Supporting Information

Gold-catalyzed [4+3]-Annulations of 2-Alkenyl-1-Alkynylbenzenes with Anthranils with Alkyne-Dependent Chemoselectivity: Skeletal Rearrangement versus Non-Rearrangement

RahulKumar Rajmani Singh^a, Manisha Skaria^a, Liang-Yu Chen^b, Mu-Jeng Cheng^{*b} and Rai-Shung Liu^{*a}

^aFrontier Research Center for Matter Science and Technology and Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC------*Email* : <u>rsliu@mx.nthu.edu.tw</u>

^bDepartment of Chemistry, National Cheng Kung University, Tainan 701, Taiwan,

Table of Contents:

(I)	General synthetic procedures for of 1,5-enynes1
(II)	Procedures for catalytic operations2
(III)	Computational details3
(IV)	Spectral data for new compounds5
(V)	X-ray crystallographic data for compound 3a, 5b, 7a and 7e28
(VI)	Coordinates for the Optimized Structures70
(VII)	¹ H & ¹³ C Spectra92

(I) General Synthetic Procedures:

(a) General procedure:

Unless otherwise noted, preparations of the substrates were performed in oven-dried glassware under nitrogen atmosphere with freshly distilled solvents. The catalytic reactions were performed under nitrogen atmosphere. DCE and DCM were distilled from CaH₂ under nitrogen. THF were distilled from Na metal under nitrogen. All other commercial reagents were used without further purification, unless otherwise indicated. ¹H NMR and ¹³C NMR spectra were recorded on a Varian 400 MHz, Bruker 400 and 600 MHz Spectrometers using chloroform-*d* (CDCl₃) and d-Acetone as the internal standards.

All 1, 5-enynes **1a**, **1c**, **1d**, **1f**, **1h** and **4a**, **4d**, **4g-4h** were prepared from the reported procedure in the literature. ^[S1]. All benzisoxazoles (**2a-2h**) were prepared according to literature procedure. ^[S2]

- [S1] a) R. J. Madhushaw, C. -Y. Lo, C. -W. Hwang, M. -D. Su, H. -C. Shen, S. Pal, I. R. Shaikh, R.-S. Liu, *J. Am. Chem. Soc.*, 2004, **126**, 15560 15565. b) C.-H. Chen, Y. -C. Tsai, R. -S. Liu, *Angew. Chem. Int. Ed.* 2013, **52**, 4599 –4603
- [S2] a)Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026; b) Chauhana,
 J.; Fletcher, S. Tetrahedron Lett. 2012, 53, 4951.

(b) Preparation of 1-(2-methylprop-1-en-1-yl)-2-(prop-1-yn-1-yl)benzene (4a).

To a triethylamine (40 ml) solution of 2-bromobenzaldehyde (s-1) (1.90 g, 10.3 mmol), $PdCl_2(PPh_3)_2$ (143.8 mg, 0.2 mmol), and CuI (78.2 mg, 0.4 mmol) was added the trimethylsilylacetylene (1.5 g, 15.3 mmol). The resulting mixture was heated at 50 °C for 8 h under N₂ atmosphere. The reaction mixture was treated with water, and extracted with CH₂Cl₂ (three times). The organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuum. The residue was purified on a silica column to afford 2-((trimethylsilyl)ethynyl)benzaldehyde (s-2) as a yellowish solid (1.7 g, 8.5 mmol, 82 %).

To a THF solution (25 mL) of isopropyltriphenylphosphonium iodide (4.8 g, 11.1 mmol) was added *n*-BuLi (2.5 M, 3.6 mL, 8.9 mmol) at 0 $^{\circ}$ C, and the mixture was

stirred for 30 min at same temperature before 2-((trimethylsilyl)ethynyl)benzaldehyde (s-2) (1.5 g, 7.4 mmol) was added. The solution was slowly warmed to room temperature and stirred for 1 h at 25 °C before it was quenched with aqueous NH_4Cl solution. The organic layer was extracted with diethyl ether, dried over $MgSO_4$ and chromatographed on a silica column to give trimethyl ((2-(2-methylprop-1-en-1-yl) phenyl)ethynyl)silane (s-3) (1.5 g, 6.6 mmol, 89 %) as a yellow oil.

To a MeOH solution (15 mL) of trimethyl((2-(2-methylprop-1-en-1-yl)phenyl) ethynyl)silane (s-3) (1.5 g, 6.6 mmol) was added K_2CO_3 (1.0 g, 7.2 mmol) at 25 °C; the resulting solution was stirred at room temperature for 1 h before it was quenched with distilled water. The organic layer was extracted with diethyl ether, dried over MgSO₄ and chromatographed on a silica column to give 1-ethynyl-2-(2-methylprop-1 -en-1-yl)benzene (1.0 g, 6.4 mmol, 97 %).

To a dry THF solution (22.5 mL) of 1-ethynyl-2-(2-methylprop-1-en-1-yl)benzene (1.0 g, 6.4 mmol) was added *n*-BuLi (2.5 M, 2.8 mL, 7.0 mmol) at -78 °C, and the mixture was stirred for 30 min before MeI (1.8 g, 12.8 mmol) was added at -78 °C. The resulting solution was slowly warmed to room temperature and stirred for 2 h. The reaction was quenched with distilled water and extracted with diethyl ether (30 mL * 2 times); the organic layer was combined and dried over MgSO₄ and chromategraphed on a silica column to give 1-(2-methylprop-1-en-1-yl)-2-(prop-1-yn-1-yl) benzene (**4a**) (1.1 g, 99 %).

(II) Standard procedures for catalytic operations:(a) Typical procedure for the synthesis of (3a).

A 1,2-dichloroethane (1.0 mL) solution of $(OPh)_3PAuCl$ (35 mg, 0.064 mmol) and AgNTf₂ (25.0 mg, 0.064 mmol) was stirred at 25 °C for 5 min; to this DCE solution was added 1-ethynyl-2-(2-methylprop-1-en-1-yl)benzene (**1a**) (100 mg, 0.64 mmol) and anthranils (**2a**) (84 mg, 0.71 mmol, 1.1 equiv) over a period of 5 min at 25 °C; the solution was stirred for 4 h at the same temperature before it was filtered over a celite bed. The solvent was evaporated under reduced pressure, and the residue was purified on a flash silica gel column to give compound **3a** (128.7 mg, 73 % yield, 0.46 mmol)

as a yellow solid.

(b) Typical procedure for the synthesis of (5a).

A 1,2-dichloroethane (1.0 mL) solution of $(OPh)_3PAuCl$ (24.0 mg, 0.059 mmol) and AgSbF₆ (15.0 mg, 0.059 mmol) was stirred at 25 °C for 5 min; to this DCE solution of 1-(2-methylprop-1-en-1-yl)-2-(prop-1-yn-1-yl)benzenee (4a) (100 mg, 0.59 mmol) and anthranils (2a) (147 mg, 1.2 mmol, 2.1 equiv) was slowly added over a period of 5 min at 25 °C. The solution was stirred for 10 h at the same temperature before filteration over a celite bed. The solvent was evaporated under reduced pressure; the residues were purified on a silica column to give compound 5a (187.4 mg, 0.46 mmol, 78%) as a yellow solid and 4a' ^[S3] (5.0 mg, 0.29 mmol, 5%).

[S3] C.-H. Chen, Y. -C. Tsai, R. -S. Liu, Angew. Chem. Int. Ed. 2013, 52, 4599 – 4603.

(III) Computational details:

The geometry optimizations and zero-point vibrational energy (ZPVE) were carried out using the B3LYP functional^[S4-S6] with the 6-31G^{**} basis set^[S7-S8] for all atoms except Au. For Au the first four shells of core electrons were described by the Los Alamos angular momentum projected effective core potential (ECP) using the double- ζ contraction of valence functions (denoted as LACVP**) leading to 19 explict electons for neural Au.^[S9] In order to obtain a more accurate electronic energy, we performed single-point energy calculations based on the same functional, but using a larger basis set, where Au was described with the triple- ζ contraction of valence functions (the core electrons were described by the same ECP), with the other atoms described with the 6-311++G** basis set. Solvation energies G_{solv} were calculated using the Poisson-Boltzmann self-consistent polarizable continuum method^[S10-S11] implemented in Jaguar to represent dichloroethane (dielectric constant = 10.65 and effective radius = 2.51 Å). The solvation calculations used the B3LYP/LACVP** level of theory and the gas-phase optimized structures. All energies discussed in this work are $H(298 \text{ K}) = E_{SCF} + G_{solv} + ZPVE + H_{trans} + H_{rot} + H_{rot}$ H_{vib} + PV, where E_{SCF} is electronic energy, and H_{trans} , H_{rot} , and H_{vib} are translational, rotational, and vibrational thermal corrections, respectively.

- [S4] A. D. Becke, Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. *Phys Rev A* 1988, **38**, 3098-3100.
- [S5] A. D. Becke, Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652.
- [S6] C. T. Lee, W. T. Yang, R. G. Parr, Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. *Phys Rev B* 1988, 37, 785-789.
- [S7] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople, Self-Consistent Molecular-Orbital Methods .23. A Polarization-Type Basis Set for 2nd-Row Elements. J. Chem. Phys. 1982, 77, 3654-3665.
- [S8] W. J. Hehre, R. Ditchfie, J. A. Pople, Self-Consistent Molecular-Orbital Methods .12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic-Molecules. J. Chem. Phys. 1972, 56, 2257-2261.
- [S9] P. J. Hay, W. R. Wadt, Abinitio Effective Core Potentials for Molecular Calculations - Potentials for K to Au Including the Outermost Core Orbitals. J. *Chem. Phys.* 1985, 82, 299-310.
- [S10] B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda,
 D. Sitkoff, B. Honig, New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects. J. Phys. Chem. 1996, 100, 11775-11788.
- [S11] D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W. A. Goddard, B. Honig, Accurate First Principles Calculation of Molecular Charge-Distributions and Solvation Energies from Ab-Initio Quantum-Mechanics and Continuum Dielectric Theory. J. Am. Chem. Soc. 1994, 116, 11875-11882.

4

(IV) Spectral data of key compound:

Spectral data for 1-ethynyl-4-methyl-2-(2-methylprop-1-en-1-yl)benzene (1b).

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.32 (s, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.47 (s, 1H), 3.23 (s, 1H), 2.30 (s, 3H), 1.94 (s, 3H), 1.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.2, 136.3, 135.4, 133.2, 129.2, 129.0, 123.4, 121.2, 82.9, 80.6, 26.6, 20.8, 19.6.

Spectral data for 2-ethynyl-4-methyl-1-(2-methylprop-1-en-1-yl)benzene (1e).

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.36 (s, 1H), 7.16 (d, J = 48.0 Hz, 1H), 7.13 (d, J = 20.0 Hz, 1H), 6.47 (s, 1H), 3.23 (s, 1H), 2.32 (s, 3H), 1.94 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 136.3, 135.4, 133.3, 129.2, 129.0, 123.4, 121.4, 82.9, 80.6, 26.6, 20.8, 19.6.

Spectral data for 4-chloro-2-ethynyl-1-(2-methylprop-1-en-1-yl)benzene (1g).

Light yellow color liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, *J* = 8.4 Hz, 1H), 7.25 (s, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.43 (s, 1H), 3.28 (s, 1H), 1.94 (s, 3H), 1.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.6, 138.2, 134.1, 133.8, 129.0, 126.0, 122.6, 119.9, 81.9, 81.7, 26.6, 19.5.

Spectral data for 1-ethynyl-2-(2-propylpent-1-en-1-yl)benzene (1j).

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, *J* = 8.0 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 6.8 Hz, 1H), 7.14 (t, *J* = 6.8 Hz, 1H), 6.44 (s, 1H), 3.22 (s, 1H), 2.18~2.09 (m, 4H), 1.59~1.51 (m, 2H), 1.49~1.42 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H), 0.84 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 141.5, 132.7, 128.9, 128.3, 125.8, 123.7, 121.5, 82.8, 80.9, 38.8, 32.8, 21.4, 21.2, 14.1, 13.9.

Spectral data for 1-(prop-1-en-2-yl)-1H-indene (1a').

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 6.84 (dd, *J* = 7.0, 2.0 Hz, 1H), 6.41 (dd, *J* = 5.2, 2.0 Hz, 1H), 5.01 (d, *J* = 56.0 Hz, 2H), 4.10 (s, 1H), 1.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.9, 144.6, 143.8, 138.3, 132.0, 126.7, 125.0, 123.4, 120.9, 113.3, 58.8, 18.2. ESI-MS calcd. for C₁₂H₁₂: 156.0939, found 157.0962 [M+H].

Spectral data for 4-methyl-2-(2-methylprop-1-en-1-yl)-1-(prop-1-yn-1-yl)benzene (4b).

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.36 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 4.8 Hz, 1H), 7.00~6.97 (m, 1H), 6.54 (d, J = 5.2 Hz, 1H), 2.37 (s, 3H), 2.11 (s, 3H), 1.99 (s, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.0, 136.6, 135.7, 132.0, 129.6, 126.5, 124.1, 120.3, 88.7, 78.8, 26.6, 21.3, 19.5, 4.3.

Spectral data for 4-fluoro-2-(2-methylprop-1-en-1-yl)-1-(prop-1-yn-1-yl)benzene (4c).

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.15 (dd, J = 8.4, 6.4 Hz, 1H), 7.07 (d, J = 9.6 Hz, 1H), 6.92 (t, J = 10.0 Hz, 1H), 6.37 (s, 1H), 2.08 (s, 3H), 1.92 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5 (d, J = 253 Hz), 136.4, 136.2,

130.3 (d, *J* = 6 Hz), 124.9 (d, *J* = 10 Hz), 123.1, 118.5 (d, *J* = 21 Hz), 114.2 (d, *J* = 21 Hz), 90.8, 77.8, 26.5, 19.4, 4.3.

Spectral data for 4-methyl-1-(2-methylprop-1-en-1-yl)-2-(prop-1-yn-1-yl)benzene (4e).

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.26 (s, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.49 (s, 1H), 2.31 (s, 3H), 2.10 (s, 3H), 1.96 (s, 3H), 1.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.3, 135.4, 135.2, 132.7, 128.8, 127.9, 123.9, 123.1, 89.3, 78.9, 26.7, 20.7, 19.5, 4.5

Spectral data for 4-fluoro-1-(2-methylprop-1-en-1-yl)-2-(prop-1-yn-1-yl)benzene (4f).

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.16 (dd, J = 8.4, 5.6 Hz, 1H), 7.08 (dd, J = 8.8, 2. Hz, 1H), 6.91 (t, J = 8.8 Hz, 1H), 6.38 (s, 1H), 2.07 (s, 3H), 1.92 (s, 3H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5 (d, J = 240 Hz), 136.4, 136.1, 130.4 (d, J = 8 Hz), 124.9 (d, J = 10 Hz), 123.1, 118.6 (d, J = 22 Hz), 114.3 (d, J = 21 Hz), 90.9, 77.9, 26.6, 19.4, 4.4.

Spectral data for tert-butyldimethyl((3-(2-(2-methylprop-1-en-1-yl)phenyl)prop -2-yn-1-yl)oxy)silane (4k).

Light yellow color liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 7.6 Hz, 1H), 7.26~7.24 (m, 2H), 7.15~7.11 (m, 1H), 6.48 (s, 1H), 4.58 (s, 2H), 1.93 (d, *J* = 1.4 Hz, 3H), 1.81 (d, *J* = 1.3 Hz, 3H), 0.95 (s, 9H), 0.18 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 140.5, 136.4, 132.3, 129.0, 127.7, 125.7, 123.9, 122.2, 91.8, 83.9, 52.3, 26.6, 25.8,

19.5, 18.3.

Spectral data for (11b*R*,12*R*)-6,6-dimethyl-11b,12-dihydro-6*H*-5,12-epoxybenzo [*b*]indeno[1,2-*e*]azepine (3a).

Yellow solid, mp: 171-172 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 6.0 Hz, 1H), 7.20~7.18 (m, 2H), 7.12~7.10 (m, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.72 (t, *J* = 7.2 Hz, 1H), 6.41 (d, *J* = 7.2 Hz, 1H), 6.17 (s, 1H), 5.69 (d, *J* = 4.8 Hz, 1H), 4.11 (d, *J* = 4.8 Hz, 1H), 1.81 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 149.1, 144.4, 140.5, 135.8, 127.2, 127.1, 126.7, 124.9, 124.5, 123.0, 121.0, 120.8, 116.6, 84.4, 65.5, 50.5, 27.6, 23.5; ESI-MS calcd. for C₁₉H₁₈NO [M+H]: 276.1388, found: 276.1386.

Spectral data for ¹³C Labelled (11b*R*,12*R*)-6,6-dimethyl-11b,12-dihydro-6*H*-5,12 -epoxybenzo[*b*]indeno[1,2-*e*]azepine (¹³C-3a).

Yellow solid, mp: 178-179 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 6.0 Hz, 1H), 7.20~7.18 (m, 2H), 7.12~7.10 (m, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 6.72 (t, J = 7.2 Hz, 1H), 6.41 (d, J = 7.2 Hz, 1H), 6.17 (s, 1H), 5.69 (d, J = 4.8 Hz, 1H), 4.11 (d, J = 4.8 Hz, 1H), 1.80 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.6, 149.1, 144.3, 140.5, 135.8, 127.2, 127.1, 126.7, 124.9, 124.5, 123.0, 121.0, 120.8, 116.6, 84.4, 65.5, 50.5 (¹³C CH), 27.6, 23.5; ESI-MS calcd. for C₁₉H₁₈NO [M+H]: 277.1388, found: 277.1381.

Spectral data for (11b*R*,12*R*)-6,6-dimethyl-11b,12-dihydro-6*H*-5,12-epoxybenzo [*b*]indeno[1,2-*e*]azepine (d₁-3a).

Light yellow solid, mp: 174-175 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 6.4 Hz, 1H), 7.20~7.17 (m, 2H), 7.12~7.10 (m, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.72 (t, J = 7.2 Hz, 1H), 6.41 (d, J = 7.2 Hz, 1H), 6.17 (s, 0.71H/0.29D),

5.70 (d, J = 5.2 Hz, 1H), 4.11 (d, J = 4.4 Hz, 1H), 1.80 (s, 3H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 149.1, 149.0, 144.4, 140.5, 135.8, 127.2, 127.1, 126.7, 125.0, 124.5, 123.0, 121.0, 120.8, 116.6, 84.4, 65.5, 50.5, 27.6, 23.5; ESI-MS calcd. for C₁₉H₁₇NO: 275.1310, found: 276.1381 [M+H] and C₁₉H₁₇²H₁NO:277.1399 [M+H].

Spectral data for (11b*R*,12*R*)-6,6,9-trimethyl-11b,12-dihydro-6*H*-5,12-epoxyben -zo[*b*]indeno[1,2-*e*]azepine (3b).

Yellow solid, mp: 168-169 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, *J* =7.6 Hz, 1H), 7.03~6.91 (m, 4H), 6.73 (t, *J* = 7.2 Hz, 1H), 6.44 (d, *J* = 7.2 Hz, 1H), 6.11 (s, 1H), 5.66 (d, *J* = 5.2 Hz, 1H), 4.07 (d, *J* = 4.8 Hz, 1H), 2.31 (s, 3H), 1.79 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 149.3, 144.6, 137.6, 136.9, 135.9, 127.1, 126.7, 125.3, 124.9, 122.7, 121.7, 121.0, 116.5, 84.5, 65.5, 50.1, 27.6, 23.5, 21.5; ESI-MS calcd. for C₂₀H₂₀NO [M+H]: 290.1545, found: 290.1546. **Spectral data for (11b***R*,**12***R***)-9-fluoro-6,6-dimethyl-11b,12-dihydro-6***H***-5,12-epo**

-xybenzo[b]indeno[1,2-e]azepine (3c).

Light reddish solid, mp: 163-164 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.25~7.22 (m, 1H), 7.05~7.00 (m, 2H), 6.96 (s, 1H), 6.94~6.88 (m, 1H), 6.77~6.73 (m, 1H), 6.47 (d, *J* = 7.2 Hz, 1H), 6.11 (s, 1H) 5.65 (d, *J* = 5.2 Hz, 1H), 4.09 (d, *J* = 5.2 Hz, 1H), 1.79 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.1 (d, *J* = 242 Hz), 149.6, 149.0 (d, *J* = 3 Hz), 142.4 (d, *J* = 8 Hz), 140.3, 135.5, 126.9, 126.3, 125.0, 121.5(d, *J* = 8 Hz) 120.8, 116.6, 114.1 (d, *J* = 23 Hz), 110.7 (d, *J* = 23 Hz), 84.1, 65.4, 50.6, 27.5, 23.4; ESI-MS calcd. for C₁₉H₁₇FNO [M+H]: 294.1294, found: 294.1298.

Spectral data for (11b*R*,12*R*)-9-chloro-6,6-dimethyl-11b,12-dihydro-6*H*-5,12-epoxybenzo[*b*]indeno[1,2-*e*]azepine (3d).

9

Yellow solid, mp: 153-154 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (s, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.04~7.00 (m, 2H), 6.94 (d, J = 7.6 Hz, 1H), 6.75 (t, J = 7.6 Hz, 1H), 6.48 (d, J = 7.6 Hz, 1H), 6.12 (s, 1H), 5.67 (d, J = 5.2 Hz, 1H), 4.09 (d, J = 4.8 Hz, 1H), 1.79 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 149.5, 142.8, 142.2, 135.4, 130.5, 127.5, 126.9, 126.4, 125.1, 123.4, 121.7, 120.9, 116.6, 84.1, 65.5, 50.5, 27.5, 23.4; ESI-MS calcd. for C₁₉H₁₇ClNO [M+H].: 310.0999, found: 310.0992 Spectral data for (11b*R*,12*R*)-6,6,10-trimethyl-11b,12-dihydro-6*H*-5,12-epoxy -benzo[*b*]indeno[1,2-*e*]azepine (3e).

Yellow solid, mp: 168-169 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, *J* =7.6 Hz, 1H), 7.03~6.92 (m, 4H), 6.73 (t, *J* = 7.2 Hz, 1H), 6.43 (d, *J* = 7.2 Hz, 1H), 6.11 (s, 1H), 5.66 (d, *J* = 5.2 Hz, 1H), 4.07 (d, *J* = 5.2 Hz, 1H), 2.31 (s, 3H), 1.79 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 149.3, 144.6, 137.6, 136.8, 135.9, 127.1, 126.7, 125.3, 124.9, 122.6, 121.7, 120.9, 116.5, 84.5, 65.5, 50.1, 27.6, 23.5, 21.5; ESI-MS calcd. for C₂₀H₂₀NO [M+H]: 290.1545, found: 290.1546. **Spectral data for (11b***R*,**12***R***)-10-fluoro-6,6-dimethyl-11b**,**12-dihydro-6***H*-**5**,**12-epoxybenzo**[*b***]indeno**[1,2-*e***]azepine (3f).**

Light reddish solid, mp: 163-164 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (dd, J = 8.0, 5.2 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 6.90~6.85 (m, 1H), 6.80~6.73 (m, 2H), 6.43 (d, J = 7.6 Hz, 1H), 6.12 (s, 1H) 5.67 (d, J = 4.8 Hz, 1H), 4.06 (d, J = 5.2 Hz, 1H), 1.79 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.6 (d, J = 242 Hz), 151.7, 149.5, 146.3 (d, J = 9 Hz), 136.0, 135.5, 126.9, 126.7, 125.1, 123.7(d, J = 9 Hz) 120.9, 116.6, 111.2 (d, J = 24 Hz), 108.1 (d, J = 23 Hz), 84.4, 65.5, 49.9, 27.5, 23.4; ESI-MS calcd. for C₁₉H₁₇FNO [M+H]: 294.1294, found: 294.1282.

Spectral data for (11b*R*,12*R*)-10-chloro-6,6-dimethyl-11b,12-dihydro-6*H*-5,12-epoxybenzo[*b*]indeno[1,2-*e*]azepine (3g).

Yellow solid, mp: 153-154 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 1.2 Hz, 1H), 7.17 (dd, J = 8.0, 2.0 Hz, 1H), 7.05~7.00 (m, 2H), 6.94 (d, J = 7.6 Hz, 1H), 6.77~6.73 (m, 1H), 6.48 (d, J = 7.6 Hz, 1H), 6.12 (s, 1H), 5.67 (d, J = 5.2 Hz, 1H), 4.08 (d, J = 5.2 Hz, 1H), 1.79 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 149.5, 142.8, 142.2, 135.3, 130.5, 127.4, 126.9, 126.4, 125.1, 123.4, 121.7, 120.9, 116.6, 84.1, 65.4, 50.5, 27.5, 23.4; ESI-MS calcd. for C₁₉H₁₇CINO [M+H]: 310.0999, found: 310.0999.

Spectral data for (11b'*R*,12'*R*)-11b',12'-dihydrospiro[cyclopentane-1,6'-[5,12]epo -xybenzo[*b*]indeno[1,2-*e*]azepine] (3h).

White solid, mp: 218-219 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 6.0 Hz, 1H), 7.22~7.17 (m, 2H), 7.11~7.09 (m, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.71 (t, *J* = 7.6 Hz, 1H), 6.41 (d, *J* = 7.2 Hz, 1H), 6.18 (s, 1H), 5.70 (d, *J* = 5.2 Hz, 1H), 4.04 (d, *J* = 5.2 Hz, 1H), 2.61~2.54 (m, 1H), 2.18~2.12 (m, 1H), 2.05~1.93 (m, 3H), 1.88~1.82 (m, 2H), 1.80~1.73 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.4, 148.1, 144.4, 140.6, 135.8, 127.2, 127.1, 127.0, 124.9, 124.5, 123.0, 120.9, 120.8, 115.6, 84.3, 51.3, 38.4, 33.7, 24.0, 23.8; ESI-MS calcd. for C₂₁H₂₀NO [M+H]: 302.1545, found: 302.1543.

Spectral data for (11b'*R*,12'*R*)-11b',12'-dihydrospiro[cyclohexane-1,6'-[5,12]epo -xybenzo[*b*]indeno[1,2-*e*]azepine] (3i).

White solid, mp: 225-226 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 6.0 Hz, 1H), 7.22~7.18 (m, 2H), 7.13~7.10 (m, 1H), 7.00 (t, *J* = 8.0 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.69 (t, *J* = 7.6 Hz, 1H), 6.37 (d, *J* = 7.2 Hz, 1H), 6.22 (s, 1H), 5.69 (d, *J* = 5.2 Hz, 1H), 4.10 (d, *J* = 4.8 Hz, 1H), 2.47~2.42 (m, 1H), 2.16~2.14 (m, 1H), 2.09~1.95 (m, 2H), 1.85~1.74 (m, 2H), 1.71~1.63 (m, 2H), 1.59~1.52 (m, 1H), 1.51~1.47 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.5, 148.5, 144.6, 140.4, 135.9, 128.0, 127.2, 126.7, 124.6, 124.4, 122.9, 120.9, 120.8, 116.1, 84.6, 68.0, 50.3, 36.1, 32.3, 26.2, 22.1, 22.0; ESI-MS calcd. for C₂₂H₂₂NO [M+H]: 316.1701, found: 316.1714.

Spectral data for (11b*R*,12*R*)-6,6-dipropyl-11b,12-dihydro-6*H*-5,12-epoxybenzo [*b*]indeno[1,2-*e*]azepine (3j).

Light brown solid, mp: 215-216 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 5.6 Hz, 1H), 7.19~7.16 (m, 2H), 7.10 (d, J = 7.6 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.70 (t, J = 7.2 Hz, 1H), 6.39 (d, J = 7.6 Hz, 1H), 6.16 (s, 1H), 5.67 (d, J = 5.2 Hz, 1H), 4.07 (d, J = 4.8 Hz, 1H), 2.36~2.29 (m, 1H), 2.18~2.13 (m, 1H), 1.90~1.85 (m, 1H), 1.79~1.71 (m, 1H), 1.59~1.53 (m, 1H), 1.46~1.37 (m, 2H), 1.18~1.11 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.5, 148.7, 144.6, 140.6, 136.2, 128.3, 127.2, 126.8, 124.7, 124.4, 122.9, 120.8, 116.3, 84.3, 71.3, 50.3, 37.1, 34.4, 17.7, 15.8, 14.7, 14.6; ESI-MS calcd. for C₂₃H₂₆NO[M+H]: 332.2014, found: 332.2008.

Spectral data for (11b*R*,12*R*)-2,6,6-trimethyl-11b,12-dihydro-6*H*-5,12-epoxy -benzo[*b*]indeno[1,2-*e*]azepine (3k).

Off-white solid, mp: 101-102 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51~7.50 (m, 1H), 7.20~7.17 (m, 2H), 7.12~7.11 (m, 2H), 6.83~6.79 (m, 2H), 6.23 (s, 1H), 6.18 (s, 1H), 5.65 (d, *J* = 3.4 Hz, 1H), 4.09 (d, *J* = 3.4 Hz, 1H), 2.02 (s, 3H), 1.78 (s, 3H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.3, 147.2, 144.4, 140.5, 136.0, 134.6, 127.2, 127.1, 127.1, 124.4, 122.9, 121.6, 121.0, 116.2, 84.4, 65.3, 50.5, 27.6, 23.5, 20.9; ESI-MS calcd for C₂₀H₂₀NO [M+H] : 290.1545, found: 290.1555.

Spectral data for (11b*R*,12*R*)-2-bromo-6,6-dimethyl-11b,12-dihydro-6*H*-5,12-epo -xybenzo[*b*]indeno[1,2-*e*]azepine (3l).

Light brown solid, mp: 178-179 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 7.6 Hz, 1H), 7.25~7.21 (m, 2H), 7.20~7.13 (m, 2H), 6.81 (d, J = 8.4 Hz, 1H), 6.53 (s, 1H),

6.21 (s, 1H), 5.66 (d, J = 5.2 Hz, 1H), 4.09 (d, J = 5.2 Hz, 1H), 1.78 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.1, 148.4, 144.1, 139.9, 138.3, 129.8 127.5, 124.8, 124.1, 122.9, 121.3, 118.0, 84.2, 65.6, 50.2, 27.5, 23.4; ESI-MS calcd. for C₁₉H₁₇BrNO [M+H]: 354.0494, found: 354.0504.

Spectral data for (11b*R*,12*R*)-2-chloro-6,6-dimethyl-11b,12-dihydro-6*H*-5,12-epo -xybenzo[*b*]indeno[1,2-*e*]azepine (3m).

Light brown solid, mp: 156-157 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 6.4 Hz, 1H), 7.23~7.19 (m, 2H), 7.18~7.14 (m, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 6.38 (s, 1H), 6.21 (s, 1H), 5.66 (d, J = 5.2 Hz, 1H), 4.09 (d, J = 5.2 Hz, 1H), 1.78 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.5, 148.4, 144.1, 140.0, 138.0, 130.3 127.5, 126.8, 124.8, 122.9, 121.3, 117.5, 84.3, 65.6, 50.2, 27.5, 23.4; ESI-MS calcd. for C₁₉H₁₇CINO [M+H]: 310.0999, found: 310.0991.

Spectral data for (11b*R*,12*R*)-2-methoxy-6,6-dimethyl-11b,12-dihydro-6*H*-5,12 -epoxybenzo[*b*]indeno[1,2-*e*]azepine (3n).

Semi solid, ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 6.36, 1H), 7.33~7.31 (m, 1H), 7.23~7.11 (m, 3H), 6.83 (d, J = 8.4, 1H), 6.50 (dd, $J_{I,3}= 2.4$ Hz, $J_{2,3}= 8.4$ Hz, 1H), 6.18 (s, 1H), 5.96 (d, J = 2.4 Hz, 1H), 5.64 (d, J = 5.1 Hz, 1H), 4.09 (d, J = 5.04 Hz, 1H), 3.48 (s, 3H), 1.77 (s, 3H), 1.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.1, 149.2, 144.4, 142.6, 140.5, 137.4, 127.3, 127.2, 124.5, 122.9, 121.0, 116.9, 111.2, 107.6, 84.7, 65.4, 55.4, 50.4, 27.5, 23.4; ESI-MS calcd for C₂₀H₂₀O₂ [M+H]: 306.1494, found: 306.1489.

Spectral data for (11b*R*,12*R*)-6,6-dimethyl-11b,12-dihydro-6*H*-5,12-epoxybenzo [*b*]indeno[1,2-*e*]azepin-2-yl ethyl carbonate (30).

White solid, mp: 124-125 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 6.9, 1H), 7.20~7.17 (m, 2H), 7.15~7.12 (m, 1H), 6.92~6.90 (m, 1H), 6.84~6.82 (m, 1H), 6.23 (d, J = 2.1, 1H), 6.20 (s, 1H), 5.68 (d, J = 5.08, 1H), 4.17 (q, J = 14.3, 7.1, 2H), 4.10

(d, J = 4.9, 1H), 1.78 (s, 3H), 1.40 (s, 3H), 1.27 (t, J = 7.2, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.2, 148.6, 148.1, 147.4, 144.3, 140.1, 137.5, 127.5, 127.5, 124.7, 122.9, 121.2, 119.2, 116.9, 114.4, 84.5, 65.6, 64.8, 50.3, 27.5, 23.4, 14.1; ESI-MS calcd. for C₂₂H₂₂NO₄ [M+H]: 364.1549, found: 364.1546.

Spectral data for(11b*R*,12*R*)-3-bromo-6,6-dimethyl-11b,12-dihydro-6*H*-5,12-epoxybenzo[*b*]indeno[1,2-*e*]azepine (3p).

Gummy solid; ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 4.7, 1H), 7.24~7.18 (m, 2H), 7.16~ 7.13 (m, 2H), 6.81 (d, J = 5.4, 1H), 6.52 (d, J = 1.2, 1H), 6.21 (s, 1H), 5.66 (d, J = 3.4, 1H), 4.09 (d, J = 3.3, 1H), 1.78 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.1, 148.4, 144.1, 139.9, 138.3, 136.9, 129.8, 127.6, 124.9, 124.1, 122.9, 121.3, 118.0, 84.2, 65.6, 50.3, 27.5, 23.4, one peak merged; ESI-MS calcd for C₁₉H₁₇BrNO [M+H]: 354.0494, found: 354.0490.

Spectral data for (11b*R*,12*R*)-3,6,6-trimethyl-11b,12-dihydro-6*H*-5,12-epoxybe -nzo[*b*]indeno[1,2-*e*]azepine (3q).

Off-white solid, mp: 177-178 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 4.7, 1H), 7.18 (m, 2H), 7.12~7.11 (m, 1H), 6.74 (s, 1H), 6.52 (d, J = 4.9, 1H), 6.28 (d, J = 5.0, 1H), 6.17 (s, 1H), 5.65 (d, J = 3.4, 1H), 4.08 (d, J = 3.3, 1H), 2.21 (s, 3H) ,1.78 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 149.4, 144.4, 140.6, 136.7, 132.9, 127.2, 127.1, 125.5, 124.4, 123.0, 120.9, 120.4, 117.4, 84.4, 65.4, 50.6, 27.6, 23.5, 21.5; ESI-MS calcd. for C₂₀H₂₀NO [M+H]: 290.1545, found: 290.1542.

Spectral data for (11b*R*,12*S*)-6,6-dimethyl-12-phenyl-11b,12-dihydro-6*H*-5,12-ep -oxybenzo[*b*]indeno[1,2-*e*]azepine (3r).

White solid, mp: 130-132 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.85~7.82 (m, 2H), 7.51~7.50 (m, 3H), 7.16~7.12 (m, 1H), 7.09~7.06 (m, 3H), 7.02~6.95(m, 2H), 6.78 (t, *J* = 7.4, 1H), 6.37 (d, *J* = 7.6, 1H), 6.21 (s, 1H), 4.60 (s, 1H), 1.85 (s, 3H), 1.47 (s, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 151.7, 150.7, 144.4, 140.3, 136.9, 136.7, 129.5, 128.9, 128.6, 127.2, 127.2, 126.7, 124.9, 124.4, 124.3, 122.4, 120.7, 116.6, 94.6, 64.8, 51.9, 27.7, 23.6, two peaks merged; ESI-MS calcd. for C₂₅H₂₂NO [M+H: 352.1701, found: 352.1699].

Spectral data for (11b*R*,12*R*)-6,6,12-trimethyl-11b,12-dihydro-6*H*-5,12-epoxyben -zo[*b*]indeno[1,2-*e*]azepine (3s).

White solid, mp: 192-193 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.57~7.55 (m, 1H), 7.21~7.15 (m, 2H), 7.10~7.08 (m, 1H), 7.03~7.00 (m, 1H), 6.95~6.93 (m, 1H), 6.75 (t, *J* = 7.4, 1H), 6.33 (d, *J* = 7.2, 1H), 6.12 (s, 1H), 3.84 (s, 1 H), 2.00 (s, 3H), 1.79 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 150.2, 144.3, 140.5, 138.4, 127.2, 126.5, 126.5, 125.0, 124.4, 123.8, 120.9, 120.0, 116.7, 90.5, 64.6, 55.9, 27.6, 23.4,20.9; ESI-MS calcd. for C₂₀H₂₀NO [M+H]: 290.1545, found: 290.1541.

Spectral data for 2-(((6a*S*,11a*S*,12*S*,*E*)-6,6,11a-trimethyl-6,6a,11a,12-tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benzaldehyde(5a).

Yellow solid, mp: 225-226 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.14 (s, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 7.2 Hz, 1H), 7.24~7.18 (m, 2H), 7.05~7.01 (m, 2H), 6.94 (d, J = 6.0 Hz, 1H), 6.84~6.79 (m, 2H), 6.69 (t, J = 7.2 Hz, 1H), 6.65 (t, J = 7.2 Hz, 1H), 6.43 (d, J = 7.2 Hz, 1H), 5.01 (s, 1H), 3.10 (s, 1H), 1.96 (s, 3H), 1.88 (s, 3H), 1.56 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.8, 175.4, 154.5, 151.3, 149.0, 138.1, 135.1, 133.9, 131.2, 129.4, 127.2, 127.1, 126.1, 125.8, 125.2, 125.0, 123.5, 122.2, 119.5, 117.6, 84.5, 59.9, 52.6, 49.8, 33.3, 26.8, 25.6; ESI-MS calcd. for C₂₇H₂₅N₂O₂ [M+H]: 409.1916, found: 409.1909.

Spectral data for 2-(((6a*S*,11a*S*,12*S*,*E*)-6,6,8,11a-tetramethyl-6,6a,11a,12-tetrahy -dro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benzaldehyd e (5b).

Yellow solid, mp: 238-239 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.13 (s, 1H), 7.87 (dd, J = 7.8, 1.8 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 7.05 (d, J = 6.6 Hz, 1H), 7.02 (s, 1H), 6.95 (s, 1H), 6.85~6.81 (m, 2H), 6.72 (t, J = 6.0 Hz, 1H), 6.47 (d, J = 7.8 Hz, 1H), 6.27 (d, J = 7.8 Hz, 1H), 5.00 (s, 1H), 3.01 (s, 1H), 2.12 (s, 3H), 1.93 (s, 3H), 1.86 (s, 3H), 1.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.9, 175.4, 154.9, 151.7, 148.9, 142.0, 138.1, 135.2, 131.3, 129.1, 127.8, 127.3, 127.0, 125.6, 125.1, 125.0, 123.3, 122.2, 119.7, 117.5, 84.4, 59.8, 52.6, 49.7, 33.4, 26.8, 25.8, 21.8; ESI-MS calcd. for C₂₈H₂₇N₂O₂ [M+H]: 423.2071, found: 423.2073.

Spectral data for 2-(((6a*S*,11a*S*,12*S*,*E*)-8-fluoro-6,6,11a-trimethyl-6,6a,11a,12-tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benzal dehyde (5c).

Light brownish solid, mp: 192-193 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.10 (s, 1H), 7.87 (d, J = 7.8 Hz 1H), 7.55 (s, 1H), 7.23~7.19 (m, 1H), 7.01~6.85 (m, 5H), 6.72 (s, 1H), 6.35 (d, J = 6.0 Hz, 2H), 5.00 (s, 1H), 3.04 (s, 1H), 1.95 (s, 3H), 1.86 (s, 3H), 1.56 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.8, 173.8, 163.9 (d, J = 253 Hz), 154.2, 148.6, 137.7, 135.3, 130.1, 129.6, 127.4 (d, J = 9.6 Hz), 127.3, 125.4, 124.7, 123.6, 122.0, 119.4, 117.6, 114.1 (d, J = 156 Hz), 114.0 (d, J = 158 Hz), 84.1, 59.8, 52.1, 50.3, 33.0, 26.6, 25.3; ESI-MS calcd. for C₂₇H₂₄FN₂O₂ [M+H]: 427.1822, found: 427.1826.

Spectral data for 2-(((6a*S*,11a*S*,12*S*,*E*)-8-chloro-6,6,11a-trimethyl-6,6a,11a,12-tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benzal dehyde (5d).

Light yellow solid, mp: 187-188 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.10 (s, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.56 (s, 1H), 7.24~7.21 (m, 2H), 7.02 (s, 1H), 6.93 (s, 1H), 6.87 (s, 2H), 6.73 (s, 1H), 6.63 (d, J = 8.4 Hz, 1H), 6.31 (d, J = 5.8 Hz, 1H), 5.00 (s, 1H), 3.05 (s, 1H), 1.95 (s, 3H), 1.87 (s, 3H), 1.57 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.7, 174.1, 154.0, 152.9, 148.8, 137.9, 137.8, 135.2, 132.4, 129.9, 127.3, 126.7, 126.5, 125.4, 124.9, 123.7, 122.1, 119.3, 117.7, 84.2, 59.9, 52.3, 50.2,

33.1, 26.7, 25.4; ESI-MS calcd. for $C_{27}H_{24}N_2O_2$ [M+H]: 443.1526, found: 443.1529. Spectral data for 2-(((6aS,11aS,12S,E)-6,6,9,11a-tetramethyl-6,6a,11a,12-tetrahy -dro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benzaldehyd e (5e).

Yellow solid, mp: 203-204 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.13 (s, 1H), 7.88 (d, J = 7.2 Hz, 1H), 7.54 (s, 1H), 7.24~7.19 (m, 1H), 7.08 (d, J = 7.8 Hz, 1H), 7.03 (s, 1H), 6.95 (s, 1H), 6.83 (d, J = 10.8 Hz, 3H), 6.72 (s, 1H), 6.15 (s, 1H), 5.00 (s, 1H), 3.02 (s, 1H), 1.92 (s, 3H), 1.86 (s, 6H), 1.53 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 190.0 175.7, 154.8, 148.8, 148.5, 138.0, 135.7, 135.2, 133.8, 132.5, 129.0, 127.0, 126.9, 126.0, 125.1, 124.8, 123.4, 122.0, 119.5, 117.5, 84.4, 59.7, 52.1, 49.9, 33.3, 26.7, 25.7, 20.8; ESI-MS calcd. for C₂₈H₂₇N₂O₂ [M+H]: 423.2073, found: 423.2080. Spectral data for 2-(((6aS,11aS,12S,E)-9-fluoro-6,6,11a-trimethyl-6,6a,11a,12-tetrahydro-11H-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benzal dehyde (5f).

Light brownish solid, mp: 191-192 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.11 (s, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.19 (dd, *J* = 7.8, 4.8, Hz, 1H), 7.04 (d, *J* = 6.6 Hz, 1H), 6.94 (s, 1H), 6.84 (s, 2H), 6.76~6.73 (m, 2H), 6.06 (s, 1H), 5.01 (s, 1H), 3.04 (s, 1H), 1.95 (s, 3H), 1.86 (s, 3H), 1.56 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.8, 174.4, 160.2 (d, *J* = 246 Hz), 153.6, 148.8, 146.7, 137.9, 135.3, 130.0, 128.4 (d, *J* = 7.0 Hz), 127.3, 125.4, 124.7, 123.6, 122.0, 119.1, 118.7 (d, *J* = 22.8 Hz), 117.6, 111.7 (d, *J* = 23 Hz), 84.3, 59.7, 51.9, 50.5, 33.1, 26.8, 25.4; ESI-MS calcd. for C₂₇H₂₄FN₂O₂[M+H]: 427.1822, found: 427.1826. **Spectral data for 2-(((6aS,11aS,12S,E)-9-chloro-6,6,11a-trimethyl-6,6a,11a,12tetrahydro-11***H***-5,12-epoxybenzo[***b***]indeno[2,1-***e***]azepin-11-ylidene)amino)benzal dehyde (5g).**

Light yellow solid, mp: 187-188 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.10 (s, 1H), 7.87 (d, *J* = 7.8, Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.24~7.21 (m, 2H), 7.03 (d, *J* = 6.6, Hz, 1H), 6.93 (s, 1H), 6.89~6.87 (m, 3H), 6.74~6.72 (m, 1H), 6.64 (d, *J* = 7.2 Hz, 1H), 6.33 (d, *J* = 8.4 Hz, 1H), 5.00 (s, 1H), 3.06 (s, 1H), 1.95 (s, 3H), 1.87 (s, 3H), 1.56 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.8, 174.1, 154.0, 152.8, 148.7, 137.8, 137.7, 135.3, 132.3, 129.8, 127.3, 126.7, 126.5, 125.4, 124.7, 123.7, 122.0, 119.2, 117.7, 84.1, 59.8, 52.2, 50.1 33.1, 26.7, 25.4; ESI-MS calcd. for C₂₇H₂₄ClN₂O₂ [M+H]: 443.1526, found: 443.1529.

Spectral data for 2-(((6a'S,11a'S,12'S,*E*)-11a'-methyl-11a',12'-dihydrospiro-[cyclopentane-1,6'-[5,12]epoxybenzo[*b*]indeno[2,1-*e*]azepin]-11'(6a'*H*)-ylidene)a mino)benzaldehyde (5h).

White solid, mp: 204-205 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.19 (s, 1H), 7.88 (d, J = 7.8, Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 8.4 Hz, 2H), 6.93 (t, J = 7.8 Hz, 2H), 6.80 (d, J = 7.8 Hz, 2H), 6.77 (t, J = 7.2 Hz, 1H), 6.60 (t, J = 7.8 Hz, 1H), 6.55 (t, J = 7.2 Hz, 1H), 6.37 (d, J = 7.2 Hz, 1H), 4.96 (s, 1H), 3.11 (t, J = 9.6 Hz, 1H), 3.07 (s, 1H), 2.36~2.33 (m, 1H), 2.15~2.04 (m, 3H), 1.94~1.91 (m, 4H), 1.86~1.82 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 189.9, 174.7, 154.7, 152.1, 149.0, 138.2, 135.2, 133.9, 131.4, 129.5, 127.3, 125.9, 125.6, 125.5, 125.3, 124.9, 123.4, 122.0, 119.5, 116.8, 84.6, 71.9, 51.7, 51.6, 41.9, 36.5, 23.1, 22.7, 22.6; ESI-MS calcd. for C₂₉H₂₇N₂O₂ [M+H]: 435.2073, found: 435.2078.

Spectral data for 2-(((6a'S,11a'S,12'S,E)-11a'-methyl-11a',12'-dihydrospiro[cyclo

-hexane-1,6'-[5,12]epoxybenzo[*b*]indeno[2,1-*e*]azepin]-11'(6a'*H*)-ylidene)amino)b enzaldehyde (5i).

White solid, mp: 228-229 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.15 (s, 1H), 7.87 (d, J = 7.8, Hz, 1H), 7.54 (t, J = 9.0 Hz, 1H), 7.25 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 6.97 (t, J = 7.2 Hz, 3H), 6.81 (d, J = 7.8 Hz, 1H), 6.77 (t, J = 7.8 Hz, 1H), 6.62 (t, J = 7.8 Hz, 2H), 6.42 (d, J = 7.8 Hz, 1H), 4.98 (s, 1H), 3.04 (s, 1H), 2.87~2.84 (m, 1H), 2.17~2.02 (m, 4H), 1.97 (s, 3H), 1.93~1.89 (m, 1H), 1.83~1.80 (m, 1H), 1.72~1.70 (m, 1H), 1.63~1.52 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 189.8, 174.4, 154.7, 151.0, 148.9, 138.2, 135.2, 134.1, 131.2, 129.5, 127.1, 126.9, 125.9, 125.8, 125.1, 124.9, 123.4, 122.0, 119.5, 116.9, 84.6, 62.1, 52.1, 50.6, 40.3, 34.8, 26.4, 25.3, 22.4, 22.2; ESI-MS calcd. for C₃₀H₂₉N₂O₂ [M+H]: 449.2229, found: 449.2224.

Spectral data for 2-(((6a*S*,11a*S*,12*S*,*E*)-11a-cyclopropyl-6,6-dimethyl-6,6a,11a,12 -tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benza ldehyde (5j).

Yellow solid, mp: 212-213 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.26 (s, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.43 (d, J = 6.8 Hz, 1H), 7.31~7.22 (m, 4H), 7.19~7.15 (m, 2H), 6.98~6.94 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.46 (d, J = 8.0 Hz, 1H), 5.52 (s, 1H), 2.76 (s, 1H), 1.34 (s, 3H), 0.84 (s, 3H), 0.66~0.59 (m, 1H), 0.55~0.39 (m, 2H), 0.22~0.05 (m, 1H), -0.30~-0.34 (m, 1H),; ¹³C NMR (150 MHz, CDCl₃): δ 190.6, 175.5, 154.9, 151.6, 148.4, 138.4, 135.5, 135.4, 131.8, 128.0, 127.3, 127.2, 126.3, 126.2, 125.4, 125.2, 124.0, 122.8, 119.8, 117.8, 80.3, 61.8, 52.8, 50.7, 27.2, 27.1, 18.0, 3.1, -0.7; ESI-MS calcd. for C₂₉H₂₇N₂O₂ [M+H]: 435.2073, found: 435.2068.

Spectral data for 2-(((6a*S*,11a*S*,12S,*E*)-11a-(((tert-butyldimethylsilyl)oxy)methyl) -6,6-dimethyl-6,6a,11a,12-tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepi n-11-ylidene)amino)benzaldehyde (5k).

Light yellow Liquid; ¹H NMR (400 MHz, CDCl₃): δ 10.18 (s, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.54 (s, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.20 (t, J = 7.2, 1H), 7.06 (s, 1H), 7.02 (t, J = 7.2, 1H), 6.93 (s, 1H), 6.87~6.83 (m, 2H), 6.73 (s, 1H), 6.63 (t, J = 8.0 Hz, 1H), 6.35 (d, J = 8.0 Hz, 1H), 4.93 (s, 1H), 4.65 (d, J = 9.5 Hz, 1H), 4.46 (d, J = 9.5 Hz, 1H), 3.75 (s, 1H), 1.85 (s, 3H), 1.57 (s, 3H), 0.81 (s, 9H), 0.09 (d, J = 15.5 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 190.5, 174.0, 155.1, 152.4, 149.1, 137.6, 135.2, 133.9, 131.2, 128.4, 127.4, 127.1, 125.9, 125.7, 125.3, 123.6, 122.2, 119.5, 117.7, 81.0, 67.8, 60.0, 55.2, 45.0, 33.5, 26.8, 25.9, 18.2, -5.3, -5.5; ESI-MS calcd. for C₃₃H₃₈N₂O3Si [M+H]: 539.2730, found: 539.2718.

Spectral data for 5-methyl-2-(((6a*S*,11a*S*,12*S*,*E*)-2,6,6,11a-tetramethyl-6,6a,11a, 12-tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)ben zaldehyde (51).

Light yellow solid, mp: 202-203 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.13 (s, 1H), 7.70 (s, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.23 (t, J = 5.8 Hz, 1H), 7.02 (t, J = 8.4 Hz, 1H), 6.83 (d, J = 11.4 Hz, 2H), 6.70~6.59 (m, 3H), 6.46 (d, J = 7.2 Hz, 1H), 4.95 (s, 1H), 3.07 (s, 1H), 2.41 (s, 3H), 2.02 (s, 3H), 1.93 (s, 3H), 1.86 (s, 3H), 1.52 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 190.1 175.8, 152.4, 151.2, 146.5, 138.2, 136.1, 134.9, 134.0, 133.2, 131.1, 129.1, 127.4, 127.3, 125.9, 125.6, 124.8, 123.1, 119.4, 117.2, 84.6, 84.4, 60.1, 52.6, 49.7, 33.3, 26.8, 25.7, 20.7, 20.6; ESI-MS calcd. for C₂₉H₂₉N₂O₂ [M+H]: 437.2229, found: 437.2237. Spectral data for 5-bromo-2-(((6a*S*,11a*S*,12*S*,*E*)-2-bromo-6,6,11a-trimethyl-6,6a, 11a,12-tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benzaldehyde (5m).

Light brown solid, mp: 189-190 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.02 (s, 1H), 7.99 (d, J = 1.8 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 7.8 Hz, 1H), 7.15 (s, 1H), 7.10 (d, J = 7.8 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.83~6.79 (m, 2H), 6.68 (d, J = 7.8 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 4.97 (s, 1H), 3.11 (s, 1H), 1.91 (s, 3H), 1.85 (s, 3H), 1.50 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 188.3, 175.9, 152.8, 151.1, 148.2, 140.6, 138.0, 133.4, 132.5, 131.8, 130.0, 127.6, 126.6, 126.3, 125.8, 125.7, 121.3, 118.9, 118.4, 116.7, 84.2, 60.1, 52.9, 49.7, 33.4, 26.6, 25.9; ESI-MS calcd. for C₂₇H₂₃Br₂N₂O₂ [M+H]: 565.0126, found: 565.0067.

Spectral data for 5-chloro-2-(((6a*S*,11a*S*,12*S*,*E*)-2-chloro-6,6,11a-trimethyl-6,6a, 11a,12-tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-ylidene)amino)benzaldehyde (5n).

Light yellow solid, mp: 184-185 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.04 (s, 1H), 7.85 (d, *J* = 2.4 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.26 (d, *J* = 7.8 Hz, 1H), 7.11 (d, *J* = 7.2 Hz, 1H), 7.00 (s, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 6.81~6.79 (m, 2H), 6.74 (d, *J* = 8.4 Hz, 1H), 6.53 (d, *J* = 8.4 Hz, 1H), 4.99 (s, 1H), 3.12 (s, 1H), 1.93 (s, 3H), 1.86 (s, 3H), 1.51 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 188.5, 176.1, 152.4, 151.2, 147.7, 140.2, 135.2, 133.5, 131.9, 130.8, 129.6, 129.4, 127.6, 127.1, 126.6, 125.8, 122.8, 121.0, 118.5, 84.3, 60.2, 52.8, 49.7, 33.4, 26.7, 25.9; ESI-MS calcd. for C₂₇H₂₃Cl₂N₂O₂ [M+H]: 477.1137, found: 477.1140. Spectral data for 5-methoxy-2-((E)-((6aS,11aS,12S)-2-methoxy-6,6,11a-trimethyl-11a,12-dihydro-6H-5,12-epoxybenzo[b]indeno[2,1-e]azepin-11(6aH)-ylidene)amin o)benzaldehyde (50).

Yellow solid, mp: 160-161 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.14 (s, 1H), 7.38 (d, J = 5.0, 1H), 7.25~7.22 (m, 2H), 7.16 (dd, $J_{1,3} = 5.8$ Hz, $J_{2,3} = 3.9$ Hz, 1H), 7.05 (t, J = 5.2 Hz, 1H), 6.89~6.85 (m, 1H) 6.72~6.68 (m, 2H), 6.55 (s, 1H), 6.31 (dd, $J_{1,3} = 5.6$ Hz, $J_{2,3} = 3.9$ Hz, 1H), 4.94 (s, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.07 (s, 1 H), 1.93 (s, 3H), 1.85 (s, 3H), 1.53 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 189.7, 176.5, 164.2, 157.7, 156.4, 151.3, 148.7, 139.4, 131.2, 127.2, 126.1, 125.7, 123.7, 123.7, 121.0, 118.1, 113.2, 112.6, 110.8, 108.5, 84.7, 60.2, 55.7, 55.7, 52.2, 33.1, 26.8; ESI-MS calcd. for C₂₉H₂₉N₂O₄ [M+H]: 469.2124, found: 469.2127.

Spectral data for (6a*S*,11a*S*,12*S*,*E*)-11-((5-((ethoxycarbonyl)oxy)-2-formylphenyl) imino)-6,6,11a-trimethyl-6a,11,11a,12-tetrahydro-6*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-3-yl ethyl carbonate (5p).

Gummy solid; ¹H NMR (400 MHz, CDCl₃): δ 10.07 (s, 1H), 7.70~7.69 (m, 1H), 7.38 (d, J = 5.6 Hz, 1H), 7.25 (d, J = 5.4 Hz, 1H), 7.09 (t, J = 5.0, 1H), 6.98 (s, 1H), 6.92 (s, 1H), 6.81 (d, J = 5.5 Hz, 1H), 6.75 (t, J = 5.0 Hz, 1H), 6.63 (d, J = 5.5 Hz, 1H), 6.55 (d, J = 5.2 Hz, 1H), 4.99 (s, 1H), 4.33 (q, J = 9.5, 4.8 Hz, 2H), 4.24~4.20 (m, 2H), 3.11 (s, 1H), 1.93 (s, 3H), 1.86 (s, 3H), 1.54 (s, 3H), 1.39 (t, J = 6.4 Hz, 3H), 1.33 (t, J = 4.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.9, 176.1, 153.5, 153.1, 151.9, 151.0, 148.7, 147.5, 146.3, 139.5, 133.3, 131.7, 128.1, 127.3, 126.6, 126.3, 125.2, 121.2, 120.9, 119.5, 118.1, 115.3, 84.4, 65.0, 64.8, 60.0, 52.5, 49.5, 33.3, 26.7, 25.8, 14.2, 14.13; ESI-MS calcd. for C₃₃H₃₃N₂O₈ [M+H]: 585.2237, found: 585.2239. Spectral data for 4-bromo-2-((*E*)-((6aS,11aS,12S)-3-bromo-6,6,11a-trimethyl-11a,

12-dihydro-6*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11(6a*H*)-ylidene)amino)b enzaldehyde (5q).

Light brown solid, mp: 211-212 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.03 (s, 1H), 7.75 (d, J = 5.6, 1H), 7.38~7.36 (m, 1H), 7.27~7.24 (m, 1H), 7.20 (s, 1H), 7.14~7.12 (m, 2H), 6.96 (t, J = 5.2, 1H), 6.84~6.81 (m, 1H), 6.70 (d, J = 5.4, 1H), 6.53 (d, J = 5.3, 1H), 4.99 (s, 1H), 3.11 (s, 1H), 1.91 (s, 3H), 1.86 (s, 3H), 1.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.9, 154.8, 151.2, 148.0, 140.4, 138.1, 133.3, 132.4, 132.0, 131.2, 130.2, 130.0, 127.6, 126.9, 126.8, 125.8, 125.7, 125.6, 122.3, 121.3, 118.9, 84.1, 60.1, 52.8, 33.4, 26.6, one carbon merged; ESI-MS calcd. for C₂₇H₂₃Br₂N₂O₂ [M+H]: 565.0126, found: 565.0121.

Spectral data for 4-methyl-2-((*E*)-((6a*S*,11a*S*,12*S*)-3,6,6,11a-tetramethyl-11a,12-di -hydro-6*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11(6a*H*)-ylidene)amino)benza ldehyde (5r).

Pale yellow solid, mp: 220-221 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 7.78 (d, J = 5.3, 1H),7.23~7.22 (m, 1H), 7.04~ 6.99 (m, 2H), 6.90 (bs, 1H), 6.73 (s, 1H), 6.73~6.65 (m, 2H), 6.51 (d, J = 4.6, 1H), 6.46 (d, J = 5.1, 1H), 4.97 (s, 1H), 3.07 (s, 1H), 2.39 (s, 3H), 2.08 (s, 3H), 1.93 (s, 3H), 1.86 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.5, 175.4, 154.8, 151.4, 149.1, 146.5, 137.0, 135.2, 133.9, 131.1, 129.4, 127.2, 126.1, 125.8, 125.7, 124.6, 121.8, 119.6, 118.3, 84.3, 56.8, 52.6, 49.7, 33.3, 26.8, 25.6, 21.9, 21.2, one carbon merged; ESI-MS calcd. for C₂₉H₂₉N₂O₂ [M+H]: 437.2229, found: 437.2236.

Spectral data for (11b*R*,12*S*)-6,6-dimethyl-5,6,11b,12-tetrahydrobenzo[*b*]indeno [1,2-*e*]azepin-12-ol (6a).

Light yellow solid, mp: 170-171 °C; ¹H NMR (400 MHz, d-Acetone): δ 7.24 (d, J =

6.0 Hz, 1H), 7.19~7.13 (m, 3H), 7.10~7.03 (m, 2H), 6.94 (d, J = 6.8 Hz, 1H), 6.83 (t, J = 7.6 Hz, 1H), 6.48 (s, 1H), 6.10 (s, 1H), 4.68 (d, J = 4.4 Hz, 1H), 4.38 (s, 1H), 3.84 (d, J = 7.6 Hz, 1H), 1.61 (s, 3H), 1.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.7, 144.3, 143.0, 142.9, 135.2, 128.3, 127.7, 127.1, 126.9, 125.0, 123.5, 123.2, 120.6, 76.2, 58.0, 57.2, 31.7, 28.0; ESI-MS calcd. for C₁₉H₂₀NO [M+H]: 278.1545, found: 278.1549.

¹H NOE Data of Compound (6a).

Irradiation	Intensity increase (%)
Hb (δ 3.84)	Ha (δ 4.68, 2.84), 2CH ₃ (δ 1.45, 4.48)
Ha (δ 4.68)	Hb (δ 3.84, 4.36),
OH (δ4.38)	Hb (δ 3.09, 3.18), 1CH ₃ (δ 1.61, 4.32), 2CH ₃ (δ 1.45, 4.73)

Spectral data for (6a*S*,11b*S*,12*S*)-6,6-dimethyl-5,6,6a,7,11b,12-hexahydrobenzo [*b*]indeno[1,2-*e*]azepin-12-ol (6b).

Light yellow solid, mp: 137-138 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.53 (d, *J* = 7.2 Hz, 1H), 7.44 (d, *J* = 6.0 Hz, 1H), 7.19 (d, *J* = 6.6 Hz, 1H), 7.13~7.09 (m, 2H), 7.03 (t, *J* = 7.8 Hz, 1H), 6.93 (t, *J* = 7.2 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 4.72 (d, *J* = 9.6 Hz, 1H), 4.04 (s, 1H), 3.79 (s, 1H), 3.24~3.20 (m, 1H), 3.10~3.08 (m, 1H), 2.83~2.77 (m, 1H), 2.42~2.38 1H), 2.05~2.03(m, 1H), 1.28 (s, 3H), 1.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 144.0, 143.0, 134.7, 127.2, 127.1, 126.1, 125.9, 125.5, 124.9, 122.4, 121.8, 70.9, 53.8, 50.7, 33.0, 30.4, 29.9; ESI-MS calcd. for C₁₉H₂₂NO [M+H]: 280.1701, found: 280.1695.

¹H NOE Data of Compound (6b).

Irradiation	Intensity increase (%)
Hc (δ 2.40)	Hb (δ 3.09, 8.35), Hd (δ 2.78, 3.48), 1CH ₃ (δ 1.28, 1.37), 2CH ₃
	(δ1.04, 3.45).
Hb (δ 3.09)	Hc (δ 2.40, 7.36), Ha (δ 4.72, 3.55), Hd (δ 2.78, 1.56), 2CH ₃ (δ
	1.04, 2.32).
Ha (δ 4.72)	Hb (δ 3.09, 3.07), Hc (δ 2.40, 0.84), He (δ 3.22, 4.64), 1CH ₃ (δ
	1.28, 1.37), 2CH ₃ (δ 1.04, 3.45).
Hd (δ 2.80)	He (δ 3.22, 16.4), Hc (δ 2.40, 4.87), Ha (δ 4.72, 2.85), 1CH ₃ (δ
	1.28, 4.47).
He (δ 3.22)	Hd (δ 2.80, 23.87), Hc (δ 2.40, 1.23), Ha (δ 4.72, 8.16), 1CH ₃
	(δ 1.28, 2.37), 2CH ₃ (δ 1.04, 1.46).

Spectral data for (2-(((6a*S*,11R,11a*S*,12*R*)-6,6,11a-trimethyl-6a,11,11a,12-tetrah -ydro-6*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-yl)amino)phenyl)methanol (7a).

White solid, mp: 210-211 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.26~7.21 (m, 1H), 7.17~7.14 (m, 2H), 7.01 (d, *J* = 7.6, Hz, 1H), 6.93 (t, *J* = 8.8 Hz, 2H), 6.82 (t, *J* = 7.6 Hz, 2H), 6.76 (t, *J* = 7.6, Hz, 2H), 6.72 (t, *J* = 7.6 Hz, 1H), 6.63 (t, *J* = 7.6 Hz, 1H), 5.58 (d, *J* = 9.2 Hz, 1H), 4.95 (s, 1H), 4.93~4.82 (m, 3H), 2.98 (s, 1H), 1.90 (s, 3H), 1.86~1.82 (m, 1H), 1.81 (s, 3H), 1.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.1, 148.6, 143.2, 142.2, 138.5, 130.0, 129.5, 126.5, 126.2, 125.6, 124.9, 124.3, 122.6, 122.3, 117.3, 116.9, 110.5, 82.0, 65.5, 65.2, 59.2, 52.8, 50.6, 32.1, 27.2, 27.0; ESI-MS calcd. for C₂₇H₂₉N₂O₂ [M+H]: 413.2229, found: 413.2253.

Spectral data for (6a*S*,11a*R*,12*S*)-6,6,11a-trimethyl-6,6a,11a,12-tetrahydro-11*H*-5,12-epoxybenzo[*b*]indeno[2,1-*e*]azepin-11-one (7b).

White solid, mp: 195-196 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 7.6 Hz, 1H), 7.29~7.23 (m, 2H), 7.07 (t, J = 7.2, Hz, 1H), 6.80~6.74 (m, 3H), 6.63 (t, J = 7.6 Hz, 1H), 4.88 (s, 1H), 2.96 (s, 1H), 1.80 (s, 3H), 1.73 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.1, 153.5, 147.7, 137.0, 136.3, 133.8, 127.1, 127.0, 126.9, 125.4, 123.5, 121.8, 117.2, 82.8, 59.7, 50.5, 32.9, 26.4, 22.4; ESI-MS calcd. for C₂₀H₂₀NO₂ [M+H]: 306.1494, found: 306.1489.

Spectral data for (6a*S*,11a*R*,12*R*)-12-hydroxy-6,6,11a-trimethyl-6,6a,11a,12-tetra -hydrobenzo[*b*]indeno[2,1-*e*]azepin-11(5*H*)-one (7c).

White solid, mp: 182-183 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.0 Hz, 1H), 7.57~7.49 (m, 2H), 7.45~7.42 (m, 2H), 7.10 (t, J = 7.6, Hz, 1H), 6.97 (t, J = 7.2 Hz, 1H), 6.67 (d, J = 7.6 Hz, 1H), 5.57 (s, 1H), 4.29 (s, 1H), 3.39 (s, 1H), 2.84 (s, 1H), 1.48 (s, 3H), 1.04 (s, 3H), 0.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 211.9, 153.7, 142.0, 136.5, 133.8, 129.9, 128.3, 127.9, 127.3, 125.9, 124.1, 120.6, 119.1, 69.6, 58.5, 57.8, 55.6, 33.6, 28.4, 21.6; ESI-MS calcd. for C₂₀H₂₂NO₂ [M+H]: 308.1651, found: 308.1663.

Spectral data for (6a*S*,11*R*,11a*S*,12*R*)-6,6,11a-trimethyl-5,6,6a,11,11a,12-hexahy -drobenzo[*b*]indeno[2,1-*e*]azepine-11,12-diol (7d).

White solid, mp: 178-179 °C; ¹H NMR (400 MHz, d-Acetone): δ 7.45 (d, J = 4.8 Hz, 2H), 7.29~7.19 (m, 3H), 7.02 (t, J = 7.6, Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 5.73 (d, J = 3.6 Hz, 1H), 4.78 (d, J = 4.0 Hz, 1H), 4.36 (d, J = 4.0 Hz, 1H), 4.05 (s, 1H), 3.95 (d, J = 4.0 Hz, 1H), 2.35 (s, 1H), 1.50 (s, 3H), 1.05 (s, 3H),

0.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 146.1, 146.0, 143.7, 134.8, 128.2, 127.8, 127.5, 127.4, 127.1, 126.3, 120.4, 120.1, 81.0, 68.3, 62.5, 58.0, 51.3, 34.2, 29.2, 22.1; ESI-MS calcd. for C₂₀H₂₄NO₂ [M+H]: 310.1807, found: 310.1827.

¹H NOE Data of Compound (7d).

Irradiation	Intensity increase (%)
1CH ₃ (δ 1.50)	Ha (δ 2.35, 3.51), Hb (δ 4.78, 3.29)
Hb (δ4.78)	Hc (δ 5.74, 0.71), 1CH ₃ (δ 0.71, 4.06),
Hc (δ 5.74)	Ha (δ 2.35, 0.60), ^a OH (δ 3.94, 1.32), ^b OH (δ 4.36, 1.02),
	2CH ₃ (δ 1.05, 3.91)
^a OH (δ 3.94)	Hb (δ 4.78, 4.32), Hc (δ 5.74, 9.70), 1CH ₃ (δ 0.71, 2.17),
	2CH ₃ (δ 1.05, 2.62), 3CH ₃ (δ 1.50, 3.81)
^b OH (δ 4.36)	Hb (δ 4.78, 7.76), Hc (δ 5.74, 4.89),

Spectral data for (6a*S*,15b*S*,16*R*)-6,6,15b-trimethyl-5,6,6a,15,15b,16-hexahy -drobenzo[*c*]benzo[6,7]azepino[4,3-*a*]carbazol-16-ol (7e).

White solid, mp: 284-285 °C; ¹H NMR (400 MHz, d-Acetone): δ 10.45 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.58~7.56 (m, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 7.16~7.08 (m, 4H), 6.99~6.95 (m, 2H), 6.85 (d, J = 7.6 Hz, 1H), 5.83 (d, J = 4.4 Hz, 1H), 4.84 (d, J = 4.0 Hz, 1H), 4.07 (s, 1H), 2.26 (s, 1H), 1.13 (s, 3H), 1.07 (s, 3H), 0.76 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 144.9, 144.5, 137.8, 135.7, 134.0, 133.5, 133.3, 128.2, 128.1, 125.9, 125.1, 123.8, 122.7, 121.5, 121.1, 120.8, 120.3, 119.7, 112.9, 110.2, 72.3, 57.7, 56.1, 40.4, 33.7, 27.5, 18.8; ESI-MS calcd. for C₂₇H₂₇N₂O [M+H]: 395.2123, found: 395.2092.

V) X-ray crystallographic structure and data

(a) X-ray data for compound 3a :

Table 1. Crystal data and structure refinement for d19458. Identification code d19458 Empirical formula C₁₉ H₁₇ N O Formula weight 275.34 Temperature 200(2) K Wavelength 0.71073 Å Crystal system Orthorhombic Space group P 21 21 21 Unit cell dimensions a = 6.2744(3) Å $a = 90^{\circ}$. b = 14.5625(9) Å b= 90°. c = 15.6489(7) Å $g = 90^{\circ}$. Volume 1429.85(13) Å 3 Ζ 4 Density (calculated) 1.279 Mg/m3 Absorption coefficient 0.079 mm-1 F(000) 584 Crystal size 0.49 x 0.08 x 0.03 mm3 Theta range for data collection 3.09 to 25.04°. Index ranges -7<=h<=7, -17<=k<=17, -18<=l<=18 Reflections collected 8485 Independent reflections 2509 [R(int) = 0.0575]Completeness to theta = 25.04° 98.7 % Absorption correction multi-scan

Max. and min. transmission 0.9976 and 0.9625Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 2509 / 0 / 192Goodness-of-fit on F2 1.111Final R indices [I>2sigma(I)] R1 = 0.0421, wR2 = 0.0838R indices (all data) R1 = 0.0725, wR2 = 0.0994Absolute structure parameter 0(2)Largest diff. peak and hole 0.179 and -0.176 e.Å -3 Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å 2x 103)

for d19458. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

C(1) 5852	2(3)	4035	5(2)	567	1(1)	27(1	.)
C(2)7742	2(3)	3553	3(2)	5640)(2)	32(1	.)
C(3) 8398	8(4)	3227	7(2)	4844	4(2)	35(1	.)
C(4) 7199	9(4)	3398	8(2)	4117	7(2)	37(1	.)
C(5) 5302	2(4)	389	1(2)	4162	2(2)	35(1	.)
C(6) 4639	9(3)	420	1(2)	4952	2(1)	27(1	.)
C(7) 2753	3(4)	475	1(2)	5240	5(2)	32(1	.)
C(8) 3234	4(3)	5788	8(2)	5254	4(2)	30(1	.)
C(9) 3755	5(4)	623	1(2)	4414	4(2)	31(1	.)
C(10)	2554	4(4)	6302	2(2)	3671	l(2)	40(1)
C(11)	3429	9(5)	674()(2)	2968	3(2)	47(1)
C(12)	5442	2(5)	712	1(2)	3012	2(2)	45(1)
C(13)	6657	7(4)	7066	5(2)	3758	8(2)	38(1)
C(14)	5800)(4)	6609	9(2)	4455	5(2)	30(1)
C(15)	6689	9(4)	6400)(2)	5298	8(2)	30(1)
C(16)	5278	8(3)	5925	5(2)	5760)(1)	27(1)
C(17)	554	1(4)	5407	7(2)	6588	3(1)	31(1)
C(18)	7849	9(3)	5378	8(2)	6897	7(2)	36(1)
C(19)	4112	2(4)	5788	8(2)	7297	7(2)	41(1)
N(1)4842	2(3)	4418	8(1)	6429	9(1)	31(1	.)
O(1)2612	2(2)	4473	3(1)	6132	2(1)	35(1	.)

Table 3. Bond lengths [Å] and angles [°] for d19458.

C(1)-C(2)	1.378(3)	
C(1)-C(6)	1.380(3)	
C(1)-N(1)	1.457(3)	
C(2)-C(3)	1.395(3)	
C(2)-H(2)	0.9500	
C(3)-C(4)	1.386(3)	
C(3)-H(3)	0.9500	
C(4)-C(5)	1.392(3)	
C(4)-H(4)	0.9500	
C(5)-C(6)	1.380(3)	
C(5)-H(5)	0.9500	
C(6)-C(7)	1.501(3)	
C(7)-O(1)	1.447(3)	
C(7)-C(8)	1.540(3)	
C(7)-H(7)	1.0000	
C(8)-C(9)	1.501(3)	
C(8)-C(16)	1.520(3)	
C(8)-H(8)	1.0000	
C(9)-C(10)	1.389(3)	
C(9)-C(14)	1.398(3)	
C(10)-C(11)	1.385(4)	
C(10)-H(10)	0.9500	
C(11)-C(12)	1.381(4)	
C(11)-H(11)	0.9500	
C(12)-C(13)	1.396(3)	
C(12)-H(12)	0.9500	
C(13)-C(14)	1.386(3)	
C(13)-H(13)	0.9500	
C(14)-C(15)	1.465(3)	
C(15)-C(16)	1.336(3)	
C(15)-H(15)	0.9500	
C(16)-C(17)	1.508(3)	
C(17)-N(1)	1.526(3)	
C(17)-C(18)	1.527(3)	
C(17)-C(19)	1.531(3)	
C(18)-H(18A)	0.9800	
C(18)-H(18B)	0.9800	

C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
N(1)-O(1) 1.47	7(2)
C(2)-C(1)-C(6)	122.4(2)
C(2)-C(1)-N(1)	126.7(2)
C(6)-C(1)-N(1)	110.91(18)
C(1)-C(2)-C(3)	117.3(2)
C(1)-C(2)-H(2)	121.4
C(3)-C(2)-H(2)	121.4
C(4)-C(3)-C(2)	120.7(2)
C(4)-C(3)-H(3)	119.6
C(2)-C(3)-H(3)	119.6
C(3)-C(4)-C(5)	121.0(2)
C(3)-C(4)-H(4)	119.5
C(5)-C(4)-H(4)	119.5
C(6)-C(5)-C(4)	118.1(2)
C(6)-C(5)-H(5)	120.9
C(4)-C(5)-H(5)	120.9
C(1)-C(6)-C(5)	120.4(2)
C(1)-C(6)-C(7)	106.20(18)
C(5)-C(6)-C(7)	133.3(2)
O(1)-C(7)-C(6)	101.12(18)
O(1)-C(7)-C(8)	106.10(18)
C(6)-C(7)-C(8)	111.76(18)
O(1)-C(7)-H(7)	112.4
C(6)-C(7)-H(7)	112.4
C(8)-C(7)-H(7)	112.4
C(9)-C(8)-C(16)	102.46(18)
C(9)-C(8)-C(7)	117.2(2)
C(16)-C(8)-C(7)	107.41(19)
C(9)-C(8)-H(8)	109.8
C(16)-C(8)-H(8)	109.8
C(7)-C(8)-H(8)	109.8
C(10)-C(9)-C(14)	120.5(2)
C(10)-C(9)-C(8)	130.3(2)

C(14)-C(9)-C(8)109.2(2)C(11)-C(10)-C(9) 118.9(2) C(11)-C(10)-H(10) 120.5 C(9)-C(10)-H(10) 120.5 C(12)-C(11)-C(10) 120.5(3) C(12)-C(11)-H(11) 119.7 C(10)-C(11)-H(11) 119.7 C(11)-C(12)-C(13) 121.2(3) C(11)-C(12)-H(12) 119.4 C(13)-C(12)-H(12) 119.4 C(14)-C(13)-C(12) 118.2(2) C(14)-C(13)-H(13) 120.9 C(12)-C(13)-H(13) 120.9 C(13)-C(14)-C(9) 120.6(2) C(13)-C(14)-C(15) 131.4(2) C(9)-C(14)-C(15) 108.0(2) C(16)-C(15)-C(14) 110.04(19) C(16)-C(15)-H(15) 125.0 C(14)-C(15)-H(15) 125.0 C(15)-C(16)-C(17) 130.6(2) C(15)-C(16)-C(8) 110.2(2) C(17)-C(16)-C(8) 118.3(2) C(16)-C(17)-N(1) 107.56(17) C(16)-C(17)-C(18) 112.9(2) N(1)-C(17)-C(18) 107.32(19) C(16)-C(17)-C(19) 112.2(2) N(1)-C(17)-C(19) 106.94(19) C(18)-C(17)-C(19) 109.59(19) C(17)-C(18)-H(18A) 109.5 C(17)-C(18)-H(18B) 109.5 H(18A)-C(18)-H(18B) 109.5 C(17)-C(18)-H(18C) 109.5 H(18A)-C(18)-H(18C) 109.5 H(18B)-C(18)-H(18C) 109.5 C(17)-C(19)-H(19A) 109.5 C(17)-C(19)-H(19B) 109.5 H(19A)-C(19)-H(19B) 109.5 C(17)-C(19)-H(19C) 109.5

H(19A)-C(19)-H(1	9C)	109.5
H(19B)-C(19)-H(1	9C)	109.5
C(1)-N(1)-O(1)	100.	14(15)
C(1)-N(1)-C(17)	111.	62(17)
O(1)-N(1)-C(17)	105.	77(17)
C(7)-O(1)-N(1)	105.	06(14)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å 2x 103)for d19458. The anisotropic

displacement factor exponent takes the form: -2p2[h2a*2U11 + ... + 2 h k a* b* U12]

U11	U22 U	U33 U23	U13 U12					
C(1) 29(1	1) 2	24(1)	29(1)	1(1)	2(1)	-5(1)	
C(2) 31(1	1) 2	25(1)	38(1)	3(1)	-1(1)	0(1)		
C(3) 32(1	l) 2	26(1)	47(2)	1(1)	5(1)	2(1)		
C(4) 42(2	2) 3	33(2)	36(2)	-4(1))8(1)	-2(1)	
C(5)41(1	l) 3	31(2)	32(1)	0(1)	-3(1)	-4(1)	
C(6) 26(1	l) 2	23(1)	34(1)	1(1)	1(1)	-4(1)	
C(7) 25(1	l) 3	34(2)	36(1)	2(1)	-2(1)	-3(1)	
C(8) 24(1	1) 2	28(1)	38(1)	-3(1))-2(1)	-1(1)	
C(9) 34(1	1) 2	20(1)	39(1)	-3(1))-6(1)	4(1)		
C(10)	42(1)	28(1) 49(2	2)	-3(1)-12((1)	1(1)	
C(11)	70(2)	31(2) 41(2	2)	0(1) -14((2)	2(2)	
C(12)	69(2)	30(2) 35(2	2)	1(1) 2(2)		2(2)	
C(13)	44(1)	29(1) 41(2	2)	0(1) 6(1)		1(1)	
C(14)	32(1)	24(1) 35(2	2)	-4(1)-1(1)	2(1)	
C(15)	26(1)	27(1) 37(1	l)	-5(1)-3(1)	-2(1)	
C(16)	26(1)	24(1) 32(1	l)	-4(1)-1(1)	1(1)	
C(17)	31(1)	28(1) 34(1	l)	-5(1)2(1)		-1(1)	
C(18)	31(1)	36(2) 42(2	2)	-5(1)-8(1)	-1(1)	
C(19)	42(2)	46(2) 35(1	l)	-7(1)5(1)		2(1)	
N(1)26(1	l) 3	33(1)	34(1)	1(1)	0(1)	-2(1)	
O(1)25(1	l) 4	42(1)	38(1)	2(1)	4(1)	-4(1)	

Table 5.Hydrogen coordinates (x 104) and isotropic displacement parameters(Å 2x 103)for d19458.

		TT /			
Х	У	z U(e	eq)		
		2440	<i>c</i> 1.40	•	
H(2)8564	4	3448	6140	38	
H(3)968	1	2884	4800	42	
H(4)768	0	3175	3580	45	
H(5)448	6	4011366	63 4	2	
H(7)143	0	4601	4917	38	
H(8) 203	7	6125	5536	36	
H(10)	1155	56054	3646	48	
H(11)	2638	8 677	8 2	2452	57
H(12)	6009	9 742	6 2	2526	54
H(13)	8035	5 733	4 3	3786	46
H(15)	8067	7 657	6 5	5489	36
H(18A)	7954	497	5 7	'397	54
H(18B)	8310) 599	8 7	053	54
H(18C)	8763	3 514	1 6	5440	54
H(19A)	4520) 642	3 7	421	61
H(19R)	4281	541	4 7	/814	61
H(10C)	2622) 576	, , a 7	11161	01
$\Pi(1)C)$	2022	570	ו עו	11101	

(b) X-ray data for compound 5b :

Table 1. Crystal data and structure refinement for d19432. Identification code d19432 Empirical formula C₂₈ H₂₆ N₂ O₂ Formula weight 422.51 Temperature 200(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P 21/c a = 21.9831(15) Å Unit cell dimensions = 90°. b = 13.3250(11) Å $= 112.177(2)^{\circ}$. = 90°. c = 16.5868(14) ÅVolume 4499.2(6) Å 3 Ζ 8 Density (calculated) 1.247 Mg/m3 Absorption coefficient 0.079 mm-1 F(000) 1792 Crystal size 0.34 x 0.07 x 0.03 mm3
Theta range for data collection 2.46 to 25.03°. Index ranges -26<=h<=26, -15<=k<=15, -19<=l<=16 Reflections collected 59880 Independent reflections 7906 [R(int) = 0.0709] Completeness to theta = 25.03° 99.4 % Absorption correction multi-scan Max. and min. transmission 0.9976 and 0.9737 Refinement methodFull-matrix least-squares on F2 Data / restraints / parameters 7906 / 0 / 578 Goodness-of-fit on F2 1.080 Final R indices [I>2sigma(I)] R1 = 0.0899, wR2 = 0.2224 R indices (all data) R1 = 0.1198, wR2 = 0.2619Largest diff. peak and hole 0.980 and -0.337 e.Å -3

tensor.

Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å 2x 103)
for d19432. U(eq) is defined as one third of the trace of the orthogonalized Uij

	X	у	Z	U(e	q)			
C(1))-269	9(2)	610	6(4)	178	3(3)	37(1	l)
C(2)-612	2(3)	586	7(4)	239	7(4)	39(1	l)
C(3)-391	1(3)	561	1(4)	326	4(4)	46(1	l)
C(4)-866	5(3)	545	1(5)	361	5(4)	56(2	2)
C(5)-152	22(3)	554	8(5)	312	2(4)	53(2	2)
C(6)-174	42(3)	579	8(4)	224	8(4)	45(1	l)
C(7)-127	71(3)	596	9(3)	190	6(4)	39(1	l)
C(8)-139	95(2)	731:	5(4)	842	(4)	38(1	1)
C(9)-145	54(3)	744	6(4)	-104	4(4)	39(1	l)
C(1	0)	-204	4(2)	766	5(4)	877	(4)	41(1)
C (1	1)	-770)(2)	787	2(3)	147	4(3)	32(1)
C(1	2)	-748	8(2)	832	0(3)	232	4(3)	31(1)
C(1	3)	-120)8(2)	894	4(3)	246	1(4)	35(1)
C(1-	4)	-108	33(3)	933	6(4)	329	7(4)	41(1)
C(1	5)	-158	88(3)	100	07(5)	343	0(5)	57(2)
C(1	6)	-504	(2)	911	0(4)	396	9(3)	40(1)
C(1	7)	-31(2)	852	2(4)	384	1(3)	37(1)

C(18)	-148(2)	8145(4)	3004(3)	32(1)
C(19)	278(2)	7538(3)	2689(3)	24(1)
C(20)	-113(2)	7248(4)	1760(3)	32(1)
C(21)	274(2)	7426(4)	1175(4)	37(1)
C(22)	1309(2)	7525(3)	3873(3)	27(1)
C(23)	1488(2)	8531(4)	4079(4)	40(1)
C(24)	1939(3)	8808(4)	4857(4)	51(1)
C(25)	2240(3)	8082(5)	5480(4)	60(2)
C(26)	2094(3)	7087(5)	5329(4)	57(2)
C(27)	1624(2)	6796(4)	4498(3)	40(1)
C(28)	1480(3)	5738(4)	4311(4)	52(2)
C(29)	4720(2)	3883(4)	8009(3)	35(1)
C(30)	4364(2)	4141(3)	7053(3)	35(1)
C(31)	4570(3)	4448(4)	6408(4)	45(1)
C(32)	4083(3)	4611(4)	5575(4)	52(1)
C(33)	3433(3)	4493(4)	5411(4)	51(2)
C(34)	3227(3)	4192(4)	6069(4)	43(1)
C(35)	3701(2)	4002(3)	6883(3)	35(1)
C(36)	3608(2)	2596(4)	7799(3)	31(1)
C(37)	2970(2)	2255(4)	7121(4)	46(1)
C(38)	3591(3)	2454(5)	8700(4)	44(1)
C(39)	4259(2)	2085(3)	7789(3)	31(1)
C(40)	4285(2)	1682(3)	6944(3)	29(1)
C(41)	3830(2)	1079(4)	6313(3)	34(1)
C(42)	3965(2)	704(4)	5610(3)	34(1)
C(43)	3473(3)	68(4)	4917(4)	50(1)
C(44)	4561(2)	961(3)	5547(3)	34(1)
C(45)	5024(2)	1532(3)	6168(3)	32(1)
C(46)	4891(2)	1876(3)	6884(3)	30(1)
C(47)	5298(2)	2485(3)	7625(3)	24(1)
C(48)	4893(2)	2756(4)	8171(3)	31(1)
C(49)	5293(2)	2569(4)	9137(3)	37(1)
C(50)	6325(2)	2494(3)	7486(3)	28(1)
C(51)	6523(2)	1489(4)	7576(4)	39(1)
C(52)	6973(3)	1173(5)	7243(4)	51(1)
C(53)	7237(3)	1837(6)	6846(5)	68(2)
C(54)	7074(3)	2831(6)	6775(4)	57(2)
C(55)	6609(2)	3164(4)	7103(3)	42(1)

C(56)	6446	5(3)	4247	(4)	7085	(4)	52(2)
N(1)-137	9(2)	6200	(3)	1008	(3)	38(1))
N(2)870(2)	7244	(3)	3042	(3)	36(1)
N(3)3605	5(2)	3730	(3)	7671	(3)	39(1))
N(4) 5888	8(2)	2810	(3)	7879	(3)	37(1))
O(1)-768	(2)	5838	(3)	950(2	2)	40(1)
O(2)1676	5(2)	5053	(3)	4826	(3)	76(1)
O(3)4216	5(2)	4113	(3)	8340	(2)	39(1))
O(4)6640)(3)	4887	(4)	6710	(4)	90(2)

Table 3. Bond lengths $[\text{\AA}]$ and angles $[^{\circ}]$ for d19432.

C(1)-O(1)	1.448(6)
C(1)-C(2)	1.512(8)
C(1)-C(20)	1.563(7)
C(1)-H(1)	1.0000
C(2)-C(3)	1.375(8)
C(2)-C(7)	1.376(7)
C(3)-C(4)	1.392(8)
C(3)-H(3)	0.9500
C(4)-C(5)	1.369(9)
C(4)-H(4)	0.9500
C(5)-C(6)	1.385(9)
C(5)-H(5)	0.9500
C(6)-C(7)	1.375(8)
C(6)-H(6)	0.9500
C(7)-N(1)	1.450(7)
C(8)-N(1)	1.509(7)
C(8)-C(10)	1.523(7)
C(8)-C(9)	1.536(8)
C(8)-C(11)	1.566(7)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-C(12)	1.515(7)
C(11)-C(20)	1.577(6)

	1.0000
C(12)-C(18)	1.394(6)
C(12)-C(13)	1.393(6)
C(13)-C(14)	1.408(8)
C(13)-H(13)	0.9500
C(14)-C(16)	1.373(8)
C(14)-C(15)	1.505(8)
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-C(17)	1.381(7)
C(16)-H(16)	0.9500
C(17)-C(18)	1.406(7)
C(17)-H(17)	0.9500
C(18)-C(19)	1.474(7)
C(19)-N(2)	1.271(6)
C(19)-C(20)	1.505(6)
C(20)-C(21)	1.531(7)
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-N(2)	1.402(6)
C(22)-C(27)	1.200(7)
	1.399(7)
C(22)-C(23)	1.402(7)
C(22)-C(23) C(23)-C(24)	1.399(7) 1.402(7) 1.348(8)
C(22)-C(23) C(23)-C(24) C(23)-H(23)	1.399(7) 1.402(7) 1.348(8) 0.9500
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9)
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8)
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8) 0.9500
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-C(27)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8) 0.9500 1.430(8)
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-C(27) C(26)-H(26)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8) 0.9500 1.430(8) 0.9500
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-C(27) C(26)-H(26) C(27)-C(28)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8) 0.9500 1.430(8) 0.9500 1.452(8)
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-C(27) C(26)-C(27) C(26)-H(26) C(27)-C(28) C(28)-O(2)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8) 0.9500 1.430(8) 0.9500 1.452(8) 1.212(7)
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-C(27) C(26)-H(26) C(27)-C(28) C(28)-O(2) C(28)-H(28)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8) 0.9500 1.430(8) 0.9500 1.452(8) 1.212(7) 0.9500
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-C(27) C(26)-H(26) C(27)-C(28) C(28)-O(2) C(28)-H(28) C(29)-O(3)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8) 0.9500 1.430(8) 0.9500 1.452(8) 1.212(7) 0.9500 1.443(6)
C(22)-C(23) C(23)-C(24) C(23)-H(23) C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-C(27) C(26)-C(27) C(26)-H(26) C(27)-C(28) C(28)-O(2) C(28)-H(28) C(29)-O(3) C(29)-C(30)	1.399(7) 1.402(7) 1.348(8) 0.9500 1.388(9) 0.9500 1.365(8) 0.9500 1.430(8) 0.9500 1.452(8) 1.212(7) 0.9500 1.443(6) 1.520(7)

C(29)-H(29)	1.0000
C(30)-C(31)	1.372(8)
C(30)-C(35)	1.389(7)
C(31)-C(32)	1.409(8)
C(31)-H(31)	0.9500
C(32)-C(33)	1.357(8)
C(32)-H(32)	0.9500
C(33)-C(34)	1.390(8)
C(33)-H(33)	0.9500
C(34)-C(35)	1.383(7)
C(34)-H(34)	0.9500
C(35)-N(3)	1.446(7)
C(36)-C(37)	1.500(6)
C(36)-N(3)	1.525(7)
C(36)-C(38)	1.521(8)
C(36)-C(39)	1.589(6)
C(37)-H(37A)	0.9800
C(37)-H(37B)	0.9800
C(37)-H(37C)	0.9800
C(38)-H(38A)	0.9800
C(38)-H(38B)	0.9800
C(38)-H(38C)	0.9800
C(39)-C(40)	1.523(6)
C(39)-C(48)	1.575(6)
C(39)-H(39)	1.0000
C(40)-C(46)	1.396(6)
C(40)-C(41)	1.396(6)
C(41)-C(42)	1.400(7)
C(41)-H(41)	0.9500
C(42)-C(44)	1.394(7)
C(42)-C(43)	1.507(7)
C(43)-H(43A)	0.9800
C(43)-H(43B)	0.9800
C(43)-H(43C)	0.9800
C(44)-C(45)	1.373(6)
C(44)-H(44)	0.9500
C(45)-C(46)	1.402(7)
C(45)-H(45)	0.9500

C(46)-C(47)	1.462(6)
C(47)-N(4)	1.278(6)
C(47)-C(48)	1.534(6)
C(48)-C(49)	1.530(7)
C(49)-H(49A)	0.9800
C(49)-H(49B)	0.9800
C(49)-H(49C)	0.9800
C(50)-C(55)	1.375(7)
C(50)-C(51)	1.398(7)
C(50)-N(4)	1.415(6)
C(51)-C(52)	1.367(7)
C(51)-H(51)	0.9500
C(52)-C(53)	1.358(9)
C(52)-H(52)	0.9500
C(53)-C(54)	1.366(10)
C(53)-H(53)	0.9500
C(54)-C(55)	1.399(8)
C(54)-H(54)	0.9500
C(55)-C(56)	1.485(8)
C(56)-O(4)	1.223(7)
C(56)-H(56)	0.9500
N(1)-O(1)	1.463(5)
N(3)-O(3)	1.474(5)
O(1)-C(1)-C(2)	2) 101.5(4)
O(1)-C(1)-C(2)	20) 108.1(4)
C(2)-C(1)-C(2)	0) 113.0(4)
O(1)-C(1)-H(1) 111.2
C(2)-C(1)-H(1) 111.2
С(20)-С(1)-Н	(1) 111.2
C(3)-C(2)-C(7)	() 121.4(5)
C(3)-C(2)-C(1)) 133.4(5)
C(7)-C(2)-C(1) 105.2(5)
C(2)-C(3)-C(4) 116.8(5)
C(2)-C(3)-H(3	3) 121.6
C(4)-C(3)-H(3	3) 121.6
C(5)-C(4)-C(3)) 121.6(6)
C(5)-C(4)-H(4) 119.2

C(3)-C(4)-H(4)	119.2
C(4)-C(5)-C(6)	121.4(6)
C(4)-C(5)-H(5)	119.3
C(6)-C(5)-H(5)	119.3
C(7)-C(6)-C(5)	116.9(5)
C(7)-C(6)-H(6)	121.6
C(5)-C(6)-H(6)	121.5
C(6)-C(7)-C(2)	121.9(5)
C(6)-C(7)-N(1)	127.0(5)
C(2)-C(7)-N(1)	110.9(5)
N(1)-C(8)-C(10)	104.6(4)
N(1)-C(8)-C(9)	106.6(4)
C(10)-C(8)-C(9)	106.6(5)
N(1)-C(8)-C(11)	113.0(4)
C(10)-C(8)-C(11)	115.3(4)
C(9)-C(8)-C(11)	110.1(5)
C(8)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(8)-C(10)-H(10A)	109.5
C(8)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10)B) 109.5
C(8)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10	DC) 109.5
H(10B)-C(10)-H(10)C) 109.5
C(12)-C(11)-C(8)	121.4(4)
C(12)-C(11)-C(20)	103.0(4)
C(8)-C(11)-C(20)	115.0(4)
С(12)-С(11)-Н(11)	105.3
C(8)-C(11)-H(11)	105.4
C(20)-C(11)-H(11)	105.3
C(18)-C(12)-C(13)	119.5(4)
C(18)-C(12)-C(11)	112.0(4)
C(13)-C(12)-C(11)	128.0(4)
C(12)-C(13)-C(14)	119.8(5)

C(12)-C(13)-H(13) 120.1 C(14)-C(13)-H(13) 120.1 C(16)-C(14)-C(13) 119.8(5) C(16)-C(14)-C(15) 121.3(5) C(13)-C(14)-C(15) 118.9(5) C(14)-C(15)-H(15A) 109.5 C(14)-C(15)-H(15B) 109.5 H(15A)-C(15)-H(15B) 109.5 C(14)-C(15)-H(15C) 109.5 H(15A)-C(15)-H(15C) 109.5 H(15B)-C(15)-H(15C) 109.5 C(14)-C(16)-C(17) 121.3(5) C(14)-C(16)-H(16) 119.3 C(17)-C(16)-H(16) 119.3 C(16)-C(17)-C(18) 119.2(5) C(16)-C(17)-H(17) 120.4 C(18)-C(17)-H(17) 120.4 C(12)-C(18)-C(17) 120.2(4) C(12)-C(18)-C(19) 109.8(4) C(17)-C(18)-C(19) 130.0(4) N(2)-C(19)-C(18) 133.1(5) N(2)-C(19)-C(20) 118.8(4) C(18)-C(19)-C(20) 108.1(4) C(19)-C(20)-C(21) 111.7(4) C(19)-C(20)-C(1) 105.7(4) C(21)-C(20)-C(1) 110.3(4) C(19)-C(20)-C(11) 106.0(4) C(21)-C(20)-C(11) 113.1(4) C(1)-C(20)-C(11) 109.7(4) C(20)-C(21)-H(21A) 109.5 C(20)-C(21)-H(21B) 109.5 H(21A)-C(21)-H(21B) 109.5 C(20)-C(21)-H(21C) 109.5 H(21A)-C(21)-H(21C) 109.5 H(21B)-C(21)-H(21C) 109.5 N(2)-C(22)-C(27) 120.4(4) N(2)-C(22)-C(23) 121.4(5) C(27)-C(22)-C(23) 117.9(5)

```
C(24)-C(23)-C(22) 122.2(5)
C(24)-C(23)-H(23) 118.9
C(22)-C(23)-H(23) 118.9
C(23)-C(24)-C(25) 119.5(5)
C(23)-C(24)-H(24) 120.2
C(25)-C(24)-H(24) 120.2
C(26)-C(25)-C(24) 121.9(6)
C(26)-C(25)-H(25) 119.1
C(24)-C(25)-H(25) 119.1
C(25)-C(26)-C(27) 118.3(6)
C(25)-C(26)-H(26) 120.8
C(27)-C(26)-H(26) 120.8
C(22)-C(27)-C(26) 120.1(5)
C(22)-C(27)-C(28) 120.6(5)
C(26)-C(27)-C(28) 119.3(5)
O(2)-C(28)-C(27) 126.2(6)
O(2)-C(28)-H(28) 116.9
C(27)-C(28)-H(28) 116.9
O(3)-C(29)-C(30) 100.5(4)
O(3)-C(29)-C(48) 108.3(4)
C(30)-C(29)-C(48) 113.3(4)
O(3)-C(29)-H(29) 111.4
C(30)-C(29)-H(29) 111.4
C(48)-C(29)-H(29) 111.4
C(31)-C(30)-C(35) 120.8(5)
C(31)-C(30)-C(29) 133.6(5)
C(35)-C(30)-C(29) 105.6(4)
C(30)-C(31)-C(32) 117.2(5)
C(30)-C(31)-H(31) 121.4
C(32)-C(31)-H(31) 121.4
C(33)-C(32)-C(31) 122.1(6)
C(33)-C(32)-H(32) 119.0
C(31)-C(32)-H(32) 118.9
C(32)-C(33)-C(34) 120.4(5)
C(32)-C(33)-H(33) 119.8
C(34)-C(33)-H(33) 119.8
C(35)-C(34)-C(33) 118.1(5)
C(35)-C(34)-H(34) 121.0
```

```
C(33)-C(34)-H(34) 121.0
C(34)-C(35)-C(30) 121.3(5)
C(34)-C(35)-N(3) 128.0(5)
C(30)-C(35)-N(3) 110.5(4)
C(37)-C(36)-N(3) 104.0(4)
C(37)-C(36)-C(38) 109.6(5)
N(3)-C(36)-C(38) 105.0(4)
C(37)-C(36)-C(39) 116.9(4)
N(3)-C(36)-C(39) 112.4(4)
C(38)-C(36)-C(39) 108.2(4)
C(36)-C(37)-H(37A)
                      109.5
C(36)-C(37)-H(37B)
                      109.5
H(37A)-C(37)-H(37B) 109.5
C(36)-C(37)-H(37C)
                      109.5
H(37A)-C(37)-H(37C) 109.5
H(37B)-C(37)-H(37C) 109.5
C(36)-C(38)-H(38A)
                      109.5
C(36)-C(38)-H(38B)
                      109.5
H(38A)-C(38)-H(38B) 109.5
                      109.5
C(36)-C(38)-H(38C)
H(38A)-C(38)-H(38C) 109.5
H(38B)-C(38)-H(38C) 109.5
C(40)-C(39)-C(48) 103.6(4)
C(40)-C(39)-C(36) 120.5(4)
C(48)-C(39)-C(36) 114.6(4)
C(40)-C(39)-H(39) 105.7
C(48)-C(39)-H(39) 105.7
C(36)-C(39)-H(39) 105.7
C(46)-C(40)-C(41) 119.1(4)
C(46)-C(40)-C(39) 111.6(4)
C(41)-C(40)-C(39) 128.8(4)
C(40)-C(41)-C(42) 120.8(5)
C(40)-C(41)-H(41) 119.6
C(42)-C(41)-H(41) 119.6
C(44)-C(42)-C(41) 118.4(4)
C(44)-C(42)-C(43) 120.3(5)
C(41)-C(42)-C(43) 121.3(5)
C(42)-C(43)-H(43A)
                      109.5
```

```
C(42)-C(43)-H(43B)
                      109.5
H(43A)-C(43)-H(43B) 109.5
C(42)-C(43)-H(43C)
                      109.5
H(43A)-C(43)-H(43C) 109.5
H(43B)-C(43)-H(43C) 109.5
C(45)-C(44)-C(42) 122.1(4)
C(45)-C(44)-H(44) 118.9
C(42)-C(44)-H(44) 118.9
C(44)-C(45)-C(46) 118.9(4)
C(44)-C(45)-H(45) 120.5
C(46)-C(45)-H(45) 120.5
C(40)-C(46)-C(45) 120.5(4)
C(40)-C(46)-C(47) 109.9(4)
C(45)-C(46)-C(47) 129.5(4)
N(4)-C(47)-C(46) 133.5(5)
N(4)-C(47)-C(48) 117.9(4)
C(46)-C(47)-C(48) 108.6(4)
C(49)-C(48)-C(47) 110.4(3)
C(49)-C(48)-C(29) 110.2(4)
C(47)-C(48)-C(29) 106.6(4)
C(49)-C(48)-C(39) 113.5(4)
C(47)-C(48)-C(39) 104.6(4)
C(29)-C(48)-C(39) 111.1(3)
C(48)-C(49)-H(49A)
                      109.5
C(48)-C(49)-H(49B)
                      109.5
H(49A)-C(49)-H(49B) 109.5
C(48)-C(49)-H(49C)
                      109.5
H(49A)-C(49)-H(49C) 109.5
H(49B)-C(49)-H(49C) 109.5
C(55)-C(50)-C(51) 119.6(5)
C(55)-C(50)-N(4) 121.7(4)
C(51)-C(50)-N(4) 118.3(4)
C(52)-C(51)-C(50) 119.6(5)
C(52)-C(51)-H(51) 120.2
C(50)-C(51)-H(51) 120.2
C(53)-C(52)-C(51) 120.2(6)
C(53)-C(52)-H(52) 119.9
C(51)-C(52)-H(52) 119.9
```

```
C(52)-C(53)-C(54) 121.8(6)
C(52)-C(53)-H(53) 119.1
C(54)-C(53)-H(53) 119.1
C(53)-C(54)-C(55) 118.7(6)
C(53)-C(54)-H(54) 120.7
C(55)-C(54)-H(54) 120.7
C(50)-C(55)-C(54) 120.0(5)
C(50)-C(55)-C(56) 119.5(5)
C(54)-C(55)-C(56) 120.4(5)
O(4)-C(56)-C(55) 124.1(7)
O(4)-C(56)-H(56) 117.9
C(55)-C(56)-H(56) 117.9
C(7)-N(1)-O(1)
                  101.5(4)
C(7)-N(1)-C(8)
                  112.3(4)
O(1)-N(1)-C(8)
                  105.7(4)
C(19)-N(2)-C(22) 125.1(4)
C(35)-N(3)-O(3) 101.1(4)
C(35)-N(3)-C(36) 112.3(4)
O(3)-N(3)-C(36)
                  106.4(3)
C(47)-N(4)-C(50) 121.8(4)
C(1)-O(1)-N(1)
                  103.9(3)
C(29)-O(3)-N(3)
                  104.6(3)
```

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters (Å 2x 103)for d19432.Theanisotropic

displacement factor exponent takes the form: -2 2[h2a*2U11 + ... + 2hka*b*U12]

U11 U22 U33 U23 U13 U12

C(1) 32(2)	33(3)	42(3)	-9(2)9(2)	3(2)	
C(2) 41(3)	26(2)	48(3)	-3(2)16(2)	1(2)	
C(3) 47(3)	41(3)	48(3)	7(2) 16(3)	6(2)	
C(4) 69(4)	57(4)	50(4)	4(3) 31(3)	-8(3)	
C(5) 52(3)	53(4)	61(4)	0(3) 28(3)	-4(3)	
C(6) 38(3)	43(3)	56(4)	-7(2)19(3)	-7(2)	

C(7) 44(3	5)	24(2)	48(3	3)	-3(2))17(2))	-3(2))	
C(8) 32(3	5)	43(3)	35(3	3)	-3(2)	9(2)		4(2)		
C(9) 35(3	5)	49(3)	28(3	3)	-1(2)	5(2)		1(2)		
C(10)	27(2	51	l(3)	40(3)	-1(2)	8(2)		2(2)	
C(11)	29(2	34	4(3)	34(3)	2(2)	12(2)	3(2)	
C(12)	36(2	23	3(2)	36(3)	-5(2)	15(2)	-5(2))
C(13)	28(2	28	8(2)	48(3)	0(2)	15(2)	2(2)	
C(14)	44(3) 36	5(3)	53(3)	0(2)	28(3)	-3(2))
C(15)	52(3) 52	2(4)	70(4)	-18(3	3)	28(3)	1(3)
C(16)	44(3) 42	2(3)	37(3)	-8(2)	19(2)	-9(2))
C(17)	39(3) 35	5(3)	39(3)	-5(2)	16(2)	-6(2))
C(18)	32(2	31	l(2)	32(2)	2(2)	12(2)	-2(2))
C(19)	26(2	22	2(2)	26(3)	0(2)	11(2)	-1(2))
C(20)	24(2	2) 46	5(3)	28(3)	1(2)	11(2)	4(2)	
C(21)	33(3) 51	l(3)	31(3)	0(2)	18(3)	-1(2))
C(22)	21(2	28	8(2)	33(3)	-4(2)	13(2)	2(2)	
C(23)	35(2	31	l(3)	58(3)	-8(2)	21(2)	-2(2))
C(24)	39(3) 43	3(3)	65(4)	-14(3	3)	14(3)	-6(2)
C(25)	53(3) 65	5(4)	45(4)	-1(3)	-2(3))	4(3)	
C(26)	59(3) 51	l(4)	47(3)	-8(3)	3(3)		7(3)	
C(27)	34(2	39	9(3)	42(3)	10(2))	10(2)	11(2)
C(28)	51(3) 37	7(3)	60(4)	2(3)	11(3)	5(2)	
C(29)	33(2	35	5(3)	33(3)	-4(2)	9(2)		2(2)	
C(30)	41(3) 24	4(2)	38(3)	-5(2)	13(2)	1(2)	
C(31)	48(3) 38	8(3)	46(3)	1(2)	14(3)	-4(2))
C(32)	59(3) 51	l(3)	38(3)	5(3)	9(3)		5(3)	
C(33)	57(3) 41	l(3)	45(3)	7(3)	6(3)		-1(3))
C(34)	43(3) 36	5(3)	46(3)	-5(2)	10(2)	2(2)	
C(35)	36(2	27	7(2)	39(3)	-1(2)	12(2)	3(2)	
C(36)	28(2	37	7(3)	29(3)	-5(2)	11(2)	1(2)	
C(37)	26(2	56	5(3)	51(4)	-12(3	8)	10(2)	-4(2)
C(38)	37(3) 65	5(4)	37(3)	-4(2)	23(3)	-1(2))
C(39)	30(2	31	l(3)	31(2)	-5(2)	12(2)	-2(2))
C(40)	36(2	24	4(2)	25(2)	-2(2)	9(2)		0(2)	
C(41)	30(2	33	3(3)	36(3)	1(2)	10(2)	-2(2))
C(42)	41(3) 31	l(2)	25(2)	-1(2)	6(2)		-1(2))
C(43)	45(3) 48	8(3)	48(3)	-9(3)	7(3)		-5(2))
C(44)	40(3) 34	4(3)	28(2)	-4(2)	12(2)	3(2)	

C(45)	33(2)	33(3)	30(2)	0(2)	10(2)	1(2)	
C(46)	27(2)	30(2)	29(2)	1(2)	6(2)		4(2)	
C(47)	23(2)	23(2)	24(3)	-2(2)9(2)		1(2)	
C(48)	27(2)	33(3)	31(3)	-6(2)10(2)	0(2)	
C(49)	35(3)	52(3)	27(3)	-2(2)14(3)	6(2)	
C(50)	19(2)	36(3)	28(3)	-4(2)9(2)		-3(2))
C(51)	33(2)	34(3)	49(3)	-6(2)15(2)	0(2)	
C(52)	41(3)	50(3)	62(4)	-12(3)	18(3)	2(2)
C(53)	61(4)	89(5)	65(4)	-33(4)	37(4)	-15(4)
C(54)	58(3)	79(5)	48(4)	-3(3)35(3)	-11(3	3)
C(55)	41(3)	45(3)	39(3)	-6(2)14(2)	-8(2))
C(56)	55(3)	37(3)	61(4)	10(3	5)	16(3)	-8(2)
N(1)37(2)	36(2)	41(2)	-7(2))15(2	2)	2(2)		
N(2)32(2)	41(2)	31(2)	2(2)	9(2)		7(2)		
N(3)29(2)	42(2)	39(2)	-8(2))7(2)		0(2)		
N(4)33(2)	36(2)	41(2)	-2(2))13(2	2)	1(2)		
O(1)34(2)	44(2)	41(2)	-9(2))14(2	2)	4(1)		
O(2)88(3)	47(3)	78(3)	18(2)	15(3)	13(2)
O(3)37(2)	41(2)	39(2)	-13(2	2)	13(2)	1(1)	
O(4)125(4)	50(3)	98(4)	20(3)	44(4)	-21(3	3)

Table 5.Hydrogen coordinates (x 104) and isotropic displacement parameters(Å 2x 103)for d19432.

x y z U(eq)

H(1)135	5688	3	1915	i	44		
H(3)65	5547	7	3607	'	55		
H(4)-733	8 5269)	4211	67			
H(5)-183	33	5442	2	3385	5	64	
H(6)-219	97	5849)	1901		54	
H(9A)	-104	-8	7217	'	-160	59	
H(9B)	-152	6	8156)	-266	59	
H(9C)	-182	5	7050)	-490	59	
H(10A)	-203	0	7592		1472		62
H(10B)	-240	4	7257	,	479	62	
H(10C)	-211	7	8371		702	62	

H(11)	-704 845	51 113	3238	
H(13)	-1606	9104	1991	42
H(15A)	-1963	10085	2878	85
H(15B)	-1393	10666	3635	85
H(15C)	-1736	9707	3864	85
H(16)	-427 930	53 453	35 48	
H(17)	368 837	431	45	
H(21A)	1 724	43 574	4 55	
H(21B)	672 70	13 137	77 55	
H(21C)	395 813	36 119	9855	
H(23)	1284	9033	3657	48
H(24)	2049	9496	4977	61
H(25)	2556	8284	6027	72
H(26)	2300	6600	5766	69
H(28)	1207	5567	3731	63
H(29)	511643	16 828	35 42	
H(31)	5022	4548	6519	54
H(32)	4213	4810	511463	
H(33)	311846	17 484	43 62	
H(34)	2773	4118596	51 52	
H(37A)	2985	2337	6541	68
H(37B)	2610	2658	7161	68
H(37C)	2898	1546	7216	68
H(38A)	4014	2655	9142	66
H(38B)	3507	1747	8783	66
H(38C)	3240	2869	8755	66
H(39)	4341	1493	8188	37
H(41)	3424	920 636	53 41	
H(43A)	3087	-41 506	55 75	
H(43B)	3673	-580488	32 75	
H(43C)	3341	411 435	55 75	
H(44)	4649	734 505	59 41	
H(45)	5428	1692	611439	
H(49A)	5028	2747	9477	56
H(49B)	5691	2982	9326	56
H(49C)	5415	1859	9227	56
H(51)	6347	1028	7868	46
H(52)	7100	488 729	62	

H(54)72733288650868H(56)61744456738363	H(53)	7544	1603	6610	81
H(56) 6174 4456 7383 63	H(54)	7273	3288	6508	68
	H(56)	6174	4456	7383	63

(c) X-ray data for compound 7a :

1. Crystal data and structure refinement for	or mo_180134lt_0m.		
Identification code	mo_180134lt_0m		
Empirical formula	$C_{27} \ H_{28} \ N_2 \ O_2$		
Formula weight	412.51		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 7.5024(14) Å	a= 93.783(5)°.	
	b = 9.4863(17) Å	b= 95.871(5)°.	
	c = 15.949(3) Å	g =	
109.707(5)°.			
Volume	1056.9(3) Å ³		
Z	2		
Density (calculated)	1.296 Mg/m ³		

Absorption coefficient	0.082 mm ⁻¹	
F(000)	440	
Crystal size	0.14 x 0.12 x 0.09 mm ³	
Theta range for data collection	1.291 to 26.362°.	
Index ranges	-9<=h<=9, -9<=k<=11, -19<=l<=19	
Reflections collected	24878	
Independent reflections	4304 [R(int) = 0.0273]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9485 and 0.8638	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	4304 / 0 / 286	
Goodness-of-fit on F ²	1.034	
Final R indices [I>2sigma(I)]	R1 = 0.0421, wR2 = 0.1020	
R indices (all data)	R1 = 0.0505, wR2 = 0.1087	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.589 and -0.617 e.Å ⁻³	
Table 2. Atomic coordinates $(x \ 10^4)$ at	nd equivalent isotropic displacement	

parameters (Å $^2x 10^3$)

10⁺) and equivalent isotropic disp

for mo_180134lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	_
O(1)	-1710(2)	2260(1)	2238(1)	22(1)	
O(2)	17(2)	9318(1)	1728(1)	17(1)	
N(1)	1023(2)	5162(1)	1955(1)	16(1)	
N(2)	47(2)	9986(1)	2585(1)	16(1)	
C(1)	-1812(2)	2364(2)	1343(1)	21(1)	
C(2)	118(2)	2846(2)	1042(1)	17(1)	
C(3)	1528(2)	4245(2)	1374(1)	15(1)	
C(4)	2356(2)	6535(2)	2433(1)	14(1)	
C(5)	2179(2)	8026(2)	2154(1)	14(1)	
C(6)	84(2)	7826(2)	1846(1)	14(1)	
C(7)	-1255(2)	7368(2)	2503(1)	14(1)	
C(8)	-1176(2)	8703(2)	2943(1)	15(1)	
C(9)	-2183(2)	8733(2)	3619(1)	18(1)	
C(10)	-3282(2)	7355(2)	3858(1)	19(1)	

C(11)	2205(2)	6634(2)	3365(1)	14(1)
C(12)	1943(2)	5474(2)	3878(1)	18(1)
C(13)	2104(2)	5798(2)	4747(1)	20(1)
C(14)	2548(2)	7276(2)	5093(1)	19(1)
C(15)	2803(2)	8437(2)	4575(1)	17(1)
C(16)	2577(2)	8117(2)	3697(1)	14(1)
C(17)	2894(2)	9157(2)	2991(1)	14(1)
C(18)	3358(2)	8522(2)	1426(1)	18(1)
C(19)	-2401(2)	6002(2)	2723(1)	16(1)
C(20)	-3409(2)	6013(2)	3410(1)	18(1)
C(21)	2088(2)	10490(2)	3004(1)	16(1)
C(22)	3265(2)	11738(2)	2516(1)	20(1)
C(23)	2091(2)	11204(2)	3890(1)	20(1)
C(24)	3322(2)	4629(2)	1101(1)	18(1)
C(25)	3727(2)	3640(2)	532(1)	20(1)
C(26)	2351(2)	2282(2)	200(1)	22(1)
C(27)	556(2)	1907(2)	460(1)	20(1)

Table 3. Bond lengths [Å] and angles [°] for $mo_180134lt_0m$.

O(1)-C(1)	1.433(2)
O(1)-H(1)	0.88(2)
O(2)-C(6)	1.4561(17)
O(2)-N(2)	1.4634(15)
N(1)-C(3)	1.3956(18)
N(1)-C(4)	1.4537(18)
N(1)-H(1A)	0.8800
N(2)-C(8)	1.4475(19)
N(2)-C(21)	1.5081(19)
C(1)-C(2)	1.504(2)
C(1)-H(28)	0.9900
C(1)-H(29)	0.9900
C(2)-C(27)	1.385(2)
C(2)-C(3)	1.416(2)
C(3)-C(24)	1.394(2)
C(4)-C(11)	1.501(2)
C(4)-C(5)	1.554(2)
C(4)-H(22)	1.0000

C(5)-C(18)	1.5344(19)
C(5)-C(6)	1.542(2)
C(5)-C(17)	1.5808(19)
C(6)-C(7)	1.509(2)
C(6)-H(19)	1.0000
C(7)-C(19)	1.383(2)
C(7)-C(8)	1.388(2)
C(8)-C(9)	1.381(2)
C(9)-C(10)	1.393(2)
C(9)-H(10)	0.9500
C(10)-C(20)	1.387(2)
C(10)-H(2)	0.9500
C(11)-C(12)	1.388(2)
C(11)-C(16)	1.394(2)
C(12)-C(13)	1.382(2)
C(12)-H(21)	0.9500
C(13)-C(14)	1.388(2)
C(13)-H(4)	0.9500
C(14)-C(15)	1.394(2)
C(14)-H(5)	0.9500
C(15)-C(16)	1.394(2)
C(15)-H(6)	0.9500
C(16)-C(17)	1.530(2)
C(17)-C(21)	1.574(2)
C(17)-H(20)	1.0000
C(18)-H(7)	0.9800
C(18)-H(8)	0.9800
C(18)-H(9)	0.9800
C(19)-C(20)	1.394(2)
C(19)-H(12)	0.9500
C(20)-H(11)	0.9500
C(21)-C(23)	1.526(2)
C(21)-C(22)	1.530(2)
C(22)-H(14)	0.9800
C(22)-H(13)	0.9800
C(22)-H(15)	0.9800
C(23)-H(18)	0.9800
C(23)-H(16)	0.9800

0.9800
1.391(2)
0.9500
1.381(2)
0.9500
1.386(2)
0.9500
0.9500
106.9(13)
104.33(10)
124.38(12)
117.8
117.8
101.07(10)
112.08(11)
106.61(10)
112.87(12)
109.0
109.0
109.0
109.0
107.8
119.31(14)
120.40(14)
120.25(13)
123.91(13)
118.61(13)
117.48(13)
113.90(12)
115.53(12)
104.34(11)
107.6
107.6
107.6
108.36(12)
109.89(11)
111.13(11)
114.16(12)

C(6)-C(5)-C(17)	109.32(11)
C(4)-C(5)-C(17)	103.96(11)
O(2)-C(6)-C(7)	100.70(11)
O(2)-C(6)-C(5)	107.10(11)
C(7)-C(6)-C(5)	114.59(12)
O(2)-C(6)-H(19)	111.3
C(7)-C(6)-H(19)	111.3
C(5)-C(6)-H(19)	111.3
C(19)-C(7)-C(8)	120.06(13)
C(19)-C(7)-C(6)	134.38(13)
C(8)-C(7)-C(6)	105.55(12)
C(9)-C(8)-C(7)	122.39(14)
C(9)-C(8)-N(2)	126.99(13)
C(7)-C(8)-N(2)	110.62(12)
C(8)-C(9)-C(10)	117.35(14)
C(8)-C(9)-H(10)	121.3
C(10)-C(9)-H(10)	121.3
C(20)-C(10)-C(9)	120.79(14)
C(20)-C(10)-H(2)	119.6
C(9)-C(10)-H(2)	119.6
C(12)-C(11)-C(16)	121.87(14)
C(12)-C(11)-C(4)	126.63(13)
C(16)-C(11)-C(4)	111.15(12)
C(13)-C(12)-C(11)	119.29(14)
C(13)-C(12)-H(21)	120.4
C(11)-C(12)-H(21)	120.4
C(12)-C(13)-C(14)	119.76(14)
C(12)-C(13)-H(4)	120.1
C(14)-C(13)-H(4)	120.1
C(13)-C(14)-C(15)	120.80(14)
C(13)-C(14)-H(5)	119.6
C(15)-C(14)-H(5)	119.6
C(14)-C(15)-C(16)	119.97(14)
C(14)-C(15)-H(6)	120.0
C(16)-C(15)-H(6)	120.0
C(11)-C(16)-C(15)	118.18(13)
C(11)-C(16)-C(17)	110.35(12)
C(15)-C(16)-C(17)	131.04(13)

C(16)-C(17)-C(21)	119.98(12)
C(16)-C(17)-C(5)	103.37(11)
C(21)-C(17)-C(5)	114.14(11)
C(16)-C(17)-H(20)	106.1
C(21)-C(17)-H(20)	106.1
C(5)-C(17)-H(20)	106.1
C(5)-C(18)-H(7)	109.5
C(5)-C(18)-H(8)	109.5
H(7)-C(18)-H(8)	109.5
C(5)-C(18)-H(9)	109.5
H(7)-C(18)-H(9)	109.5
H(8)-C(18)-H(9)	109.5
C(7)-C(19)-C(20)	118.21(14)
C(7)-C(19)-H(12)	120.9
C(20)-C(19)-H(12)	120.9
C(10)-C(20)-C(19)	121.14(14)
C(10)-C(20)-H(11)	119.4
C(19)-C(20)-H(11)	119.4
N(2)-C(21)-C(23)	105.73(12)
N(2)-C(21)-C(22)	107.10(12)
C(23)-C(21)-C(22)	107.45(12)
N(2)-C(21)-C(17)	111.83(11)
C(23)-C(21)-C(17)	114.30(12)
C(22)-C(21)-C(17)	110.06(12)
C(21)-C(22)-H(14)	109.5
C(21)-C(22)-H(13)	109.5
H(14)-C(22)-H(13)	109.5
C(21)-C(22)-H(15)	109.5
H(14)-C(22)-H(15)	109.5
H(13)-C(22)-H(15)	109.5
C(21)-C(23)-H(18)	109.5
C(21)-C(23)-H(16)	109.5
H(18)-C(23)-H(16)	109.5
C(21)-C(23)-H(17)	109.5
H(18)-C(23)-H(17)	109.5
H(16)-C(23)-H(17)	109.5
C(25)-C(24)-C(3)	120.48(14)
C(25)-C(24)-H(24)	119.8

C(3)-C(24)-H(24)	119.8
C(26)-C(25)-C(24)	121.09(15)
C(26)-C(25)-H(25)	119.5
C(24)-C(25)-H(25)	119.5
C(25)-C(26)-C(27)	118.56(14)
C(25)-C(26)-H(26)	120.7
C(27)-C(26)-H(26)	120.7
C(2)-C(27)-C(26)	121.91(15)
C(2)-C(27)-H(27)	119.0
C(26)-C(27)-H(27)	119.0

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å ^2x 10^3)$ for mo_180134lt_0m. The anisotropic

displacement factor exponent takes the form: $-2p^2$ [$h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}$]

	U ¹¹	U ²²	U33	U ²³	U13	U ¹²	
O(1)	20(1)	17(1)	31(1)	3(1)	6(1)	9(1)	
O(2)	23(1)	13(1)	15(1)	2(1)	1(1)	8(1)	
N(1)	13(1)	12(1)	22(1)	-2(1)	3(1)	4(1)	
N(2)	18(1)	15(1)	16(1)	0(1)	0(1)	7(1)	
C(1)	17(1)	14(1)	30(1)	-2(1)	-3(1)	5(1)	
C(2)	20(1)	13(1)	19(1)	3(1)	-2(1)	8(1)	
C(3)	20(1)	13(1)	15(1)	2(1)	0(1)	9(1)	
C(4)	14(1)	11(1)	18(1)	1(1)	2(1)	5(1)	
C(5)	14(1)	12(1)	16(1)	1(1)	3(1)	5(1)	
C(6)	17(1)	10(1)	16(1)	1(1)	0(1)	5(1)	
C(7)	12(1)	16(1)	16(1)	1(1)	-2(1)	7(1)	
C(8)	13(1)	14(1)	17(1)	2(1)	-2(1)	6(1)	
C(9)	16(1)	20(1)	21(1)	-2(1)	0(1)	10(1)	
C(10)	14(1)	26(1)	18(1)	2(1)	2(1)	8(1)	
C(11)	10(1)	13(1)	19(1)	2(1)	2(1)	5(1)	
C(12)	14(1)	13(1)	27(1)	6(1)	3(1)	5(1)	
C(13)	14(1)	22(1)	25(1)	13(1)	5(1)	7(1)	
C(14)	15(1)	28(1)	16(1)	5(1)	3(1)	9(1)	

C(15)	14(1)	17(1)	20(1)	2(1)	2(1)	7(1)	
C(16)	9(1)	13(1)	19(1)	3(1)	2(1)	4(1)	
C(17)	14(1)	11(1)	16(1)	1(1)	1(1)	4(1)	
C(18)	20(1)	17(1)	19(1)	4(1)	6(1)	6(1)	
C(19)	13(1)	15(1)	21(1)	1(1)	-1(1)	6(1)	
C(20)	13(1)	19(1)	23(1)	5(1)	1(1)	5(1)	
C(21)	17(1)	11(1)	20(1)	1(1)	-1(1)	5(1)	
C(22)	22(1)	13(1)	26(1)	4(1)	0(1)	5(1)	
C(23)	23(1)	14(1)	22(1)	-2(1)	-1(1)	9(1)	
C(24)	21(1)	14(1)	19(1)	3(1)	4(1)	6(1)	
C(25)	27(1)	20(1)	19(1)	7(1)	8(1)	12(1)	
C(26)	36(1)	18(1)	17(1)	2(1)	5(1)	15(1)	
C(27)	29(1)	13(1)	18(1)	-1(1)	-3(1)	8(1)	

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$)

for mo_180134lt_0m.

	Х	У	Z	U(eq)	
H(1)	-1150(30)	1600(20)	2346(13)	32	
H(1A)	-183	4891	2038	19	
H(28)	-2444	3096	1200	25	
H(29)	-2609	1371	1040	25	
H(22)	3677	6560	2366	17	
H(19)	-404	7132	1309	17	
H(10)	-2127	9658	3908	22	
H(2)	-3954	7333	4333	23	
H(21)	1656	4468	3636	21	
H(4)	1911	5013	5105	24	
H(5)	2680	7498	5691	23	
H(6)	3132	9447	4821	20	
H(20)	4309	9631	3010	16	
H(7)	2958	7704	962	28	
H(8)	4716	8766	1629	28	
H(9)	3154	9414	1220	28	
H(12)	-2500	5081	2415	19	

H(11)	-4195	5085	3574	22
H(14)	3132	11351	1920	30
H(13)	4612	12074	2760	30
H(15)	2803	12588	2557	30
H(18)	1551	12007	3846	29
H(16)	3405	11627	4178	29
H(17)	1320	10436	4215	29
H(24)	4275	5574	1306	21
H(25)	4972	3902	369	24
H(26)	2628	1620	-197	26
H(27)	-401	978	231	24

(d) X-ray data for compound 7e :

Table 1. Crystal data and structure refinement for mo_180316lt_0m_sq. Identification code mo_180316lt_0m_sq Empirical formula C₂₇ H₂₅ N₂ O Formula weight 393.49 Temperature 100(2) K 0.71073 Å Wavelength Crystal system Monoclinic Space group P 21/c a = 9.3848(5) Å Unit cell dimensions a= 90°. b= 94.091(2)°. b = 17.3334(8) Å c = 12.7967(6) Å $g = 90^{\circ}$. Volume 2076.34(18) Å 3

Ζ 4 Density (calculated) 1.259 Mg/m3 Absorption coefficient 0.077 mm-1 F(000) 836 Crystal size 0.18 x 0.15 x 0.15 mm3 Theta range for data collection 1.981 to 26.417°. Index ranges $-11 \le h \le 11, -21 \le k \le 21, -16 \le l \le 15$ Reflections collected 36450 Independent reflections 4257 [R(int) = 0.0652]Completeness to theta = 25.242° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9485 and 0.9086 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4257 / 0 / 274 Goodness-of-fit on F2 1.020 Final R indices [I>2sigma(I)] R1 = 0.0481, wR2 = 0.1155 R indices (all data) R1 = 0.0700, wR2 = 0.1274Extinction coefficient n/a Largest diff. peak and hole 0.738 and -0.684 e.Å -3 Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å 2x 103) for mo_180316lt_0m_sq. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

O(1)3288(1)	10669(1)	5610(1)	18(1)
N(1)1479(2)	9324(1)	5849(1)	16(1)
N(2)6469(2)	9147(1)	6677(1)	16(1)
C(1) -1266(2)	7512(1)	6232(2)	21(1)
C(2) -324(2)	7774(1)	7036(2)	19(1)
C(3) 564(2)	8402(1)	6860(1)	16(1)
C(4) 1681(2)	8806(1)	7459(1)	16(1)
C(5) 2214(2)	9349(1)	6817(1)	15(1)
C(6) 3469(2)	9860(1)	7128(1)	14(1)
C(7) 4223(2)	10135(1)	6159(1)	14(1)
C(8) 5681(2)	10467(1)	6464(1)	15(1)
C(9) 6778(2)	9944(1)	6759(1)	15(1)

C(10)	8150(2)	10212(1)	7039(1)	19(1)
C(11)	8432(2)	10996(1)	7035(2)	23(1)
C(12)	-1367(2)	7876(1)	5253(2)	22(1)
C(13)	-509(2)	8498(1)	5051(2)	20(1)
C(14)	468(2)	8747(1)	5849(1)	17(1)
C(15)	2309(2)	8716(1)	8530(1)	16(1)
C(16)	3674(2)	9034(1)	8763(1)	14(1)
C(17)	4503(2)	9388(1)	7894(1)	14(1)
C(18)	5471(2)	8770(1)	7396(1)	16(1)
C(19)	6413(2)	8382(1)	8271(2)	23(1)
C(20)	4667(2)	8145(1)	6751(2)	21(1)
C(21)	7362(2)	11514(1)	6732(2)	21(1)
C(22)	5988(2)	11251(1)	6452(1)	19(1)
C(23)	2938(2)	10570(1)	7726(1)	17(1)
C(24)	4251(2)	9020(1)	9797(1)	18(1)
C(25)	3532(2)	8672(1)	10579(2)	23(1)
C(26)	2217(2)	8332(1)	10341(2)	25(1)
C(27)	1601(2)	8366(1)	9327(2)	22(1)

Table 3.Bond lengths [Å] and angles [°] for mo_180316lt_0m_sq.

1.427(2)
1.375(2)
1.379(2)
0.8800
1.414(2)
1.509(2)
0.8800
1.384(3)
1.400(3)
0.9500
1.400(3)
0.9500
1.422(3)
1.436(3)
1.368(2)
1.461(3)
1.504(3)
1.546(2)

C(6)-C(23)	1.550(2)
C(6)-C(17)	1.561(2)
C(7)-C(8)	1.509(3)
C(7)-H(16)	1.0000
C(8)-C(22)	1.390(3)
C(8)-C(9)	1.403(3)
C(9)-C(10)	1.391(3)
C(10)-C(11)	1.384(3)
C(10)-H(15)	0.9500
C(11)-C(21)	1.382(3)
C(11)-H(2)	0.9500
C(12)-C(13)	1.381(3)
C(12)-H(3)	0.9500
C(13)-C(14)	1.392(3)
C(13)-H(25)	0.9500
C(15)-C(27)	1.395(3)
C(15)-C(16)	1.407(3)
C(16)-C(24)	1.393(3)
C(16)-C(17)	1.531(2)
C(17)-C(18)	1.569(2)
C(17)-H(20)	1.0000
C(18)-C(20)	1.528(3)
C(18)-C(19)	1.533(3)
C(19)-H(6)	0.9800
C(19)-H(5)	0.9800
C(19)-H(7)	0.9800
C(20)-H(9)	0.9800
C(20)-H(8)	0.9800
C(20)-H(10)	0.9800
C(21)-C(22)	1.390(3)
C(21)-H(14)	0.9500
C(22)-H(13)	0.9500
C(23)-H(18)	0.9800
C(23)-H(19)	0.9800
C(23)-H(17)	0.9800
C(24)-C(25)	1.385(3)
C(24)-H(24)	0.9500
C(25)-C(26)	1.382(3)

C(25)-H(23) 0.95	500
C(26)-C(27) 1.38	83(3)
C(26)-H(21) 0.95	500
C(27)-H(22) 0.95	500
C(5)-N(1)-C(14)	108.90(15)
C(5)-N(1)-H(12)	125.6
C(14)-N(1)-H(12)	125.6
C(9)-N(2)-C(18)	120.71(14)
C(9)-N(2)-H(11)	119.6
C(18)-N(2)-H(11)	119.6
C(2)-C(1)-C(12)	121.12(18)
C(2)-C(1)-H(1)	119.4
C(12)-C(1)-H(1)	119.4
C(1)-C(2)-C(3)	119.39(18)
C(1)-C(2)-H(4)	120.3
C(3)-C(2)-H(4)	120.3
C(2)-C(3)-C(14)	118.31(17)
C(2)-C(3)-C(4)	135.57(17)
C(14)-C(3)-C(4)	106.05(16)
C(5)-C(4)-C(3)	107.47(16)
C(5)-C(4)-C(15)	119.76(17)
C(3)-C(4)-C(15)	132.73(17)
C(4)-C(5)-N(1)	109.71(16)
C(4)-C(5)-C(6)	124.03(16)
N(1)-C(5)-C(6)	126.19(15)
C(5)-C(6)-C(7)	111.32(14)
C(5)-C(6)-C(23)	108.97(14)
C(7)-C(6)-C(23)	109.44(14)
C(5)-C(6)-C(17)	107.29(14)
C(7)-C(6)-C(17)	111.40(14)
C(23)-C(6)-C(17)	108.32(14)
O(1)-C(7)-C(8)	113.22(14)
O(1)-C(7)-C(6)	107.11(14)
C(8)-C(7)-C(6)	111.64(14)
O(1)-C(7)-H(16)	108.2
C(8)-C(7)-H(16)	108.2
C(6)-C(7)-H(16)	108.2

```
C(22)-C(8)-C(9)
                  119.04(17)
C(22)-C(8)-C(7)
                  123.69(17)
C(9)-C(8)-C(7)
                  117.26(16)
C(10)-C(9)-C(8)
                  120.15(17)
C(10)-C(9)-N(2)
                  121.73(17)
C(8)-C(9)-N(2)
                  117.90(16)
C(11)-C(10)-C(9) 119.98(18)
C(11)-C(10)-H(15) 120.0
C(9)-C(10)-H(15) 120.0
C(21)-C(11)-C(10) 120.26(18)
C(21)-C(11)-H(2) 119.9
C(10)-C(11)-H(2) 119.9
C(13)-C(12)-C(1) 121.10(18)
C(13)-C(12)-H(3) 119.5
C(1)-C(12)-H(3) 119.5
C(12)-C(13)-C(14) 117.83(18)
C(12)-C(13)-H(25) 121.1
C(14)-C(13)-H(25) 121.1
N(1)-C(14)-C(13) 129.94(17)
N(1)-C(14)-C(3) 107.86(16)
C(13)-C(14)-C(3) 122.20(18)
C(27)-C(15)-C(16) 119.25(17)
C(27)-C(15)-C(4) 123.46(17)
C(16)-C(15)-C(4) 117.23(16)
C(24)-C(16)-C(15) 118.78(16)
C(24)-C(16)-C(17) 120.90(16)
C(15)-C(16)-C(17) 120.31(15)
C(16)-C(17)-C(6) 109.95(14)
C(16)-C(17)-C(18) 111.11(14)
C(6)-C(17)-C(18) 117.08(14)
C(16)-C(17)-H(20) 106.0
C(6)-C(17)-H(20) 106.0
C(18)-C(17)-H(20) 106.0
N(2)-C(18)-C(20) 106.37(14)
N(2)-C(18)-C(19) 106.55(15)
C(20)-C(18)-C(19) 108.66(16)
N(2)-C(18)-C(17) 110.76(14)
C(20)-C(18)-C(17) 115.23(15)
```

```
C(19)-C(18)-C(17) 108.89(15)
C(18)-C(19)-H(6) 109.5
C(18)-C(19)-H(5) 109.5
H(6)-C(19)-H(5) 109.5
C(18)-C(19)-H(7) 109.5
H(6)-C(19)-H(7)
                109.5
H(5)-C(19)-H(7) 109.5
C(18)-C(20)-H(9) 109.5
C(18)-C(20)-H(8) 109.5
H(9)-C(20)-H(8) 109.5
C(18)-C(20)-H(10) 109.5
H(9)-C(20)-H(10) 109.5
H(8)-C(20)-H(10) 109.5
C(11)-C(21)-C(22) 120.08(18)
C(11)-C(21)-H(14) 120.0
C(22)-C(21)-H(14) 120.0
C(21)-C(22)-C(8) 120.47(18)
C(21)-C(22)-H(13) 119.8
C(8)-C(22)-H(13) 119.8
C(6)-C(23)-H(18) 109.5
C(6)-C(23)-H(19) 109.5
H(18)-C(23)-H(19) 109.5
C(6)-C(23)-H(17) 109.5
H(18)-C(23)-H(17) 109.5
H(19)-C(23)-H(17) 109.5
C(25)-C(24)-C(16) 121.15(18)
C(25)-C(24)-H(24) 119.4
C(16)-C(24)-H(24) 119.4
C(26)-C(25)-C(24) 119.97(18)
C(26)-C(25)-H(23) 120.0
C(24)-C(25)-H(23) 120.0
C(25)-C(26)-C(27) 119.71(18)
C(25)-C(26)-H(21) 120.1
C(27)-C(26)-H(21) 120.1
C(26)-C(27)-C(15) 121.04(19)
C(26)-C(27)-H(22) 119.5
C(15)-C(27)-H(22) 119.5
```

Symmetry transformations used to generate equivalent atoms: Table 4. Anisotropic displacement parameters (Å 2x 103) for mo_180316lt_0m_sq. The anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]

	U11	U22		U33	U23	U13	U12				
O(1)	19(1))	20(1)	16(1)	5(1)	1(1)		6(1)	
N(1)	17(1))	20(1)	12(1)	2(1)	1(1)		0(1)	
N(2)	21(1))	15(1)	13(1)	-1(1))6(1)		1(1)	
C(1)	14(1))	20(1)	30(1)	-4(1))4(1)		-1(1))
C(2)	15(1))	19(1)	22(1)	-2(1))4(1)		2(1)	
C(3)	14(1))	18(1)	17(1)	-3(1))4(1)		5(1)	
C(4)	16(1))	16(1)	15(1)	-1(1))3(1)		2(1)	
C(5)	16(1))	16(1)	12(1)	-1(1))3(1)		3(1)	
C(6)	15(1))	15(1)	12(1)	1(1)	3(1)		1(1)	
C(7)	18(1))	14(1)	12(1)	2(1)	1(1)		2(1)	
C(8)	20(1))	17(1)	9(1)		1(1)	4(1)		-1(1))
C(9)	21(1))	16(1)	10(1)	1(1)	5(1)		-1(1))
C(10))	16(1)	25(1)	16(1))	-1(1)3(1)		0(1)
C(11)	21(1)	28(1)	20(1))	-4(1)7(1)		-8(1)
C(12	2)	16(1)	28(1)	22(1))	-9(1)-1(1))	2(1)
C(13	3)	16(1)	27(1)	16(1))	-2(1)1(1)		4(1)
C(14	1)	14(1)	18(1)	18(1))	-3(1)3(1)		4(1)
C(15	5)	20(1)	14(1)	15(1))	-1(1)3(1)		0(1)
C(16	5)	19(1)	12(1)	13(1))	1(1)	3(1)		1(1)
C(17	7)	15(1)	15(1)	13(1))	1(1)	2(1)		0(1)
C(18	3)	18(1)	15(1)	16(1))	3(1)	5(1)		2(1)
C(19))	23(1)	28(1)	21(1))	9(1)	6(1)		9(1)
C(20))	22(1)	15(1)	27(1))	-2(1)8(1)		1(1)
C(21	l)	28(1)	18(1)	18(1))	-2(1)9(1)		-8(1)
C(22	2)	26(1)	16(1)	15(1))	1(1)	6(1)		1(1)
C(23	3)	20(1)	18(1)	14(1))	0(1)	3(1)		2(1)
C(24	1)	21(1)	16(1)	16(1))	1(1)	2(1)		-1(1)
C(25	5)	31(1)	25(1)	13(1))	3(1)	1(1)		-2(1)
C(26	5)	33(1)	28(1)	15(1))	4(1)	8(1)		-7(1)
C(27	7)	24(1)	25(1)	18(1))	0(1)	5(1)		-7(1)

67

Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å 2x 10 3)

for mo_180316lt_0m_sq.

х	У	Z	U(eq	I)			
H(12)	1629	9	9627	7	5316		20
H(11)	6864	4	8868	3	6200		19
H(1)-185	54	7079)	6347	2	26	
H(4)-281	7529	9	7702	2	22		
H(16)	434′	7	9680)	5695		17
H(15)	8893	3	9857	7	7234		22
H(2)9364	4	1117	'8	7241	. 2	27	
H(3)-203	37	7692	2	4719) 2	27	
H(25)	-583	8747	7	4388	3 2	23	
H(20)	5172	2	9772	2	8245		17
H(6)706	7	8019)	7963	3	85	
H(5)580	9	8102	2	8737	3	85	
H(7)696	6	8775	5	8672	2 3	85	
H(9)409	5	8384	ļ	6168	3 3	32	
H(8)403	8	7863	3	7197	' 3	32	
H(10)	5354	4	7786	5	6474		32
H(14)	756	6	1205	50	6714		26
H(13)	5254	4	1161	0	6251		23
H(18)	2238	8	1085	56	7271		26
H(19)	3750	0	1090)7	7930		26
H(17)	2490	0	1039	97	8354		26
H(24)	5154	4	9253	3	9968		21
H(23)	3943	3	8667	7	11279)	28
H(21)	173′	7	8077	7	10871	-	30
H(22)	682	8148	3	9171	. 2	27	

(VI) Coordinates for the Optimized Structures

D

С	-5.8191660799	-0.4598301982	2.7689033864
С	-4.8323713054	-1.4197035353	2.8858462900
С	-3.5902811593	-1.2626870663	2.2073165035
С	-3.3592064087	-0.1279799777	1.3639416837
С	-4.3695265754	0.8396947191	1.3040828140
С	-5.5756963301	0.6775376977	1.9836766109
Н	-6.7641933602	-0.5767835757	3.2884647068
Н	-4.9778461560	-2.2959665203	3.5088698697
С	-2.5734363647	-2.1730277928	2.5008796443
С	-2.1103236459	0.0838862243	0.6019033750
Н	-4.2118640763	1.7213366673	0.6903979809
Н	-6.3422334148	1.4421787640	1.8943737834
С	-1.7067949331	-3.0384679529	2.7836213345
Н	-1.5757612007	0.9987840147	0.8574539032
Н	-0.9654578297	-3.1431423705	3.5651952058
С	-1.6464781061	-0.6517866396	-0.4273022630
С	-0.3773630920	-0.2532648325	-1.1370524927
Н	-0.5716739908	-0.0480320955	-2.1973269833
Н	0.0841051146	0.6329444748	-0.6946971014
Н	0.3537719737	-1.0714859174	-1.1080253690
С	-2.3563793426	-1.8459058284	-1.0081872480
Н	-3.2769671295	-2.1012475317	-0.4792028939
Н	-2.6142387104	-1.6497428860	-2.0569459700
Н	-1.7045335729	-2.7285084371	-1.0174303914
Au	-1.7558414901	-4.5724483201	1.3179292193
Р	-1.6946917012	-6.2371555460	-0.3257342125
0	-0.2989619380	-6.9982883620	-0.5797396321
0	-2.7118786609	-7.4793643328	-0.0924181465
0	-2.0155939064	-5.6005854604	-1.7648438570
С	0.4826190236	-7.4329086761	0.5155023958
С	1.4241292194	-6.5561089500	1.0464759717
С	0.3252944907	-8.7313061872	0.9866596357
С	2.2280006371	-6.9975577604	2.0984438099
Н	1.5347603602	-5.5611901081	0.6263111185

С	1.1395140590	-9.1578051113	2.0373526012
Н	-0.4077852032	-9.3871381845	0.5293888912
С	2.0851891677	-8.2941868147	2.5946551084
Н	2.9727980010	-6.3297214736	2.5207582612
Н	1.0363902199	-10.1698805257	2.4165206572
Н	2.7166549821	-8.6349213986	3.4093356151
С	-3.9626350499	-7.3057314356	0.5290998166
С	-4.8330231222	-6.2885335395	0.1377576131
С	-4.3011689646	-8.2225619653	1.5198184395
С	-6.0760911958	-6.1925304701	0.7695607510
Н	-4.5579451243	-5.5973666889	-0.6525845036
С	-5.5477310621	-8.1156219527	2.1348549069
Н	-3.5971394005	-9.0021906450	1.7906329401
С	-6.4348570551	-7.1018349567	1.7638961041
Н	-6.7663730324	-5.4097207034	0.4695140362
Н	-5.8251953271	-8.8274457381	2.9062299304
Н	-7.4052397933	-7.0269697617	2.2448356188
С	-1.9923722397	-6.3436755757	-2.9799089045
С	-0.8426687883	-6.2923804790	-3.7586946881
С	-3.1303294446	-7.0392013765	-3.3711321514
С	-0.8362431139	-6.9727827020	-4.9767200691
Н	0.0213735278	-5.7337580034	-3.4157385237
С	-3.1054726958	-7.7161222908	-4.5916971722
Н	-4.0126418076	-7.0506274248	-2.7407754290
С	-1.9629573388	-7.6847639046	-5.3922513610
Н	0.0527064954	-6.9454428002	-5.5993415970
Н	-3.9838408936	-8.2667672076	-4.9141434216
Н	-1.9510524841	-8.2134059975	-6.3403337307

TS-D-E

С	0.3685388601	-1.6125536070	-0.8391399970
С	-0.4911158084	-2.1613255189	0.1097041742
С	-1.3845686718	-1.3301217254	0.7926395574
С	-1.4313338589	0.0665092776	0.5320270142
С	-0.5573286564	0.5901708764	-0.4231046548
С	0.3359563439	-0.2425448958	-1.1020137150

Н	1.0631460536	-2.2532388141	-1.3732021704
Н	-0.4680437791	-3.2256384632	0.3214302106
С	-2.3160623011	-1.7674968195	1.8159540740
С	-2.4408715108	0.8959100490	1.2380391920
Н	-0.5811469114	1.6529678826	-0.6427959892
Н	1.0059351881	0.1827961628	-1.8431567743
С	-3.1250750157	-1.1384908415	2.5544300089
Н	-3.4146039635	0.9733527057	0.7512426187
Н	-3.8745283583	-0.8457779120	3.2601215223
С	-2.2374562865	1.6037969615	2.3791131326
С	-3.3374012542	2.4492863985	2.9646121324
Н	-3.0418135262	3.5059661648	2.9636047057
Н	-4.2732540885	2.3591185072	2.4070516877
Н	-3.5236796771	2.1859307855	4.0133702371
С	-0.9190083634	1.6359271482	3.1027060816
Н	-0.1814039449	0.9634709894	2.6619551054
Н	-0.5095514894	2.6537423628	3.0848229520
Н	-1.0494503605	1.3756404205	4.1596616236
Au	-2.7209900491	-3.7312465939	2.5816400515
Р	-3.0192210549	-5.9178711266	3.3890059805
0	-1.6477452450	-6.7843997585	3.4321737579
0	-3.5536108008	-6.0910387784	4.8981098107
0	-4.1016896255	-6.7334594094	2.5364471029
С	-0.6385471014	-6.6451952662	2.4626005931
С	-0.9319317778	-6.6863054224	1.0992185013
С	0.6666389814	-6.5210268137	2.9319011874
С	0.1236430212	-6.5984043141	0.1862466330
Н	-1.9541452501	-6.8082610482	0.7545469605
С	1.7070322708	-6.4410155693	2.0077497931
Н	0.8514412489	-6.4983245591	4.0006654750
С	1.4387541136	-6.4782554704	0.6363838066
Н	-0.0890780808	-6.6405158776	-0.8779260820
Н	2.7298644386	-6.3514712793	2.3614959923
Н	2.2546552335	-6.4231295983	-0.0775946905
С	-2.9866607363	-5.3482608088	5.9580425503
С	-3.6023473069	-4.1568122503	6.3299711883
С	-1.8806250045	-5.8556097149	6.6310677422
С	-3.0787745882	-3.4441174828	7.4101556579
Н	-4.4856540606	-3.8172514691	5.7979313689
---	---------------	----------------	--------------
С	-1.3695531855	-5.1300984415	7.7087233032
Η	-1.4466497377	-6.8005101983	6.3232111102
С	-1.9629915499	-3.9271065129	8.0960481945
Η	-3.5518640367	-2.5177739174	7.7217070084
Η	-0.5096282558	-5.5120349527	8.2504772201
Η	-1.5624226706	-3.3718498025	8.9386541536
С	-4.5282966759	-8.0517417084	2.8761466784
С	-3.7757619206	-9.1398218279	2.4512805942
С	-5.7181520803	-8.1923641681	3.5791477100
С	-4.2372502442	-10.4216399848	2.7552452470
Η	-2.8565151504	-8.9916050534	1.8955753461
С	-6.1654393329	-9.4809231164	3.8722391056
Η	-6.2757940090	-7.3141551086	3.8853048715
С	-5.4268112717	-10.5931277306	3.4642234167
Η	-3.6634268328	-11.2850968232	2.4334393556
Η	-7.0928125465	-9.6126182750	4.4211518524
Н	-5.7796146318	-11.5929544964	3.6970488164

E

С	1.1534854093	0.3395315054	2.5095069896
С	0.3232734750	-0.7684855969	2.4276280550
С	-0.8888369158	-0.6519391553	1.7130060460
С	-1.2508716115	0.5845993410	1.0962559360
С	-0.4292126157	1.6962937103	1.2125970421
С	0.7793311827	1.5544565144	1.9064856476
Н	2.0995255249	0.2756259032	3.0373635561
Н	0.5956704894	-1.7132991072	2.8890152954
С	-1.9154820530	-1.6234886022	1.5160760454
С	-2.5813214516	0.4329316088	0.4484889790
Н	-0.6956431406	2.6469594726	0.7615208692
Н	1.4512467785	2.4054970096	1.9778865093
С	-2.9748037285	-1.0041291791	0.7467442025
Н	-2.7704301826	0.8674886633	-0.5293611638
Н	-3.6181681495	-1.5999078977	0.1101186371
С	-3.7574478260	0.2622432327	1.3822053044
С	-5.1302756818	0.4576096274	0.7712188284

Н	-5.4409549042	1.5008531861	0.8994498422
Н	-5.1458662297	0.2280633622	-0.2977701050
Н	-5.8730649639	-0.1709956644	1.2731146333
С	-3.7009828325	0.5721418853	2.8620474162
Н	-2.7232382152	0.3964711267	3.3101279734
Н	-3.9546885861	1.6277319991	3.0116868870
Н	-4.4434536998	-0.0240726102	3.4011559073
Au	-1.9698627471	-3.5576713786	2.1306754466
Р	-2.2247170037	-5.8402128859	2.7857490864
0	-1.0791541563	-6.8829840868	2.2919670686
0	-2.3188596481	-6.2078083419	4.3574854022
0	-3.6368286677	-6.3658040636	2.2307092259
С	-0.3329826948	-6.6849745640	1.1178602072
С	-0.9479985377	-6.3388230771	-0.0846644765
С	1.0396382061	-6.8971759949	1.2062307634
С	-0.1527629734	-6.1889280643	-1.2245954148
Н	-2.0245801868	-6.2077233654	-0.1387718420
С	1.8160189236	-6.7528777170	0.0578718112
Н	1.4776235537	-7.1733317382	2.1594281393
С	1.2240373165	-6.3954607293	-1.1564409141
Н	-0.6197056387	-5.9221096124	-2.1680824574
Н	2.8872921599	-6.9212639234	0.1130356794
Н	1.8347684246	-6.2867753122	-2.0472933716
С	-1.2895927423	-5.8220291760	5.2428655384
С	-1.3722211636	-4.5802286537	5.8667701548
С	-0.2587117562	-6.7172055909	5.5088922282
С	-0.3796199425	-4.2242768454	6.7818278274
Н	-2.2080589280	-3.9218152891	5.6515961388
С	0.7246581479	-6.3469652434	6.4270225547
Н	-0.2425785520	-7.6820971829	5.0140209168
С	0.6678616402	-5.1035166005	7.0603658790
Н	-0.4336600445	-3.2630301451	7.2843492174
Н	1.5332706786	-7.0361493351	6.6510054619
Н	1.4342107596	-4.8246644665	7.7771541259
С	-4.1413874277	-7.6777483956	2.4401263486
С	-3.8149992862	-8.6761975536	1.5295592385
С	-4.9984265103	-7.8953422035	3.5123821295
С	-4.3694590749	-9.9443020621	1.7087314470

Η	-3.1483008538	-8.4656901485	0.7002242040
С	-5.5447093093	-9.1682518328	3.6761963601
Н	-5.2284441532	-7.0855087375	4.1959960598
С	-5.2313745202	-10.1911759114	2.7785774263
Н	-4.1266007863	-10.7368483933	1.0074175116
Н	-6.2165455029	-9.3576816378	4.5076764688
Н	-5.6607285226	-11.1793616063	2.9114850196
F			
С	-6.1583196247	-0.6128786696	0.9873851286
С	-5.1456155521	-1.3855587123	1.5444091506
С	-3.8190739717	-0.9267641442	1.4816051466
С	-3.5285600645	0.3029752704	0.8114809664
С	-4.5628280021	1.0851842382	0.2865730111
С	-5.8718874222	0.6165835475	0.3670781206
Н	-7.1885633425	-0.9578825213	1.0324192512
Н	-5.3720129205	-2.3317185064	2.0297618232
С	-2.5579422011	-1.5518699008	1.8757957647
С	-2.0924252716	0.5855407864	0.9630671604
Н	-4.3475016330	2.0342866697	-0.1989144062
Н	-6.6819046269	1.1990995083	-0.0647663425
С	-1.5720786558	-0.6085551817	1.6754745351
Н	-1.7800302398	1.6048821265	1.1738784061
С	-0.7949143731	-0.2945861556	0.4812318396
С	0.4748249114	0.5369525713	0.5703437086
Н	0.6131569109	1.1470432172	-0.3294878200
Н	0.4666721060	1.1927448030	1.4454269465
Н	1.3440016784	-0.1265891708	0.6596562531
С	-0.8549333559	-1.2036720901	-0.7309996161
Н	-1.8446511712	-1.6541155496	-0.8335468685
Н	-0.6155103830	-0.6481158478	-1.6456502501
Н	-0.1249057070	-2.0167565574	-0.6367328699
Au	-2.2480488424	-3.5268978453	2.2250975066
Р	-1.8163723334	-5.8523043719	2.4618482309
0	-0.8136466672	-6.3470686259	3.6666939257
0	-3.0335049328	-6.9149805808	2.6941800793
0	-1.1648231244	-6.4683338158	1.1100072297

С	0.2117872911	-5.5416768491	4.1631311634
С	1.0398747474	-4.8087687193	3.3114556353
С	0.4101699673	-5.5386938622	5.5412537420
С	2.0739859240	-4.0486037902	3.8610120916
Η	0.8825543670	-4.8279774016	2.2376018624
С	1.4523918402	-4.7823077619	6.0732493835
Н	-0.2521002927	-6.1207584822	6.1732360923
С	2.2856860906	-4.0336652307	5.2384098604
Η	2.7138508291	-3.4687929893	3.2021055766
Н	1.6110404089	-4.7719375331	7.1476318333
Н	3.0931616859	-3.4416009770	5.6582476726
С	-3.9401892238	-6.7279966156	3.7492600597
С	-5.0216097086	-5.8670046406	3.5773737762
С	-3.7589688379	-7.4528934749	4.9238079868
С	-5.9405333315	-5.7260427148	4.6184014235
Η	-5.1323972577	-5.3208312544	2.6460533034
С	-4.6876468796	-7.3042747663	5.9541466460
Η	-2.9035202133	-8.1132246318	5.0155593705
С	-5.7757456306	-6.4414640919	5.8052994644
Η	-6.7854582034	-5.0543032097	4.4983003114
Η	-4.5589567995	-7.8642727932	6.8759203427
Η	-6.4941417606	-6.3275656524	6.6117686092
С	-0.7690139477	-7.8096682425	0.9586762085
С	0.5359870198	-8.1688301857	1.2832687793
С	-1.6718130627	-8.7264297832	0.4289217854
С	0.9427080982	-9.4868264903	1.0727116106
Η	1.2149033717	-7.4288880601	1.6936260382
С	-1.2507550942	-10.0399449924	0.2238887738
Η	-2.6807556650	-8.4087734054	0.1907299990
С	0.0530036873	-10.4234879233	0.5444469807
Н	1.9587032884	-9.7782244989	1.3228797527
Н	-1.9458027229	-10.7656040444	-0.1884845691
Н	0.3755567256	-11.4476475613	0.3823134288

TS-F-In2

С	-3.3350589110	0.5476275962	4.3692262431
С	-2.8451585167	-0.5870496278	3.7459738221

С	-2.6338358051	-0.5745723838	2.3493044757
С	-2.9676150930	0.6117011111	1.6072402793
С	-3.4382094737	1.7646402012	2.2662501151
С	-3.6247019904	1.7237165880	3.6374105711
Н	-3.5013338061	0.5414221051	5.4439545644
Н	-2.6213404730	-1.4825737062	4.3206713386
С	-2.1882299343	-1.6001217434	1.4364599718
С	-2.5832363154	0.4020899768	0.2401505712
Н	-3.6633430952	2.6675112098	1.7033593202
Н	-4.0074832699	2.5968664321	4.1595317122
С	-2.0963022451	-0.9817763144	0.1872755845
Н	-2.3946780341	1.1919815307	-0.4729979006
С	-2.9399179018	-1.0795955950	-0.9506727767
С	-2.5299835588	-0.5679712540	-2.3114291882
Н	-3.3542343582	-0.0635814157	-2.8282001848
Н	-1.6661401191	0.0983838173	-2.2582964812
Η	-2.2401995563	-1.4292894386	-2.9297573039
С	-4.1666236192	-1.9547255783	-0.9287719929
Н	-4.5935903090	-1.9917081908	0.0763979118
Н	-4.9206760421	-1.6122245234	-1.6465535859
Н	-3.8912504566	-2.9825952764	-1.2042314221
Au	-1.8892886217	-3.5603166694	1.8374593843
Р	-1.4532598625	-5.8452835796	2.2847098034
0	-1.2410575261	-6.3160129055	3.8428416736
0	-2.5319509793	-6.9909359691	1.8268280790
0	-0.1365358100	-6.3870120205	1.5047172369
С	-0.8758031786	-5.4508136105	4.8749940396
С	0.1768931225	-4.5462767774	4.7376794903
С	-1.5790970440	-5.5707827115	6.0713289797
С	0.5141669449	-3.7350931286	5.8230192455
Η	0.7193313995	-4.4697573680	3.8008208845
С	-1.2232086606	-4.7621186020	7.1494650924
Н	-2.3921878580	-6.2861554818	6.1383599553
С	-0.1801197154	-3.8408489534	7.0279098990
Н	1.3244527805	-3.0193135874	5.7201286423
Н	-1.7681156244	-4.8485222025	8.0852356597
Н	0.0887758506	-3.2079407836	7.8684032287
С	-3.8183496874	-7.0126945772	2.3841279132

С	-4.8004935699	-6.1540852444	1.8963450048
С	-4.0886018494	-7.9396253946	3.3883474345
С	-6.0853254975	-6.2271378670	2.4375071590
Н	-4.5538176395	-5.4424828056	1.1152690433
С	-5.3784215241	-8.0049111321	3.9153553294
Н	-3.2944319524	-8.5905935010	3.7378528773
С	-6.3764499443	-7.1494785338	3.4435665125
Н	-6.8585632866	-5.5593392368	2.0692574806
Н	-5.6021194138	-8.7253312792	4.6972262574
Н	-7.3784207846	-7.2020310550	3.8595317992
С	0.4280370538	-7.6591143935	1.7053597528
С	1.4910866921	-7.7798259599	2.5960132220
С	-0.0407075828	-8.7451650450	0.9720497965
С	2.0970775035	-9.0255374592	2.7576804317
Н	1.8321435609	-6.9101797041	3.1476917903
С	0.5747699711	-9.9856071494	1.1447656285
Н	-0.8706028908	-8.6121395631	0.2874767158
С	1.6405969558	-10.1291047387	2.0348324219
Н	2.9267477213	-9.1310332028	3.4508517651
Н	0.2181775005	-10.8417428200	0.5792855021
Н	2.1153746497	-11.0974599586	2.1637134018

In2

С	-1.6334046866	0.0354949169	5.2018727028
С	-1.7285620239	-0.9876546754	4.3050935897
С	-2.1510397448	-0.7192575753	2.9588168431
С	-2.4752743565	0.6729232000	2.5902797427
С	-2.3582394843	1.7151844815	3.5714054917
С	-1.9502401122	1.3968941188	4.8320787482
Н	-1.3129315560	-0.1631008675	6.2216065822
Н	-1.4852170321	-2.0069997617	4.5955849447
С	-2.3241212215	-1.5563882262	1.8662120635
С	-2.8519954151	0.6941069707	1.2739126755
Н	-2.5939729255	2.7420811385	3.3020362605
Н	-1.8560893160	2.1742978054	5.5864911037
С	-2.7758767545	-0.6758704223	0.7550662429
Н	-3.1433631302	1.5717214826	0.7141255626

С	-3.0748181662	-1.0146603402	-0.5375766069
С	-3.5307749424	-0.0008632021	-1.5563776693
Н	-4.4969292256	-0.3034205853	-1.9821980387
Н	-3.6354064381	1.0073046229	-1.1595467012
Н	-2.8243615714	0.0324379937	-2.3969394599
С	-2.9870155159	-2.4036205668	-1.1046825063
Н	-2.6204487966	-3.1362839318	-0.3858538307
Н	-3.9732399020	-2.7275626771	-1.4659413425
Н	-2.3217054804	-2.4131749154	-1.9788055926
Au	-1.9725019351	-3.5501684740	1.9804869447
Р	-1.5351566139	-5.8683285093	2.1399476882
0	-1.3878737753	-6.5560470860	3.6246470922
0	-2.6058302830	-6.9240539285	1.4964280918
0	-0.1960942396	-6.3073901949	1.3321562120
С	-0.8811038265	-5.8995202872	4.7449383399
С	0.2554178643	-5.0927944749	4.6772687752
С	-1.5321263070	-6.1361922630	5.9543944110
С	0.7354874563	-4.5058916334	5.8503392217
Н	0.7553274315	-4.9220839006	3.7291112698
С	-1.0347930924	-5.5511146383	7.1171943092
Н	-2.4132906884	-6.7690968488	5.9656244648
С	0.0973571237	-4.7340239906	7.0691406303
Н	1.6150271007	-3.8703933048	5.8044102825
Н	-1.5377101685	-5.7311251636	8.0629937545
Н	0.4789559086	-4.2772609701	7.9773644136
С	-3.9303183527	-6.9564184522	1.9573814864
С	-4.8523382940	-6.0304422452	1.4760815239
С	-4.2958443561	-7.9558667557	2.8556959364
С	-6.1742861922	-6.1074249525	1.9174509546
Н	-4.5328752335	-5.2648846110	0.7767642392
С	-5.6218985354	-8.0243503962	3.2827329352
Н	-3.5461365595	-8.6585858684	3.2028475552
С	-6.5607105355	-7.1010139055	2.8179223673
Н	-6.9009328726	-5.3863002248	1.5550820105
Н	-5.9198898456	-8.8001744850	3.9822970056
Н	-7.5909266022	-7.1558113266	3.1573545037
С	0.2987602754	-7.6229706124	1.2765297455
С	1.2268050813	-8.0363785433	2.2282835825

С	-0.1007889295	-8.4537829977	0.2337319339
С	1.7632375448	-9.3207198346	2.1314826969
Н	1.5203663358	-7.3623474982	3.0258993385
С	0.4447130261	-9.7348726072	0.1492516641
Н	-0.8251799951	-8.0954459576	-0.4891017991
С	1.3743467366	-10.1707923317	1.0952524991
Н	2.4874200393	-9.6542061827	2.8692026445
Н	0.1404838596	-10.3926810619	-0.6597621148
Н	1.7956708292	-11.1692810038	1.0240210455

TS-In2-G

C	2 8365285672	-1 1/15990///33	1 5823837882
C C	1 6303825720	1 7705610121	1.7832180000
C C	0.4202010720	1 0192020624	1.7632189000
C	0.4293919780	-1.0182939034	1.7070039839
C	0.5086316443	0.3976833973	1.5218925840
С	1.7532618887	1.0223898656	1.3086574876
С	2.9020585368	0.2555617174	1.3489180595
Н	3.7589968945	-1.7205863062	1.5995811019
Н	1.5862893689	-2.8520483627	1.9555300068
С	-0.9192796585	-1.4085072822	1.9698516488
С	-0.8234209520	0.9117912037	1.4401985861
Н	1.8091257803	2.0932991856	1.1248424561
Н	3.8719581228	0.7236046081	1.2017647714
С	-1.7119170637	-0.2013609676	1.9028209242
Η	-1.0352496012	1.9526326840	1.6567430682
С	-3.0572871629	-0.0461826028	2.1655198481
С	-3.9652350598	-1.2013891889	2.5042260866
Н	-5.0139745797	-0.8918010320	2.4681565532
Н	-3.8269482067	-2.0309207658	1.8066980363
Н	-3.7637740023	-1.5838522022	3.5132960404
С	-3.7119127626	1.2987770550	2.2946587865
Н	-3.0612568924	2.1382371228	2.0546563119
Н	-4.6025738139	1.3662395071	1.6591983846
Н	-4.0609680023	1.4199321927	3.3306491696
Au	-1.4566210838	-3.3263157546	2.3504872740
Р	-2.1628840188	-5.5217876714	2.8601736320
0	-3.0877325504	-6.3321934349	1.7884884706

0	-1.0504113587	-6.6917972655	3.1651678566
0	-3.1466644289	-5.5220016771	4.1508654909
С	-2.6418219310	-6.4705653554	0.4619024591
С	-2.7944065802	-5.4138005010	-0.4320689992
С	-2.0949653931	-7.6901745399	0.0734113816
С	-2.3749414639	-5.5876098916	-1.7518077196
Н	-3.2246128972	-4.4749522803	-0.0989851554
С	-1.6883105508	-7.8516614932	-1.2511542524
Н	-1.9985797140	-8.4872597350	0.8029489802
С	-1.8244338969	-6.8024640544	-2.1625808291
Н	-2.4808696222	-4.7671051253	-2.4549965737
Н	-1.2615679521	-8.7988478230	-1.5687827419
Н	-1.5014941582	-6.9316979386	-3.1914555793
С	0.2046305219	-6.4421633287	3.7187278067
С	0.3981453190	-5.4964747284	4.7254955206
С	1.2575231173	-7.2259153945	3.2496668851
С	1.6799600061	-5.3232142911	5.2501059061
Н	-0.4321808182	-4.9022857369	5.0935705999
С	2.5283259917	-7.0507396639	3.7934520567
Н	1.0671788840	-7.9536859748	2.4677492056
С	2.7447509977	-6.0972611439	4.7915852428
Н	1.8384215892	-4.5809228859	6.0270328764
Н	3.3525863834	-7.6585050276	3.4313763060
Н	3.7375641509	-5.9601186977	5.2095090879
С	-3.7156179775	-6.6770067208	4.7185833135
С	-4.9609155374	-7.1103520287	4.2733393329
С	-3.0464019686	-7.3125574679	5.7605875692
С	-5.5460619312	-8.2157260666	4.8913739680
Н	-5.4515898370	-6.5879632761	3.4597173201
С	-3.6438014062	-8.4171129245	6.3684109329
Н	-2.0791658642	-6.9438285363	6.0855346571
С	-4.8912113567	-8.8701076982	5.9363150528
Н	-6.5176513731	-8.5642836257	4.5533437186
Н	-3.1309953307	-8.9217315214	7.1821891944
Н	-5.3526786417	-9.7295496485	6.4137722879
С	-1.1965946293	0.9053194579	-0.5605918094
Н	-0.1704894406	0.9059524310	-0.9090510969
С	-2.1551662698	1.9490781990	-0.8049384041

С	-3.3943840489	1.2499160345	-0.8963089169
С	-2.1010299103	3.3444450839	-0.8552272235
С	-4.6049326679	1.9809416576	-1.0296936798
С	-3.2898231322	4.0476840059	-1.0147808216
Н	-1.1516388038	3.8693589070	-0.7812055062
С	-4.5249741293	3.3601181429	-1.0954052514
Н	-5.5562827171	1.4624746271	-1.0949840852
Н	-3.2756491833	5.1315914048	-1.0805161316
Н	-5.4380434323	3.9385637752	-1.2140187703
Ν	-3.2445103750	-0.0854245557	-0.8300225247
0	-1.8381046202	-0.2801319687	-0.8037861867

G

С	2.6227274180	-0.9286234732	2.7794369607
С	1.4061622174	-1.6115960474	2.6799347270
С	0.3265831528	-0.9907803830	2.0463905161
С	0.4805879808	0.3121385107	1.5304409077
С	1.6835999538	0.9952128524	1.6389188526
С	2.7664647758	0.3613300943	2.2625975096
Н	3.4696974649	-1.4098399620	3.2627141641
Н	1.3053510057	-2.6161769247	3.0825348863
С	-1.0399812216	-1.4834659860	1.7612809917
С	-0.8449240435	0.7573339596	0.9675895400
Н	1.7928704484	2.0045436585	1.2468430393
Н	3.7206063486	0.8752005723	2.3451233057
С	-1.7145747446	-0.4979839260	1.1096259268
Н	-1.2376690944	1.5558485445	1.6145450484
С	-3.0737054657	-0.5076937345	0.4157577071
С	-3.4911287981	-1.9013724483	-0.0765615417
Н	-4.4271029410	-1.8198459432	-0.6381801553
Н	-2.7221171286	-2.3180222180	-0.7318623218
Н	-3.6423107397	-2.5846073170	0.7645812307
С	-4.1729773856	0.0605638155	1.3312446082
Н	-3.9157210604	1.0465549826	1.7261898277
Н	-5.1287201264	0.1399791509	0.8012113506
Н	-4.3068545547	-0.6198079859	2.1771165159
Au	-1.6073143583	-3.3689895452	2.3054804406

Р	-2.1541648309	-5.5871085720	2.9626801454
0	-3.1753433537	-6.4913774133	2.0659321126
0	-0.9090261259	-6.6530173723	3.0582177449
0	-2.9011315640	-5.6657119201	4.4017941606
С	-2.8729792516	-6.8168955287	0.7337611384
С	-3.2509323833	-5.9459676559	-0.2841800870
С	-2.2504254254	-8.0340793304	0.4661238850
С	-2.9874575312	-6.3053088948	-1.6071495998
Н	-3.7390583009	-5.0086673071	-0.0392893853
С	-1.9968157964	-8.3807141341	-0.8609235665
Н	-1.9778558811	-8.6860997895	1.2887687050
С	-2.3614907209	-7.5184132016	-1.8970830344
Н	-3.2729159808	-5.6320223526	-2.4099963614
Н	-1.5124395229	-9.3273526591	-1.0837659761
Н	-2.1586970859	-7.7922112055	-2.9283694523
С	0.3925330948	-6.2919562278	3.4053339236
С	0.6575030882	-5.4745009972	4.5042825003
С	1.4219334538	-6.8370835108	2.6408697746
С	1.9858993121	-5.1985826507	4.8339719241
Н	-0.1557729676	-5.0584935932	5.0902258084
С	2.7427747038	-6.5577142136	2.9869014369
Н	1.1751408448	-7.4653756747	1.7914158259
С	3.0288793755	-5.7391069232	4.0821915081
Н	2.2005720400	-4.5592396031	5.6854025042
Н	3.5505083374	-6.9777627773	2.3944466374
Н	4.0596894243	-5.5225208701	4.3461661397
С	-3.2599429105	-6.8736812995	5.0313079606
С	-4.5272994159	-7.4033415150	4.8080148175
С	-2.3585199980	-7.4730443467	5.9066339312
С	-4.8947942051	-8.5694428236	5.4798898274
Н	-5.2019047229	-6.9077182615	4.1188326630
С	-2.7397501880	-8.6392806466	6.5707651369
Н	-1.3791176357	-7.0335356573	6.0612759174
С	-4.0046945491	-9.1892123740	6.3589233002
Н	-5.8806048275	-8.9936683694	5.3129867421
Н	-2.0434081031	-9.1166176090	7.2543201337
Н	-4.2963121355	-10.0975549701	6.8780092183
С	-0.9135044033	1.2573117037	-0.5094393972

Н	0.0668782849	1.4286904129	-0.9584700304
С	-1.9104008935	2.3904846958	-0.6247901233
С	-3.1438421456	1.7471661013	-0.7654575418
С	-1.8310176848	3.7709980719	-0.5571374193
С	-4.3280927582	2.4646128236	-0.8602671121
С	-3.0217857699	4.5096768697	-0.6484749171
Н	-0.8760583384	4.2768411417	-0.4402479908
С	-4.2495903898	3.8629546254	-0.7940148489
Н	-5.2794176189	1.9606204418	-0.9968932540
Н	-2.9857798920	5.5948385156	-0.6148366351
Н	-5.1598105550	4.4508905948	-0.8740580003
Ν	-2.9629604041	0.3265544186	-0.8684614751
0	-1.5731458245	0.2369083771	-1.2945812596

TS-E-Estep

С	-4.7365066346	-1.5676798045	-1.7182171094
С	-4.0846507771	-2.0987348013	-0.6450093624
С	-2.9390495660	-1.4151118919	-0.1124330869
С	-2.4941437245	-0.1674437967	-0.7602037922
С	-3.2297409265	0.3596075716	-1.8791742709
С	-4.3096899650	-0.3319970081	-2.3346943286
Н	-5.6071752024	-2.0720153228	-2.1275034602
Н	-4.4162094547	-3.0262147177	-0.1875962835
С	-2.0880292023	-1.7820165628	0.9170616750
С	-1.3643320541	0.2771399323	-0.1361791688
Н	-2.9146354215	1.2860416972	-2.3497438824
Н	-4.8753937903	0.0435780099	-3.1827252912
С	-1.0116438705	-0.6801960476	0.9627647947
Н	-0.8228149947	1.1915461266	-0.3393469858
С	-1.1795481857	-0.1281570658	2.3383678572
С	-2.3895928302	0.6811038088	2.6933725675
Н	-2.1034573795	1.5611336836	3.2762185586
Н	-2.9502721489	1.0001228009	1.8150807925
Н	-3.0339041253	0.0731148725	3.3392531661
С	-0.4735345767	-0.7904765312	3.4830248888
Н	0.5038093918	-1.1877196329	3.2036079865
Н	-0.3689701139	-0.1121197904	4.3318218972

Н	-1.0964121609	-1.6375501194	3.7982234989
Au	-2.0556248891	-3.5803882839	1.8767982519
Р	-1.8047445120	-5.7385244497	2.8210152083
0	-1.8312645737	-5.9567537653	4.4307762032
0	-2.8345728099	-6.9143533340	2.3553767800
0	-0.3180368792	-6.2446810923	2.4619030338
С	-2.9521671172	-5.5654868175	5.1868757799
С	-3.0050885885	-4.2677635659	5.6887265042
С	-3.9444115257	-6.5018712370	5.4617375502
С	-4.0922924552	-3.8967818894	6.4813823467
Н	-2.1977704929	-3.5751808530	5.4722230985
С	-5.0241172351	-6.1169287975	6.2579313156
Н	-3.8574928859	-7.5077194132	5.0655020699
С	-5.1016617943	-4.8181253467	6.7646508660
Н	-4.1453710920	-2.8894636976	6.8840536931
Н	-5.8037822239	-6.8375855866	6.4859010279
Н	-5.9436450279	-4.5271687164	7.3853987041
С	-3.5451363860	-6.8882938243	1.1469669558
С	-2.9164121986	-6.6032157965	-0.0645520591
С	-4.8984990207	-7.2101938477	1.2106984543
С	-3.6760904958	-6.6287395034	-1.2371023789
Н	-1.8556945174	-6.3742588739	-0.0961483788
С	-5.6396311116	-7.2422695961	0.0303716346
Н	-5.3486981988	-7.4330906148	2.1722734417
С	-5.0330732559	-6.9480735739	-1.1933266249
Н	-3.1975531187	-6.4052467876	-2.1859783241
Н	-6.6943603183	-7.4979193757	0.0691986016
Н	-5.6154677225	-6.9747050954	-2.1092468828
С	0.2076918096	-7.5159590360	2.7946361950
С	0.8411455613	-7.6873014025	4.0204863637
С	0.1365358215	-8.5312716872	1.8474290130
С	1.4179028296	-8.9259254531	4.3031793196
Н	0.8776166534	-6.8685403083	4.7304218760
С	0.7187601375	-9.7638209535	2.1452645968
Н	-0.3595478750	-8.3562335662	0.8985698497
С	1.3579529799	-9.9623810199	3.3698979946
Н	1.9163670987	-9.0777523414	5.2558273468
Н	0.6724652585	-10.5667631434	1.4157579754

Η	1.8109847622	-10.9228071201	3.5957425695
С	0.5552886600	3.6274456813	1.5181304815
Н	0.2107439433	4.6490787878	1.4426561588
С	1.6977540955	2.9690478668	1.1204402867
С	1.4810561069	1.6192444455	1.5707698859
С	2.8936732003	3.3253930469	0.4337855831
С	2.4618640405	0.6155601342	1.3351469096
С	3.8155088748	2.3380438549	0.2134290396
Н	3.0605343916	4.3443155523	0.1009549022
С	3.5956206530	0.9947371007	0.6633781196
Н	2.3211093597	-0.4026641305	1.6790870326
Н	4.7392145648	2.5656681767	-0.3084317530
Н	4.3636542509	0.2531252204	0.4643862866
Ν	0.3022483415	1.5132899406	2.1958784154
0	-0.2705386876	2.7797122327	2.1368080104
Н	-0.0140124671	-1.1157988622	0.8347028424

Estep

С	-3.1174055619	-1.4266124670	-1.8486208533
С	-2.6939710485	-2.0367908942	-0.7078609219
С	-1.6534524429	-1.4266057143	0.0802610282
С	-1.0723846419	-0.1518810426	-0.3878667489
С	-1.5498773720	0.4445003029	-1.6092332772
С	-2.5396540228	-0.1796058922	-2.3025035621
Н	-3.9052116169	-1.8768626759	-2.4462185552
Н	-3.1322431173	-2.9760537332	-0.3817444411
С	-1.0618487019	-1.8391246775	1.2559118182
С	-0.1122063351	0.2510655938	0.4900765091
Н	-1.1182238161	1.3765061835	-1.9626560611
Н	-2.9127328839	0.2562736247	-3.2254379608
С	0.0270053539	-0.8023047445	1.5632323381
Н	0.5167491577	1.1268236770	0.3946410605
С	0.1940459600	-0.2760474698	3.0207545082
С	0.4871005178	-1.4164376053	4.0104692489
Н	0.6624973758	-1.0402374225	5.0218123871
Н	-0.3292586627	-2.1399201629	4.0343783426
Н	1.3938876393	-1.9356130123	3.6887440689

С	1.3035730335	0.7935673034	3.0885568401
Н	1.0492885884	1.6767567725	2.5003395242
Н	1.4982261559	1.1080531513	4.1173528042
Н	2.2304409458	0.3705796401	2.6917774287
Au	-1.3201797273	-3.7095751546	2.0276464414
Р	-1.4399907027	-6.0187801658	2.5877009819
0	-1.2236024323	-6.5705705747	4.1028261649
0	-2.8095535065	-6.8268575356	2.2107176863
0	-0.2338297653	-6.7627453392	1.8174791272
С	-2.1039517954	-6.2119472837	5.1366249354
С	-1.8088219715	-5.0945883547	5.9127629070
С	-3.2108020408	-7.0157885010	5.3959733507
С	-2.6558620666	-4.7703771714	6.9736741918
Η	-0.9216439156	-4.5092643302	5.6924922066
С	-4.0477378875	-6.6793190637	6.4602095910
Η	-3.3973658654	-7.8862887859	4.7769126939
С	-3.7749291839	-5.5583630355	7.2468591971
Η	-2.4340597753	-3.9059929893	7.5929845758
Н	-4.9122827166	-7.2997225854	6.6771188503
Η	-4.4286932516	-5.3055739340	8.0761891039
С	-3.6344963463	-6.5036004207	1.1288657493
С	-3.1136359387	-6.1504964329	-0.1163188032
С	-5.0074532484	-6.6080985245	1.3404637476
С	-3.9986056806	-5.8880235478	-1.1655654948
Η	-2.0412490180	-6.0894493219	-0.2717845101
С	-5.8760337950	-6.3503849784	0.2813894567
Η	-5.3746468277	-6.8923057118	2.3210476637
С	-5.3759350995	-5.9881095276	-0.9718903800
Η	-3.6014211652	-5.6154596661	-2.1390247746
Η	-6.9475418939	-6.4348492178	0.4369870252
Η	-6.0574124007	-5.7922803078	-1.7941473996
С	-0.0214107450	-8.1628815288	1.8222447215
С	0.8307537606	-8.7085202518	2.7757836171
С	-0.6154106109	-8.9366932238	0.8306759179
С	1.0891208780	-10.0790039433	2.7326387442
Н	1.2782731596	-8.0696060075	3.5289888545
С	-0.3479873674	-10.3059766447	0.8020856371
Н	-1.2680921210	-8.4771682483	0.0963494800

С	0.5013904618	-10.8778354891	1.7502904414
Η	1.7532460631	-10.5208357261	3.4693279593
Η	-0.8044325644	-10.9231693201	0.0339719746
Η	0.7073954728	-11.9434743870	1.7216528775
Η	0.9788077354	-1.3296985580	1.3770079107
С	-1.5068556107	0.9969039087	4.5903576349
С	-2.8505285358	1.4503509758	4.3733703679
С	-0.8571323891	1.2272695940	5.8245521794
С	-3.1401583891	1.0646619997	3.0779853903
С	-3.5618161665	2.1367725029	5.3925846204
С	-1.5786500431	1.8978883651	6.7882481838
Η	0.1570809825	0.9008713493	6.0100350025
Η	-4.0033881897	1.1604596175	2.4347987702
С	-2.9163026355	2.3499660711	6.5836411369
Η	-4.5770391985	2.4772430626	5.2225442482
Η	-1.1080283044	2.0937869527	7.7470032297
Η	-3.4213135155	2.8722369039	7.3891605355
Ν	-1.0893897334	0.3868063405	3.4614760760
0	-2.1030506541	0.4403179950	2.5356090296

TS-E_{step}-GH

С	-2.9678266356	0.7797910346	4.7960318815
С	-2.4862983898	-0.3498482242	4.1960892061
С	-2.0384673491	-0.2851525362	2.8361940816
С	-2.0686456207	0.9921573679	2.1310686057
С	-2.6147140645	2.1375539326	2.7822227245
С	-3.0422635244	2.0213218164	4.0793773207
Н	-3.3068086380	0.7508599928	5.8270991313
Н	-2.4330032163	-1.2933272195	4.7319086749
С	-1.6468539985	-1.3077614729	1.9817879108
С	-1.5859242576	0.8247199728	0.8347500633
Н	-2.6820446509	3.0873931555	2.2598505594
Н	-3.4499653582	2.8894064302	4.5901407494
С	-1.2784997255	-0.6789579920	0.6560755989
Н	-1.9258430657	1.4374994808	0.0129189402
С	0.1600794447	-1.1545657470	0.1114639374
С	1.1082682886	-1.6912673728	1.2030332830

Н	2.1174329055	-1.7734753215	0.7878323068
Н	1.1411329555	-1.0444333196	2.0800786498
Н	0.7836524528	-2.6814244495	1.5244064036
С	-0.0215111511	-2.2259249734	-0.9689539679
Н	-0.6689809962	-1.8901324458	-1.7827930628
Н	0.9442453079	-2.5364134603	-1.3778029619
Н	-0.4930125561	-3.1006968480	-0.5125333032
Au	-1.7972096988	-3.2984473242	2.4293950650
Р	-2.0693381081	-5.5753471600	3.0682181207
0	-3.5037171689	-6.0669946192	3.6328034228
0	-1.8145590199	-6.7038891366	1.9131321058
0	-1.1047013685	-5.9362152253	4.3068252601
С	-4.6801045327	-5.9309213728	2.8685858015
С	-5.4228574180	-4.7592036979	2.9800648215
С	-5.0950750698	-6.9975000383	2.0769349043
С	-6.6158246848	-4.6525924374	2.2627925578
Н	-5.0766550424	-3.9591716513	3.6268628971
С	-6.2911260012	-6.8760900558	1.3683276555
Н	-4.4948087824	-7.8996939507	2.0325478238
С	-7.0491011667	-5.7067395881	1.4570812232
Н	-7.2089341010	-3.7464188326	2.3420587977
Н	-6.6324969498	-7.7010909528	0.7500984791
Н	-7.9801994227	-5.6205274995	0.9050824886
С	-0.8652578938	-6.5422565853	0.8988563381
С	0.4321078654	-6.1091070925	1.1761018430
С	-1.2596333719	-6.8857905167	-0.3924075849
С	1.3478659611	-6.0136983617	0.1250983384
Н	0.7280352204	-5.8691846396	2.1925295575
С	-0.3312375630	-6.7923156640	-1.4281083014
Н	-2.2753430997	-7.2256395601	-0.5660861769
С	0.9714090879	-6.3545123095	-1.1738428998
Н	2.3620301479	-5.6843028473	0.3320339770
Н	-0.6275227024	-7.0659306938	-2.4364535812
Н	1.6916429265	-6.2904078124	-1.9838144634
С	-1.0965979575	-7.1940745878	4.9641014788
С	-1.8638777694	-7.3481103890	6.1131142850
С	-0.2778408117	-8.2068152130	4.4767412920
С	-1.8085563804	-8.5653718549	6.7924356848

Η	-2.4869504883	-6.5317460646	6.4615905387
С	-0.2349635017	-9.4190536741	5.1673495437
Η	0.3140887960	-8.0493945918	3.5816743692
С	-0.9980937396	-9.5999951705	6.3215152463
Н	-2.4015482660	-8.7028798578	7.6915656832
Н	0.3991457132	-10.2205097692	4.8003488223
Н	-0.9594855350	-10.5450357184	6.8546932229
С	0.5270326489	2.0336915622	0.3201391121
Н	0.6350204559	2.8085411150	1.0690974027
С	0.2086033677	2.1207273473	-1.0590179941
С	0.4030050625	0.8053424750	-1.5394849329
С	-0.2778150145	3.1394923112	-1.8943322429
С	0.1306211837	0.4792187154	-2.8692457366
С	-0.5569624390	2.8096145206	-3.2120212788
Н	-0.4144442801	4.1503952812	-1.5251092440
С	-0.3551754356	1.4979767570	-3.6864624983
Н	0.3079881383	-0.5137294750	-3.2619105630
Н	-0.9216321472	3.5707038541	-3.8940117156
Н	-0.5716365773	1.2755358165	-4.7268470365
Ν	0.9137229397	0.0015618195	-0.5112126708
0	1.1818530461	0.9050266475	0.5722481810
Н	-2.0081026327	-1.0424196386	-0.0844087751

G-H

С	2.8095121223	-1.0112958271	2.4552394867
С	1.6253262216	-1.7131354081	2.3262065090
С	0.4676404579	-1.0161935493	1.8979836269
С	0.5198540481	0.3849839505	1.6361017775
С	1.7149756903	1.0790757597	1.7773751020
С	2.8507327256	0.3709919991	2.1796580868
Н	3.7163915350	-1.5189679760	2.7677480404
Н	1.5756624339	-2.7786319216	2.5319026260
С	-0.8394520410	-1.5193595980	1.6750004196
С	-0.8571729393	0.8829776634	1.3018152943
Н	1.7787559930	2.1461292714	1.5864878210
Н	3.7930566424	0.9007097394	2.2906017015
С	-1.6514691891	-0.4495071922	1.0498037529

Н	-1.2731938899	1.3343625817	2.2146877647
С	-1.8770112968	-0.7753587277	-0.5523529388
С	-0.6854778290	-1.5029586728	-1.1933079006
Н	-0.8679483413	-1.5866076653	-2.2682208313
Н	0.2513022204	-0.9631043110	-1.0541863018
Н	-0.5824065342	-2.5084939305	-0.7758228389
С	-3.1488056954	-1.6138459726	-0.7125780996
Н	-4.0263262202	-1.1230028614	-0.2842726804
Н	-3.3341193860	-1.7963874286	-1.7751797234
Н	-3.0192880675	-2.5810357616	-0.2195469668
Au	-1.4715077801	-3.3818687091	2.2222789995
Р	-2.1934527077	-5.5274504755	2.9934627645
0	-3.4391679206	-6.2654912030	2.2782508893
0	-1.0809586180	-6.7157461633	2.9431855915
0	-2.7134123526	-5.4024272602	4.5077525822
С	-3.4269461404	-6.5621082154	0.8995305075
С	-4.0238901648	-5.6603052794	0.0237212655
С	-2.8831301065	-7.7671654010	0.4653777357
С	-4.0619948564	-5.9736247752	-1.3362670619
Н	-4.4678808497	-4.7480891366	0.4099649441
С	-2.9294276767	-8.0650599882	-0.8973539924
Н	-2.4483036594	-8.4528634119	1.1840944855
С	-3.5127913864	-7.1710446663	-1.7973731988
Н	-4.5307866740	-5.2849008325	-2.0327211385
Н	-2.5142122170	-9.0030364899	-1.2536605090
Н	-3.5484988242	-7.4126339087	-2.8552752887
С	0.2945205738	-6.4952175912	3.1049284333
С	0.7902785414	-5.7618269341	4.1824055454
С	1.1387396145	-7.0932636494	2.1729012738
С	2.1750081825	-5.6238276192	4.3171580879
Н	0.1147667991	-5.3265910340	4.9122574810
С	2.5169955486	-6.9510211525	2.3255047213
Н	0.7115400250	-7.6609538872	1.3530274437
С	3.0374621769	-6.2158990120	3.3941688451
Н	2.5744847310	-5.0654676892	5.1587793338
Н	3.1850533705	-7.4184570491	1.6084367032
Н	4.1121087121	-6.1156520878	3.5119451599
С	-3.2944394217	-6.4801459877	5.2318985106

С	-4.6803644572	-6.5710092613	5.2772718622
С	-2.4659447926	-7.3657625460	5.9111151312
С	-5.2542115910	-7.5955457883	6.0302099822
Η	-5.2887860468	-5.8555196119	4.7349936057
С	-3.0567037499	-8.3863146205	6.6583656122
Η	-1.3878163747	-7.2592413473	5.8600401595
С	-4.4459615288	-8.5028763106	6.7177211336
Η	-6.3353852583	-7.6829982083	6.0770385013
Н	-2.4259969115	-9.0885062260	7.1950091486
Н	-4.8988837948	-9.2986049302	7.3010198906
С	-1.0193157726	1.9194230761	0.1726484348
Η	-0.2961521724	2.7362080063	0.2277035932
С	-2.4716993405	2.3354267215	0.0718388539
С	-3.0482938456	1.4083737768	-0.7997391269
С	-3.2356618907	3.3291224688	0.6636018843
С	-4.3961934877	1.4563830649	-1.1305117529
С	-4.6008451169	3.3871737380	0.3456389157
Н	-2.7962637118	4.0541630376	1.3429777704
С	-5.1679756132	2.4641418573	-0.5370904064
Н	-4.8309840483	0.7579432412	-1.8372949801
Н	-5.2201968721	4.1672368289	0.7770671934
Н	-6.2228204205	2.5380408448	-0.7835611981
Ν	-2.0400991881	0.5014305305	-1.2819997573
0	-0.8187942469	1.2523558401	-1.0882093371
Н	-2.6627193938	-0.4091153376	1.4639494927

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

BRUKER	139.96 135.65 135.65 132.00 1232.00 124.13 126.52 120.32	88.71 88.71 77.033 76.69	26.55
Current Data Parameters NAME 20170913 EXPNO 4 PROCNO 1 FZ - Acquisition Parameters Date_ 20170913 Fire_			
11me 15.29 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG 5 mm DUL 13C-1 PULPROG 5 mm DUL 13C-1 SOLVENT CDC13 55 DS 0 5% SWH 22727.273 Hz FTDRES FTDRES 0.346791 Hz AQ AQ 1.4418420 sec RG RG 4 DW 22.000 usec DE 6.00 usec E DI 2.0000000 sec 11 DI 2.0000000 sec DI1 DI1 0.03000000 sec DI1 DELTA 1.8999998 sec TD0			
CHANNEL f1 NUC1 13C P1 9.70 Usec 9.70 PL1 -0.50 dB SF01 100.6288660 MHz		4b	
CHANNEL f2 f2 CPDPRG2 waltz16 NUC2 1H PCPD2 90.00 usec FL2 -2.40 dB PL12 15.10 dB SFO2 400.1516010 MHz			
F2 - Processing parameters SI 32768 SF 100.6178201 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00			
RKS-5-235substrate			

Current Data Parameters	159.27	136.36 136.36 130.40 130.40 124.93 124.93 124.93 124.93 124.93 118.58 118.58 114.34 114.34	90.80	26.54	
NEM Lot 110 EXPNO 10 PROCNO 1 F2 - Acquisition Parameters Date20171125 Time 10.39 INSTRUM spect PROBHD mm DUL 13C-1 PULPROS zgp300 TD 65536 SOLVENT CDC13 NS 45 DS 0 SWH 22727.273 Hz FIDRES 0.366791 Hz	Abdel_Man_1/1-4/100-4/-4/100-4/-4/100-0-1-1-1/1		₩₩₽₽₩₩₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	and a star and a star and the star	,
AQ 1.416120 Sec RG 57 DM 22.000 usec DE 6.00 usec TE 300.0 K D1 2.0000000 sec dil 0.0300000 sec DELTA 1.69999998 sec TD0 1					
NUC1 13C P1 9.70 usec PL1 -0.50 dB SF01 100.6288660 MHz CHANNEL f2				, and an an an and a star a star a star a star a	naya layaana waxaa wa
NOC2 117 PCPD2 90.00 usec PL2 -2.40 dB PL12 15.10 dB PL13 18.10 dB SF02 400.1516010 MHz		F			
F2 - Processing parameters SI 32768 SF 100.6178058 MDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00			4c	riseuproverserverserverserverserverseder bergeber	performed by conservation of the second second
				60 50 40 30	20 10510 0 pp

Current Data Parameters NAME 20171128 EXPNO 17 PROCNO 1	137.28 135.41 135.41 135.28 132.67 127.88 123.05 123.05	89.28 89.28 77.32 77.01 76.69	26.67
F2 - Acquisition Parameters Date20171128 Time21.54 INSTRUM			
NO 1.4418420 sec RG 64 DW 22.000 usec DE 6.00 usec TE 300.0 K D1 2.00000000 sec DELTA 1.89999998 sec TD0 1 NUCL CHANNEL f1 91 9.70 usec			
PL1 -0.50 dB SF01 100.6288660 MHz ====== CHANNEL f2 ====== CPDERG2 WaltZ16 NUC2 1H PCED2 90.00 usec PL2 -2.40 dB PL12 15.10 dB PL13 18.10 dB SF02 400.1516010 MHz			
F2 - Processing parameters SI 32768 SF 100.6178110 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00	4	e	
4-Me-alkyne Me sub			
	150 140 130 120 110	100 90 80 70 60	50 40 30 20 10

.782 .545 .401 .289 .271 .253

51.96

· 27.68 1

• •

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

.

.

.

