 (2H, dt, J 8.4, 2.1); 1*3C NMR (75 MHz, D20) &¢ 156.19, 153.30, 151.13, 147.83, 145.08,
139.45, 129.88, 128.63, 124.95, 122.43; HR-MS (ES*) m/z 228.0780 {M + H}* (calculated for
{C12H10N302}* 228.0768); FT-IR (cm™) = 1593, 1539, 1385, 1310, 1220, 1099, 1014, 810, 786, 700,
622, 591; Analysis calculated for 2p.0.5 H20 (% calculated; found) C (55.82, 56.20), H (3.51, 3.20), N
(16.27, 16.50); UV-Vis (DMSO) Amax (nm) 326 (11 > 117), 440 (n > 1%).

(¥)-2,7,12-Trimethoxy-3,8,13-tris(4,4’-pyridyl-azophenylcarboxy)-10,15-dihydro-5H-
tribenzo[a,d,g] cyclononene (L1)
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Step 1: Sodium 4-[2-(4-pyridyl)diazenyl]-benzoate benzoate (0.5 g, 2.20 mmol) was suspended in
thionyl chloride (15 mL) under an argon atmosphere. The resulting red suspension was heated to reflux
overnight. The flask was allowed to cool to room temperature before the thionyl chloride was removed
in vacuo to give 4,4’-pyridyl-azo-benzoyl chloride as a pale red solid that was used immediately without
further purification.

Step 2: CTG (0.11 g, 0.27 mmol) was dissolved in dry THF (100 mL) under argon. The flask was cooled
to 0°C in an ice bath and triethylamine (15 mL) was added. The resulting yellow solution was stirred at
0°C for 1 hour before being added dropwise via cannula to solid 4,4'-pyridyl-azo-benzoyl chloride (0.49
g, 2.20 mmol) under argon. The resulting red-orange suspension was allowed to stir at room
temperature for 3 days. The solids were filtered off and triturated in methanol (100 mL) and then THF
(100 mL) to give the product (0.22 g, 0.21 mmol, 79%) as a yellow-orange solid. M.pt 259-261°C; 'H
NMR (300 MHz, DMSO-d®) & (ppm) 8.89 (6H, d, J 6.0, Ar-H (11), Ar-H (13)), 8.36 (6H, d, J 9.0, Ar-H (6),
Ar-H (8)), 8.13 (d, 6H, J 9.0, Ar-H (7), Ar-H (9)), 7.83 (6H, d, J 6.0, Ar-H (10), Ar-H (12)), 7.61 (3H, s, Ar-
H (3)), 7.37 (3H, s, Ar-H (4)), 4.93 (3H, d, J 13.7, CTG endo-H (1)), 3.79 — 3.71 (12H, m, O-CH3 (5)
overlapped with CTG exo-H (2)); 3C NMR (75 MHz, CDCIs) & (ppm) 163.92, 156.91, 154.92, 151.54,
151.46, 149.89, 138.54, 138.18, 132.36, 131.79, 131.53, 131.46, 124.03, 123.26, 116.32, 114.30,
77.44, 77.22, 77.02, 76.59, 56.31, 36.56; HR-MS (ES*) m/z 2072.6807 {2M + H}* (calculated for
{C120H91N18018}* 2072.6787), 1555.0155 {3M + 2H}?* (calculated for {CisoH137N27027}?* 1555.0117)
1053.3935 {M + H20}* (calculated for {CsoH47N9O10}* 1053.3446) 1036.3418 {M + H}" (calculated for
{CeoH46NsOo}* 1036.3413); FT-IR (cm') = 3030, 2931, 1721, 1584, 1505, 1476, 1461, 1405, 1258,
1060, 1005, 941, 924, 893, 860, 825, 683, 555; Analysis calculated for L1.CHCIz.H20 (% calculated;
found) C (62.44, 62.40), H (4.12, 4.33), N (10.74, 10.84); UV-Vis (DMSQO) Amax (nm) 312 (1 > 11*), 465
(n > ).

(¥)-2,7,12-Trimethoxy-3,8,13-tris(4,3'-pyridyl-azophenylcarboxy)-10,15-dihydro-5H-
tribenzo[a,d,g]cyclononene (L2)
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Step 1: Sodium 4-[2-(3-pyridyl)diazenyl]-benzoate benzoate (1.75 g, 7.03 mmol) was suspended in
thionyl chloride (15 mL) under an argon atmosphere. The resulting red suspension was heated to reflux
overnight. The flask was allowed to cool to room temperature before the thionyl chloride was removed
in vacuo to give 4,3’-pyridyl-azo-benzoyl chloride as a pale red solid that was used immediately without
further purification.

Step 2: CTG (0.52 g, 1.27 mmol) was dissolved in dry THF (100 mL) under argon. The flask was cooled
to 0°C in an ice bath and triethylamine (15 mL) was added. The resulting yellow solution was stirred at
0°C for 1 hour before being added dropwise via cannula to solid 4,3-pyridyl-azo-benzoyl chloride (1.89
g, 7.70 mmol). The resulting red-orange suspension was allowed to stir at room temperature for 3 days.
The solids were filtered off and the solvent removed in vacuo to yield a red-orange residue. This crude
product was triturated in methanol (2 x 100 mL) to give the product (1.16 g, 1.12 mmol, 88%) as a fine
orange solid. M.pt 250-252°C; *H NMR (300 MHz, CDCls) & (ppm) 9.26 (3H, d, J 2.5, Ar-H (13)), 8.76
(3H, dd, J 4.6, 1.7, Ar-H (12)), 8.38 (6H, d, J 8.5, Ar-H (6), Ar-H (8)), 8.21 (3H, dt, J 8.3, 1.9, Ar-H (10)),
8.05 (6H, d, J 8.5, Ar-H (7), Ar-H(9)), 7.48 (3H, dd, J 8.2, 4.7, Ar-H (11)), 7.22 (3H, s, Ar-H (3)), 7.00
(3H, s, Ar-H (4)), 4.87 (3H, d, J 13.7, CTG endo-H (1)), 3.82 (9H, s, OCH3 (5)), 3.72, d, J 13.9, CTG
exo-H (2)); 3C NMR (75 MHz, CDCls) & (ppm) 164.19, 155.30, 152.52, 150.07, 147.91, 147.85, 138.73,
138.31, 131.95, 131.68, 131.59, 127.23, 124.22, 123.12, 114.45, 56.46, 36.68; HR-MS (ES*) m/z
1036.3463{M + H}* (calculated for {CeoHasNeOg}* 1036.3413), 518.6194 {M + 2H}?>* (calculated for
{Ce0HasN9Oo}?* 518.6743); FT-IR (cm™) = 3066, 2933, 2833, 1786, 1724, 1601, 1583, 1506, 1323, 1260,



1177,1061, 1006, 859, 764, 697; Analysis calculated for L2.H20 (% calculated; found) C (68.37, 68.10),
H (4.49, 4.30), N (11.96, 11.90); UV-Vis (DMSQ) Amax (nm) 326 (11 = 1*), 411 (n > 1).

2,7,12-Tris-(2-(4-pyridylazo)ethoxy)-3,8,13-trimethoxy-10,15-dihydro-2H-
tribenzo[a,d,g]cyclononene (L3)
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p-(4-Pyridylazo)phenol (1.11 g, 5.55 mmol), 2,7,12-tris-(2-bromoethoxy)-3,8,13-trimethoxy-10,15-
dihydro-2H tribenzo [a,d,g]cyclononene (0.45 g, 0.62 mmol) and caesium carbonate (2.65 g, 8.16 mmol)
were dissolved in anhydrous DMF (10 mL) under an argon atmosphere. The resulting bright red solution
was heated to 100°C for 3 days. The reaction was cooled to room temperature and water (90 mL) was
added slowly. The resulting reddy-brown precipitate was filtered off and washed with methanol (50 mL)
and diethyl ether (50 mL) to give a crude yellow-orange solid. This crude product was triturated in DCM
(100 mL), filtered and the solvent removed under reduced pressure to give the product (0.58 g, 0.53
mmol, 85%) as an orange crystalline powder. M.pt 232-234°C; *H NMR (300 MHz, CDCl3) & (ppm) 8.77
(6H, d, J 6.0, Ar-H (13), Ar-H (15)), 7.93 (6H, d, J 9.0, Ar-H (9), Ar-H (11)), 7.66 (6H d, J 6.0, Ar-H (12),
Ar-H (14)), 7.02 (6H, d, J 9.0, Ar-H (8), Ar-H (10)), 6.97 (3H, s, Ar-H (3)), 6.85 (3H, s, Ar-H (4)), 4.76
(3H, d, J 13.9, CTG endo-H (1)), 4.43 — 4.32 (12 H, m, OCH2CH (6,7)), 3.78 (9H, s, OCHjs (5)), 3.56
(3H, d, J 13.8, CTG exo-H (2)); *C NMR (75 MHz, CDClIs) d (ppm) 162.19, 157.35, 151.23, 148.84,
147.01, 146.71, 133.48, 131.95, 125.54, 117.32, 116.15, 115.03, 114.14, 68.32, 66.96, 56.28, 36.49;
HR-MS (ES*) m/z 1084.4333 {M + H}* (calculated for {Ce3HssNeOg}* 1084.4352), 542.7416 {M + 2H}?**
(calculated for {CesHssNoOo}?* 542.7212); FT-IR (cm™) = 3348, 2930, 1598, 1582, 1497, 1452, 1417,
1402, 1250, 1214, 1137, 1089, 1058, 1042, 1001, 989, 922, 834, 743, 623, 559, 518; Analysis

calculated for L3. DCM (% calculated; found) C (65.75, 65.80), H (5.09, 5.05), N (10.78, 10.40) UV-Vis
(DMSO) Amax (nm) 354 (11 > 1, E isomer), 445 (n > 1, Z isomer).
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2,7,12-Tris-(2-(3-pyridylazo)ethoxy)-3,8,13-trimethoxy-10,15-dihydro-2H-
tribenzo[a,d,g]cyclononene (L4)
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p-(3-Pyridylazo)phenol (0.98 g, 4.93 mmol), 2,7,12-tris-(2-bromoethoxy)-3,8,13-trimethoxy-10,15-
dihydro-2H tribenzo [a,d,g]cyclononene (0.40 g, 0.54 mmol) and caesium carbonate (2.32 g, 7.14 mmol)
were dissolved in anhydrous DMF (10 mL) under an argon atmosphere. The resulting bright red solution
was heated to 100°C for 3 days. The reaction was cooled to room temperature and water (90 mL) was

added slowly. The resulting reddy-brown precipitate was filtered off and washed with methanol (50 mL)
and diethyl ether (50 mL) to give a crude yellow-orange solid. This crude product was triturated in DCM
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(100 mL), filtered and the solvent removed under reduced pressure to give the product (0.32 g, 0.29
mmol, 55%) as a yellow solid. M.pt 159-161°C; *H NMR (400 MHz, CDClz) & (ppm) 9.14 (3H, d, J 2.3,
Ar-H (15)), 8.66 (3H, dd, J 4.7, 1.7, Ar-H (14)), 8.10 (3H, dt, J 8.2, 2.0, Ar-H (12)), 7.92 (6H, dt, J 6.7,
2.7, Ar-H (9), Ar-H (11)), 7.42 (3H, dd, J 8.1, 4.7, Ar-H (13)), 7.01 (6H, dt, J 6.9, 1.5, Ar-H (8), Ar-H (10)
), 6.97 (3H, s, Ar-H (3)), 6.85 (3H, s, Ar-H (4)), 4.77 (3H, d, J 13.7, CTG endo-H (1)), 4.43 — 4.32 (12H,
m, OCH2CH: (6,7)), 3.78 (9H, s, OCHs (5)), 3.57 (3H, d, J 13.8, CTG exo-H (2)); *C NMR (101 MHz,
CDCl3) 6 (ppm) 161.76, 151.25, 148.98, 148.09, 147.27, 147.18, 146.86, 133.60, 132.08, 126.89,
125.19, 124.03, 117.46, 115.10, 114.25, 77.16, 68.48, 67.04, 56.41, 36.63; HR-MS (ES*) m/z.
1084.4359 {M + H}* (calculated for {CesHssNoOo}* 1084.4352), 542.7206 {M + 2H}?* calculated for
{Ce3Hs59N9O0}?* 542.7212); FT-IR (cm™) = 3432, 2924,1598, 1582, 1498, 1452, 1398, 1313, 1250, 1217,
1140, 1061, 1019, 1000, 918, 836, 809, 743, 723, 701, 616, 552, 518; Analysis calculated for L4. 0.5
DCM (% calculated; found) C (67.75, 67.60), H (5.33, 5.15), N (11.11, 10.73); UV-Vis (DMSO) Amax (hm)
354 (m>1* trans (E) isomer), 448 (n—>T11* cis (Z) isomer).

[{Ir(ppy)2}s (L2)2]3+3PFs coordination cage (C1)
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[Ir(ppy)2(MeCN)z]*PFs (26.3 mgs, 0.037 mmol) and L2 (25.0 mgs, 0.024 mmol) were suspended in
nitromethane (5 mL). The orange suspension was stirred at room temperature overnight during which
time all of the material dissolved. Diethyl ether was added slowly to the solution which resulted in the
precipitation of a fine orange powder. The solid was filtered and washed with more diethyl ether to give
the product (32.1 mgs, 0.008 mmol, 66%) as an orange powder. *H NMR (300 MHz, MeNO2-d?) 3 (ppm)
9.29 (6H, br s, Ar-H (a)), 8.93 (12 H, br s, Ar-H (b) overlapped with Ar-H (1)), 8.39 (18H, br s, Ar-H (d)
overlapped with Ar-H (f)), 8.03 (24H, s, Ar-H (e) overlapped with Ar-H (3) and Ar-H (4)), 7.70 (12H, br s,
Ar-H (c) overlapped with Ar-H (5)), 7.46 (12H, br s, CTG Ar-H (h) overlapped with Ar-H (2)), 7.27 (6H,
br s, CTG Ar-H (i), 7.01 (12H, br s, Ar-H® overlapped with Ar-H), 6.58 (6H, br s, Ar-H?®), 5.02 (6H, s,
CTG endo-H (j)), 3.83 (24H, br s, CTG exo-H (k) overlapped with OCHs (g)); HR-MS (ES*) m/z
1536.4289 {M2L2}?* (calculated for {C164H124lr2N22018}?* 1536.9361), 1191.3193{MsL2}** (calculated for
{C186H140lr3N24018}°* 1191.3179); FT-IR (cm™) = 3061, 1732, 1582, 1505, 1478, 1420, 1256, 1176,
1086, 1057, 1009, 835, 756, 735, 697, 586; Analysis indicates incomplete desolvation of material,
calculated for C1 (% calculated; found) C (55.73, 51.01), H (3.47, 3.39), N (8.39, 8.15); UV-Vis Amax
(nm) 280 (Intraligand T>T1* transitions), 320 (T>1* E isomer), 425 (n>11* Z isomer).



[{Ir(Meppy)2}3(L2)2]%"3PFs coordination cage (C1-Me)
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[Ir(Meppy)2(MeCN)2]"PFs (26.3 mgs, 0.037 mmol) and L2 (25.0 mgs, 0.024 mmol) were suspended in
nitromethane (5 mL). The orange suspension was stirred at room temperature overnight during which
time all of the material dissolved. Diethyl ether was added slowly to the solution which resulted in the
precipitation of a fine orange powder. The solid was filtered and washed with more diethyl ether to give
the product (30.5 mgs, 0.007 mmol, 63%) as an orange powder. *H NMR (300 MHz, MeNO2-d?®) 3 (ppm)
9.27 (6H, br s, Ar-H (a), 8.91 (12 H, br s, Ar-H (b) overlapped with Ar-H (1)), 8.44 (6H, br s, Ar-H (d))
8.36 (18H, s, Ar-H (f)), 8.00 (24H, br s, Ar-H (e) overlapped with Ar-H (3) and Ar-H (4)), 7.69 (6H, br s,
Ar-H (c)), 7.59 (6H, br d, Ar-H (5)), 7.45 (12H, br s, CTG Ar-H (h) overlapped with Ar-H (2)), 7.27 (6H,
brs, CTG Ar-H (i)), 6.87 (6H, br s, Ar-H (6)), 6.45 (6H, br s, Ar-H (8)), 5.02 (6H, s, CTG endo-H (j)), 3.84
(24H, br s, CTG exo-H (k) overlapped with OCHs (g)), 2.20 (18H, br s, Ar-CHs (7)); HR-MS (ES*) m/z
1219.3517{MsL2}** (calculated for {C192H1521rsN24O018}** 1219.3492) ; FT-IR (cm™) = 2918, 1734, 1605,
1587, 1563, 1464, 1257, 1205, 1176, 1087, 1058, 1009, 836, 768, 698, 555; Analysis calculated for C1-
Me (% calculated; found) C (56.34, 57.83), H (3.69, 3.77), N (8.21, 7.83); UV-Vis Amax (nm) 258
(Intraligand 1> 11 transitions), 312 (r>1* E isomer), 426 (n>1* Z isomer).



[{Ir(4,5,6-tFppy)2}3(L2)2]*+3PFs coordination cage (C1-F)
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[Ir(4,5,6-tFppy)2(MeCN)2]*PFs (30.2 mgs, 0.036 mmol) and L2 (25.0 mgs, 0.024 mmol) were
suspended in nitromethane (5 mL). The orange suspension was stirred at room temperature overnight
during which time all of the material dissolved. Diethyl ether was added slowly to the solution which
resulted in the precipitation of a fine orange powder. The solid was filtered and washed with more diethyl
ether to give the product (47.6mgs, 0.012mmol, 50%) as an orange crystalline powder. *H NMR (300
MHz, MeNO2) & (ppm) 9.19 (6H, q, Ar-H (a)), 8.99 (6H br s, Ar-H (1)), 8.84 (6H br s, Ar-H (b)), 8.47 (6H,
br s, Ar-H (d)), 8.40 — 8.25 (18H, m, Ar-H (f) overlapped with Ar-H (4)), 8.16 -7.90 (18H, m, Ar-H (e)
overlapped with Ar-H (3)), 7.72 (6H br s, Ar-H (2)), 7.60 (6H, br s, Ar-H (c)), 7.44 (6H, br s, CTG Ar-H
(h)), 7.27 (6H, br s, CTG Ar-H (i)), 6.15 (6H br s, Ar-H (5)), 5.03 (6H d, J 4.5, CTG exo-H (j)); 3.84 (24H,
br s, CTG endo-H (k) overlapped with OCHs (g); HR-MS (ES*) m/z 1299.5033 {MsL2}** (calculated for
{CissH122F18Ir3N24018}** 1299.2613); FT-IR (cm™) = 2932, 1733, 1667, 1603, 1587, 1555, 1507, 1486,
1431, 1400, 1375, 1318, 1257, 1204, 1176, 1137, 1087, 1060, 1042, 914, 804, 758, 699, 653, 623, 574,
447; Analysis calculated for C1-F (% calculated; found) C (51.56, 51.49), H (2.79, 2.90), N (7.76,
7.80)UV-Vis Amax (nm) 262 (Intraligand > transitions), 290 (Intraligand m->1* transitions), 324
(T>1* E isomer), 432 (n>11* Z isomer).



[{Ir(ppy)2}s(L3)2] **3PFs coordination cage (C2)
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[Ir(ppy)2(MeCN)2]*PFs (26.3 mgs, 0.037 mmol) and L3 (25.0 mgs, 0.024 mmol) were suspended in
nitromethane (5 mL). The orange suspension was stirred at room temperature overnight during which
time all of the material dissolved. Diethyl ether was added slowly to the solution which resulted in the
precipitation of a fine orange powder. The solid was filtered and washed with more diethyl ether to give
the product (35.3 mgs, 0.009 mmol, 75%) as an orange powder. *H NMR (300 MHz, MeNO2-d®) & (ppm)
8.77 (18H, br s, Ar-H (a) overlapped with Ar-H (1)), 8.00 (24H, br s, Ar-H (c) overlapped with Ar-H (3)
and Ar-H (4)), 7.66 (18H, br s, Ar-H (b) overlapped with Ar-H (5)), 7.45 (6H, br s, Ar-H (2)), 7.09 (24H,
br s, Ar-H (d) overlapped with Ar-H (6) and Ar-H (7)), 6.95 (12H, br s, CTG Ar-H (h) overlapped with
CTG Ar-H (i), 6.50 (6H, br s, Ar-H (8)), 4.84 (6H, br s, CTG endo-H (j)), 4.44 (24H, br s, OCH2CHz2 (e,f
— overlaps with MeNO: signal)), 3.78 (18H, br s, OCHs (g)), 3.65 (6H, br s, CTG exo-H (k)); HR-MS
(ES*) m/z 1584.5199 {M2L2}?** (calculated for {CizoH14slr2N22018}2* 1584.0222) 1223.3784{MsL2}**
(calculated for {C192H164Ir3N24018}3* 1223.3805); FT-IR (cm™) = 3041, 2929, 1594, 1582, 1497, 1477,
1446, 1405, 1252, 1135, 1089, 926, 831, 755, 732, 628, 555; Analysis calculated for C2 (% calculated;
found) C (54.20, 54.50), H (3.80, 4.19), N (7.60, 7.94); UV-Vis Amax (nm) 263 (Intraligand w->1*
transitions), 323 (T>1* E isomer), 436 (n>1* Z isomer).



[{Ir(ppy)2}3(L4)2]**3PFe coordination cage (C3)
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[Ir(ppy)2(MeCN)2]*PFe (26.3 mgs, 0.037 mmol) and L4 (25.0 mgs, 0.024 mmol) were suspended in
nitromethane (5 mL). The orange suspension was stirred at room temperature overnight during which
time all of the material dissolved. Diethyl ether was added slowly to the solution which resulted in the
precipitation of a fine orange powder. The solid was filtered and washed with more diethyl ether to give
the product (35.3 mgs, 0.009 mmol, 75%) as a yellow-orange powder. *H NMR (300 MHz, MeNO>) &
(ppm) 9.13 (6H, m, Ar-H (a)), 8.83 (12H, m, Ar-H (b) overlapped with Ar-H (1)), 8.27 (6H, br s, Ar-H (d)),
8.10 — 7.37 (42H, br m, Ar-H (e) and Ar-H(c) overlapped with with Ar-H (3), Ar-H (4), Ar-H (5) and Ar-H
(2)), 7.02 (36H, m, Ar-H (f), CTG-H (j) and CTG-H (k) overlapped with Ar-H (6) and Ar-H (7)), 6.54 (6H,
br s, Ar-H (8)), 4.83 (6H, br s, CTG endo-H (1)), 3.77 (24H, m, CTG exo-H (m) overlapped with OCH3z
(i)); HR-MS (ES*) m/z 1584.5232 {ML}* (calculated for CgsH73IrN11Oo}* 1584.0222) 1223.7167 {MsL2}**
(calculated for {Cio2H164lr3N24018}°* 1223.3805); 1042.8080 {M2L}?* (calculated for {Cio7Ho1lr2N1300¢}>*
1042.8143); FT-IR (cm™) = 3049, 2926, 1597, 1582, 1499, 1478, 1449, 1415, 1253, 1226, 1188, 1141,
1090, 1048, 1032, 932, 836, 757, 737, 670, 623, 556, 468; UV-Vis Amax (nm) 251 (Intraligand T>1*
transitions), 276 (Intraligand m—>m* transitions), 295 (Intraligand m—>1* transitions), 358 (T>7* E
isomer), 463 (n>1* Z isomer).

1.2 Crystal Structure Determinations

Crystals were mounted under inert oil on a MiTeGen tip and flash frozen to 100(1) or 120(1) K using an
OxfordCryosystems low temperature device. X-ray diffraction data were collected using Cu-K. (A=
1.54184 A) or Mo-K. (A= 0.71073 A) radiation using an Agilent Supernova dual-source diffractometer
with Atlas S2 CCD detector and fine-focus sealed tube generator, or or using synchrotron radiation (A=
0.6889 A) at station 119 of Diamond Light Source. Data were corrected for Lorenztian and polarization
effects and absorption corrections were applied. The structures were solved by direct methods using
SHELXS-97 and refined by full-matrix on F2 using SHELXL.® Unless otherwise specified, all non-



hydrogen atoms were refined as anisotropic, and hydrogen positions were included at geometrically
estimated positions. Summary of data collections and refinements are given in Table S1. Further details
of refinements and additional figures are given below.

Table S1. Details of crystal structure data collections and refinements

1p-4(H20) 2p-5(H:20) L2 L3-2(CHsNO»)
CCDC 1859217 1839930 1839931 1859218
Formula Ci2H16NsNaOs | Ci2H1sNsNaO7 | CeoH3oN9Og Ce5H63N11013
Mr 321.27 339.28 1020.93 1206.26
Crystal colour yellow orange orange orange
0.19 x 0.05 x| 0.35 x 0.16 x | 0.33 x 0.17 x| 0.29 x 0.14 x
Crystal size (mm) 0.04 0.09 0.10 0.13
Crystal system Triclinic Monaclinic Triclinic Monoclinic
Space group P1 P2i/n P1 12/a
a (A) 6.1765(4) 6.5197(6) 9.6864(5) 35.5103(7)
b (A) 7.0883(4) 35.222(3) 29.786(2) 9.6091(2)
c (A 17.5927(6) 7.2310(7) 34.468(4) 37.3391(8)
a® 88.175(4) 90 71.898(8) 90
B 83.629(5) 102.838(10) 88.532(6) 103.589(2)
v ©) 69.716(6) 90 89.954(5) 90
V (A3 717.98(7) 1619.0(3) 9448.9(13) 12384.3(5)
Z 2 4 4 8
Pealc (g.cm3) 1.486 1.392 0.718 1.294
A (R) 1.54184 0.71073 0.6889 1.54184
T (K) 120(1) 120(1) 120(1) 100(1)
6 range (% 5.06-73.97 3.22-28.28 1.53-20.00 3.09-63.83
No. data collected 13098 11758 60957 41057
No. unique data 2761 4026 19323 10085
Rint 0.0336 0.0562 0.1479 0.0276
No. obs. Data (I > | 2329 3315 5761 7879
20(1))
No. parameters 263 248 390 804
No. restraints 0 0 17 3
R: (obs data) 0.0342 0.0911 0.2253 0.0959
wR2 (all data) 0.0973 0.1714 0.4885 0.3231
S 1.056 1.259 1.717 1.365
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Sodium 4-[2-(4-pyridyl)diazenyl]-benzoate hydrate 1p-4(H20)

Fractional coordinates and isotropic displacement parameters for hydrogen atoms of water molecules
were freely refined.

Fig. S1. Crystal structure of 1p-4(H20) where a dinuclear [Nazu-(H20)2(H20)s(1p)2] complex with pyridyl
coordination to the Na(l) is formed. (a) Asymmetric unit with ellipsoids shown at 50 % probability levels;
(b) dimeric [Nazu-(H20)2(H20)s(1p)2] complex with Na-N distance 2.573(1) A; (c) section of 3-D
hydrogen-bonded network formed by H20--H20 and RCO2-H20 hydrogen bonds.

Sodium 4-[2-(3-pyridyl)diazenyl]-benzoate hydrate 2p-5(H-O) Fractional coordinates and isotropic
displacement parameters for hydrogen atoms of water molecules were freely refined.

(b)

Fig. S2. Crystal structure of 2p-5(H20) where a dinuclear [Nazu-(H20)2(H20)s]?* cation is formed with
4-[2-(3-pyridyl)diazenyl]-benzoate counter-anions. (a) Asymmetric unit with ellipsoids shown at 50 %
probability levels; (b) Hydrogen bonding interactions between [Nazp-(H20)2(H20)s]>* and pyridyl groups
of anion; (c) section of 3-D hydrogen-bonded network formed by H.0-H20, H20...N, and RCOzH20
hydrogen bonds.
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L2 Multiple sets of crystals were examined all of which were of poor quality. Crystals of L2 diffracted
very weakly and did not diffract to high angles even with synchrotron radiation. The high Rint 0f 0.1479
for a triclinic crystal indicates poor crystal quality. The structure was refined isotropically due to poor
parameter:observed data ratio. One of the two L2 molecule in the asymmetric unit showed significant
disorder with one azo-phenyl group modelled across two position at 0.65:0.35 occupancies and one
azo-pyridine modelled across two positions each at 0.5 occupancy. Half of the aromatic ring groups of
the structure were refine with a rigid body constraint (AFIX 66) and some additional restraints were
placed on azo N-N and C-N distances (DFIX). Two pyridyl groups were refined each with one group
displacement parameter. There was significant solvent accessible void space in the structure (48 % of
unit cell volume) and the SQUEEZE routine of Platon was used.° Additional electron density was not
added to the formula. The structure should be regarded as showing the gross structural features, and
positions of pyridyl groups and assignment of N atom assignment pyridyl groups should be regarded
as approximate.

Fig. S3. Crystal structure of L2 showing asymmetric unit (left) and highlight of disorder in one ligand
(right).

L3-2(MeNO2) Two MeNO: positions within L3-2(MeNO2) were each refined isotropically at 0.5
occupancy. Restraints were used for MeNO: bond lengths and a FLAT restraint was employed for one
such molecule.

Fig. S4. Asymmetric unit of L3-2(MeNO2) with ellipsoids shown at 50 % probability levels.
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Fig. S5. Packing diagram of L3-2(MeNO3) viewed down b axis.

1.3 Molecular Modelling

Molecular models were constructed using the Maestro 2016-3 molecular modelling Package
(Schrodinger, LLC, New York, NY, 2016). Models of the photoswitchable cages were constructed
initially ‘by eye’ using the ‘build’ module within Maestro to modify the available crystal structure of the
L2 ligand together with structures corresponding to the metal-ppy units. Following ‘by eye’ assembly
of these modified units to yield a crude model of the appropriate cage, the resulting structure was energy
minimised using the gradient minimiser (MMFF force-field) and the default parameters within the
programme.

1.4 Photoswitching Experiments

UV-Visible spectra were recorded on a Lambda 900 UV/Vis spectrophotometer and an Agilent Cary
100 UV/Vis spectrophotometer. E->Z photoswitching experiments were performed with a Xe lamp for
ligands and more powerful laser for some ligands and all coordination cages (as cages showed only
small amount of switching with Xe lamp), while all Z->E isomerisations were performed using the Xe
lamp.

Isomerisation of ligands with Xe lamp

A 75W Xe lamp equipped with a tunable PowerArc monochromator was used. Note the majority of this
75W is filtered out at wavelengths <400 nm, and wattage at < 400 nm is <1 milliwatt of energy.

E->Z isomerisation: A 30 uM solution of the appropriate ligand in DMSO was prepared and the UV
spectrum recorded. The sample was irradiated at A1 (300-350 nm) for 45 minutes using the Xenon lamp
equipped with a tunable power arc monochromator to induce E->Z isomerisation. The UV spectrum of
this solution was then recorded for comparison. Z->E isomerisation: The solution was irradiated at Az
(450 nm) for 15 minutes using the Xenon lamp equipped with a tuneable power arc monochromator to
induce Z->E isomerisation. The UV spectrum of this solution was then recorded for comparison.

Isomerisation of ligands and metallo-cages with 355 nm Nd:YAG laser
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A Continuum Powerlite model 8010 355 nm Nd:YAG laser was used which has a natural frequency of
10 Hz. For experiments at 1Hz the natural frequency was split after 200 microseconds using a Q-switch
in pulse divide mode set at 1Hz.

E (trans) > Z (cis) isomerisation metallo-cage for UV studies: 30 uM solutions of each metallo-cage
were prepared in DCM and the UV spectrum recorded. The sample was irradiated at 355 nm using a
Nd:YAG laser (1Hz, 15mJ/laser pulse) and UV spectra were recorded at intervals.

E->Z isomerisation of metallo-cage C1-F and ligands L2/L4 for NMR studies: 5 mg of material was
dissolved in in CD2Cl2 (0.5 ml). The sample was irradiated at 355 nm using a Nd:YAG laser (10Hz,
15mJ/laser pulse) for 900 seconds.

The efficiency of isomerisation between E and Z isomers was calculated either through 'H NMR
integration or absorption maxima in UV-visible spectra according to the equation:

AO(max) - APSS (max)

Conversion =
Ao(max)

where Ao max) is the initial absorbance at the maxima of interest and Apss max) is the absorbance of the
maxima at the photostationary/switched state after irradiation.

Reverse Z - E switching of metallo-cages was achieved though irradiated at A2 (450 nm) for 15 minutes
using the Xenon lamp as described for ligands above.

1.5 Emission Studies

All samples were prepared in HPLC grade dichloromethane with varying concentrations in the order of
104 -107° M. Absorption spectra were recorded at room temperature using a Shimadzu UV-1800
double beam spectrophotometer. Molar absorptivity determination was verified by linear least-squares
fit of values obtained from at least four independent solutions at varying concentrations with absorbance
ranging from 6.05 x 1075 to 2.07 x 1075 M.

The sample solutions for the emission spectra were prepared in HPLC-grade DCM and degassed via
freeze-pump-thaw cycles using a quartz cuvette designed in-house. Steady-state emission and
excitation spectra and time-resolved emission spectra were recorded at 298 K using an Edinburgh
Instruments F980. All samples for steady-state measurements were excited at 360 nm, while samples
for time-resolved measurements were excited at 378 nm using a PDL 800-D pulsed diode laser.
Emission quantum yields were determined using the optically dilute method.* A stock solution with
absorbance of ca. 0.5 was prepared and then four dilutions were prepared with dilution factors between
2 and 20 to obtain solutions with absorbances of ca. 0.095 0.065, 0.05 and 0.018, respectively. The
Beer-Lambert law was found to be linear at the concentrations of these solutions. The emission spectra
were then measured after the solutions were rigorously degassed via three freeze-pump-thaw cycles
prior to spectrum acquisition. For each sample, linearity between absorption and emission intensity was
verified through linear regression analysis and additional measurements were acquired until the
Pearson regression factor (R?) for the linear fit of the data set surpassed 0.9. Individual relative quantum
yield values were calculated for each solution and the values reported represent the slope value. The
equation @s = d(A/As)(Is/I)(ns/nr)? was used to calculate the relative quantum yield of each of the
sample, where @ is the absolute quantum yield of the reference, n is the refractive index of the solvent,
A is the absorbance at the excitation wavelength, and | is the integrated area under the corrected
emission curve. The subscripts s and r refer to the sample and reference, respectively. A solution of
guinine sulfate in 0.5 M H2SOa (@r = 54.6%)'2 was used as external references.!?

PMMA doped films were prepared by spin coating the samples from a solution of 2-methoxyethanol
(HPLC grade) containing 5 % w/w of the desired sample. Steady-state emission and excitation spectra
and time-resolved emission spectra of both powders and doped films were recorded at 298 K using an
Edinburgh Instruments F980. Solid-state PLQY measurements of thin films were performed in an
integrating sphere under a nitrogen purge in a Hamamatsu C9920-02 luminescence measurement
system.14
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2. Spectra supporting synthesis

Sodium 4-[2-(4-pyridyl)diazenyl]-benzoate (1p)
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Fig. S6 Infrared spectrum of sodium 4-[2-(4-pyridyl)diazenyl]-benzoate
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Fig. S7 Mass spectrum of sodium 4-[2-(4-pyridyl)diazenyl]-benzoate
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O
6 R
, 580 Na
Ns 4
1NNy
N~
[} ]
! 2
37 4
8 ' |
i--ll—‘ s chrispghages (5 e
190 180 170 160 150 140 130 120 110 100 9% 8 7 60 P
Chemical Shift (ppm)

1.0

s 00
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Fig. S10 UV-visible spectrum of sodium 4-[2-(4-pyridyl)diazenyl]-benzoate in DMSO
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70
I

Transmittance [%]
75
I

65

Al ] L))
fffgﬁfg”g’g rrrrﬂrrrrﬁ//
§§§9“Ezfigsaéaggggggggééé,

3351.41

vvvvvvvvvvvvv ~

T T T T
3500 3000 2500 2000 15{]0 1000 500
Wavenumber cm-1

Fig. S11 Infrared spectrum of sodium 4-[2-(3-pyridyl)diazenyl]-benzoate
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Fig. S14: 13C NMR (75 MHz, MeOD-d#) of sodium 4-[2-(3-pyridyl)diazenyl]-benzoate
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Fig. S15 UV-visible spectrum of sodium 4-[2-(3-pyridyl)diazenyl]-benzoate in DMSO
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(¥)-2,7,12-Trimethoxy-3,8,13-tris(4,4’-pyridyl-azophenylcarboxy)-10,15-dihydro-5H-

tribenzo[a,d,g]cyclononene (L1)
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Fig. S16 Infrared spectrum of L1

[1053.3935]*
{M + H:0}*

[1036.3418]*

z {M+Hy
\.

452.3191
I

il

598.6624 1374.4703
i sl PO |

T T T T T T J
2200 2000 1800 1800 1400 1200 1000 800 &00 400

[1555.0155)2*
{3M + 2Hp*

[2072.6807]"
{2M + Hy*

1727,9030 2590 8467
‘L I | - L

500 1000

Fig. S17 Mass spectrum of L1.

2000 2500 miz

20



N\.
O
N
e %y
: T3
N 7 N 13
?‘ N Acetone
0A 9. 9
\~0 © 8
S
4
12
/] [
10/12
6/8 j )
coal
e ey
11/13 e
1 2
1 = ) J..J}L _..J_.L A |
7 ¥ Py wow T "
: § 83z 3¢ 3 z

9.0 8.5 8.0 725 7.0 6.5 6.0 5.5 5.0 45 4.0 s 3.0 25 20 15 1.0 0s 0.0
Chrermucal Shaft (ppm)

cocl,
6 5
4
Oi N QAW

Acetone

10 /
16 THF

THF

170 160 150 140 130 120 110 100 90 80 n 60 50 “0 30 20 10

Fig. S19 C'3 NMR (75 MHz, CDCls) of L1

21



ok

I

N,

— Jﬂl_L“L o

g & & 8 °

Chemical Shaft (ppm)

F140

160

180

- -
- -
..*
- -
- " L]
- «»
-
L
.'.'
L J '¢- [
RE
& ‘e
95 90 85 80 75 70 65 60 S5 S0 45 49 35 30 25 20 15 10 05
Chemical Shift (ppm)
Fig. S20 *H-'H COSY NMR (400 MHz, DMSO-d®) of L1
2 Ill.
LI
L} L
L] . " L L
LI . - - -
.~ W , LI B - " -
L B - " -
- . " e L}
- L
a =
L
95 99 85 80 75 40 35 30 25 20 15 10 0S

70 65 60 55 50 45
Chermicai Shat (ppm)

Fig. S21 *H-13C HMBC NMR (400 MHz, DMSO-d®) of L1

Chemical Shift (ppm)

22



k ‘

~10
Lo
= 10
- - 20
- L ] 30
— - - ™ "
50
= - "
- - =70 i
B — - 00 g
-,
100
F110
— - L L]
—— & idy — F120
— - 130
- 140
—— - 150
f 160
1 F170
95 90 85 80 75 70 65 60 S5 S0 45 40 35 30 25 20 15 10 05
Chemical Shaft (ppm)
Fig. S22 'H-13C HMQC NMR (400 MHz, DMSO-d®) of L1
1.25
1.00 A
8
c  0.754
@®
=
o B
7))
Q0
<< 0.50
0.25 1
000 ! | ! | ' I ' I ! I ! I
250 300 350 400 450 500 550

Wavelength (nm)

Fig. S23 UV-visible spectrum of L1 in DMSO.

23



(¥)-2,7,12-Trimethoxy-3,8,13-tris(4,3'-pyridyl-azophenylcarboxy)-10,15-dihydro-5H-

tribenzo[a,d,g]cyclononene (L2)
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Fig. S24 Infrared spectrum of L2.
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Fig. S25 Mass spectrum of L2.
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2,7,12-Tris-(2-(4-pyridylazo)ethoxy)-3,8,13-trimethoxy-10,15-dihydro-2H-

tribenzo[a,d,g]cyclononene (L3)
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Fig. S32. Infrared spectrum of L3.
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Fig. S35. 13C NMR (75 MHz, CDCls) of L3.
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Fig. S36. H-'H COSY NMR (400 MHz, CDCl3) of L3.
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Fig. S37. H-13C HMBC NMR (400 MHz, CDCl3) of L3.
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2,7,12-Tris-(2-(3-pyridylazo)ethoxy)-3,8,13-trimethoxy-10,15-dihydro-2H-

tribenzo[a,d,g]cyclononene (L4)
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Fig. S40. Infrared spectrum of L4.
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[{Ir(ppy)2}s (L2)2]3"3PFe coordination cage (C1)
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Fig. S52. 'H-'H ROESY NMR (500 MHz, MeNO2-d®) spectrum of C1.

Table S2. Assignment of through space coupling interactions observed in the ROESY NMR
spectrum of cage C1 and corresponding distances found in molecular model.

ROE interaction Assignment (NMR) Distance (A)? Origin®
6.546---7.018 Hs---He + H7 2.487/4.311 Ppy---Ppy
6.548---8.931°¢ Hs---Hb + H1 2.652/3.503 L2---Ppy
6.989---7.719 Hs + Hz---H + Hs 2.472/4.304 Ppy---Ppy
7.242---7.465 Hn---Hi 1.706 L2---L2
7.678---8.084 H + Hs-—-He? + Hs 4.657 Ppy---Ppy
7.657---8.453 He + Hs9---Hg + H¢d 2.450 L2---L2
7.657---8.926 He + Hs%--- Hp + H1d 2513 L2---L2
8.034---7.509 @ + Ha-- Hié+ Ho 2.541 Ppy---Ppy
8.929---7.509 Ho + Hi-- Hi+ Ha 4.504/2.586 Ppy---Ppy
8.939---9.279° Hb + Hi---Ha 4.174/2.411 L2---Ppy
9.233---6.584° Ha--Hs 5.143 L2---Ppy

aDistances calculated from model; ° Likely origin selected from closest interaction where overlapping peaks occur. ¢Key
coupling - interaction likely to originate from couplings between protons on phenylpyridine unit and ligand L2; ¢ Proton
likely too distant to make a significant contribution to the observed ROE.
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Fig. S80. UV-visible spectrum of cage C3 in CH2Cl..

3. Table and Spectrato support photoisomerisation experiments

Table S3. Conversion efficiency of photoswitching of ligands and coordination
cages determined by UV-visible studies.

Compound A;(nm) E->Z (%) A2(nm) Z-2E (%)°

L2 330 502(78)° 450 100
L3 350 362 450 91
L4 340 562(73)° 450 100
C1 355 39P 450 94
C1-Me 355 35P 450 95
C1-F 355 26b 450 94
c2 355 16P 450 99
C3 355 40P 450 100

2 after irradiation with Xe lamp at A1 for 45 mins for L2-L4; ° after irradiation with
Nd:YAG laser at A1 until photostationary state reached; ¢ after subsequent irradiation
at A2 with monochromated Xe lamp for 15 mins.
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3.1 Ligand Photoisomerisation
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Fig.S81. UV-visible spectrum of L2 in CD2Cl; on irradiation with Xe lamp at 330 nm for 45 mins.
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Fig. S82. UV-visible spectra of L3 in DMSO. (a) black trace initial spectrum, red trace after irradiation
with Xe lamp at 350 nm for 45 minutes; (b) blue trace after irradiation at 450 nm for 15 mins.
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Fig. S83. UV-visible spectra of L4 in DMSO (a) black trace initial spectrum, red trace after irradiation
with Xe lamp at 340 nm for 45 minutes, (b) blue trace after irradiation at 450 nm for 15 mins.
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Fig. S84. *H NMR study showing stability of Z-rich photostationary state of L2 in CD2Clz: a. initial all E
isomer; b. After irradiation for 900s with 355 nm Nd:YAG laser; c. Photostationary state after 24 hours
in the dark; d. Photostationary state after 48 hours in the dark. The region between 6.7 and 5.3 ppm
has been omitted for clarity.
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Fig. S85. 'H NMR study of thermal relaxation of ligand L4 in CD2Cl2 showing; a. initial all E isomer; b.
After irradiation for 900s with 355 nm Nd:YAG laser; c. Photostationary state after 24 hours in the
dark. The region between 6.8 and 5.3 ppm has been omitted for clarity.
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3.2 Coordination cage and complex Photoisomerisations
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Fig S86. UV-visible spectra of [Ir(ppy)2(NCMe)z].PFes before and after irradiation at 330 nm with Xe lamp.
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Fig. S87. UV-visible spectra showing E—Z isomerisation of cage C2 on irradiation of DCM solution with
355 nm laser. Inset shows growth of n—n* transition. (Noise ca. 350 nm is an artefact of instrument set-
up). (b) expansion illustrating apparent isosbestic point is not genuine.
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Fig. S88. UV-visible spectra showing reverse Z—E isomerisation of cage C1 on irradiation of DCM
solution with Xe lamp at 450 nm for 15 mins, (subsequent to reaching photostationary state from

irradiation at 355 nm).
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Fig. S89. UV-visible spectra showing reverse Z—E isomerisation of cage C1-Me on irradiation of DCM
solution with Xe lamp at 450 nm for 15 mins, (subsequent to reaching photostationary state from

irradiation at 355 nm).
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Fig. S90. UV-visible spectra showing reverse Z—E isomerisation of cage C1-F on irradiation of DCM
solution with Xe lamp at 450 nm for 15 mins, (subsequent to reaching photostationary state from
irradiation at 355 nm).
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Fig. S91. UV-visible spectra showing reverse Z—E isomerisation of cage C2 on irradiation of DCM
solution with Xe lamp at 450 nm for 15 mins, (subsequent to reaching photostationary state from
irradiation at 355 nm). (Noise ca. 350 nm is an artefact of instrument set-up).
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Fig. S92. UV-visible spectra showing reverse Z—E isomerisation of cage C3 on irradiation of DCM
solution with Xe lamp at 450 nm for 15 mins, (subsequent to reaching photostationary state from
irradiation at 355 nm).
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Fig. S93. Plot of absorbance at 323 nm of solution of C1-Me in CH2Cl> on cycling of irradiation, odd
number irradiations show E—Z isomerisation at 355 nm, while even numbers are reverse Z—E
isomerisation at 450 nm.

4. Spectra and images supporting emission studies
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Fig. S94. Dark-room images of luminescence of metallo-cages in DCM solution (upper image) and in
PMMA matrix (lower image).
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Fig. S95. Emissions and excitation spectra of C1 in DCM solution after photoexcitation at Aexe = 378 nm
and time, t = 0 and 60 min.
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Fig. S96. Emissions and excitation spectra of C1-Me in DCM solution after photoexcitation at Aexe = 378

nm.
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Fig. S97. Emissions and excitation spectra of C2 in DCM solution after photoexcitation at Aexe = 378

nm.
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Fig. S98. Emissions and excitation spectra of C3 in DCM solution after photoexcitation at Aexe = 378
nm.
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Fig. S99. Photoluminescence emission spectra of PMMA-films doped with metallo-cages. C1 = SO2-

260; C1-Me = SO2-373; C2 = SO3-380; C3 = SO2-292.
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Fig. S101. Luminescence lifetime data for C1-Me in DCM solution (upper) and doped PMMA-film
(lower).
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Fig. S102. Luminescence lifetime data for C2 in DCM solution (upper) and doped PMMA-film (lower).
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Fig. S103. Luminescence lifetime data for C3 in DCM solution (upper) and doped PMMA-film (lower).
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