Supporting Information

Silver-Mediated Oxidative Functionalization of Alkylsilanes

Feng Wang⁺, Peng Xu⁺, Fei Cong and Pingping Tang^{*}

State Key Laboratory and Institute of Elemento-Organic Chemistry and Department of Chemistry, College of Chemistry, Nankai University

Collaborative Innovation Center of Chemical Science and Engineering

Tianjin 300071, China

E-mail: ptang@nankai.edu.cn

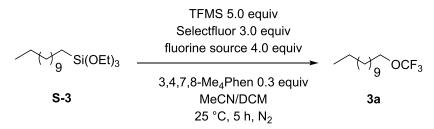
Table of Contents

Materials and Methods	5
Experimental Data	5
Optimization of the reaction condition for the trifluoromethoxylation	5
Effect of fluorine sources on the reaction	5
Effect of oxidants on the reaction	6
Effect of ligands on the reaction	7
Effect of solvents on the reaction	8
Effect of "OCF ₃ " sources on the reaction	9
Effect of atmospheres on the reaction	10
Effect of silanes on the reaction	11
Optimization of the reaction condition for the trifluoromethylthiolation	12
Effect of oxidants on the reaction	12
Effect of solvents on the reaction	13
Effect of reaction concentration on the reaction	13
Effect of fluorine sources on the reaction	14
Effect of temperatures on the reaction	15
Effect of "SCF ₃ " sources on the reaction	16
Effect of ligands on the reaction	17
Effect of atmospheres on the reaction	18
Effect of different silanes on the reaction	18
Experimental Procedures and Compound Characterization	19
Pent-4-en-1-yl benzoate (X-4)	19
Pent-4-en-1-yl 4-methylbenzoate (X-5)	20
Pent-4-en-1-yl 4-phenylbenzoate (X-6)	20
Pent-4-en-1-yl 4-(2-bromoethyl)benzoate (X-7)	21
Pent-4-en-1-yl 4-(<i>tert</i> -butyl)benzoate (X-9)	21
Pent-4-en-1-yl 3-methoxybenzoate (X-10)	22
Pent-4-en-1-yl 4-fluorobenzoate (X-11)	23
Pent-4-en-1-yl 2-chlorobenzoate (X-12)	23
Pent-4-en-1-yl 3-(4-bromophenyl)propanoate (X-13)	24
Pent-4-en-1-yl 4-trifluoromethylbenzoate (X-14)	24
Pent-4-en-1-yl 4-(trifluoromethoxy)benzoate (X-15)	25
Pent-4-en-1-yl 2-naphthoate (X-16)	25
Pent-4-en-1-yl 6-fluoronicotinate (X-17)	
Pent-4-en-1-yl 1-methyl-1H-indole-3-carboxylate (X-18)	27
Pent-4-en-1-yl 5-bromothiophene-2-carboxylate (X-19)	27
Pent-4-en-1-yl benzofuran-2-carboxylate (X-20)	
7-(Hex-5-en-1-yloxy)-4-methyl-2H-chromen-2-one (X-21)	
1-(Hex-5-en-1-yloxy)-4-methoxybenzene (X-23)	29
1-(Hex-5-en-1-yloxy)-4-(<i>tert</i> -butyl)benzene (X-24)	29
(Hex-5-en-1-yloxy)benzene (X-25)	
1-(Hex-5-en-1-yloxy)-4-fluorobenzene (X-26)	

1-(Hex-5-en-1-yloxy)-4-chlorobenzene (X-27)	31
1-(Hex-5-en-1-yloxy)-3-bromobenzene(X-28)	31
Allyl-(4-iodophenethyl)-ether (X-29)	
1-(Hex-5-en-1-yloxy)-4-(trifluoromethyl)benzene (X-30)	
1-(4-(Hex-5-en-1-yloxy)phenyl)ethanone (X-31)	
4-(Hex-5-en-1-yloxy)benzonitrile (X-32)	
1-(Hex-5-en-1-yloxy)-3-nitrobenzene (X-33)	
(4-(Hex-5-enyloxy)phenyl)(phenyl)methanone (X-34)	
2-Phenylhex-5-en-2-ol (X-36)	
Pent-4-en-1-yl androst-4-en-3-one-17β-carboxylate (X-39)	
N-butyl-Celecoxib (X-40')	
N-butyl-N-(hex-5-enyl)-Celecoxib (X-40)	
7-O-(hex-5-enyl)-Esculin tetracetate (X-41)	
Hexa-1,5-diene-3,4-diyl dibenzoate (X-48)	
5-(Triethoxysilyl)pentyl benzoate (S-4)	
5-(Triethoxysilyl)pentyl 4-methylbenzoate (S-5)	
5-(Triethoxysilyl)pentyl [1,1'-biphenyl]-4-carboxylate (S-6)	
5-(Triethoxysilyl)pentyl 4-(2-bromoethyl)benzoate (S-7)	
5-(Triethoxysilyl)pentyl 4-(2-azidoethyl)benzoate (S-8)	
5-(Triethoxysilyl)pentyl 4-(<i>tert</i> -butyl)benzoate (8-9)	
5-(Triethoxysilyl)pentyl 3-methoxybenzoate (S-10)	
5-(Triethoxysilyl)pentyl 4-fluorobenzoate (S-11)	
5-(Triethoxysilyl)pentyl 2-chlorobenzoate (S-12)	
5-(Triethoxysilyl)pentyl 3-(4-bromophenyl)propanoate (S-13)	
5-(Triethoxysilyl)pentyl 4-(trifluoromethyl)benzoate (S-14)	
5-(Triethoxysilyl)pentyl 4-(trifluoromethoxy)benzoate (S-15)	
5-(Triethoxysilyl)pentyl 2-naphthoate (S-16)	
5-(Triethoxysilyl)pentyl 6-fluoronicotinate (S-17)	
5-(Triethoxysilyl)pentyl 1-methyl-1H-indole-3-carboxylate (S-18)	
5-(Triethoxysilyl)pentyl 5-bromothiophene-2-carboxylate (S-19)	
5-(Triethoxysilyl)pentyl benzofuran-2-carboxylate (S-20)	
4-Methyl-7-(6-(triethoxysilyl)hexyloxy)-2H-chromen-2-one (S-21)	48
Bromo-6-(triethoxysilyl)hexane (S-22')	48
2-(6-(Triethoxysilyl)hexyl)isoindoline-1,3-dione (S-22)	
Triethoxy(6-(4-methoxyphenoxy)hexyl)silane (S-23)	
(6-(4-(Tert-butyl)phenoxy)hexyl)triethoxysilane (S-24)	50
Triethoxy(6-phenoxyhexyl)silane (S-25)	
Triethoxy(6-(4-fluorophenoxy)hexyl)silane (S-26)	
(6-(4-Chlorophenoxy)hexyl)triethoxysilane (S-27)	
(6-(3-Bromophenoxy)hexyl)triethoxysilane (S-28)	
Triethoxy(3-(4-iodophenethoxy)propyl)silane (S-29)	
Triethoxy(6-(4-(trifluoromethyl)phenoxy)hexyl)silane (S-30)	
Triethoxy(6-(4-(trifluoromethyl)phenoxy)hexyl)silane (S-31)	
4-((6-(Triethoxysilyl)hexyl)oxy)benzonitrile (S-32)	

Triethoxy(6-(3-nitrophenoxy)hexyl)silane (S-33)	55
5-Phenyl(4-(6-(triethoxysilyl)hexyloxy)phenyl)methanone (S-34)	
Triethoxy(6-phenylhexyl)silane (S-35)	
2-Phenyl-6-(triethoxysilyl)hexan-2-ol (S-36)	
Triethoxy(octan-4-yl)silane (S-37)	
Cyclododecyltriethoxysilane (S-38)	
5-(Triethoxysilyl)pentyl androst-4-en-3-one-17β-carboxylate (S-39)	
<i>N</i> -butane- <i>N</i> -(6-(triethoxysilyl)hexyl)-Celecoxib (S-40)	
7-O-(6-(triethoxysilyl)hexyl)-Esculin tetracetate (S-41)	
6-(Triethoxysilyl)hex-1-ene-3,4-diyl dibenzoate (S-48)	
Dodecyl trifluoromethyl ether (3a)	
5-(Trifluoromethoxy)pentyl benzoate (4a)	
5-(Trifluoromethoxy)pentyl 4-methylbenzoate (5a)	
5-(trifluoromethoxy)pentyl [1,1'-biphenyl]-4-carboxylate (6a)	
5-(Trifluoromethoxy)pentyl 4-(2-bromoethyl)benzoate (7a)	
5-(Trifluoromethoxy)pentyl 4-(2-bromoethyl)benzoate (8a)	
5-(Trifluoromethoxy)pentyl 4-(<i>tert</i> -butyl)benzoate (9)	
5-(Trifluoromethoxy)pentyl 3-methoxybenzoate (10)	
5-(Trifluoromethoxy)pentyl 4-fluorobenzoate (11)	
5-(Trifluoromethoxy)pentyl 2-chlorobenzoate (12)	
5-(Trifluoromethoxy)pentyl 3-(4-bromophenyl)propanoate (13)	
5-(Trifluoromethoxy)pentyl 4-(trifluoromethyl)benzoate (14)	
5-(Trifluoromethoxy)pentyl 4-(trifluoromethoxy)benzoate (15a)	
5-(Trifluoromethoxy)pentyl 2-naphthoate (16a)	
5-(Trifluoromethoxy)pentyl 6-fluoronicotinate (17a)	
5-(Trifluoromethoxy)pentyl 5-bromothiophene-2-carboxylate (19a)	
5-(Trifluoromethoxy)pentyl benzofuran-2-carboxylate (20a)	
4-Methyl-7-((6-(trifluoromethoxy)hexyl)oxy)-2H-chromen-2-one (21a)	
2-(6-(Trifluoromethoxy)hexyl)isoindoline-1,3-dione (22a)	
1-(4-((6-(Trifluoromethoxy)hexyl)oxy)phenyl)ethan-1-one (31a)	
4-((6-(Trifluoromethoxy)hexyl)oxy)benzonitrile (32a)	
1-Nitro-3-((6-(trifluoromethoxy)hexyl)oxy)benzene (33a)	
Phenyl(4-((6-(trifluoromethoxy)hexyl)oxy)phenyl)methanone (34)	
(6-(Trifluoromethoxy)hexyl)benzene (35a)	
4-(Trifluoromethoxy)octane (37a)	
(Trifluoromethoxy)cyclododecane (38a)	
5-(Trifluoromethoxy)pentyl androst-4-en-3-one-17β-carboxylate (39a)	
<i>N</i> -butane- <i>N</i> -(6-(trifluoromethoxy)hexyl)-Celecoxib (40a)	
Dodecyl(trifluoromethyl)sulfane (3b)	
5-((Trifluoromethyl)thio)pentyl benzoate (4b)	
5-((Trifluoromethyl)thio)pentyl 4-methylbenzoate (5b)	
5-((Trifluoromethyl)thio)pentyl [1,1'-biphenyl]-4-carboxylate (6b)	
5-((Trifluoromethyl)thio)pentyl 4-(2-bromoethyl)benzoate (7b)	
5-((Trifluoromethyl)thio)pentyl 4-(2-azidoethyl)benzoate (8b)	80

5-((Trifluoromethyl)thio)pentyl 4-(trifluoromethoxy)benzoate (15b)	81
5-((Trifluoromethyl)thio)pentyl 2-naphthoate (16b)	81
5-((Trifluoromethyl)thio)pentyl 6-fluoronicotinate (17b)	82
5-((Trifluoromethyl)thio)pentyl 1-methyl-1H-indole-3-carboxylate (18b)	82
5-((Trifluoromethyl)thio)pentyl 5-bromothiophene-2-carboxylate (19b)	
5-((Trifluoromethyl)thio)pentyl benzofuran-2-carboxylate (20b)	84
4-Methyl-7-((6-((trifluoromethyl)thio)hexyl)oxy)-2H-chromen-2-one (21b)	84
2-(6-((Trifluoromethyl)thio)hexyl)isoindoline-1,3-dione (22b)	85
(6-(4-Methoxyphenoxy)hexyl)(trifluoromethyl)sulfane (23)	85
(6-(4-(<i>Tert</i> -butyl)phenoxy)hexyl)(trifluoromethyl)sulfane (24)	86
(6-Phenoxyhexyl)(trifluoromethyl)sulfane (25)	87
(6-(4-Fluorophenoxy)hexyl)(trifluoromethyl)sulfane (26)	87
(6-(4-Chlorophenoxy)hexyl)(trifluoromethyl)sulfane (27)	88
(6-(3-Bromophenoxy)hexyl)(trifluoromethyl)sulfane (28)	
(3-(4-Iodophenethoxy)propyl)(trifluoromethyl)sulfane (29)	89
(Trifluoromethyl)(6-(4-(trifluoromethyl)phenoxy)hexyl)sulfane (30)	89
1-(4-((6-((Trifluoromethyl)thio)hexyl)oxy)phenyl)ethanone (31b)	90
4-((6-((Trifluoromethyl)thio)hexyl)oxy)benzonitrile (32b)	91
(6-(3-Nitrophenoxy)hexyl)(trifluoromethyl)sulfane (33b)	91
(6-Phenylhexyl)(trifluoromethyl)sulfane (35b)	92
2-Phenyl-6-((trifluoromethyl)thio)hexan-2-ol (36b)	92
Octan-4-yl(trifluoromethyl)sulfane (37b)	93
Cyclododecyl(trifluoromethyl)sulfane (38b)	93
5-((Trifluoromethyl)thio)pentyl androst-4-en-3-one-17β-carboxylate (39b)	94
N-butane-N-(6-(trifluoromethylthio)hexyl)-Celecoxib (40b)	94
7-0-(6-(trifluoromethylthio)hexyl)-Esculin tetracetate (41)	95
Gram scale synthesis of 5-(trifluoromethoxy)pentyl 4-methylbenzoate (5a)	96
Gram-scale synthesis of 5-((Trifluoromethyl)thio)pentyl 4-methylbenzoate (5b)	96
Dodecyl benzoate (42)	97
Dodecyl 2,2,2-trifluoroacetate (43)	97
1-Thiocyanatododecane (44)	98
1-Azidododecane (45)	98
Mechanism Studies	99
Mechanism studies by radical-trapping reaction	99
Mechanism studies using radical inhibitor	100
Mechanism studies using AgF2	101
Mechanism studies of radical cyclization	101
Reference	102
Spectrum Data	103

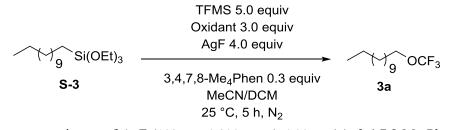

Materials and Methods

MeCN, EA, DCE, DMA, 1,4-dioxane, Et₂O, HMPA, DMSO and DCM were dried by distillation over CaH₂. THF and toluene were dried by distillation over sodium/benzophenone. CDCl₃ was purchased from Sigma-Aldrich. Selectfluor was purchased from Energy and recrystallized from MeCN/Et₂O before use. CsF was purchased from TCI. AgF was purchased from Strem. Karstedt's catalyst was purchased from J&K and Aladdin. AgSCF₃ was prepared according to the reported literature ^[1]. "OCF₃" reagents was prepared according to the reported literatures ^[2]. TLC was performed on silica gel Huanghai HSGF₂₅₄ plates and visualized by quenching of UV fluorescence (λ_{max} = 254 nm). Preparative TLC was performed on silica gel Xinnuo HSGF₂₅₄ preparative TLC plates. Silica gel (200-300 mesh) was purchased from Qingdao Haiyang Chemical Co., China. Unless otherwise noted, all other reagents and starting materials were purchased from commercial sources and used without further purification. ¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded on a Varian NMR 400 (400MHz, 101MHz and 376MHz). Signal positions were recorded in ppm with the abbreviations s, d, t, q, dd, dt and m denoting singlet, doublet, triplet, quadruplet, doublet of doublets, doublet of triplets and multiplet respectively. All NMR chemical shifts were referenced to residual solvent peaks or to $Si(CH_3)_4$ as an internal standard. For ¹H NMR: $CDCl_3 = \delta 7.26$ ppm, Si(CH₃)₄ = $\delta 0$ ppm. For ¹³C NMR: CDCl₃ = $\delta 77.16$ ppm. Mass spectra were acquired on Agilent 6520 Q-TOF LC/MS, Bruker APEX II FT-ICR-MS and Waters GCT Premier. Semipreparative HPLC was performed on an UltiMate 3000 liquid chromatography with a Thermo HG–C18, 21.2 mm × 15 cm column.

Experimental Data

Optimization of the reaction condition for the trifluoromethoxylation

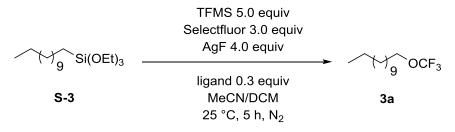
Effect of fluorine sources on the reaction



In a glovebox, to a mixture of fluorine source (0.800 mmol F⁻, 4.00 equiv F⁻), 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv) and Selectfluor (213 mg, 0.600 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (0.800 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) and MeCN (2.80 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (100 μ L, 0.814 mmol) was added. The yield of dodecyl trifluoromethyl ether (**3a**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). Yields are reported in Table S1.

Table S1: Effect of fluorine sources on the reaction

Fluorine salt	Yield [%] (¹⁹ F NMR)	Fluorine salt	Yield [%] (¹⁹ F NMR)
AgF	61	KHF ₂	0
CsF	0	FeF ₃	0
KF	0	TBAF	0
NaF	0	Py·HF	0
LiF	0	$Et_3N \cdot 3HF$	0


Effect of oxidants on the reaction

In a glovebox, to a mixture of AgF (102 mg, 0.800 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv) and oxidant (0.600 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (0.800 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) and MeCN (2.80 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (100 μ L, 0.814 mmol) was added. The yield of dodecyl trifluoromethyl ether (**3a**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). Yields are reported in Table S2.

Table	S2: Effect of oxidan	ts on the reaction	
Oxidant	Yield [%] (¹⁹ F NMR)	Oxidant	Yield [%] (¹⁹ F NMR)
NFSI	0	DDQ	0
[FTMP]BF ₄	0	PhIO	0
Selectfluor	61	PhI(OAc) ₂	0
Oxone	7	DTBP	0
$K_2S_2O_8$	6	NaIO ₄	22

Effect of ligands on the reaction

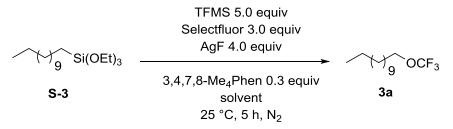

In a glovebox, to a mixture of AgF (102 mg, 0.800 mmol, 4.00 equiv), ligand (0.0600 mmol, 0.300 equiv) and Selectfluor (213 mg, 0.600 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (0.800 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) and MeCN (2.80 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (100 μ L, 0.814 mmol) was added. The yield of dodecyl trifluoromethyl ether (**3a**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). Yields are reported in Table S3.

Table S3: Effect of ligands on the reaction

Ligand 0.30 equiv	Yield [%] (¹⁹ F NMR)	Ligand 0.30 equiv	Yield [%] (¹⁹ F NMR)
no	10	$\left(\sum_{N} + \sum_{N}^{O} \right)$	8
	45		60
	8	^t Bu	56
Br	8		58
$\stackrel{Ph}{\swarrow}_{N} \stackrel{Ph}{\longrightarrow}_{N} \stackrel{Ph}{\longrightarrow}$	52	'Bu	6
Me Me Me	61		2

7

Effect of solvents on the reaction

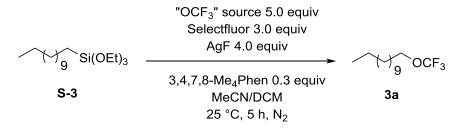
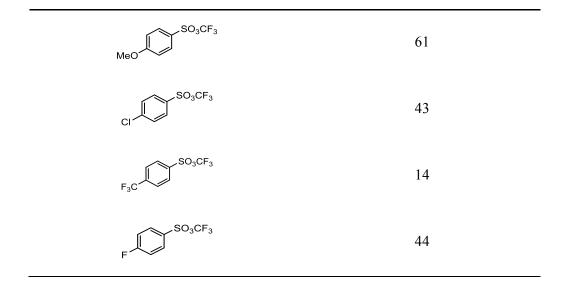

In a glovebox, to a mixture of AgF (102 mg, 0.800 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv) and Selectfluor (213 mg, 0.600 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added solvent (3.6 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv) and dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) (When using MeCN/co-solvent as the solvent, the procedure was as follows: In a glovebox, to a mixture of AgF (102 mg, 0.800 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv) and oxidant (0.600 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added co-solvent (0.8 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) and MeCN (2.8 mL)). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (100 μ L, 0.814 mmol) was added. The yield of dodecyl trifluoromethyl ether (**3a**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). Yields are reported in Table S4.

Table S4: Effect of solvents on the reaction			
Yield [%] (¹⁹ F NMR)	Solvent (MeCN/co-solvent = 2.8 mL/0.8 mL)	Yield [%] (¹⁹ F NMR)	
56	MeCN/DCM	61	
0	MeCN/EA	60	
0	MeCN/DCE	58	
0	MeCN/DMC	58	
0	MeCN/1,4-dioxane	56	
0	MeCN/THF	53	
0	MeCN/DMA	0	
0	MeCN/DMSO	0	
	Yield [%] (¹⁹ F NMR) 56 0 0 0 0 0 0 0 0 0 0	Yield [%] (^{19}F NMR)Solvent (MeCN/co-solvent = 2.8 mL/0.8 mL)56MeCN/DCM0MeCN/EA0MeCN/DCE0MeCN/DMC0MeCN/1,4-dioxane0MeCN/THF0MeCN/DMA	

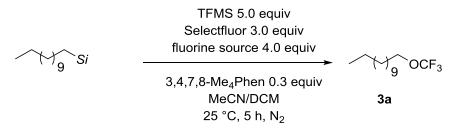
Table S4: Effect of solvents on the reaction


DMSO	0	MeCN/Et ₂ O	56
Et ₂ O	0	MeCN/HMPA	0
HMPA	0	MeCN/toluene	61
toluene	0		

Effect of "OCF₃" sources on the reaction

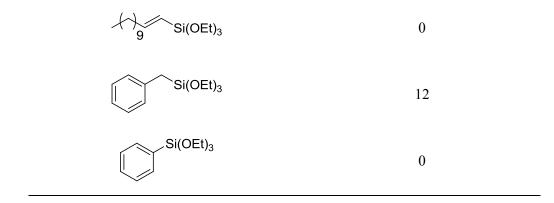
In a glovebox, to a mixture of AgF (102 mg, 0.800 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv) and Selectfluor (213 mg, 0.600 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (0.800 mL), "OCF₃" source (1.00 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) and MeCN (2.80 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (100 μ L, 0.814 mmol) was added. The yield of dodecyl trifluoromethyl ether (**3a**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). Yields are reported in Table S5.

Table S5: Effect of "OCF ₃ "	sources on the reaction
"OCF ₃ " sources	Yield [%] (¹⁹ F NMR)
SO ₃ CF ₃	61
SO ₃ CF ₃	37
Me SO ₃ CF ₃	61
¹ Bu SO ₃ CF ₃	61


Effect of atmospheres on the reaction

In different atmosphere, to a mixture of AgF (102 mg, 0.800 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv) and Selectfluor (213 mg, 0.600 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (0.800 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) and MeCN (2.80 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (100 μ L, 0.814 mmol) was added. The yield of dodecyl trifluoromethyl ether (**3a**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). Yields are reported in Table S6.

Table S6: Effect of atmosp	pheres on the reaction
Atmosphere	Yield [%] (¹⁹ F NMR)
N ₂ (glovebox)	61
O_2 (balloon)	29
air	43


Effect of silanes on the reaction

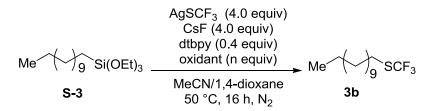

In a glovebox, to a mixture of AgF (102 mg, 0.800 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv) and Selectfluor (213 mg, 0.600 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (0.800 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv), silane (0.200 mmol, 1.00 equiv) and MeCN (2.80 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (100 μ L, 0.814 mmol) was added. The yield of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). Yields are reported in Table S7.

Table S7: Effect of silanes on the reaction Viold 1%1			
Silanes	Yield [%] (¹⁹ F NMR)		
3 Si(OEt) ₃	61	_	
∽(∽) ₉ Si(OMe) ₃	13		
Si(O ⁱ Pr) ₃	49		
∽(∽) Si(OMe)₂Me	36		
SiEt ₃	0		
SiCl ₃	0		
∽(→)SiMe₃	0		

Table S7: Effect of silanes on the reaction

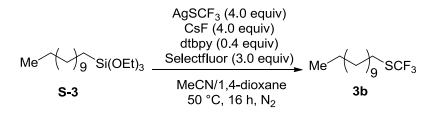
Optimization of the reaction condition for the trifluoromethylthiolation Effect of oxidants on the reaction

In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (16.6 mg, 0.0500 mmol, 1.00 equiv) in 1.00 mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence CsF (30.4 mg, 0.200 mmol, 4.00 equiv), oxidant, dtbpy (5.4 mg, 0.0200 mmol, 0.400 equiv) and AgSCF₃ (41.8 mg, 0.200 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, benzotrifluoride (25.0 uL, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (**3b**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S8.

Table S8: Effect of oxidants on the reaction			
Oxidant	Yield [%] (¹⁹ F NMR)	Oxidant	Yield [%] (¹⁹ F NMR)
Selectfluor (2.0 equiv)	42	NaIO ₄ (3.0 equiv)	0
Selectfluor (3.0 equiv)	78	PhI(OAc) ₂ (3.0 equiv)	12
Selectfluor (4.0 equiv)	28	Oxone (3.0 equiv)	0
Selectfluor(OTf) (3.0 equiv)	66	(PhCO ₂) ₂ (3.0 equiv)	0
Selectfluor(PF ₆) (3.0 equiv)	64	$K_2S_2O_8$ (3.0 equiv)	0
Selectfluor(II) (3.0 equiv)	63	BQ (3.0 equiv)	0

T-1.1. CO. Eff. . . . f

Effect of solvents on the reaction

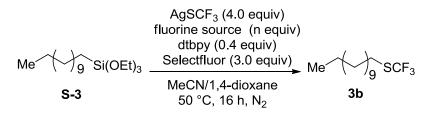

$$Me \underbrace{\begin{pmatrix} AgSCF_{3} (4.0 \text{ equiv}) \\ CsF (4.0 \text{ equiv}) \\ dtbpy (0.4 \text{ equiv}) \\ Selectfluor (3.0 \text{ equiv}) \\ Selectfluor (3.0 \text{ equiv}) \\ Solvent \\ 50 ^{\circ}C, 16 \text{ h}, N_{2} \\ \end{bmatrix} Me \underbrace{\begin{pmatrix} AgSCF_{3} \\ Berry \\ Berry \\ Selectfluor \\ Solvent \\ Sberry \\ Sber$$

In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (16.6 mg, 0.0500 mmol, 1.00 equiv) in 1.00 mL solvent at room temperature were added in sequence CsF (30.4 mg, 0.200 mmol, 4.00 equiv), Selectfluor (53.1 mg, 0.150 mmol, 3.00 equiv), dtbpy (5.4 mg, 0.0200 mmol, 0.400 equiv) and AgSCF₃ (41.8 mg, 0.200 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 uL, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (3b) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S9.

Solvent (0.05 M)	Table S9: Effect of s Yield [%] (¹⁹ F NMR)	Solvent (0.05 M)	Yield [%] (¹⁹ F NMR)
MeCN	62	DMF	19
1,4-dioxane	41	DME	13
DCE	0	MeCN/THF	0
EtOAc	53	MeCN/1,4-dioxane (1:1)	80
THF	0	EtOAc/1,4-dioxane (1:1)	59
toluene	19	DCE/1,4-dioxane (1:1)	37

.1 . •

Effect of reaction concentration on the reaction

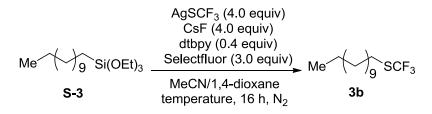


In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (16.6 mg, 0.0500 mmol, 1.00 equiv) in n mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence CsF (30.4 mg, 0.200 mmol, 4.00 equiv), Selectfluor (53.1 mg, 0.150 mmol, 3.00 equiv), dtbpy (5.4 mg, 0.0200 mmol, 0.400 equiv) and AgSCF₃ (41.8 mg, 0.200 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 *u*L, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (3b) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S10.

Concentration (M)	Yield [%] (¹⁹ F NMR)
0.25	72
0.125	74
0.0625	75
0.05	80

Table S10: Effect of reaction concentration on the reaction

Effect of fluorine sources on the reaction



In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (16.6 mg, 0.0500 mmol, 1.00 equiv) in 1.00 mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence fluorine source (0.200 mmol, 4.00 equiv), Selectfluor (53.1 mg, 0.150 mmol, 3.00 equiv), dtbpy (5.4 mg, 0.0200 mmol, 0.400 equiv) and AgSCF₃ (41.8 mg, 0.200 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 *u*L, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (**3b**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S11.

Table S11: Effect of fluorine sources on the reaction		
Fluorine source	Yield [%] (¹⁹ F NMR)	
CsF (F ⁻ 4.0 equiv)	80	
CsF (F ⁻ 6.0 equiv)	70	
CsF (F ⁻ 2.0 equiv)	34	
KHF_2 (F ⁻ 4.0 equiv)	6	
LiF (F ⁻ 4.0 equiv)	6	

NaF (F ⁻ 4.0 equiv)	8
KF (F ⁻ 4.0 equiv)	69
RbF (F ⁻ 4.0 equiv)	5
AgF (F ⁻ 4.0 equiv)	52
FeF_3 (F ⁻ 4.0 equiv)	0
SbF_3 (F ⁻ 4.0 equiv)	0
no	0

Effect of temperatures on the reaction

In a glovebox, to a solution of dodecyltriethoxysilane (16.6 mg, 0.0500 mmol, 1.00 equiv) in 1.00 mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence CsF (30.4 mg, 0.200 mmol, 4.00 equiv), Selectfluor (53.1 mg, 0.150 mmol, 3.00 equiv), dtbpy (5.4 mg, 0.0200 mmol, 0.400 equiv) and AgSCF₃ (41.8 mg, 0.200 mmol, 4.00 equiv). After stirring for 16.0 h at different temperatures, (trifluoromethyl)benzene (25.0 *u*L, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (**3b**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S12.

Table S12: Effect of temperatures on the reaction	
Temperature	Yield [%]
	(¹⁹ F NMR)
0 °C	63
25 °C	74
50 °C	78
75 °C	60
100 °C	44

Table S12: Effect of temperatures on the reaction

Effect of "SCF₃" sources on the reaction

$$\begin{array}{c} & SCF_3 \text{ source (n equiv)} \\ & CsF (4.0 equiv) \\ & dtbpy (0.4 equiv) \\ & Selectfluor (3.0 equiv) \\ \hline & S-3 \end{array} \xrightarrow{} Me \xrightarrow{} Me \xrightarrow{} 9SCF_3 \\ & MeCN/1,4-dioxane \\ & 50 \ ^\circ C, \ 16 \ h, \ N_2 \end{array}$$

In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (16.6 mg, 0.0500 mmol, 1.00 equiv) in 1.00 mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence CsF (30.4 mg, 0.200 mmol, 4.00 equiv), Selectfluor (53.1 mg, 0.150 mmol, 3.00 equiv), dtbpy (5.4 mg, 0.0200 mmol, 0.400 equiv) and "SCF₃ source". After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 *u*L, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (**3b**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S13.

SCF ₃ source	additive	Yield [%] (¹⁹ F NMR)
AgSCF ₃ (4.0 equiv)	-	77
AgSCF ₃ (2.0 equiv)	-	32
AgSCF ₃ (6.0 equiv)	-	45
AgSCF ₃ (4.0 equiv)	TBAI (4.0 equiv)	0
[<i>n</i> -Bu ₄ N][SCF ₃] (4.0 equiv)	-	0
[<i>n</i> -Bu ₄ N][SCF ₃] (4.0 equiv)	AgOTf (4.0 equiv)	0
CsSCF ₃ (4.0 equiv)	-	0
CsSCF ₃ (4.0 equiv)	AgOTf (4.0 equiv)	0
CuSCF ₃ (4.0 equiv)	-	32

Table S13: Effect of SCF₃ sources on the reaction

Effect of ligands on the reaction

$$Me \xrightarrow{} 9 \text{Si(OEt)}_{3} \underbrace{\begin{array}{c} \text{AgSCF}_{3} (4.0 \text{ equiv}) \\ \text{CsF} (4.0 \text{ equiv}) \\ \text{ligand } (0.4 \text{ equiv}) \\ \text{Selectfluor } (3.0 \text{ equiv}) \\ \hline \text{MeCN/1,4-dioxane} \\ 50 ^{\circ}\text{C}, 16 \text{ h}, \text{N}_{2} \\ \end{array}} Me \xrightarrow{} 3b$$

In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (16.6 mg, 0.0500 mmol, 1.00 equiv) in 1.00 mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence CsF (30.4 mg, 0.200 mmol, 4.00 equiv), Selectfluor (53.1 mg, 0.150 mmol, 3.00 equiv), ligand (0.0200 mmol, 0.400 equiv) and AgSCF₃ (41.8 mg, 0.200 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 *u*L, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (**3b**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S14.

Yield [%] Yield [%] ligand ligand $(^{19}F NMR)$ $(^{19}F NMR)$ ^tBu ^tBu 68 78 60 40 OMe 50 63 64 58

Me

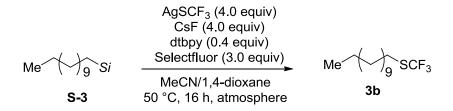
74

Me

Table S14: Effect of ligands on the reaction

no

23


Effect of atmospheres on the reaction

$$\begin{array}{c} \text{AgSCF}_{3} (4.0 \text{ equiv}) \\ \text{CsF} (4.0 \text{ equiv}) \\ \text{dtbpy} (0.4 \text{ equiv}) \\ \text{Me} ()_{9} \text{Si}(\text{OEt})_{3} \underbrace{\begin{array}{c} \text{Selectfluor} (3.0 \text{ equiv}) \\ \text{MeCN/1,4-dioxane} \\ 50 \ ^{\circ}\text{C}, 16 \text{ h, atmosphere} \end{array}} \qquad \begin{array}{c} \text{Me} ()_{9} \text{SCF}_{3} \\ \text{3b} \end{array}$$

In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (16.6 mg, 0.0500 mmol, 1.00 equiv) in 1.00 mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence CsF (30.4 mg, 0.200 mmol, 4.00 equiv), Selectfluor (53.1 mg 0.150 mmol, 3.00 equiv), dtbpy (5.4 mg, 0.0200 mmol, 0.400 equiv) and AgSCF₃ (41.8 mg, 0.200 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 *u*L, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (**3b**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S15.

Table S15: Effect of atmospheres on the reaction		
Atmosphere	Yield [%]	
	(¹⁹ F NMR)	
N ₂ (glovebox)	80	
O ₂ (balloon)	0	
air	64	

Effect of different silanes on the reaction

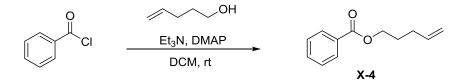
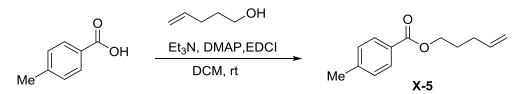

In a glovebox, to a solution of silane (0.0500 mmol, 1.00 equiv) in 1.00 mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence CsF (30.4 mg, 0.200 mmol, 4.00 equiv), Selectfluor (53.1 mg, 0.150 mmol, 3.00 equiv), dtbpy (5.4 mg, 0.0200 mmol, 0.400 equiv) and AgSCF₃ (41.8 mg, 0.200 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 *u*L, 0.203 mmol) was added to the reaction mixture. The yield of dodecyl(trifluoromethyl)sulfane (**3b**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). Yields are reported in Table S16.

Table S16: Effect of different silanes on the reaction

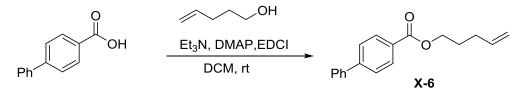
Silanes	Yield [%] (¹⁹ F NMR)
9 Si(OEt) ₃	80
Si(OMe) ₃	67
Si(O ⁱ Pr) ₃	38
∽(→)_Si(OMe)₂Me	0
SiEt ₃	0
SiCl ₃	0

Experimental Procedures and Compound Characterization


Pent-4-en-1-yl benzoate (X-4)

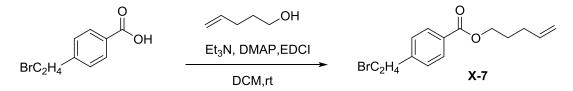
To a solution of pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (2.42 g, 24.0 mmol, 1.20 equiv) in CH₂Cl₂ (50.0 mL) at 0 °C was added benzoyl chloride (2.80 g, 20.0 mmol, 1.00 equiv). The reaction mixture was warmed to room temperature and stirred for 5 h before quenching with H₂O (10.0 mL) and extracting 3 times with CH₂Cl₂ (20.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 3.70 g pent-4-en-1-yl benzoate (X-4) as a colorless liquid (97% yield).

 R_f = 0.56 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.04 (m, 2H), 7.61 – 7.52 (m, 1H), 7.48 – 7.41 (m, 2H), 5.91 – 5.80 (m, 1H), 5.10 – 5.00 (m, 2H), 4.34 (t, *J* = 6.6 Hz, 2H), 2.26 – 2.19 (m, 2H), 1.94 – 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 137.6, 133.0, 130.6, 129.7, 128.5, 115.5, 64.5, 30.3, 28.1. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₅O₂ [M + H]⁺, 191.1072. Found, 191.1068. IR (neat): v (cm⁻¹): 3074, 2956, 2849, 1721, 1644, 1608, 1452, 1314, 1273, 1113, 1070, 1026, 914, 866, 711.


Pent-4-en-1-yl 4-methylbenzoate (X-5)

To a solution of 4-methylbenzoic acid (2.72 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol, 2.25 equiv) in CH₂Cl₂ (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 3.86 g pent-4-en-1-yl 4-methylbenzoate (X-5) as a colorless liquid (94% yield).

 $R_f = 0.35$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 5.90 – 5.80 (m, 1H), 5.10 – 5.00 (m, 2H), 4.32 (t, J = 6.6 Hz, 2H), 2.41 (s, 3H), 2.26 – 2.18 (m, 2H), 1.93 – 1.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 143.6, 137.7, 129.7, 129.2, 127.8, 115.5, 64.3, 30.3, 28.1, 21.8. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₇O₂ [M + H]⁺, 205.1229. Found, 205.1222. IR (neat): v (cm⁻¹): 3039, 2923, 2866, 1718, 1645, 1612, 1455, 1386, 1273, 1177, 1107, 912, 804, 752.


Pent-4-en-1-yl 4-phenylbenzoate (X-6)

To a solution of 4-phenylbenzoic acid (3.96 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol, 2.25 equiv) in CH₂Cl₂ (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 3.74 g pent-4-en-1-yl 4-phenylbenzoate (**X-6**) as a colorless liquid (70% yield).

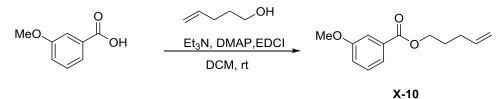
 $R_f = 0.50$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.10 (m, 2H), 7.71 – 7.66 (m, 2H), 7.65 – 7.62 (m, 2H), 7.50 – 7.45 (m, 2H), 7.42 – 7.38 (m, 1H), 5.93 – 5.83 (m, 1H), 5.13 – 5.07 (m, 1H), 5.06 – 5.02 (m, 1H), 4.37 (t, *J* = 6.6 Hz, 2H), 2.31 – 2.22 (m, 2H), 1.94 – 1.87 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 145.7, 140.1, 137.6, 130.2, 129.3, 129.0, 128.2, 127.4, 127.2, 115.5, 64.5, 30.3, 28.1. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₁₉O₂ [M + H]⁺, 267.1385. Found, 267.1383. IR (neat): v (cm⁻¹): 3061, 2956, 2849, 1716, 1641, 1608, 1486, 1404, 1275, 1178, 1111, 1107, 914, 858, 747.

Pent-4-en-1-yl 4-(2-bromoethyl)benzoate (X-7)

To a solution of 4-(2-bromoethyl)benzoic acid (4.60 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol, 2.25 equiv) in CH₂Cl₂ (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 3.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 3.79 g pent-4-en-1-yl 4-(2-bromoethyl)benzoate (X-7) as a colorless liquid (64% yield).

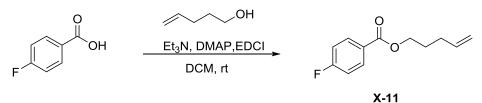
 $R_f = 0.45$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 6.7 Hz, 2H), 5.96 – 5.63 (m, 1H), 5.11 – 5.00 (m, 2H), 4.33 (t, J = 6.5 Hz, 2H), 3.59 (t, J = 6.5 Hz, 2H), 3.22 (t, J = 6.7 Hz, 2H), 2.26 – 2.19 (m, 2H), 1.93 – 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 144.1, 137.6, 130.0, 129.2, 128.8, 115.5, 64.4, 39.2, 32.3, 30.3, 28.0. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₈BrO₂ [M + H]⁺, 297.0490. Found, 297.0481. IR (neat): v (cm⁻¹): 3075, 2957, 2849, 1716, 1644, 1612, 1455, 1416, 1275, 1178, 1112, 1019, 914, 765.

Pent-4-en-1-yl 4-(tert-butyl)benzoate (X-9)



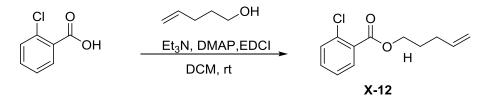
To a solution of 4-(tert-butyl)benzoic acid (3.56 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (244 mg, 2.00 mmol, 0.100 equiv) and Et₃N (6.07 g, 60.0 mmol, 3.00 equiv) in CH_2Cl_2 (20.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (5.75 g, 30.0 mmol, 1.50

equiv) and pent-4-en-1-ol (2.58 g, 30.0 mmol, 1.50 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H_2O (20.0 mL) and extracting 3 times with CH_2Cl_2 (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 3.84 g pent-4-en-1-yl 4-(*tert*-butyl)benzoate (**X-9**) as a colorless liquid (78% yield).


 $R_f = 0.43$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.98 (m, 2H), 7.47 – 7.45 (m, 2H), 5.90 – 5.80 (m, 1H), 5.11 – 5.00 (m, 2H), 4.33 (t, *J* = 6.6 Hz, 2H), 2.25 – 2.20 (m, 2H), 1.91 – 1.84 (m, 2H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 156.4, 137.5, 129.5, 127.7, 125.3, 115.4, 64.1, 35.1, 31.2, 30.2, 28.0. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₆H₂₃O₂ [M + H]⁺, 247.1696. Found, 247.1698. IR (neat): v (cm⁻¹): 3077, 2963, 2869, 1720, 1645, 1464, 1275, 1188, 1102, 1017, 913, 854, 775.

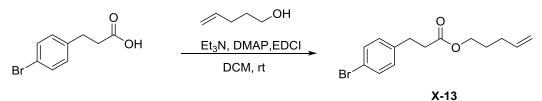
Pent-4-en-1-yl 3-methoxybenzoate (X-10)

To a solution of 3-methoxybenzoic acid (3.56 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (244 mg, 2.00 mmol, 0.100 equiv) and Et₃N (6.07 g, 60.0 mmol, 3.00 equiv) in CH₂Cl₂ (20.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (5.75 g, 30.0 mmol, 1.50 equiv) and pent-4-en-1-ol (2.58 g, 30.0 mmol, 1.50 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H₂O (20.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 3.70 g pent-4-en-1-yl 3-methoxybenzoate (X-10) as a colorless liquid (84% yield).


 $R_f = 0.48$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.63 (m, 1H), 7.57 – 7.56 (m, 1H), 7.37 – 7.33 (m, 1H), 7.11 – 7.08 (m, 1H), 5.90 – 5.80 (m, 1H), 5.10 – 5.00 (m, 2H), 4.33 (t, *J* = 6.6 Hz, 2H), 3.85 (s, 3H), 2.25 – 2.19 (m, 2H), 1.91 – 1.84 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 159.6, 137.5, 131.8, 129.4, 122.0, 119.3, 115.5, 114.2, 64.5, 55.5, 30.3, 28.0. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₆NaO₃ [M + Na]⁺, 243.0997. Found, 243.0989. IR (neat): v (cm⁻¹): 3077, 2958, 2837, 1719, 1645, 1606, 1587, 1488, 1453, 1432, 1277, 1228, 1104, 1044, 916, 754. Pent-4-en-1-yl 4-fluorobenzoate (X-11)

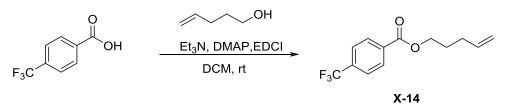
To a solution of 4-fluorobenzoic acid (2.80 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (244 mg, 2.00 mmol, 0.100 equiv) and Et₃N (6.07 g, 60.0 mmol, 3.00 equiv) in CH₂Cl₂ (20.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (5.75 g, 30.0 mmol, 1.50 equiv) and pent-4-en-1-ol (2.58 g, 30.0 mmol, 1.50 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H₂O (20.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 3.69 g pent-4-en-1-yl 4-fluorobenzoate (X-11) as a colorless liquid (89% yield).

 $R_f = 0.38$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.04 (m, 2H), 7.12 – 7.08 (m, 2H), 5.90 – 5.79 (m, 1H), 5.09 – 5.00 (m, 2H), 4.33 (t, *J* = 6.6 Hz, 2H), 2.24 – 2.19 (m, 2H), 1.90 – 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8 (d, *J* = 253.5 Hz), 165.6, 137.5, 132.1 (d, *J* = 9.2 Hz), 115.6, 115.4 (d, *J* = 5.5 Hz), 64.6, 30.2, 28.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.90. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₄FO₂ [M + H]⁺, 209.0978. Found, 209.0975. IR (neat): v (cm⁻¹): 3079, 2956, 2850, 1717, 1644, 1507, 1433, 1274, 1238, 1153, 1115, 1090, 915, 854, 767.


Pent-4-en-1-yl 2-chlorobenzoate (X-12)

To a solution of 2-chlorobenzoic acid (1.57 g, 10.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (122 mg, 1.00 mmol, 0.100 equiv) and Et₃N (3.04 g, 30.0 mmol, 3.00 equiv) in CH₂Cl₂ (10.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (2.88 g, 15.0 mmol, 1.50 equiv) and pent-4-en-1-ol (1.29 g, 15.0 mmol, 1.50 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H₂O (10.0 mL) and extracting 3 times with CH₂Cl₂ (15.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 1.42 g pent-4-en-1-yl 2-chlorobenzoate (**X-12**) as a colorless liquid 63% yield).

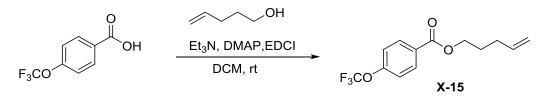
 $R_f = 0.36$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.80 (m, 2H), 7.45 - 7.38 (m, 2H), 7.32 - 7.28 (m, 1H), 5.88 - 5.78 (m, 1H), 5.09 - 5.00 (m, 2H), 4.35 (t, J = 6.5 Hz, 2H), 2.22 (q, J = 7.1 Hz, 2H), 1.90 - 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 137.4, 133.7, 132.5, 131.4, 131.1, 130.5, 126.6, 115.5, 65.0, 30.2, 27.9. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₄ClO₂ [M + H]⁺, 225.0682. Found, 225.0674. IR (neat): υ (cm⁻¹): 3077, 2957, 2850, 1731, 1645, 1593, 1471, 1436, 1292, 1251, 1120, 1050, 914, 747.


Pent-4-en-1-yl 3-(4-bromophenyl)propanoate (X-13)

To a solution of 3-(4-bromophenyl)propanoic acid (4.58 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (244 mg, 2.00 mmol, 0.100 equiv) and Et₃N (6.07 g, 60.0 mmol, 3.00 equiv) in CH₂Cl₂ (20.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (5.75 g, 30.0 mmol, 1.50 equiv) and pent-4-en-1-ol (2.58 g, 30.0 mmol, 1.50 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H₂O (20.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 2.75 g pent-4-en-1-yl 3-(4-bromophenyl)propanoate (**X-13**) as a colorless liquid (46% yield).

 $R_f = 0.45$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.08 – 7.06 (m, 2H), 5.83 – 5.72 (m, 1H), 5.04 – 4.97 (m, 2H), 4.07 (t, *J* = 6.6 Hz, 2H), 2.90 (t, *J* =7.7 Hz, 2H), 2.60 (t, *J* = 7.5 Hz, 2H), 2.10 – 2.04 (m, 2H), 1.72 – 1.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 139.5, 137.5, 131.6, 130.2, 120.1, 115.4, 64.0, 35.7, 30.4, 30.1, 27.8. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₈BrO₂ [M + H]⁺, 297.0490. Found, 297.0479. IR (neat): v (cm⁻¹): 3078, 2954, 2868, 1733, 1641, 1488, 1361, 1292, 1255, 1175, 1072, 1011, 914, 814.

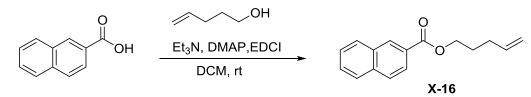
Pent-4-en-1-yl 4-trifluoromethylbenzoate (X-14)



To a solution of 4-trifluoromethylbenzoic acid (3.80 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (244 mg, 2.00 mmol, 0.100 equiv) and Et₃N (6.07 g, 60.0 mmol, 3.00 equiv) in CH₂Cl₂ (20.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (5.75 g, 30.0 mmol, 1.50 equiv) and pent-4-en-1-ol (2.58 g, 30.0 mmol, 1.50 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H₂O (20.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting

with PE/EtOAc 50:1 (v/v) to afford 4.67 g pent-4-en-1-yl 4-trifluoromethylbenzoate (X-14) as a colorless liquid (90% yield).

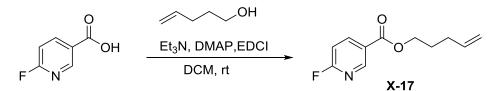
 $R_f = 0.21$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.2 Hz, 2H), 5.89 – 5.79 (m, 1H), 5.09 – 5.00 (m, 2H), 4.37 (t, J = 6.6 Hz, 2H), 2.25 – 2.19 (m, 2H), 1.92 – 1.85 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 137.4, 134.5 (q, J = 32.3 Hz), 133.8, 130.1, 125.5 (q, J = 3.7 Hz), 123.8 (q, J = 273.7 Hz), 115.6, 65.0, 30.2, 27.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.03. **X-14** is a known compound and spectral data match the reported literature values ^[3]. IR (neat): v (cm⁻¹): 3081, 2959, 2851, 1727, 1642, 1515, 1412, 1326, 1276, 1169, 1131, 1101, 1018, 916, 862, 775.


Pent-4-en-1-yl 4-(trifluoromethoxy)benzoate (X-15)

To a solution of 4-(trifluoromethoxy)benzoic acid (4.12 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol, 2.25 equiv) in CH₂Cl₂ (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 6.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 4.29 g pent-4-en-1-yl 4-(trifluoromethoxy)benzoate (**X-15**) as a colorless liquid (78% yield).

 $R_f = 0.59$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 5.90 – 5.80 (m, 1H), 5.10 – 5.00 (m, 2H), 4.35 (t, J = 6.6 Hz, 2H), 2.25 – 2.19 (m, 2H), 1.95 – 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 152.7, 137.5, 131.7, 129.0, 120.4 (q, J = 258.4 Hz), 120.4, 115.6, 64.8, 30.3, 28.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -53.36. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₈H₄F₃O₂ [M – C₅H₉O]⁺, 189.0163. Found, 189.0165. IR (neat): ν (cm⁻¹): 3061, 2959, 2853, 1724, 1645, 1608, 1474, 1258, 1220, 1167, 1113, 1018, 920, 863, 769.

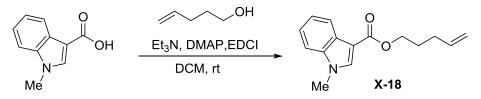
Pent-4-en-1-yl 2-naphthoate (X-16)



To a solution of 2-naphthoic acid (3.44 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol,

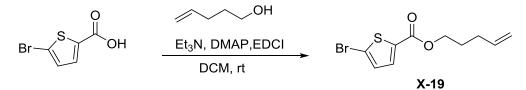
2.25 equiv) in CH_2Cl_2 (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 3.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH_2Cl_2 (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 3.19 g pent-4-en-1-yl 2-naphthoate (**X-16**) as a colorless liquid (66% yield).

 R_f = 0.35 (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.09 (dd, *J* = 8.6, 1.7 Hz, 2H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.89 – 7.85 (m, 2H), 7.60 – 5.51 (m, 2H), 5.95 – 5.85 (m, 1H), 5.15 – 5.04 (m, 2H), 4.41 (t, *J* = 6.6 Hz, 2H), 2.36 – 2.28 (m, 2H), 2.00 – 1.89 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 137.5, 135.5, 132.5, 131.0, 129.4, 128.2, 128.2, 127.8, 127.7, 126.7, 125.3, 115.5, 64.6, 30.3, 28.0. HRMS-ESI (m/z): Calcd for C₁₆H₁₆NaO₂ [M + Na]⁺, 263.1048. Found, 263.1048. IR (neat): ν (cm⁻¹): 3042, 2958, 2888, 1713, 1641, 1599, 1462, 1390, 1353, 1284, 1227, 1195, 1129, 1096, 986, 913, 865, 778.


Pent-4-en-1-yl 6-fluoronicotinate (X-17)

To a solution of 6-fluoronicotinic acid (2.82 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol, 2.25 equiv) in CH₂Cl₂ (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 3.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 10:1 (v/v) to afford 2.70 g pent-4-en-1-yl 6-fluoronicotinate (**X-17**) as a colorless liquid (65% yield).

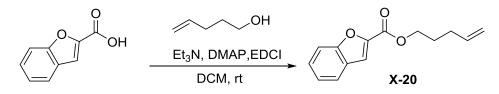
 $R_f = 0.35$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, J = 2.4 Hz, 1H), 8.41 – 8.37 (m, 1H), 7.00 (dd, J = 8.5, 2.8 Hz, 1H), 5.87 – 5.77 (m, 1H), 5.08 – 4.98 (m, 2H), 4.35 (t, J = 6.6 Hz, 2H), 2.23 – 2.17 (m, 2H), 1.93 – 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9 (d, J = 245.5 Hz), 164.3, 150.4 (d, J = 16.6 Hz), 142.7 (d, J = 9.3 Hz), 137.3, 124.8 (d, J = 4.4 Hz), 115.7, 109.6 (d, J = 37.5 Hz), 66.1, 30.2, 27.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.53. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₇H₁₃FNO₂ [M + H]⁺, 210.0930. Found, 210.0930. IR (neat): v (cm⁻¹): 3078, 2942, 2850, 1726, 1642, 1595, 1483, 1380, 1269, 1115, 1020, 915, 844, 777.


Pent-4-en-1-yl 1-methyl-1H-indole-3-carboxylate (X-18)

To a solution of 1-methyl-1H-indole-3-carboxylic acid (3.50 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol, 2.25 equiv) in CH₂Cl₂ (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 3.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 6:1 (v/v) to afford 3.26 g pent-4-en-1-yl 1-methyl-1H-indole-3-carboxylate (**X-18**) as a colorless liquid (67% yield).

 $R_f = 0.08$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.15 (m, 1H), 7.78 (s, 1H), 7.38 – 7.27 (m, 3H), 5.94 – 5.84 (m, 1H), 5.13 – 5.02 (m, 2H), 4.36 (t, *J* = 6.6 Hz, 2H), 3.82 (s, 3H), 2.29 – 2.24 (m, 2H), 1.96 – 1.87 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 137.8, 137.3, 135.3, 126.7, 122.8, 121.9, 121.7, 115.3, 109.9, 107.2, 63.2, 33.5, 30.4, 28.3. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₈NO₂ [M + H]⁺, 244.1338. Found, 244.1332. IR (neat): v (cm⁻¹): 3056, 2941, 2848, 1696, 1640, 1536, 1467, 1400, 1372, 1268, 1223, 1152, 1103, 1013, 913, 774.

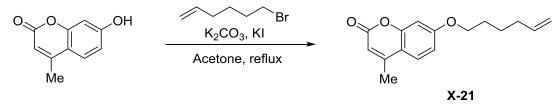
Pent-4-en-1-yl 5-bromothiophene-2-carboxylate (X-19)



To a solution of 5-bromothiophene-2-carboxylic acid (4.14 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol, 2.25 equiv) in CH₂Cl₂ (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 3.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 25:1 (v/v) to afford 4.70 g pent-4-en-1-yl 5-bromothiophene-2-carboxylate (**X-19**) as a colorless liquid (81% yield).

 $R_f = 0.54$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 4.0 Hz, 1H), 7.06 (d, J = 4.0 Hz, 1H), 5.87 – 5.76 (m, 1H), 5.09 – 5.00 (m, 2H),

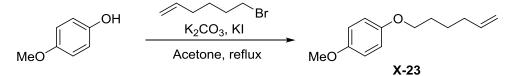
4.28 (t, J = 6.6 Hz, 2H), 2.22 – 2.14 (m, 2H), 1.90 – 1.78 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 137.4, 135.1, 133.7, 131.0, 120.2, 115.6, 64.9, 30.2, 27.9. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₀H₁₁BrO₂S [M]⁺, 273.9663. Found, 273.9666. IR (neat): υ (cm⁻¹): 3080, 2955, 2894, 1706, 1644, 1559, 1507, 1418, 1280, 1251, 1124, 1095, 915, 810, 745.


Pent-4-en-1-yl benzofuran-2-carboxylate (X-20)

To a solution of benzofuran-2-carboxylic acid (3.24 g, 20.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (4.55 g, 45.0 mmol, 2.25 equiv) in CH₂Cl₂ (50.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (7.66 g, 40.0 mmol, 2.00 equiv) and pent-4-en-1-ol (1.90 g, 22.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 3.0 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 3.19 g pent-4-en-1-yl benzofuran-2-carboxylate (**X-20**) as a colorless liquid (69% yield).

 $R_f = 0.48$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.67 (m, 1H), 7.60 (dd, J = 8.4, 0.7 Hz, 1H), 7.53 (d, J = 0.9 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.30 – 7.27 (m, 1H), 5.90 – 5.80 (m, 1H), 5.11 – 5.00 (m, 2H), 4.39 (t, J = 6.7 Hz, 2H), 2.28 – 2.19 (m, 2H), 1.95 – 1.85 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 155.8, 145.7, 137.4, 127.7, 127.1, 123.9, 122.9, 115.6, 113.9, 112.5, 65.0, 30.1, 27.9. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₅O₃ [M + H]⁺, 231.1021. Found, 231.1020. IR (neat): v (cm⁻¹): 3075, 2957, 1730, 1641, 1564, 1447, 1295, 1178, 1097, 915, 749.

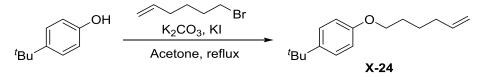
7-(Hex-5-en-1-yloxy)-4-methyl-2H-chromen-2-one (X-21)



Under N₂ atmosphere, to a solution of 7-hydroxy-4-methyl-2H-chromen-2-one (3.52 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K_2CO_3 (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and

concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 6:1 (v/v) to afford 4.60 g 7-(hex-5-en-1-yloxy)-4-methyl-2H-chromen-2-one (**X-21**) as a colorless liquid (89% yield).

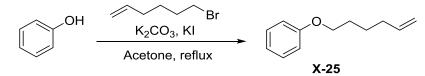
 $R_f = 0.59$ (hexanes/EtOAc 4:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 1H), 6.82 – 6.78 (m, 1H), 6.74 – 6.70 (m, 1H), 6.06 (s, 1H), 5.84 – 5.73 (m, 1H), 5.04 – 4.92 (m, 2H), 3.97 (t, *J* = 6.2 Hz, 2H), 2.34 (s, 3H), 2.14 – 2. 08 (m, 2H), 1.83 – 1.76 (m, 2H), 1.58 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.3, 155.2, 152.6, 138.3, 125.5, 114.9, 113.4, 112.6, 111.8, 101.3, 68.4, 33.4, 28.4, 25.2, 18.7. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₆H₁₉O₃ [M + H]⁺, 259.1334. Found, 259.1328. IR (neat): v (cm⁻¹): 3018, 2896, 2793, 1724, 1710, 1611, 1388, 1281, 1200, 1147, 1070, 992, 911, 847.


1-(Hex-5-en-1-yloxy)-4-methoxybenzene (X-23)

Under N₂ atmosphere, to a solution of 4-methoxyphenol (2.48 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 3.83 g 1-(hex-5-en-1-yloxy)-4-methoxybenzene (**X-23**) as a colorless liquid (93% yield). R_f = 0.49 (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ

6.89 – 6.77 (m, 4H), 5.88 – 5.78 (m, 1H), 5.06 – 4.96 (m, 2H), 3.92 (t, J = 6.5 Hz, 2H), 3.77 (s, 3H), 2.17 – 2.09 (m, 2H), 1.83 – 1.75 (m, 2H), 1.60 – 1.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 153.4, 138.7, 115.5, 114.8, 114.7, 68.5, 55.9, 33.6, 29.0, 25.5. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₈O₂ [M]⁺, 206.1307. Found, 206.1301. IR (neat): ν (cm⁻¹): 3078, 2937, 2834, 1640, 1616, 1508, 1469, 1231, 1106, 1041, 911, 744.

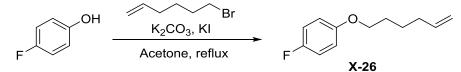
1-(Hex-5-en-1-yloxy)-4-(tert-butyl)benzene (X-24)



Under N₂ atmosphere, to a solution of 4-(*tert*-butyl)phenol (3.00 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes to

afford 4.24 g 1-(hex-5-en-1-yloxy)-4-(*tert*-butyl)benzene (X-24) as a colorless liquid (91% yield).

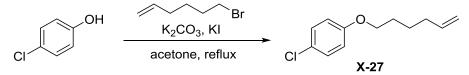
 $R_f = 0.53$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 6.88 – 6.81 (m, 2H), 5.90 – 5.79 (m, 1H), 5.07 – 4.97 (m, 2H), 3.96 (t, *J* = 6.5 Hz, 2H), 2.17 – 2.10 (m, 2H), 1.84 – 1.77 (m, 2H), 1.62 – 1.54 (m, 2H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 143.3, 138.7, 126.3, 114.8, 114.0, 67.8, 34.2, 33.6, 31.7, 29.0, 25.5. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₆H₂₄O [M]⁺, 232.1827. Found, 232.1827. IR (neat): ν (cm⁻¹): 3076, 2961, 2867, 1644, 1610, 1513, 1473, 1246, 1183, 1035, 909, 827.


(Hex-5-en-1-yloxy)benzene (X-25)

Under N₂ atmosphere, to a solution of phenol (1.88 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes to afford 3.13 g (hex-5-en-1-yloxy)benzene (**X-25**) as a colorless liquid (89% yield).

 $R_f = 0.53$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 6.98 – 6.88 (m, 3H), 5.90 – 5.80 (m, 1H), 5.08 – 4.97 (m, 2H), 3.98 (t, *J* = 6.5 Hz, 2H), 2.19 – 2.10 (m, 2H), 1.86 – 1.78 (m, 2H), 1.64 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 138.7, 129.5, 120.6, 114.9, 114.6, 67.7, 33.6, 28.9, 25.5. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂H₁₆O [M]⁺, 176.1201. Found, 176.1203. IR (neat): ν (cm⁻¹): 3047, 2965, 2881, 1640, 1600, 1495, 1469, 1300, 1244, 1171, 1036, 910, 752.

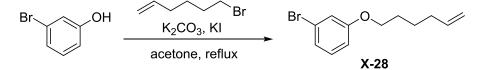
1-(Hex-5-en-1-yloxy)-4-fluorobenzene (X-26)



Under N₂ atmosphere, to a solution of 4-fluorophenol (2.24 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue

was purified by chromatography on silica gel, eluting with hexanes to afford 3.66 g 1-(hex-5-en-1-yloxy)-4-fluorobenzene (**X-26**) as a colorless liquid (94% yield).

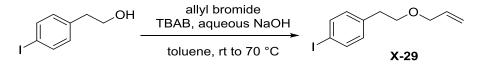
 $R_f = 0.54$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.02 – 6.92 (m, 2H), 6.86 – 6.79 (m, 2H), 5.88 – 5.78 (m, 1H), 5.07 – 4.96 (m, 2H), 3.92 (t, *J* = 6.5 Hz, 2H), 2.18 – 2.08 (m, 2H), 1.84 – 1.73 (m, 2H), 1.63 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (d, *J* = 237.7 Hz), 155.3 (d, *J* = 1.8 Hz), 138.6, 115.9 (d, *J* = 23.0 Hz), 115.5 (d, *J* = 8.0 Hz), 114.9, 68.5, 33.6, 28.9, 25.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -125.49. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂H₁₅FO [M]⁺, 194.1107. Found, 194.1105. IR (neat): v (cm⁻¹): 3078, 2938, 2866, 1640, 1506, 1473, 1292, 1247, 1219, 1096, 1032, 912, 827, 757.


1-(Hex-5-en-1-yloxy)-4-chlorobenzene (X-27)

Under N₂ atmosphere, to a solution of 4-chlorophenol (2.57 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes to afford 3.97 g 1-(hex-5-en-1-yloxy)-4-chlorobenzene (**X-27**) as a colorless liquid (94% yield).

 $R_f = 0.59$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 2H), 6.86 – 6.79 (m, 2H), 5.89 – 5.79 (m, 1H), 5.06 – 4.97 (m, 2H), 3.93 (t, *J* = 6.5 Hz, 2H), 2.18 – 2.09 (m, 2H), 1.83 – 1.76 (m, 2H), 1.63 – 1.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 138.6, 129.4, 125.4, 115.8, 114.9, 68.2, 33.5, 28.7, 25.4. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂H₁₅ClO [M]⁺, 210.0811. Found, 210.0812. IR (neat): υ (cm⁻¹): 3076, 2940, 2867, 1640, 1597, 1492, 1390, 1285, 1244, 1169, 1092, 1005, 911, 823.

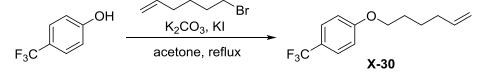
1-(Hex-5-en-1-yloxy)-3-bromobenzene(X-28)



Under N₂ atmosphere, to a solution of 3-bromophenol (3.46 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K_2CO_3 (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue

was purified by chromatography on silica gel, eluting with hexanes to afford 4.66 g 1-(hex-5-en-1-yloxy)-3-bromobenzene (**X-28**) as a colorless liquid (91% yield).

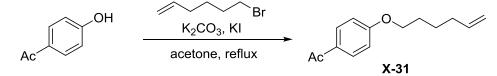
 $R_f = 0.63$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.11 (m, 1H), 7.08 – 7.05 (m, 2H), 6.87 – 6.81 (m, 1H), 5.89 – 5.77 (m, 1H), 5.08 – 4.96 (m, 2H), 3.94 (t, *J* = 6.4 Hz, 2H), 2.17 – 2.10 (m, 2H), 1.84 – 1.74 (m, 2H), 1.63 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 138.6, 130.6, 123.7, 122.9, 117.8, 115.0, 113.7, 68.1, 33.5, 28.7, 25.4. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂H₁₅BrO [M]⁺, 254.0306. Found, 254.0311. IR (neat): v (cm⁻¹): 3075, 2939, 2871, 1640, 1590, 1424, 1389, 1283, 1227, 1064, 992, 911, 862, 840, 764.


Allyl-(4-iodophenethyl)-ether (X-29)

Under air atmosphere, to a solution of 2-(4-iodophenyl)ethanol (4.96 g, 20.0 mmol, 1.00 equiv) in toluene (12.0 mL) at room temperature were added TBAB (300 mg, 0.931 mmol, 0.0465 equiv) and aqueous NaOH (50 weight%, 2.30 g, 28.8 mmol, 1.44 equiv). The reaction mixture was stirred for 30 min at room temperature. Allyl bromide (3.03 g, 25.0 mmol, 1.25 equiv) was added into the mixture and the reaction mixture was then heated at 70 °C for 10 h. After cooling to room temperature, the reaction mixture was diluted with water (20 mL) and extracting three times with EtOAc (40 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 4.40 g allyl-(4-iodophenethyl)-ether (**X-29**) as a colorless liquid (76% yield).

 $R_f = 0.46$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃, δ): 7.62 – 7.59 (m, 2H), 7.00 – 6.98 (m, 2H), 5.94 – 5.84 (m, 1H), 5.28 – 5.14 (m, 2H), 3.98 (dt, J = 5.5 Hz, 1.2 Hz, 2H), 3.62 (t, J = 6.9 Hz, 2H), 2.84 (t, J = 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, δ): 138.8, 137.5, 134.8, 131.1, 117.1, 91.5, 72.0, 70.8, 36.0. Mass Spectrometry: Calcd for HRMS-EI (m/z): Calcd for C₁₁H₁₃IO [M]⁺, 288.0011. Found, 288.0010. IR (neat): v (cm⁻¹): 3017, 2919, 2856, 1640, 1600, 1507, 1484, 1399, 1346, 1100, 1060, 1006, 995, 923, 807.

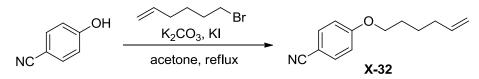
1-(Hex-5-en-1-yloxy)-4-(trifluoromethyl)benzene (X-30)



Under N₂ atmosphere, to a solution of 4-trifluoromethylphenol (3.26 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room

temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes to afford 4. 53 g 1-(hex-5-en-1-yloxy)-4-(trifluoromethyl)benzene (**X-30**) as a colorless liquid (93% yield).

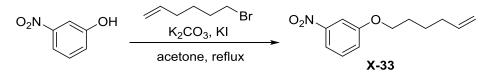
R_f = 0.44 (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃, δ): 7.54 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 5.89 – 5.79 (m, 1H), 5.08 – 4.98 (m, 2H), 4.00 (t, J = 6.4 Hz, 2H), 2.17 – 2.12 (m, 2H), 1.87 – 1.78 (m, 2H), 1.65 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, δ): 161.7, 138.5, 127.0 (q, J = 3.9 Hz), 124.6 (q, J = 272.0 Hz), 122.8 (q, J = 32.7 Hz), 115.0, 114.5, 68.1, 33.5, 28.7, 25.4. ¹⁹F NMR (376 MHz, CDCl₃, δ) -62.90. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₅F₃O [M]⁺, 244.1075. Found, 244.1073. IR (neat): ν (cm⁻¹): 3079, 2941, 2875, 1640, 1616, 1599, 1519, 1330, 1257, 1161, 1110, 1068, 995, 910, 835.


1-(4-(Hex-5-en-1-yloxy)phenyl)ethanone (X-31)

Under N₂ atmosphere, to a solution of 1-(4-hydroxyphenyl)ethanone (2.72 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 10:1 (v/v) to afford 4.21 g 1-(4-(hex-5-en-1-yloxy)phenyl)ethanone (**X-31**) as a colorless liquid (97% yield).

 $R_f = 0.24$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.88 (m, 2H), 6.94 – 6.86 (m, 2H), 5.87 – 5.76 (m, 1H), 5.06 – 4.94 (m, 2H), 4.01 (t, *J* = 6.5 Hz, 2H), 2.54 (s, 3H), 2.17 – 2.07 (m, 2H), 1.85 – 1.78 (m, 2H), 1.62 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 163.1, 138.4, 130.7, 130.2, 115.0, 114.2, 68.1, 33.5, 28.6, 26.4, 25.3. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₉O₂ [M + H]⁺, 219.1385. Found, 219.1383. IR (neat): v (cm⁻¹): 3075, 2940, 2871, 1678, 1640, 1601, 1509, 1358, 1256, 1171, 1021, 995, 834.

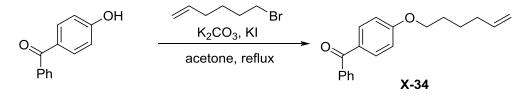
4-(Hex-5-en-1-yloxy)benzonitrile (X-32)



Under N₂ atmosphere, to a solution of 4-hydroxybenzonitrile (2.38 g, 20.0 mmol, 1.00 equiv)

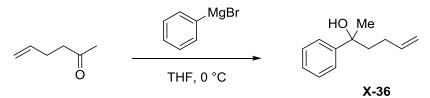
and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K_2CO_3 (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 10:1 (v/v) to afford 2.75 g 4-(hex-5-en-1-yloxy)benzonitrile (**X-32**) as a colorless liquid (86% yield).

 R_f = 0.36 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 6.94 – 6.91 (m, 2H), 5.86 – 5.78 (m, 1H), 5.06 – 4.96 (m, 2H), 4.00 (t, *J* = 6.4 Hz, 2H), 2.15 – 2.10 (m, 2H), 1.86 – 1.78 (m, 2H), 1.61 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 138.4, 134.1, 119.4, 115.3, 115.1, 103.7, 68.3, 33.4, 28.5, 25.3. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₆NO [M + H]⁺, 202.1232. Found, 202.1229. IR (neat): v (cm⁻¹): 3076, 2939, 2873, 2224, 1640, 1606, 1508, 1428, 1301, 1258, 1171, 1020, 997, 912, 835, 743, 703.

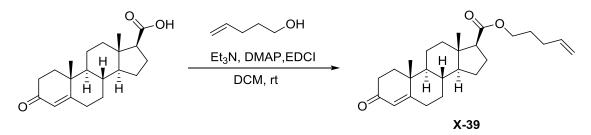

1-(Hex-5-en-1-yloxy)-3-nitrobenzene (X-33)

Under N₂ atmosphere, to a solution of 3-nitrophenol (2.80 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 4.03 g 1-(hex-5-en-1-yloxy)-3-nitrobenzene (**X-33**) as a yellow liquid (91% yield).

 $R_f = 0.48$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.78 (m, 1H), 7.70 (t, J = 2.3 Hz, 1H), 7.41 (t, J = 8.2 Hz, 1H), 7.22 – 7.19 (m, 1H), 5.87 – 5.77 (m, 1H), 5.06 – 4.96 (m, 2H), 4.03 (t, J = 6.4 Hz, 2H), 2.17 – 2.09 (m, 2H), 1.87 – 1.80 (m, 2H), 1.65 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 149.3, 138.4, 130.0, 121.8, 115.7, 115.1, 108.7, 68.6, 33.4, 28.5, 25.3. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂H₁₅NO₃ [M]⁺, 221.1052. Found, 221.1053. IR (neat): v (cm⁻¹): 3078, 2940, 2871, 1641, 1619, 1580, 1530, 1484, 1449, 1350, 1286, 1246, 1032, 995, 910, 812, 737.

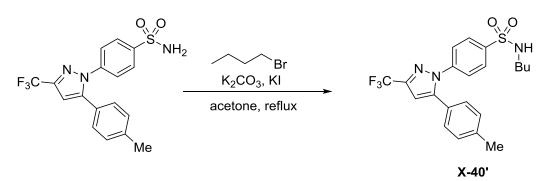

(4-(Hex-5-enyloxy)phenyl)(phenyl)methanone (X-34)

Under N₂ atmosphere, to a solution of (4-hydroxyphenyl)(phenyl)methanone (3.96 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 25:1 (v/v) to afford 5.04 g (4-(hex-5-enyloxy)phenyl)(phenyl)methanone (**X-34**) as a colorless liquid (90% yield).


 $R_f = 0.48$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.6 Hz, 2H), 7.71 (d, J = 7.6 Hz, 2H), 7.50 – 7.46 (m, 1H), 7.41 – 7.38 (m, 2H), 6.89 (d, J = 8.7 Hz, 2H), 5.83 – 5.73 (m, 1H), 5.03 – 4.94 (m, 2H), 3.96 (t, J = 6.4 Hz, 2H), 2.08 (q, J = 7.1 Hz, 2H), 1.80 – 1.73 (m, 2H), 1.57 – 1.43 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 195.0, 162.6, 138.1, 132.3, 131.6, 129.7, 129.5, 128.0, 114.7, 113.8, 67.8, 33.2, 28.4, 25.1. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₉H₂₀NaO₂ [M + Na]⁺, 303.1361. Found, 303.1358. IR (neat): v (cm⁻¹): 3072, 2939, 2870, 1650, 1600, 1577, 1507, 1469, 1419, 1391, 1315, 1280, 1254, 1172, 1148, 1114, 1072, 1027, 998, 920, 844, 792.

2-Phenylhex-5-en-2-ol (X-36)

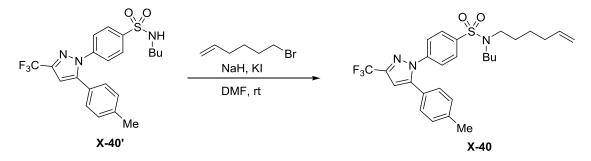
Under N₂ atmosphere, to a solution of hex-5-en-2-one (1.96 g, 20.0 mmol, 1.00 equiv) in dried THF (30.0 mL) at 0 $^{\circ}$ C was added dropwise phenylmagnesium bromide in THF (3M, 10.0 mL, 1.50 equiv). After stirring at 0 $^{\circ}$ C for 5 h, the reaction mixture was quenching with H₂O (30.0 mL) and extracting 3 times with EtOAc (30.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 10:1 (v/v) to afford 1.54 g 2-phenylhex-5-en-2-ol (**X-36**) as a colorless liquid (44% yield).


 $R_f = 0.18$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.37 – 7.31 (m, 2H), 7.28 – 7.20 (m, 1H), 5.84 – 5.74 (m, 1H), 4.99 – 4.86 (m, 2H), 2.10 – 1.82 (m, 5H), 1.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 138.9, 128.3, 126.7, 124.9, 114.7, 74.9, 43.2, 30.5, 28.7. HRMS-EI (m/z): Calcd for C₁₂H₁₄ [M – H₂O]⁺, 158.1096. Found, 158.1095. IR (neat): ν (cm⁻¹): 3413, 3078, 2976, 2854, 1649, 1493, 1446, 1372, 1282, 1069, 995, 855, 763. Pent-4-en-1-yl androst-4-en-3-one-17β-carboxylate (X-39)

To a solution of 4-androsten-3-one-5-ene-17-carboxylic acid (3.15 g, 10.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (245 mg, 2.00 mmol, 0.200 equiv) and Et₃N (2.25 g, 22.5 mmol, 2.25 equiv) in CH₂Cl₂ (25.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride) (3.83 g, 20.0 mmol, 2.00 equiv) and pent-4-en-1-ol (0.95 g, 11.0 mmol, 1.10 equiv). The reaction mixture was stirred at room temperature for 3.0 h before quenching with H₂O (15.0 mL) and extracting 3 times with CH₂Cl₂ (15.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 6:1 (v/v) to afford 2.50 g pent-4-en-1-yl androst-4-en-3-one-17β-carboxylate (**X-39**) as a colorless liquid (65% yield).

 $R_f = 0.18$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 5.81 – 5.71 (m, 1H), 5.68 (s, 1H), 5.02 – 4.93 (m, 2H), 4.10 – 3.97 (m, 2H), 2.45 – 2.19 (m, 5H), 2.15 – 1.96 (m, 5H), 1.87 – 1.61 (m, 6H), 1.61 – 1.20 (m, 5H), 1.14 (s, 3H), 1.12 – 0.87 (m, 3H), 0.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.4, 173.9, 171.0, 137.5, 123.9, 115.3, 63.5, 55.3, 55.2, 53.7, 43.9, 38.6, 38.1, 35.7, 35.7, 34.0, 32.8, 31.9, 30.2, 28.0, 24.4, 23.5, 20.9, 17.4, 13.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₅H₃₆NaO₃ [M + Na]⁺, 407.2562. Found, 407.2560. IR (neat): v (cm⁻¹): 3078, 2941, 2877, 1726, 1676, 1450, 1383, 1268, 1188, 1165, 1049, 995, 910.

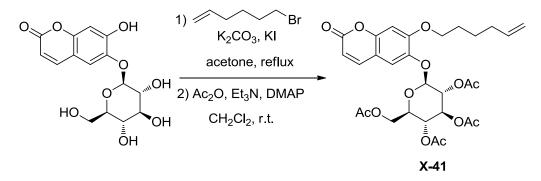
N-butyl-Celecoxib (X-40')



Under N_2 atmosphere, to a solution of Celecoxib (3.81 g, 10.0 mmol, 1.00 equiv) and 1-Bromobutane (2.03 g, 15.0 mmol, 1.50 equiv) in acetone (25.0 mL) were added KI (1.66 g, 10.0 mmol, 1.00 equiv) and K_2CO_3 (2.76 g, 20.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction

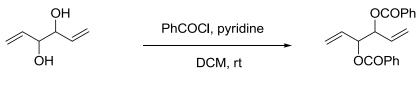
mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 8:1 (v/v) to afford 3.10 g N-butyl-Celecoxib (**X-40'**) as a white solid (71% yield).

R_f = 0.41 (hexanes/EtOAc 4:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 16.1 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.75 (s, 1H), 4.37 (t, J = 6.0 Hz, 1H), 2.95 (q, J = 6.7 Hz, 2H), 2.38 (s, 3H), 1.50 – 1.38 (m, 2H), 1.33 – 1.24 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 144.2 (q, J = 38.7 Hz), 142.6, 139.9, 139.7, 129.9, 128.8, 128.2, 125.8, 125.7, 121.2 (q, J = 269.9 Hz), 106.4, 43.1, 31.7, 21.4, 19.8, 13.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.13. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₁H₂₃F₃N₃O₂S [M + H]⁺, 438.1463. Found, 438.1464. IR (neat): ν (cm⁻¹): 2978, 2913, 2886, 1590, 1499, 1449, 1407, 1373, 1342, 1281, 1236, 1176, 1115, 1096, 1020, 842, 766.


N-butyl-N-(hex-5-enyl)-Celecoxib (X-40)

Under N₂ atmosphere, to a solution of *N*-butyl-Celecoxib (**X-40'**) (2.19 g, 5.00 mmol, 1.00 equiv) in dry DMF (10.0 mL) were added KI (830 mg, 5.00 mmol, 1.00 equiv) and NaH (300 mg, 7.50 mmol, 1.50 equiv) at 0 °C. The reaction mixture was stirred at 0 °C for 0.5 h. Then added 6-bromo-1-hexene (1.63 g, 10.0 mmol, 2.00 equiv) and stirred for 12.0 h at room temperature before quenching with H₂O (10.0 mL) and extracting 3 times with EtOAc (20.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 6:1 (v/v) to afford 2.36 g *N*-butyl-*N*-(hex-5-enyl)-Celecoxib (**X-40**) as a white solid (91% yield).

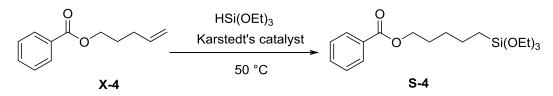
R_f = 0.52 (hexanes/EtOAc 6:1(v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 6.74 (s, 1H), 5.80 – 5.70 (m, 1H), 5.03 – 4.93 (m, 2H), 3.13 – 3.07 (m, 4H), 2.37 (s, 3H), 2.04 (q, J = 7.1 Hz, 2H), 1.58 – 1.43 (m, 4H), 1.40 – 1.21 (m, 4H), 0.89 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 144.2 (q, J = 38.3 Hz), 142.3, 139.9, 138.3, 129.8, 128.8, 128.2, 125.8, 125.6, 121.2 (q, J = 269.5 Hz), 115.1, 106.3, 48.1, 33.3, 30.7, 28.0, 26.0, 21.4, 20.0, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.07. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₇H₃₃F₃N₃O₂S [M + H]⁺, 520.2246. Found, 520.2244. IR (neat): υ (cm⁻¹): 3036, 2960, 2929, 2886, 1638, 1597, 1498, 1449, 1407, 1373, 1342, 1268, 1236, 1159, 1135, 1096, 1018, 974, 911, 842, 766.


7-O-(hex-5-enyl)-Esculin tetracetate (X-41)

Under N₂ atmosphere, to a solution of 3-nitrophenol (6.80 g, 20.0 mmol, 1.00 equiv) and 6-bromo-1-hexene (6.52 g, 40.0 mmol, 2.00 equiv) in acetone (40.0 mL) were added KI (3.32 g, 20.0 mmol, 1.00 equiv) and K₂CO₃ (5.53 g, 40.0 mmol, 2.00 equiv) at room temperature. The reaction mixture was then refluxed for 12.0 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue obtained above was then solved in 50 mL CH₂Cl₂. DMAP (4-dimethylaminepyridine) (489 mg, 4.00 mmol, 0.200 equiv) and Et₃N (12.1 g, 120.0 mmol, 6.00 equiv) was added at room temperature. And Ac₂O (10.1 g, 10.0 mmol, 5.0 equiv) was added dropwise at 0 °C. The reaction mixture was stirred at room temperature for 2 h before quenching with H₂O (30.0 mL) and extracting 3 times with CH₂Cl₂ (50.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 3:1 (v/v) to afford 8.14 g 7-*O*-(hex-5-enyl)-Esculin tetracetate (**X-41**) as a white solid (69% yield).

 $R_f = 0.20$ (hexanes/EtOAc 3:1(v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 9.5 Hz, 1H), 7.16 (s, 1H), 6.78 (s, 1H), 6.24 (d, J = 9.5 Hz, 1H), 5.85 – 5.75 (m, 1H), 5.31 – 5.20 (m, 2H), 5.16 – 5.10 (m, 1H), 5.04 – 4.95 (m, 3H), 4.25 (dd, J = 12.3, 4.9 Hz, 1H), 4.13 (dd, J = 12.3, 2.3 Hz, 1H), 4.00 (t, J = 6.5 Hz, 2H), 3.77 – 3.73 (m, 1H), 2.11 (dd, J = 14.2, 7.1 Hz, 2H), 2.04 (s, 3H), 2.02 (s, 3H), 2.01 (s, 6H), 1.87 – 1.75 (m, 2H), 1.61 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 170.3, 169.5, 169.2, 161.1, 153.7, 152.1, 143.2, 142.3, 138.2, 118.5, 115.2, 113.7, 111.4, 101.2, 100.1, 72.6, 72.1, 71.1, 69.1, 68.4, 61.8, 33.3, 28.4, 25.1, 20.8, 20.7, 20.7. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₉H₃₅O₁₃ [M + H]⁺, 591.2078. Found, 591.2083. IR (neat): v (cm⁻¹): 3077, 2996, 2947, 1754, 1738, 1728, 1640, 1619, 1563, 1512, 1440, 1381, 1285, 1233, 1068, 1043, 908, 823, 759.

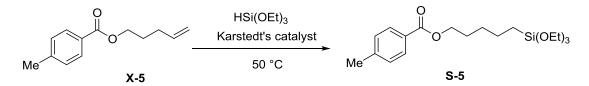
Hexa-1,5-diene-3,4-diyl dibenzoate (X-48)


X-48

Under N₂ atmosphere, to a solution of 1,5-hexadiene-3,4-diol (1.14 g, 10.0 mmol, 1.00 equiv)

and pyridine (5.0 mL) in dry DCM (30.0 mL) was added dropwise benzoyl chloride (2.81 g, 20.0 mmol, 2.00 equiv) at 0 °C. The reaction mixture was warmed to room temperature and stirred for 16.0 h. The reaction was then quenched with H_2O (25.0 mL) and extracted 3 times with DCM (25.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 2.98 g hexa-1,5-diene-3,4-diyl dibenzoate (**X-48**) as a colorless liquid (92% yield).

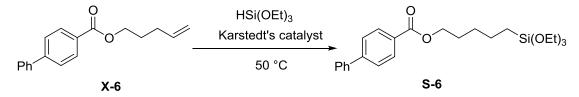
 $R_f = 0.37$ (PE/EtOAc 20:1(v/v)). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.6 Hz, 4H), 7.56 (q, J = 8.0 Hz, 2H), 7.46 – 7.41 (m, 4H), 6.07 – 5.94 (m, 2H), 5.84 – 5.83 (m, 2H), 5.50 (d, J = 8.6 Hz, 2H), 5.38 (t, J = 10.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 165.4, 133.2, 132.1, 131.7, 130.0, 129.9, 129.7, 129.7, 128.5, 119.8, 119.7, 75.4, 75.0. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₀H₁₉O₄ [M + H]⁺, 323.1283. Found, 323.1294. IR (neat): υ (cm⁻¹): 3091, 3063, 3032, 2991, 2936, 1719, 1647, 1601, 1583. 1490, 1424, 1412, 1333, 1314, 1271, 1176, 1107, 1069, 1026, 985, 935, 883, 803, 758.


5-(Triethoxysilyl)pentyl benzoate (S-4)

Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl benzoate (**X-4**) (1.90 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 2.78 g 5-(triethoxysilyl)pentyl benzoate (**S-4**) as a colorless liquid (79% yield).

 $R_f = 0.38$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 4.31 (t, J = 6.6 Hz, 2H), 3.81 (q, J = 7.0 Hz, 6H), 1.81 – 1.74 (m, 2H), 1.54 – 1.46 (m, 4H), 1.22 (t, J = 7.0 Hz, 9H), 0.69 – 0.63 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 132.9, 130.7, 129.7, 128.4, 65.2, 58.5, 29.7, 28.6, 22.7, 18.4, 10.6. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₄NO₅Si [M + NH₄]⁺, 372.2206. Found, 372.2202. IR (neat): ν (cm⁻¹): 2974, 2928, 2886, 1721, 1619, 1453, 1389, 1314, 1274, 1167, 1109, 1079, 1027, 957, 789.

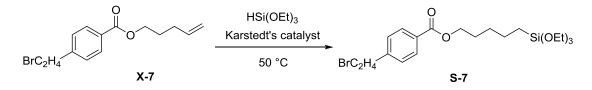
5-(Triethoxysilyl)pentyl 4-methylbenzoate (S-5)



Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl 4-methylbenzoate (X-5) (2.04 g,

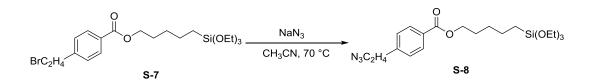
10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 2.10 g 5-(triethoxysilyl)pentyl 4-methylbenzoate (S-5) as a colorless liquid (57% yield).

 $R_f = 0.31$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.9 Hz, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 4.28 (t, *J* = 6.5 Hz, 2H), 3.81 (q, *J* = 6.9 Hz, 6H), 2.40 (s, 3H), 1.81 – 1.69 (m, 2H), 1.53 – 1.43 (m, 4H), 1.22 (t, *J* = 6.9 Hz, 9H), 0.71 – 0.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 143.5, 129.7, 129.1, 127.9, 65.0, 58.5, 29.6, 28.6, 22.7, 21.8, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₃₂NaO₅Si [M + Na]⁺, 391.1917. Found, 391.1917. IR (neat): ν (cm⁻¹): 2973, 2926, 2885, 1720, 1612, 1453, 1390, 1274, 1177, 1106, 1079, 1021, 957, 840, 780, 754.

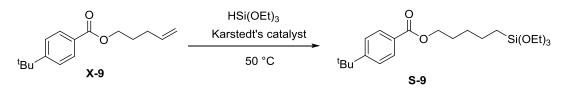

5-(Triethoxysilyl)pentyl [1,1'-biphenyl]-4-carboxylate (S-6)

Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl [1,1'-biphenyl]-4-carboxylate (**X-6**) (2.66 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 2.29 g 5-(triethoxysilyl)pentyl [1,1'-biphenyl]-4-carboxylate (**S-6**) as a colorless liquid (53% yield).

 $R_f = 0.19$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.09 (m, 2H), 7.67 – 7.61 (m, 4H), 7.49 – 7.44 (m, 2H), 7.42 – 7.37 (m, 1H), 4.34 (t, *J* = 6.7 Hz, 2H), 3.83 (q, *J* = 7.0 Hz, 6H), 1.80 (m, 2H), 1.56 – 1.48 (m, 4H), 1.23 (t, *J* = 7.0 Hz, 9H), 0.72 – 0.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 145.6, 140.2, 130.2, 129.4, 129.0, 128.2, 127.4, 127.1, 65.2, 58.5, 29.7, 28.6, 22.8, 18.5, 10.6. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₄H₃₅O₅Si [M + H]⁺, 431.2254. Found, 431.2251. IR (neat): v (cm⁻¹): 2982, 2882, 1720, 1609, 1485, 1450, 1404, 1389, 1276, 1166, 1103, 1078, 957, 858, 782, 748.

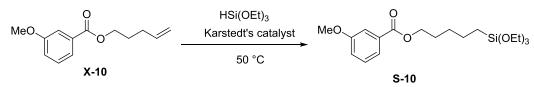

5-(Triethoxysilyl)pentyl 4-(2-bromoethyl)benzoate (S-7)

Under nitrogen atmosphere, to a mixture of pent-4-enyl 4-(2-bromoethyl)benzoate (X-7) (2.97 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 2.95 g 5-(triethoxysilyl)pentyl 4-(2-bromoethyl)benzoate (S-7) as a colorless liquid (64% yield).


R_f = 0.14 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 4.30 (t, J = 6.6 Hz, 2H), 3.82 (q, J = 7.0 Hz, 6H), 3.59 (t, J = 7.4 Hz, 2H), 3.22 (t, J = 7.4 Hz, 2H), 1.80 – 1.74 (m, 2H), 1.53 – 1.46 (m, 4H), 1.22 (t, J = 7.0 Hz, 9H), 0.70 – 0.62 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 144.0, 130.0, 129.4, 128.8, 65.2, 58.5, 39.2, 32.4, 29.6, 28.5, 22.7, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₀H₃₄BrO₅Si [M + H]⁺, 461.1359. Found, 461.1354. IR (neat): v (cm⁻¹): 2926, 2864, 1735, 1601, 1488, 1389, 1284, 1212, 1165, 1076, 1076, 1011, 956, 780.

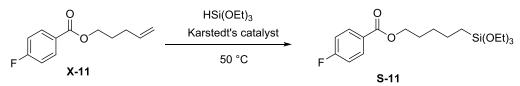
5-(Triethoxysilyl)pentyl 4-(2-azidoethyl)benzoate (S-8)

Under nitrogen atmosphere, solution of 5-(triethoxysilyl)pentyl to а 4-(2-bromoethyl)benzoate (S-7) (1.38 g, 3.00 mmol, 1.00 equiv) in 15.0 mL MeCN at room temperature was added NaN₃ (487 mg, 7.50 mmol, 2.50 equiv). The reaction mixture was then heated to 70 °C and stirred for 48 h. After cooling to room temperature, the reaction mixture was filtered through a Celite pad, concentrated in vacuo and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 1.12 g 5-(triethoxysilyl)pentyl 4-(2-azidoethyl)benzoate (S-8) as a colorless liquid (88% yield). $R_f = 0.11$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 4.30 (t, J = 6.6 Hz, 2H), 3.81 (q, J = 7.0 Hz, 6H), 3.54 (t, J = 7.1 Hz, 2H), 2.94 (t, J = 7.1 Hz, 2H), 1.80 - 1.73 (m, 2H), 1.51 - 1.46 (m, 4H), 1.22 (t, J = 7.0 Hz, 9H), 0.70 – 0.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 143.4, 130.1, 128.9, 65.2, 58.5 52.2, 35.5, 29.6, 28.6, 22.7, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for $C_{20}H_{34}N_3O_5Si [M + H]^+$, 424.2268. Found, 424.2265. IR (neat): υ (cm⁻¹): 2974, 2886, 2099, 1729, 1680, 1601, 1554, 1494, 1444, 1277, 1176, 1115, 1019, 1000, 953, 855, 762.

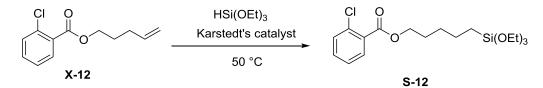

5-(Triethoxysilyl)pentyl 4-(tert-butyl)benzoate (S-9)

Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl 4-(*tert*-butyl)benzoate (**X-9**) (1.23 g, 5.00 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.150 mL) in a dried Schlenk tube at room temperature was added dropwise HSi(OEt)₃ (1.34 g, 8.13 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 1.39 g 5-(triethoxysilyl)pentyl 4-(*tert*-butyl)benzoate (**S-9**) as a colorless liquid (68% yield). $R_f = 0.35$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.9 7 – 7.93 (m, 2H), 7.43 – 7.41 (m, 2H), 4.28 (t, *J* = 8.0 Hz, 2H), 3.80 (q, *J* = 7.0 Hz, 6H), 1.78 – 1.71 (m, 2H), 1.50 – 1.45 (m, 2H), 1.31 (s, 9H), 1.20 (t, *J* = 8.0 Hz, 9H), 0.66 – 0.62 (m,

2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 156.3, 129.4, 127.8, 125.3, 64.8, 58.3, 35.0, 31.1, 29.6, 28.5, 22.6, 18.3, 10.4. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₂₂H₃₈O₅Si [M]⁺, 410.2489. Found, 410.2489. IR (neat): υ (cm⁻¹): 2970, 2928, 2886, 1720, 1610, 1442, 1389, 1275, 1187, 1103, 1079, 957, 775.

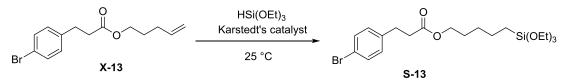

5-(Triethoxysilyl)pentyl 3-methoxybenzoate (S-10)

Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl 3-methoxybenzoate (**X-10**) (2.20 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 2.43 g 5-(triethoxysilyl)pentyl 3-methoxybenzoate (**S-10**) as a colorless liquid (63% yield).


R_f = 0.25 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.62 (m, 1H), 7.56 (s, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.09 – 7.07 (m, 1H), 4.31 (t, J = 8.0 Hz, 2H), 3.84 – 3.79 (m, J = 9H), 1.79 – 1.76 (m, 2H), 1.51 – 1.49 (m, 4H), 1.22 (t, J = 7.0 Hz, 9H), 0.67 (t, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 159.5, 131.7, 129.2, 121.8, 119.1, 114.0, 65.0, 58.2, 55.2, 29.4, 28.4, 22.5, 18.2, 10.3. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₃₆NO₆Si [M + NH₄]⁺, 402.2312. Found, 402.2304. IR (neat): ν (cm⁻¹): 2973, 2886, 1720, 1601, 1587, 1488, 1454, 1389, 1277, 1228, 1166, 1103, 1078, 1046, 957, 780.

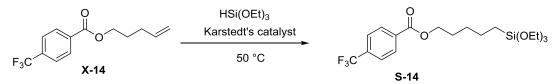
5-(Triethoxysilyl)pentyl 4-fluorobenzoate (S-11)

Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl 4-fluorobenzoate (**X-11**) (2.08 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise HSi(OEt)₃ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 2.25 g 5-(triethoxysilyl)pentyl 4-fluorobenzoate (**S-11**) as a colorless liquid (60% yield). R_f = 0.35 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.03 (m, 2H), 7.12 – 7.08 (m, 2H), 4.30 (t, *J* = 6.6 Hz, 2H), 3.81 (q, *J* = 8.0 Hz, 6H), 1.80 – 1.73 (m, 2H), 1.49 – 1.47 (m, 4H), 1.22 (t, *J* = 7.0 Hz, 9H), 0.66 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7 (d, *J* = 254.4 Hz), 165.7, 132.1 (d, *J* = 92.7 Hz), 126.8 (d, *J* = 3.0 Hz), 115.5 (d, *J* = 21.8 Hz), 65.2, 58.4, 29.5, 28.5, 22.7, 18.3, 10.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.01. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₃FNO₅Si [M + NH₄]⁺, 390.2112. Found, 390.2102. IR (neat): υ (cm⁻¹): 2973, 2927, 2885, 1720, 1603, 1508, 1433, 1389, 1274, 1238, 1153, 1108, 1079, 957, 854, 768.


5-(Triethoxysilyl)pentyl 2-chlorobenzoate (S-12)

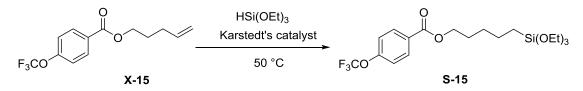
Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl 4-fluorobenzoate (**X-11**) (1.12 g, 5.00 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.150 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (1.34 g, 8.13 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 1.17 g 5-(triethoxysilyl)pentyl 2-chlorobenzoate (**S-12**) as a colorless liquid (60% yield).

 $R_f = 0.31$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.80 (m, 1H), 7.46 – 7.38 (m, 2H), 7.33 – 7.29 (m, 1H), 4.33 (t, *J* = 6.6 Hz, 2H), 3.82 (q, *J* = 7.0 Hz, 6H), 1.82 – 1.75 (m, 2H), 1.52 – 1.48 (m, 4H), 1.23 (t, *J* = 7.0 Hz, 9H), 0.68 – 0.66 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 133.6, 132.4, 131.4, 131.1, 130.6, 126.6, 65.7, 58.4, 29.5, 28.4, 22.6, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₃CINO₅Si [M + NH₄]⁺, 406.1817. Found, 406.1812. IR (neat): ν (cm⁻¹): 2927, 2886, 1729, 1611, 1592, 1435, 1390, 1292, 1249, 1169, 1105, 1078, 956, 780.


5-(Triethoxysilyl)pentyl 3-(4-bromophenyl)propanoate (S-13)

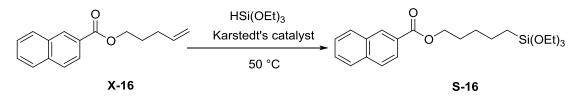
Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl 3-(4-bromophenyl)propanoate (**X-13**) (2.37 g, 8.00 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.240 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.14 g, 13.0 mmol, 1.63 equiv). After stirring at 25 °C for 12.0 h, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 2.84 g 5-(triethoxysilyl)pentyl 3-(4-bromophenyl)propanoate (**S-13**) as a colorless liquid (77% yield).

R_f = 0.22 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.33 (m, 2H), 7.04 – 7.02 (m, 2H), 4.00 (t, J = 6.7 Hz, 2H), 3.77 (q, J = 7.0 Hz, 6H), 2.85 (t, J = 7.6 Hz, 2H), 2.55 (t, J = 7.6 Hz, 2H), 1.59 – 1.52 (m, 2H), 1.43 – 1.27 (m, 4H), 1.17 (t, J = 7.0 Hz, 9H), 0.62 – 0.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 139.5, 131.5, 130.1, 120.0, 64.6, 58.3, 35.6, 30.3, 29.3, 28.3, 22.5, 18.3, 10.3. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₂₀H₃₃BrO₅Si [M]⁺, 460.1281. Found, 460.1271. IR (neat): v (cm⁻¹): 2972, 2927, 2886, 1734, 1601, 1488, 1457, 1388, 1362, 1293, 1165, 1102, 1076, 1011, 956, 790, 733.


5-(Triethoxysilyl)pentyl 4-(trifluoromethyl)benzoate (S-14)

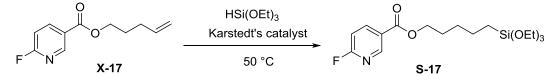
Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl 3-(4-bromophenyl)propanoate (**X-14**) (2.58 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 3.05 g 5-(triethoxysilyl)pentyl 4-(trifluoromethyl)benzoate (**S-14**) as a colorless liquid (72% yield).

 $R_f = 0.21$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 4.32 (t, J = 6.6 Hz, 2H), 3.79 (q, J = 7.0 Hz, 6H), 1.80 – 1.73 (m, 2H), 1.48-1.46 (m, 4H), 1.19 (t, J = 7.0 Hz, 9H), 0.66 – 0.62 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 134.4 (q, J = 33.3 Hz), 133.8, 130.0, 125.4 (q, J = 4.0Hz), 123.7 (q, J = 273.7 Hz), 65.7, 58.4, 29.5, 28.4, 22.7, 18.4, 10.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.09. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₃₃F₃NO₅Si [M + NH₄]⁺, 440.2080. Found, 440.2080. IR (neat): v (cm⁻¹): 2975, 2887, 1728, 1601, 1444, 1412, 1390, 1326, 1276, 1168, 1102, 1079, 1018, 957, 863, 776.


5-(Triethoxysilyl)pentyl 4-(trifluoromethoxy)benzoate (S-15)

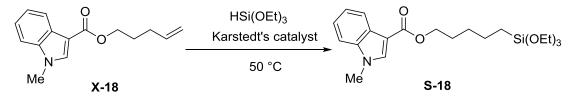
Under nitrogen atmosphere, to a mixture of pent-4-en-1-yl 4-(trifluoromethoxy)benzoate (X-15) (2.74 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 3.32 g 5-(triethoxysilyl)pentyl 4-(trifluoromethoxy)benzoate (S-15) as a colorless liquid (76% yield).

 $R_f = 0.24$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.07 (m, 2H), 7.30 – 7.23 (m, 2H), 4.32 (t, J = 6.6 Hz, 2H), 3.82 (q, J = 7.0 Hz, 6H), 1.81 – 1.74 (m, 2H), 1.53 – 1.47 (m, 4H), 1.22 (t, J = 7.0 Hz, 9H), 0.70 – 0.63 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 152.7 (q, J = 1.5 Hz), 131.7, 129.1, 120.4 (q, J = 258.5 Hz), 120.4, 65.5, 58.5, 29.6, 28.5, 22.7, 18.4, 10.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.64. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₃₀F₃O₆Si [M + H]⁺, 439.1764. Found, 439.1760. IR (neat): v (cm⁻¹): 2975, 2887, 1726, 1607, 1506, 1458, 1390, 1258, 1222, 1167, 1104, 1080, 1018, 957, 863, 770.


5-(Triethoxysilyl)pentyl 2-naphthoate (S-16)

Under nitrogen atmosphere, to a mixture of pent-4-enyl 2-naphthoate (**X-16**) (2.40 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 1.89 g 5-(triethoxysilyl)pentyl 2-naphthoate (**S-16**) as a colorless liquid (47% yield).

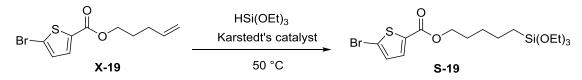
 R_f = 0.25 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.06 – 8.03 (m, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.87 – 7.77 (m, 2H), 7.55 – 7.47 (m, 2H), 4.36 (t, *J* = 6.7 Hz, 2H), 3.81 (q, *J* = 7.0 Hz, 6H), 1.88 – 1.76 (m, 2H), 1.57 – 1.47 (m, 4H), 1.21 (t, *J* = 7.0 Hz, 9H), 0.70 – 0.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 135.4, 132.5, 130.9, 129.3, 128.1, 128.0, 127.7, 126.5, 125.2, 65.2, 58.3, 29.5, 28.5, 22.6, 18.3, 10.4. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₂H₃₃O₅Si [M + H]⁺, 405.2097. Found, 405.2090. IR (neat): υ (cm⁻¹): 3066, 2973, 2885, 1715, 1631, 1468, 1390, 1284, 1227, 1196, 1100, 1079, 957, 779.


5-(Triethoxysilyl)pentyl 6-fluoronicotinate (S-17)

Under nitrogen atmosphere, to a mixture of pent-4-enyl 6-fluoronicotinate (**X-17**) (2.09 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 8:1 (v/v) to afford 2.66 g 5-(triethoxysilyl)pentyl 6-fluoronicotinate (**S-17**) as a colorless liquid (71% yield).

R_f = 0.09 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 2.4 Hz, 1H), 8.41 – 8.34 (m, 1H), 6.99 (dd, J = 8.5, 2.8 Hz, 1H), 4.33 (t, J = 6.7 Hz,2H), 3.80 (q, J = 7.0 Hz, 6H), 1.80 – 1.73 (m, 2H), 1.52 – 1.45 (m, 4H), 1.20 (t, J = 7.0 Hz, 9H), 0.66 – 0.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9 (d, J = 245.3 Hz), 164.4, 150.4 (d, J = 16.3 Hz), 142.6 (d, J = 9.3 Hz), 124.9 (d, J = 4.4 Hz), 109.6 (d, J = 37.4 Hz), 65.8, 58.5, 29.5, 28.4, 22.7, 18.4, 10.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.50. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₇H₂₉FNO₅Si [M + H]⁺, 374.1799. Found, 374.1791. IR (neat): υ (cm⁻¹): 2974, 2928, 2886, 1727, 1595, 1483, 1380, 1271, 1252, 1166, 1114, 1079, 1020, 957, 843, 778.

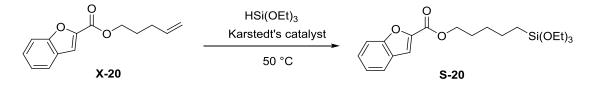
5-(Triethoxysilyl)pentyl 1-methyl-1H-indole-3-carboxylate (S-18)



Under nitrogen atmosphere, to a mixture of pent-4-enyl 1-methyl-1H-indole-3-carboxylate (**X-18**) (2.40 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 6:1 (v/v) to afford 3.19 g 5-(triethoxysilyl)pentyl 1-methyl-1H-indole-3-carboxylate (**S-18**) as a colorless liquid (78% yield).

 $R_f = 0.61$ (hexanes/EtOAc 4:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.14 (m, 1H), 7.77 (s, 1H), 7.36 – 7.25 (m, 3H), 4.32 (t, *J* = 6.7 Hz, 2H), 3.82 (q, *J* = 7.0 Hz,

6H), 3.82 (s, 3H), 1.83 – 1.77 (m, 2H), 1.54 – 1.50 (m, 2H), 1.22 (t, J = 7.0 Hz, 9H), 0.70 – 0.66 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 137.3, 135.3, 126.7, 122.8, 121.9, 121.8, 109.8, 107.3, 63.9, 58.4, 33.5, 29.8, 28.8, 22.8, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₁H₃₄NO₅Si [M + H]⁺, 408.2206. Found, 408.2205. IR (neat): υ (cm⁻¹): 2958, 2884, 1703, 1611, 1534, 1466, 1383, 1267, 1221, 1152, 1104, 1078, 956, 776.


5-(Triethoxysilyl)pentyl 5-bromothiophene-2-carboxylate (S-19)

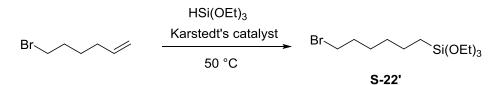
Under nitrogen atmosphere, to a mixture of pent-4-enyl 5-bromothiophene-2-carboxylate (**X-19**) (2.75 g, 10.0 mmol,1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 2.60 g 5-(triethoxysilyl)pentyl 5-bromothiophene-2-carboxylate (**S-19**) as a colorless liquid (57% yield).

 $R_f = 0.21$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 4.0 Hz, 1H), 7.06 (d, J = 4.0 Hz, 1H), 4.26 (t, J = 6.7 Hz, 2H), 3.81 (q, J = 7.0 Hz, 6H), 1.77 – 1.68 (m, 2H), 1.52 – 1.40 (m, 2H), 1.22 (t, J = 7.0 Hz, 9H), 0.68 – 0.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 135.3, 133.6, 131.0, 120.1, 65.6, 58.5, 29.5, 28.5, 22.7, 18.5, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₆H₂₈BrO₅SSi [M + H]⁺, 439.0610. Found, 439.0597. IR (neat): v (cm⁻¹): 2987, 2858, 1719, 1622, 1532, 1418, 1389, 1278, 1256, 1166, 1102, 1085, 956, 794, 746.

5-(Triethoxysilyl)pentyl benzofuran-2-carboxylate (S-20)

Under nitrogen atmosphere, to a mixture of pent-4-enyl benzofuran-2-carboxylate (**X-20**) (2.30 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 2.45 g 5-(triethoxysilyl)pentyl benzofuran-2-carboxylate (**S-20**) as a colorless liquid (62% yield).

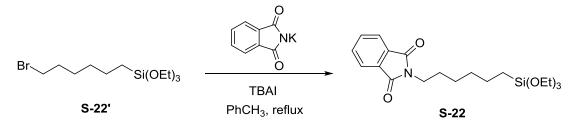
 $R_f = 0.15$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.8 Hz, 1H), 7.59 (dd, J = 8.4, 0.7 Hz, 1H), 7.52 (d, J = 0.9 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.33 – 7.27 (m, 1H), 4.38 (t, J = 6.7 Hz, 2H), 3.82 (q, J = 7.0 Hz, 6H), 1.86 – 1.76 (m, 2H), 1.56 – 1.46 (m, 4H), 1.23 (t, J = 7.0 Hz, 9H), 0.70 – 0.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 155.8, 145.8, 127.6, 127.1, 123.8, 122.9, 113.8, 112.4, 65.6, 58.4, 29.4, 28.5, 22.7, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₀H₃₁O₆Si [M + H]⁺, 395.1890. Found, 395.1888. IR (neat): v (cm⁻¹): 2950, 2886, 1735, 1614, 1563, 1476, 1389, 1295, 1223, 1210, 1178, 1079, 958, 885, 750.


4-Methyl-7-(6-(triethoxysilyl)hexyloxy)-2H-chromen-2-one (S-21)

Under nitrogen atmosphere, to a mixture of 7-(hex-5-enyloxy)-4-methyl-2H-chromen-2-one (**X-21**) (2.58 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 6:1 (v/v) to afford 2.14 g 4-methyl-7-(6-(triethoxysilyl)hexyloxy)-2H-chromen-2-one (**S-21**) as a colorless liquid (51% yield).

 R_f = 0.63 (hexanes/EtOAc 4:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.8 Hz, 1H), 6.82 (d, *J* = 8.9 Hz, 1H), 6.77 (s, 1H), 6.10 (s, 1H), 3.99 (t, *J* = 6.5 Hz, 2H), 3.80 (q, *J* = 7.0 Hz, 6H), 2.37 (s, 3H), 1.83 – 1.74 (m, 2H), 1.51 – 1.36 (m, 6H), 1.21 (t, *J* = 7.0 Hz, 9H), 0.68 – 0.58 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3, 161.4, 155.4, 152.7, 125.6, 113.5, 112.8, 111.9, 101.4, 68.7, 58.4, 32.9, 29.0, 25.7, 22.8, 18.8, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₂H₃₅O₆Si [M + H]⁺, 423.2203. Found, 423.2195. IR (neat): v (cm⁻¹): 2955, 2895, 1730, 1614, 1556, 1510, 1442, 1388, 1293, 1147, 1103, 1072, 1015, 957, 849, 791.

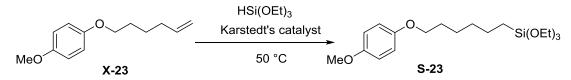
Bromo-6-(triethoxysilyl)hexane (S-22')



Under nitrogen atmosphere, to a mixture of 6-bromo-1-hexene (3.26 g, 20.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.600 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature,

the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 5.31 g 1-bromo-6-(triethoxysilyl)hexane (S-22') as a colorless liquid (81% yield).

 $R_f = 0.11$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 3.80 (q, J = 7.0 Hz, 6H), 3.39 (t, J = 6.9 Hz, 2H), 1.89 – 1.79 (m, 2H), 1.50 – 1.31 (m, 6H), 1.21 (t, J = 7.0 Hz, 9H), 0.66 – 0.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 58.4, 34.1, 32.8, 32.3, 27.9, 22.7, 18.4, 10.4. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₂₈BrO₃Si [M + H]⁺, 327.0991. Found, 327.0988. IR (neat): v (cm⁻¹): 2954, 2896, 2863, 1447, 1283, 1165, 1104, 1080.


2-(6-(Triethoxysilyl)hexyl)isoindoline-1,3-dione (S-22)

Under N₂ atmosphere, to a solution of potassium phthalimide (1.48 g, 8.00 mmol, 2.00 equiv) and TBAI (0.296 g, 0.800 mmol, 0.200 equiv) in PhCH₃ (20.0 mL) were added 1-bromo-6-(triethoxysilyl)hexane (S-22') (1.31 g, 4.00 mmol, 1.00 equiv) at room temperature. The reaction mixture was then refluxed for 18 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with PE/EtOAc 10:1 (v/v) to afford 1.15 g 1-(hex-5-en-1-yloxy)-4-(trifluoromethyl)benzene (X-30) as a colorless liquid (73% yield).

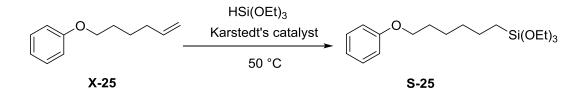
 $R_f = 0.27$ (hexanes/EtOAc 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.79 (m, 2H), 7.72 – 7.66 (m, 2H), 3.79 (q, *J* = 7.0 Hz, 6H), 3.68 – 3.62 (m, 2H), 1.69 – 1.59 (m, 2H), 1.43 – 1.28 (m, 6H), 1.20 (t, *J* = 7.0 Hz, 9H), 0.61 – 0.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 133.9, 132.3, 123.2, 58.4, 38.2, 32.8, 28.7, 26.7, 22.8, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₀H₃₂NO₅Si [M + H]⁺, 394.2050. Found, 394.2043. IR (neat): v (cm⁻¹): 2973, 2927, 2861, 1715, 1614, 1466, 1395, 1367, 1248, 1166, 1102, 1078, 957, 791, 720.

Triethoxy(6-(4-methoxyphenoxy)hexyl)silane (S-23)

Under nitrogen atmosphere, to a mixture of 1-(hex-5-en-1-yloxy)-4-methoxybenzene (**X-23**) (2.06 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol,

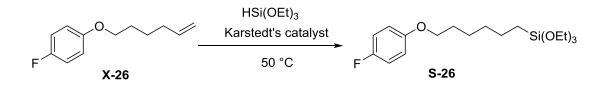
1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 2.49 g triethoxy(6-(4-methoxyphenoxy)hexyl)silane (S-23) as a colorless liquid (67% yield).

 $R_f = 0.39$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.86 – 6.79 (m, 4H), 3.89 (t, J = 6.6 Hz, 2H), 3.82 (q, J = 7.0 Hz, 6H), 3.76 (s, 3H), 1.79 – 1.70 (m, 2H), 1.50 – 1.36 (m, 6H), 1.23 (t, J = 7.0 Hz, 9H), 0.68 – 0.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 153.4, 115.5, 114.7, 68.8, 58.4, 55.9, 33.0, 29.4, 25.8, 22.9, 18.5, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₃₅O₅Si [M + H]⁺, 371.2254. Found, 371.2254. IR (neat): v (cm⁻¹): 2973, 2926, 1591, 1508, 1468, 1390, 1289, 1232, 1166, 1103, 1078, 956, 824, 746.


(6-(4-(Tert-butyl)phenoxy)hexyl)triethoxysilane (S-24)

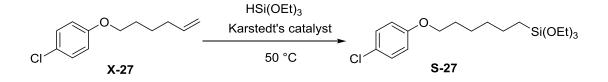
Under nitrogen atmosphere, to a mixture of 1-(tert-butyl)-4-(hex-5-en-1-yloxy)benzene(**X-24**) (2.32 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 40:1 (v/v) to afford 2.70 g (6-(4-(tert-butyl)phenoxy)hexyl)triethoxysilane (**S-24**) as a colorless liquid (68% yield).

 $R_f = 0.58$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 6.86 – 6.81 (m, 2H), 3.93 (t, J = 6.5 Hz, 2H), 3.82 (q, J = 7.0 Hz, 6H), 1.81 – 1.72 (m, 2H), 1.51 – 1.36 (m, 6H), 1.30 (s, 9H), 1.23 (t, J = 7.0 Hz, 9H), 0.68 – 0.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 143.2, 126.3, 114.0, 68.0, 58.4, 34.2, 33.0, 31.7, 29.4, 25.9, 22.9, 18.5, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₂H₄₁O₄Si [M + H]⁺, 397.2774. Found, 397.2763. IR (neat): ν (cm⁻¹): 2969, 2866, 1611, 1580, 1513, 1468, 1390, 1294, 1183, 1104, 1079, 956, 828, 789.


Triethoxy(6-phenoxyhexyl)silane (S-25)

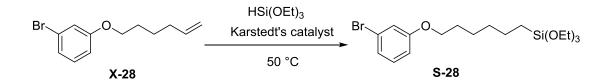
Under nitrogen atmosphere, to a mixture of (hex-5-en-1-yloxy)benzene (**X-25**) (1.76 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 40:1 (v/v) to afford 2.45 g triethoxy(6-phenoxyhexyl)silane (**S-25**) as a colorless liquid (72% yield).

 $R_f = 0.63$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, 2H), 6.96 – 6.86 (m, 3H), 3.95 (t, *J* = 6.6 Hz, 2H), 3.82 (q, *J* = 7.0 Hz, 6H), 1.82 – 1.72 (m, 2H), 1.50 – 1.37 (m, 6H), 1.23 (t, *J* = 7.0 Hz, 9H), 0.71 – 0.59 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 129.5, 120.6, 114.6, 68.0, 58.5, 33.0, 29.3, 25.8, 22.9, 18.5, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₃O₄Si [M + H]⁺, 341.2148. Found, 341.2142. IR (neat): v (cm⁻¹): 2974, 2928, 1601, 1497, 1391, 1246, 1170, 1104, 1080, 957, 789, 753.


Triethoxy(6-(4-fluorophenoxy)hexyl)silane (S-26)

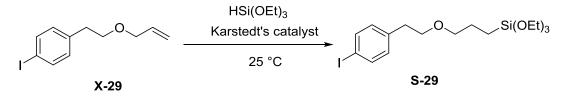
Under nitrogen atmosphere, to a mixture of 1-fluoro-4-(hex-5-en-1-yloxy)benzene (**X-26**) (1.94 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 40:1 (v/v) to afford 2.68 g triethoxy(6-(4-fluorophenoxy)hexyl)silane (**S-26**) as a colorless liquid (75% yield).

 $R_f = 0.50$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.98 – 6.90 (m, 2H), 6.84 – 6.78 (m, 2H), 3.89 (t, J = 6.5 Hz, 2H), 3.81 (q, J = 7.0 Hz, 6H), 1.80 – 1.70 (m, 2H), 1.50 – 1.38 (m, 4H), 1.22 (t, J = 7.0 Hz, 9H), 0.69 – 0.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2 (d, J = 237.6 Hz), 115.8 (d, J = 23.0 Hz), 115.5 (d, J = 7.8Hz), 68.7, 58.4, 33.0, 29.3, 25.8, 22.9, 18.4, 10.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -125.38 – -125.60. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₂FO₄Si [M + H]⁺, 359.2054. Found, 359.2046. IR (neat): v (cm⁻¹): 2977, 2885, 1600, 1507, 1473, 1390, 1293, 1248, 1211, 1103, 1079, 957, 827, 790.

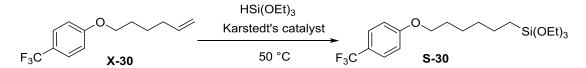

(6-(4-Chlorophenoxy)hexyl)triethoxysilane (S-27)

Under nitrogen atmosphere, to a mixture of 1-chloro-4-(hex-5-en-1-yloxy)benzene (**X-27**) (2.10 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 40:1 (v/v) to afford 2.09 g (6-(4-chlorophenoxy)hexyl)triethoxysilane (**S-27**) as a colorless liquid (56% yield).

 $R_f = 0.51$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.18 (m, 2H), 6.84 – 6.77 (m, 2H), 3.90 (t, *J* = 6.5 Hz, 2H), 3.81 (q, *J* = 7.0 Hz, 6H), 1.80 – 1.71 (m, 2H), 1.49 – 1.36 (m, 6H), 1.22 (t, *J* = 7.0 Hz, 9H), 0.67 – 0.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 129.2, 125.2, 115.7, 68.3, 58.3, 32.8, 29.1, 25.6, 22.7, 18.3, 10.4. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₂ClO₄Si [M + H]⁺, 375.1758. Found, 375.1752. IR (neat): v (cm⁻¹): 2960, 2927, 2886, 1603, 1490, 1387, 1286, 1167, 1102, 1079, 955, 823, 787.

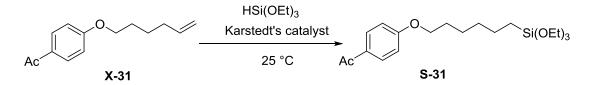

(6-(3-Bromophenoxy)hexyl)triethoxysilane (S-28)

Under nitrogen atmosphere, to a mixture of 1-bromo-3-(hex-5-en-1-yloxy)benzene (**X-28**) (2.55 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 1.74 g (6-(3-bromophenoxy)hexyl)triethoxysilane (**S-28**) as a colorless liquid (42% yield).

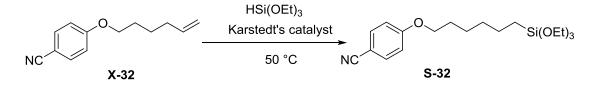

 $R_f = 0.51$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, *J* = 8.0 Hz, 1H), 7.07 – 7.02 (m, 2H), 6.81 (d, *J* = 8.2 Hz, 1H), 3.92 (t, *J* = 6.4 Hz, 2H), 3.82 (q, *J* = 6.9 Hz, 6H), 1.81 – 1.72 (m, 2H), 1.50 – 1.36 (m, 6H), 1.23 (t, *J* = 6.9 Hz, 9H), 0.69 – 0.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 130.6, 123.7, 122.9, 117.8, 113.7, 68.3, 58.4, 32.9, 29.2, 25.7, 22.9, 18.5, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₂BrO₄Si [M + H]⁺, 419.1253. Found, 419.1243. IR (neat): v (cm⁻¹): 2971, 2883, 1590, 1469, 1390, 1284, 1228, 1166, 1103, 1079, 956, 859, 792, 773.

Triethoxy(3-(4-iodophenethoxy)propyl)silane (S-29)

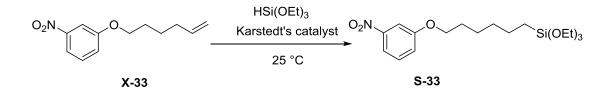
Under nitrogen atmosphere, to a mixture of 1-(2-(allyloxy)ethyl)-4-iodobenzene (X-29) (2.88 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt $\sim 2\%$, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise HSi(OEt)₃ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was stirred for 12.0 h at 25 °C. Then the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 40:1 (v/v)to afford 3.39 g triethoxy(3-(4-iodophenethoxy)propyl)silane (S-29) as a colorless liquid (75% yield). $R_f = 0.23$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.62 - 7.53 (m, 2H), 6.99 - 6.95 (m, 2H), 3.80 (q, J = 7.0 Hz, 6H), 3.59 (t, J = 7.0 Hz, 2H), 3.39 (t, J = 6.8 Hz, 2H), 2.81 (t, J = 6.9 Hz, 2H), 1.72 - 1.60 (m, 2H), 1.22 (t, J = 7.0 Hz, 9H),0.66 - 0.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 137.4, 131.2, 91.4, 73.3, 71.3, 58.5, 36.0, 23.1, 18.4, 6.6. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₇H₃₀IO₄Si [M + H]⁺, 453.0958. Found, 453.0948. IR (neat): v (cm⁻¹): 2973, 2881, 1600, 1485, 1390, 1364, 1228, 1166, 1105, 1079, 1006, 955, 793, 770.


Triethoxy(6-(4-(trifluoromethyl)phenoxy)hexyl)silane (S-30)

Under nitrogen atmosphere, to a mixture of 1-(hex-5-en-1-yloxy)-4-(trifluoromethyl)benzene (**X-30**) (2.44 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 2.54 g triethoxy(6-(4-(trifluoromethyl)phenoxy)hexyl)silane (**S-30**) as a colorless liquid (62% yield).

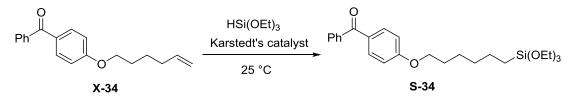

 $R_f = 0.48$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 3.98 (t, J = 6.5 Hz, 2H), 3.82 (q, J = 7.0 Hz, 6H), 1.82 – 1.76 (m, 2H), 1.51 – 1.36 (m, 6H), 1.23 (t, J = 6.9 Hz, 9H), 0.66 – 0.62 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 127.0 (q, J = 3.5 Hz), 124.6 (q, J = 271.2 Hz), 122.7 (q, J = 32.7 Hz), 114.6, 68.4, 58.5, 32.9, 29.1, 25.8, 22.9, 18.5, 10.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.44. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₃₂F₃O₄Si [M + H]⁺, 409.2022. Found, 409.2019. IR (neat): v (cm⁻¹): 2974, 2884, 1616, 1589, 1519, 1390, 1329, 1257, 1162, 1109, 1079, 956, 836, 789.

Triethoxy(6-(4-(trifluoromethyl)phenoxy)hexyl)silane (S-31)


Under nitrogen atmosphere, to a mixture of 1-(4-(hex-5-en-1-yloxy)phenyl)ethanone (X-31) (1.09 g, 5.00 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.150 mL) in a dried Schlenk tube at room temperature was added dropwise HSi(OEt)₃ (1.34 g, 8.15 mmol, 1.63 equiv). The reaction mixture was stirred at 25 °C for 12.0 h. Then the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 25:1 (v/v)to afford 0.801 g triethoxy(6-(4-(trifluoromethyl)phenoxy)hexyl)silane (S-31) as a colorless liquid (42% yield). $R_f = 0.08$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 4.01 (t, J = 6.5 Hz, 2H), 3.81 (q, J = 6.9 Hz, 6H), 2.55 (s, 3H), 1.84 – 1.74 (m, 2H), 1.51 – 1.37 (m, 6H), 1.22 (t, J = 7.0 Hz, 9H), 0.68 – 0.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 163.2, 130.7, 130.3, 114.3, 68.4, 58.5, 32.9, 29.1, 26.5, 25.7, 22.9, 18.5, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for $C_{20}H_{35}O_5Si [M + H]^+$, 383.2254. Found, 383.2243. IR (neat): υ (cm⁻¹): 2973, 2884, 1680, 1601, 1509, 1390, 1358, 1304, 1257, 1170, 1102, 1079, 1020, 956, 834, 795.

4-((6-(Triethoxysilyl)hexyl)oxy)benzonitrile (S-32)

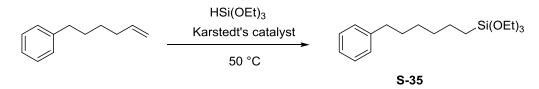
Under nitrogen atmosphere, to a mixture of 4-(hex-5-en-1-yloxy)benzonitrile (**X-32**) (2.01 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise HSi(OEt)₃ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 12:1 (v/v) to afford 2.02 g 4-((6-(triethoxysilyl)hexyl)oxy)benzonitrile (**S-32**) as a colorless liquid (56% yield). R_f = 0.10 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 6.94 – 6.88 (m, 2H), 3.97 (t, *J* = 6.5 Hz, 2H), 3.80 (q, *J* = 7.0 Hz, 6H), 1.83 – 1.73 (m, 2H), 1.49 – 1.36 (m, 6H), 1.21 (t, *J* = 7.0 Hz, 9H), 0.66 – 0.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 134.0, 119.4, 115.3, 103.7, 68.5, 58.4, 32.8, 29.0, 25.7, 22.8, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₃₂NO₄Si [M + H]⁺, 366.2101. Found, 366.2098. IR (neat): v (cm⁻¹): 2972, 2884, 2224, 1606, 1508, 1389, 1300, 1258, 1173, 1110, 1077, 955, 792.


Triethoxy(6-(3-nitrophenoxy)hexyl)silane (S-33)

Under nitrogen atmosphere, to a mixture of 1-(hex-5-en-1-yloxy)-3-nitrobenzene (**X-33**) (2.21 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was stirred at 25 °C for 12.0 h. Then the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 30:1 (v/v) to afford 2.17 g triethoxy(6-(3-nitrophenoxy)hexyl)silane (**S-33**) as a yellow liquid (56% yield).

 $R_f = 0.24$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.1 Hz, 1H), 7.69 (s, 1H), 7.39 (t, *J* = 8.2 Hz, 1H), 7.19 (dd, *J* = 8.2, 1.8 Hz, 1H), 4.01 (t, *J* = 6.5 Hz, 2H), 3.81 (q, *J* = 7.0 Hz, 6H), 1.84 – 1.75 (m, 2H), 1.52 – 1.36 (m, 6H), 1.21 (t, *J* = 7.0 Hz, 9H), 0.66 – 0.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 149.3, 129.9, 121.8, 115.6, 108.8, 68.8, 58.4, 32.9, 29.0, 25.7, 22.8, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₂NO₆Si [M + H]⁺, 386.1999. Found, 386.1994. IR (neat): υ (cm⁻¹): 2962, 2907, 2854, 1618, 1579, 1532, 1467, 1389, 1286, 1166, 1103, 1079, 957, 862, 789, 737.

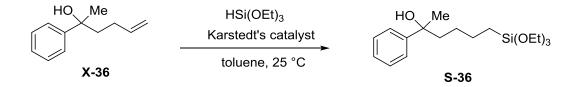
5-Phenyl(4-(6-(triethoxysilyl)hexyloxy)phenyl)methanone (S-34)



Under nitrogen atmosphere, to a mixture of (4-(hex-5-envloxy)phenyl)(phenyl)methanone (X-34) (2.80 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt $\sim 2\%$, 0.300 mL) in a dried Schlenk tube at room temperature was added dropwise HSi(OEt)₃ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was stirred at 25 °C for 12.0 h, the reaction mixture was then concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel. eluting with PE/EtOAc 10:1 (v/v)to afford 2.25 g 5-phenyl(4-(6-(triethoxysilyl)hexyloxy)phenyl)methanone (S-34) as a colorless liquid (51%) yield).

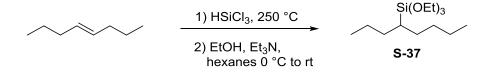
 $R_f = 0.24$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.52 – 7.48 (m, 1H), 7.43 – 7.39 (m, 2H), 6.90 (d, J = 8.6 Hz, 2H), 3.98 (t, J = 6.5 Hz, 2H), 3.79 (q, J = 7.0 Hz, 6H), 1.80 – 1.73 (m,

2H), 1.44 - 1.33 (m, 6H), 1.19 (t, J = 7.0 Hz, 9H), 0.64 - 0.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 195.3, 162.8, 138.3, 132.5, 131.8, 129.8, 129.6, 128.1, 114.0, 68.2, 58.3, 32.7, 29.0, 25.6, 22.7, 18.3, 10.3. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₅H₃₆NaO₅Si [M + Na]⁺, 467.2230. Found, 467.2228. IR (neat): υ (cm⁻¹): 2927, 2840, 1755, 1654, 1599, 1560, 1509, 1305, 1171, 1103, 1018, 955, 799.


Triethoxy(6-phenylhexyl)silane (S-35)

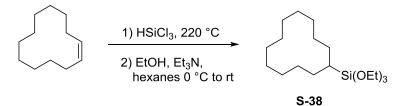
Under nitrogen atmosphere, to a mixture of hex-5-en-1-ylbenzene (3.21 g, 20.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.600 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (5.36 g, 32.6 mmol, 1.63 equiv). The reaction mixture was then heated to 50 °C and stirred for 12.0 h. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting first with PE/EtOAc 100:1 (v/v) then with PE/EtOAc 50:1 (v/v) to afford 4.54 g triethoxy(6-phenylhexyl)silane (S-35) as a colorless liquid (70% yield).

 $R_f = 0.24$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.24 (m, 2H), 7.17 – 7.13 (m, 3H), 3.81 (q, *J* = 7.0 Hz, 6H), 2.59 (t, *J* = 7.8 Hz, 2H), 1.64 – 1.57 (m, 2H), 1.42 – 1.34 (m, 6H), 1.22 (t, *J* = 7.1 Hz, 9H), 0.64 – 0.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 128.5, 128.3, 125.6, 58.4, 36.1, 33.1, 31.5, 29.0, 22.8, 18.4, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₃O₃Si [M + H]⁺, 325.2199. Found, 325.2193. IR (neat): v (cm⁻¹): 2971, 2885, 1618, 1602, 1571, 1389, 1294, 1260, 1166, 1103, 1079, 957, 793, 749.


2-Phenyl-6-(triethoxysilyl)hexan-2-ol (S-36)

Under nitrogen atmosphere, to a solution of 2-phenylhex-5-en-2-ol (**X-36**) (1.41 g, 8.00 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.240 mL) in 4.00 mL toluene at room temperature was added dropwise $HSi(OEt)_3$ (2.14 g, 13.0 mmol, 1.63 equiv). The reaction mixture was stirred at 25 °C for 12.0 h. Then the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 1.04 g 2-phenyl-6-(triethoxysilyl)hexan-2-ol (**S-36**) as a colorless liquid (38% yield).

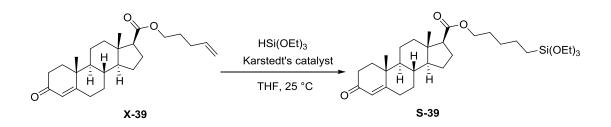
 R_f = 0.66 (hexanes/EtOAc 4:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.3 Hz, 2H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 3.77 (q, *J* = 7.0 Hz, 6H), 1.89 – 1.76 (m, 3H), 1.54 (s, 3H), 1.40 – 1.16 (m, 13H), 0.60 – 0.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 128.2, 126.6, 124.9, 74.7, 58.4, 43.9, 30.3, 27.5, 23.2, 18.4, 10.4. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₂NaO₄Si [M + Na]⁺, 363.1968. Found, 363.1968. IR (neat): ν (cm⁻¹): 3468, 2974, 2885, 1602, 1493, 1446, 1389, 1295, 1166, 1103, 1079, 954, 781, 765.


Triethoxy(octan-4-yl)silane (S-37)

In a glovebox, to (*E*)-oct-4-ene (5.00 g, 44.6 mmol, 1.00 equiv) in a dried 150 mL stainless-steel autoclave at room temperature was added HSiCl₃ (10.0 mL). The pressure vial was then sealed and taken out from the glovebox. The reaction mixture was then heated to 250 °C and stirred for 4 h. (CAUTION: This reaction was carried out behind a blast shield. Extreme caution is necessary because of the high reaction pressure under high temperature). After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was then dissolved in 50 mL anhydrous DCM. The mixture was cooled to 0 °C and added dropwise Et₃N (20.0 mL) and EtOH (20.0 mL). After stirring at room temperature for 2 h, 50 mL hexanes was added to the reaction mixture and the resulting white suspension was filtered through a Celite pad. Evaporation of volatiles afforded a colorless oil. The oil was purified by flash chromatography on silica gel, eluting with hexanes to afford 10.7 g triethoxy(octan-4-yl)silane (**S-37**) as a colorless liquid (87% yield).

 R_f = 0.53 (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 3.81 (q, *J* = 7.0 Hz, 6H), 1.50 – 1.28 (m, 10H), 1.21 (t, *J* = 7.0 Hz, 9H), 0.90 – 0.85(m, 6H), 0.81 – 0.75 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 58.5, 24.4, 24.3, 23.9, 23.8, 23.7, 23.6, 18.5, 14.6, 14.2. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₃₃O₃Si [M + H]⁺, 277.2199. Found, 277.2198. IR (neat): v (cm⁻¹): 2958, 2860, 1460, 1389, 1294, 1166, 1105, 1082, 955, 775, 727.

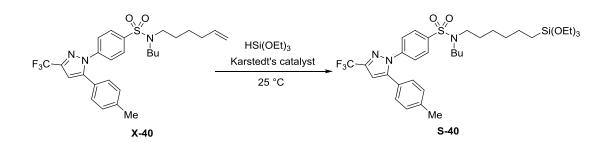
Cyclododecyltriethoxysilane (S-38)



In a glovebox, to cyclododecene (832 mg,5.00 mmol,1.00 equiv) in a dried 15.0 mL glass pressure vial at room temperature was added $HSiCl_3$ (2.0 mL). The pressure vial was then sealed and taken out from the glovebox. The reaction mixture was then heated to 220 °C and

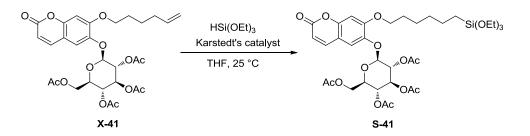
stirred for 4 h. (CAUTION: This reaction was carried out behind a blast shield. Extreme caution is necessary because of the high reaction pressure under high temperature. We have also tried to use a safer stainless-steel autoclave instead of the glass pressure vial, only trace amount of product could be gained). After cooling to room temperature, the reaction mixture was concentrated *in vacuo* and the residue was then dissolved in 20 mL anhydrous hexanes. The mixture was cooled to 0 °C and added dropwise EtOH (1.50 mL)and Et₃N (3.00 mL). The reaction mixture was then warmed to room temperature and stirred for 2 h. The resulting white suspension was filtered through a Celite pad. Evaporation of volatiles afforded a colorless oil. The oil was purified by flash chromatography on silica gel, eluting with PE/EtOAc 50:1 (v/v) to afford 1.47g cyclododecyltriethoxysilane (S-38) as a colorless liquid (89% yield).

 $R_f = 0.52$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 3.82 (q, *J* = 7.0 Hz, 6H), 1.50 – 1.33 (m, 22H), 1.21 (t, *J* = 7.0 Hz, 9H), 0.92 – 0.86 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 58.5, 24.4, 24.3, 23.9, 23.8, 23.7, 23.6, 18.5, 18.0. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₃₉O₃Si [M + H]⁺, 331.2668. Found, 331.2667. IR (neat): v (cm⁻¹): 2960, 2886, 1473, 1389, 1279, 1171, 1103, 1082, 954, 770.


5-(Triethoxysilyl)pentyl androst-4-en-3-one-17β-carboxylate (S-39)

Under nitrogen atmosphere, to a solution of pent-4-en-1-yl androst-4-en-3-one-17 β -carboxylate (X-39) (3.85 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in 5.00 mL THF at room temperature was added dropwise HSi(OEt)₃ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was stirred at 25 °C for 12.0 h. Then the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 8:1 (v/v) to afford 3.15 g 5-(triethoxysilyl)pentyl androst-4-en-3-one-17 β -carboxylate (S-39) as a colorless liquid (57% yield).

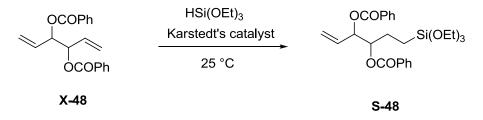
 $R_f = 0.19$ (PE/EtOAc 8:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 5.71 (s, 1H), 4.13 – 3.95 (m, 2H), 3.80 (q, J = 7.0 Hz, 6H), 3.68 (s, 1H), 2.45 – 2.23 (m, 5H), 2.17 – 2.07 (m, 1H), 2.06 – 1.99 (m, 2H), 1.89 – 1.48 (m, 9H), 1.48 – 1.24 (m, 8H), 1.21 (t, J = 7.0 Hz, 9H), 1.17 (s, 3H), 1.12 – 0.91 (m, 3H), 0.69 (s, 3H), 0.63 – 0.59 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 199.6, 174.1, 171.2, 124.0, 67.2, 64.3, 58.4, 55.4, 55.3, 53.9, 44.0, 38.7, 38.2, 35.8, 34.1, 32.9, 32.0, 29.6, 28.5, 24.5, 23.6, 22.6, 21.0, 18.4, 17.5, 13.5, 10.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₃₁H₅₂NaO₆Si [M + Na]⁺, 571.3431. Found, 571.3428. IR (neat): ν (cm⁻¹): 2970, 2930, 1728, 1680, 1643, 1554, 1453, 1382, 1258, 1187, 1113, 1019, 855, 763.


N-butane-N-(6-(triethoxysilyl)hexyl)-Celecoxib (S-40)

Under nitrogen atmosphere, to a solution of *N*-butyl-*N*-(hex-5-enyl)-Celecoxib (**X-40**) (1.56 g, 3.00 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.100 mL) in 2.00 mL THF at room temperature was added dropwise HSi(OEt)₃ (0.890 g, 5.43 mmol, 1.81 equiv). The reaction mixture was stirred at 25 °C for 12.0 h. Then the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 10:1 (v/v) to afford 1.23 g *N*-butane-*N*-(6-(triethoxysilyl)hexyl)-Celecoxib (**S-40**) as a colorless liquid (60% yield).

 R_f = 0.53 (PE/EtOAc 8:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.6 Hz, 2H), 7.44 (d, *J* = 8.6 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.73 (s, 1H), 3.79 (q, *J* = 7.0 Hz, 6H), 3.10 – 3.04 (m, 4H), 2.36 (s, 3H), 1.55 – 1.42 (m, 4H), 1.42 – 1.23 (m, 8H), 1.20 (t, *J* = 7.0 Hz, 9H), 0.88 (t, *J* = 7.3 Hz, 3H), 0.63 – 0.58 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 144.1 (q, *J* = 38.7 Hz), 142.2, 139.8, 139.8, 129.8, 128.8, 128.1, 125.8, 125.6, 121.2 (q, *J* = 269.1 Hz), 106.2, 58.4, 48.3, 48.0, 32.8, 30.7, 28.6, 26.4, 22.8, 21.4, 20.0, 18.4, 13.8, 10.4. ¹⁹F NMR (376 MHz, CDCl₃) δ 63.00. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₃₃H₄₉F₃N₃O₃SSi [M + H]⁺, 684.3114. Found, 684.3117. IR (neat): v (cm⁻¹): 2962, 2928, 2860, 1597, 1471, 1373, 1344, 1261, 1159, 1097, 1021, 975, 802.

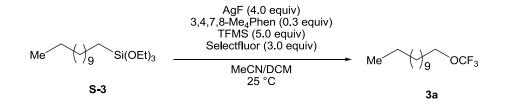
7-O-(6-(triethoxysilyl)hexyl)-Esculin tetracetate (S-41)



Under nitrogen atmosphere, to a solution of 7-*O*-(hex-5-enyl)-Esculin tetracetate (X-41) (5.90 g, 10.0 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.300 mL) in 10.0 mL THF at room temperature was added dropwise $HSi(OEt)_3$ (2.67 g, 16.3 mmol, 1.63 equiv). The reaction mixture was stirred at 25 °C for 12.0 h. Then the reaction mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel,

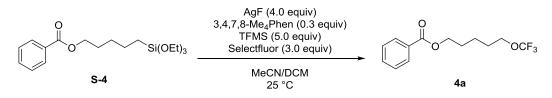
eluting with PE/EtOAc 3:1 (v/v) to afford 6.71 g 7-O-(6-(triethoxysilyl)hexyl)-Esculin tetracetate (S-41) as a colorless liquid (89% yield).

 $R_f = 0.20$ (PE/EtOAc 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 9.5 Hz, 1H), 7.13 (s, 1H), 6.74 (s, 1H), 6.19 (d, *J* = 9.5 Hz, 1H), 5.26 – 5.18 (m, 2H), 5.14 – 5.06 (m, 1H), 4.98 – 4.90 (m, 1H), 4.22 (dd, *J* = 12.3, 4.9 Hz, 1H), 4.10 (dd, *J* = 12.3, 2.3 Hz, 1H), 3.94 (t, *J* = 6.7 Hz, 2H), 3.74 (q, *J* = 7.0 Hz, 6H), 2.01 (s, 3H), 1.98 (s, 3H), 1.97 (s, 6H), 1.82 – 1.70 (m, 2H), 1.46 – 1.29 (m, 6H), 1.15 (t, *J* = 7.0 Hz, 9H), 0.63 – 0.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 170.1, 169.4, 169.1, 161.0, 153.7, 152.0, 143.2, 142.2, 118.3, 113.5, 111.2, 101.1, 100.0, 72.5, 72.0, 71.0, 69.2, 68.3, 61.7, 58.2, 32.7, 28.7, 25.4, 22.7, 20.7, 20.7, 20.5, 18.7, 10.3. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₃₅H₅₁O₁₆Si [M + H]⁺, 755.2946. Found, 755.2946. IR (neat): v (cm⁻¹): 2926, 2886, 1754, 1613, 1561, 1512, 1437, 1382, 1230, 1170, 1103, 1073, 1042, 856, 777.


6-(Triethoxysilyl)hex-1-ene-3,4-diyl dibenzoate (S-48)

Under nitrogen atmosphere, to a mixture of hexa-1,5-diene-3,4-diyl dibenzoate (**X-48**) (1.61 g, 5.00 mmol, 1.00 equiv) and Karstedt's catalyst (in xylene, Pt ~2%, 0.150 mL) in a dried Schlenk tube at room temperature was added dropwise $HSi(OEt)_3$ (821 mg, 5.00 mmol, 1.00 equiv). The reaction mixture was stirred at 25 °C for 40 min, the reaction mixture was then concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel, eluting with PE/EtOAc 20:1 (v/v) to afford 491 mg 6-(triethoxysilyl)hex-1-ene-3,4-diyl dibenzoate (**S-48**) as a colorless liquid (20% yield).

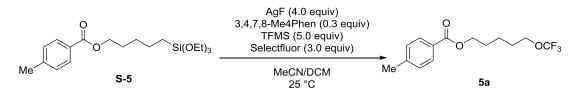
 R_f = 0.20 (PE/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.52 – 7.48 (m, 1H), 7.43 – 7.39 (m, 2H), 6.90 (d, J = 8.6 Hz, 2H), 3.98 (t, J = 6.5 Hz, 2H), 3.79 (q, J = 7.0 Hz, 6H), 1.80 – 1.73 (m, 2H), 1.44 – 1.33 (m, 6H), 1.19 (t, J = 7.0 Hz, 9H), 0.64 – 0.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 165.5, 133.2, 133.1, 133.1, 132.7, 132.1, 130.3, 130.2, 129.8, 128.5, 119.8, 119.5, 76.4, 76.1, 75.7, 75.1, 58.5, 24.1, 23.5, 18.3, 6.2, 5.9. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₆H₃₄NaO₇Si [M + Na]⁺, 509.1971. Found, 509.1958. IR (neat): υ (cm⁻¹): 3068, 2974, 2891, 1722, 1660, 1601, 1451, 1338, 1265, 1175, 1106, 956, 910, 778.


Dodecyl trifluoromethyl ether (3a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (166 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was cooled to 0 °C and added Br₂ (0.100 mL) to remove the byproduct dodecene. After reacting for 5.0 min, 10.0 mL saturated Na₂SO₃ was added to quench the unreacted Br₂. The reaction mixture was filtrated and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes to afford 72.8 mg dodecyl trifluoromethyl ether (**3a**) as a colorless liquid (57% yield).

 R_f = 0.91 (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 3.96 – 3.93 (t, *J* = 6.6 Hz, 2H), 1.72 – 1.65 (m, 2H), 1.38 – 1.27 (m, 18H), 0.89 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 121.9 (q, *J* = 254.4 Hz), 67.7 (q, *J* = 3.1 Hz), 32.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.3, 28.9, 25.6, 22.9, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.54. **3a** is a known compound and spectral data match the reported literature values ^[4]. IR (neat): v (cm⁻¹): 2977, 2873, 1488, 1467, 1269, 1207, 1173, 854, 768.

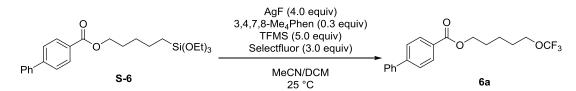
5-(Trifluoromethoxy)pentyl benzoate (4a)



In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl benzoate (**S-4**) (177 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 79.9 mg 5-(trifluoromethoxy)pentyl benzoate (**4a**) as a colorless liquid (58% yield).

 $R_f = 0.39$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ

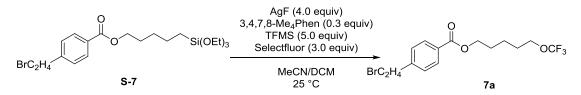
8.05 – 8.04 (m, 2H), 7.58 – 7.54 (m, 1H), 7.46 – 7.42 (m, 2H), 4.34 (t, J = 6.5 Hz, 2H), 3.99 (t, J = 6.4 Hz, 2H), 1.85 – 1.74 (m, 4H), 1.61–1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 133.0, 130.5, 129.6, 128.5, 121.8 (q, J = 254.7 Hz), 67.3 (q, J = 3.1 Hz), 64.7, 28.5, 28.3, 22.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.69. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₆F₃O₃ [M + H]⁺, 277.1052. Found, 277.1045. IR (neat): υ (cm⁻¹): 2962, 2929, 2863, 1722, 1572, 1479, 1273, 1139, 1070, 1026, 801, 711.


5-(Trifluoromethoxy)pentyl 4-methylbenzoate (5a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 4-methylbenzoate (S-5) (184 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 91.7 mg 5-(trifluoromethoxy)pentyl 4-methylbenzoate (**5a**) as a colorless liquid (63% yield).

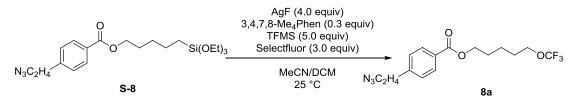
 $R_f = 0.38$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.92 (m, 2H), 7.24 – 7.22 (m, 2H), 4.32 (t, J = 6.5 Hz, 2H), 3.98 (t, J = 6.4 Hz, 2H), 2.40 (s, 3H), 1.84 – 1.73 (m, 4H), 1.60 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 143.7, 129.6, 129.1, 127.7, 121.8 (q, J = 254.6 Hz), 67.2 (q, J = 3.1 Hz), 64.5, 28.4, 28.3, 22.2, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.70. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₈F₃O₃ [M + H]⁺, 291.1199. Found, 291.1208. IR (neat): v (cm⁻¹): 2953, 2872, 1717, 1612, 1408, 1273, 1178, 1138, 1108, 1021, 841, 754.

5-(Trifluoromethoxy)pentyl [1,1'-biphenyl]-4-carboxylate (6a)



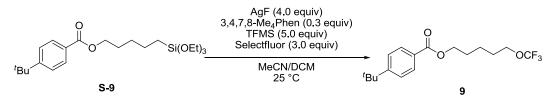
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl [1,1'-biphenyl]-4-carboxylate (**S-6**) (215 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed

and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 99.1 mg 5-(trifluoromethoxy)pentyl [1,1'-biphenyl]-4-carboxylate (**6a**) as a pale yellow liquid (63% yield).


 $R_f = 0.31$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.10 (m, 2H), 7.68 – 7.62 (m, 4H), 7.50 – 7.46 (m, 2H), 7.42 – 7.38 (m, 1H), 4.37 (t, *J* = 6.5 Hz, 2H), 4.01 (t, *J* = 6.4 Hz, 2H), 1.88 – 1.78 (m, 4H), 1.63 – 1.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 145.7, 140.1, 130.2, 129.2, 129.0, 128.2, 127.4, 127.1, 121.8 (q, *J* = 254.8 Hz), 67.3 (q, *J* = 3.1 Hz), 64.7, 28.5, 28.3, 22.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.58. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₂₀F₃O₃ [M + H]⁺, 353.1365. Found, 353.1364. IR (neat): v (cm⁻¹): 2960, 2873, 1722, 1711, 1609, 1407, 1268, 1137, 858, 748.

5-(Trifluoromethoxy)pentyl 4-(2-bromoethyl)benzoate (7a)

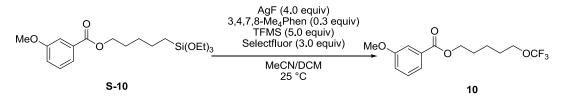
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 4-(2-bromoethyl)benzoate (S-7) (230 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 114 mg 5-(trifluoromethoxy)pentyl 4-(2-bromoethyl)benzoate (7a) as a colorless liquid (59% vield). $R_f = 0.27$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.01 - 7.99 (m, 2H), 7.30 - 7.28 (m, 2H), 4.32 (t, J = 6.5 Hz, 2H), 3.98 (t, J = 6.4 Hz, 2H), 3.58 (t, J = 7.6 Hz, 2H), 3.21 (t, J = 7.6 Hz, 2H), 1.84 - 1.73 (m, 4H), 1.60 - 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 144.1, 129.9, 129.1, 128.8, 121.7 (g, J = 253.8 Hz), 67.2 (q, J = 3.1 Hz), 64.6, 39.1, 32.3, 28.4, 28.3, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.37. Mass Spectrometry: HRMS-ESI (m/z): Calcd for $C_{15}H_{19}F_3BrO_3 [M + H]^+$, 383.0470. Found, 383.0457. IR (neat): v (cm⁻¹): 2947, 2914, 2850, 1717, 1685, 1610, 1542, 1458, 1271, 1179, 1134, 856, 764.


5-(Trifluoromethoxy)pentyl 4-(2-bromoethyl)benzoate (8a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 4-(2-azidoethyl)benzoate (**S-8**) (212 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 102 mg 5-(trifluoromethoxy)pentyl 4-(2-azidoethyl)benzoate (**8a**) as a colorless liquid (59% yield).

R_f = 0.21 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 4.32 (t, J = 6.5 Hz, 2H), 3.98 (t, J = 6.4 Hz, 2H), 3.52 (t, J = 7.1 Hz, 2H), 2.93 (t, J = 7.1 Hz, 2H), 1.84 – 1.72 (m, 4H), 1.59 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 143.5, 129.9, 129.0, 128.9, 121.7 (q, J = 254.7 Hz), 67.2 (q, J = 2.9 Hz), 64.6, 52.0, 35.3, 28.4, 28.2, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.52. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₉F₃N₃O₃ [M + H]⁺, 346.1379. Found, 346.1378. IR (neat): υ (cm⁻¹): 2953, 2912, 2850, 2096, 1727, 1712, 1602, 1554, 1494, 1402, 1268, 1179, 1132, 1103, 847, 703.

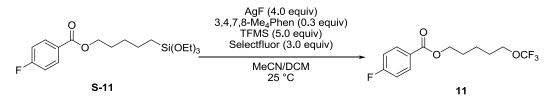
5-(Trifluoromethoxy)pentyl 4-(tert-butyl)benzoate (9)



In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 4-(*tert*-butyl)benzoate (**S-9**) (205 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 110 mg 5-(trifluoromethoxy)pentyl 4-(*tert*-butyl)benzoate (**9**) as a colorless liquid (66% yield).

 $R_f = 0.41$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.00 - 7.97 (m, 2H), 7.48 - 7.45 (m, 2H), 4.33 (t, J = 6.5 Hz, 2H), 3.99 (t, J = 6.4 Hz, 2H),

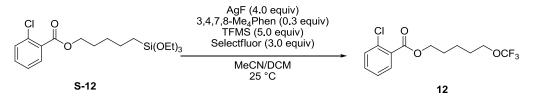
1.85 – 1.74 (m, 4H), 1.61 – 1.55 (m, 2H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 156.6, 129.5, 127.6, 125.4, 121.8 (q, J = 254.7 Hz), 67.3 (q, J = 3.1 Hz), 64.4, 35.1, 31.2, 28.4, 28.3, 22.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.69. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₇H₂₄F₃O₃ [M + H]⁺, 333.1678. Found, 333.1678. IR (neat): ν (cm⁻¹): 2961, 2870, 1721, 1712, 1611, 1408, 1272, 1187, 1133, 1016, 854, 774.


5-(Trifluoromethoxy)pentyl 3-methoxybenzoate (10)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 3-methoxybenzoate (**S-10**) (192 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 102 mg 5-(trifluoromethoxy)pentyl 3-methoxybenzoate (**10**) as a colorless liquid (66% yield).

R_f = 0.27 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.61 (m, 1H), 7.56 – 7.55 (m, 1H), 7.33 (t, J = 7.9 Hz, 1H), 7.10 – 7.07 (m, 1H), 4.32 (t, J = 6.5 Hz, 2H), 3.97 (t, J = 6.4 Hz, 2H), 3.83 (s, 3H), 1.83 – 1.72 (m, 4H), 1.59 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 159.6, 131.7, 129.5, 121.9, 121.8 (q, J = 254.7 Hz), 119.3, 114.1, 67.2 (q, J = 3.1 Hz), 64.7, 55.4, 28.4, 28.2, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.62. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₈F₃O₄ [M + H]⁺, 307.1157. Found, 307.1151. IR (neat): v (cm⁻¹): 2954, 2839, 1717, 1588, 1488, 1455, 1278, 1228, 1138, 1074, 1046, 844, 756.

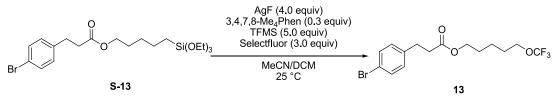
5-(Trifluoromethoxy)pentyl 4-fluorobenzoate (11)



In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 4-fluorobenzoate (S-11) (136 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken

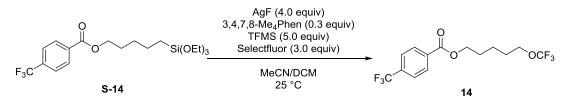
out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 86.3 mg 5-(trifluoromethoxy)pentyl 4-fluorobenzoate (**11**) as a colorless liquid (59% yield).

R_f = 0.27 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.02 (m, 2H), 7.12 – 7.06 (m, 2H), 4.32 (t, J = 6.5 Hz, 2H), 3.98 (t, J = 6.4 Hz, 2H), 1.84 – 1.72 (m, 4H), 1.59 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9 (d, J = 254.6 Hz), 165.7, 132.2 (d, J = 9.3 Hz), 126.7 (d, J = 2.9 Hz), 121.8 (q, J = 254.6 Hz), 115.6 (d, J = 22.1 Hz), 67.2 (q, J = 3.1 Hz), 64.8, 28.4, 28.3, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.89, -106.00. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₅F₄O₃ [M + H]⁺, 295.0957. Found, 295.0958. IR (neat): v (cm⁻¹): 2955, 2868, 1716, 1604, 1507, 1270, 1239, 1137, 854, 767.

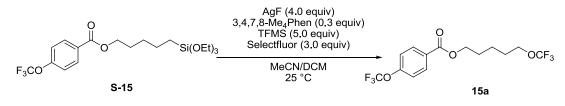

5-(Trifluoromethoxy)pentyl 2-chlorobenzoate (12)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 2-chlorobenzoate (S-12) (136 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 94.2 mg 5-(trifluoromethoxy)pentyl 2-chlorobenzoate (12) as a colorless liquid (61% yield). $R_f = 0.27$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.79 (m, 1H), 7.45 – 7.37 (m, 2H), 7.32 – 7.28 (m, 1H), 4.34 (t, J = 6.5 Hz, 2H), 3.97 (t, J = 6.4 Hz, 2H), 1.84 – 1.71 (m, 4H), 1.60 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 133.6, 132.6, 131.4, 131.1, 130.4, 126.7, 121.8 (q, J = 254.7 Hz), 67.2 (q, J = 3.2 Hz), 65.2, 28.4, 28.1, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.67. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₅ClF₃O₃ $[M + H]^+$, 311.0662. Found, 311.0652. IR (neat): υ (cm⁻¹):

5-(Trifluoromethoxy)pentyl 3-(4-bromophenyl)propanoate (13)

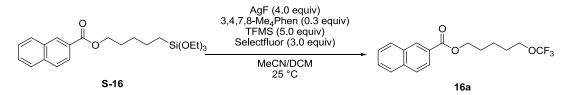

2962, 2871, 1729, 1592, 1469, 1439, 1291, 1259, 1135, 1050, 800, 745.

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 3-(4-bromophenyl)propanoate (**S-13**) (231 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 114 mg 5-(trifluoromethoxy)pentyl 3-(4-bromophenyl)propanoate (**13**) as a colorless liquid (59% yield).


 $R_f = 0.27$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.08 – 7.06 (m, 2H), 4.06 (t, J = 6.5 Hz, 2H), 3.94 (t, J = 6.4 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 1.71 – 1.58 (m, 4H), 1.43 – 1.36 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 139.5, 131.6, 130.2, 121.7 (q, J = 254.8 Hz), 120.1, 67.2 (q, J = 3.1 Hz), 64.2, 35.6, 30.4, 28.3, 28.1, 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.62. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₂₂BrF₃NO₃ [M + NH₄]⁺, 400.0735. Found, 400.0722. IR (neat): v (cm⁻¹): 2960, 2856, 1734, 1592, 1488, 1390, 1287, 1173, 1105, 1079, 854, 767.

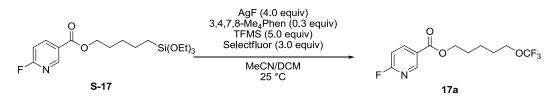
5-(Trifluoromethoxy)pentyl 4-(trifluoromethyl)benzoate (14)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 4-(trifluoromethyl)benzoate (S-14) (211 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 96.6 mg 5-(trifluoromethoxy)pentyl 4-(trifluoromethyl)benzoate (14) as a colorless liquid (56% yield). $R_f = 0.31$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.14 (t, J = 7.9 Hz, 2H), 7.69 (t, J = 8.0 Hz, 2H), 4.36 (t, J = 6.8 Hz, 2H), 3.98 (t, J = 6.2 Hz, 2H), 1.86 – 1.75 (m, 4H), 1.61 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 134.6 (q, J = 32.7 Hz), 133.7, 130.1, 125.5 (q, J = 3.5 Hz), 124.2 (q, J = 273.5 Hz), 121.8 (q, J = 254.6Hz), 67.2 (q, J = 2.8 Hz), 65.3, 28.5, 28.3, 22.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.68, -63.06. Mass Spectrometry: HRMS-ESI (m/z): Calcd for $C_{14}H_{14}F_6O_3$ [M]⁺, 344.0847. Found, 344.0859. IR (neat): v (cm⁻¹): 2955, 2857. 1724, 1602, 1551, 1480, 1326, 1273, 1130, 1066, 1018, 863, 775.

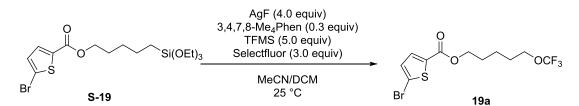

5-(Trifluoromethoxy)pentyl 4-(trifluoromethoxy)benzoate (15a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 4-(trifluoromethoxy)benzoate (S-15) (219 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 97.8 mg 5-(trifluoromethoxy)pentyl 4-(trifluoromethoxy)benzoate (15a) as a colorless liquid (54% yield).

 $R_f = 0.39$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.08 (m, 2H), 7.28 – 7.26 (m, 2H), 4.35 (t, J = 6.5 Hz, 2H), 3.99 (t, J = 6.4 Hz, 2H), 1.86 – 1.74 (m, 4H), 1.61 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 152.7, 131.6, 128.9, 121.8 (q, J = 254.5 Hz), 120.5 (q, J = 259.3 Hz), 120.4, 67.2 (q, J = 3.2 Hz), 65.0, 28.4, 28.3, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.33, -60.39. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₈F₆NO₄ [M + NH₄]⁺, 378.1140. Found, 378.1127. IR (neat): v (cm⁻¹): 2957, 2871, 1723, 1607, 1411, 1258, 1219, 1166, 1139, 1018, 856, 769.


5-(Trifluoromethoxy)pentyl 2-naphthoate (16a)

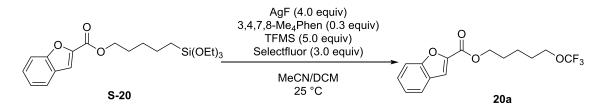
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 2-naphthoate (**S-16**) (202 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 99.2 mg 5-(trifluoromethoxy)pentyl 2-naphthoate (**16a**) as a colorless liquid (61% yield).


 $R_f = 0.26$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.09 – 8.07 (m, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.89 – 7.86 (m, 2H), 7.60 – 7.52 (m, 2H), 4.40 (t, J = 6.6 Hz, 2H), 4.00 (t, J = 6.4 Hz, 2H), 1.89 – 1.75 (m, 4H), 1.63 – 1.56 (m,

2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 135.6, 132.6, 131.0, 129.4, 128.3, 128.2, 127.8, 127.6, 126.7, 125.3, 121.8 (q, J = 254.7 Hz), 67.3 (q, J = 3.1 Hz), 64.8, 28.4, 28.3, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.34. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₇H₁₈F₃O₃ [M + H]⁺, 327.1208. Found, 327.1200. IR (neat): υ (cm⁻¹): 3037, 3011, 2941, 2888, 1717, 1632, 1602, 1507, 1458, 1391, 1353, 1285, 1228, 1186, 1117, 957, 857, 788, 758. **5-(Trifluoromethoxy)pentyl 6-fluoronicotinate (17a)**

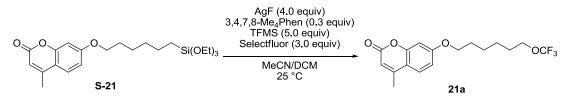
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3.4.7.8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 6-fluoronicotinate (S-17) (187 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H_2O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 15:1 (v/v) to afford 81.0 mg 5-(trifluoromethoxy)pentyl 6-fluoronicotinate (17a) as a colorless liquid (61% yield). $R_f = 0.30$ (hexanes/EtOAc 15:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 1.4 Hz, 1H), 8.38 - 8.33 (m, 1H), 6.97 (dd, J = 8.5 Hz, 2.8 Hz, 1H), 4.33 (t, J = 6.5 Hz, 2H), 3.95 (t, J = 6.3 Hz, 2H), 1.82 – 1.70 (m, 4H), 1.56 – 1.48 (m, 2H). ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta 165.9 \text{ (d}, J = 246.3 \text{ Hz}), 164.2, 150.3 \text{ (d}, J = 16.6 \text{ Hz}), 142.6 \text{ (d}, J = 9.4 \text{ Hz})$ Hz), 124.6 (d, J = 4.5 Hz), 121.7 (q, J = 254.6 Hz), 109.6 (d, J = 37.7 Hz), 67.1 (q, J = 3.1 Hz), 65.2, 28.3, 28.1, 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.77, -61.52. Mass Spectrometry: HRMS-ESI (m/z): Calcd for $C_{12}H_{14}F_4NO_3$ [M + H]⁺, 296.0910. Found, 296.0904. IR (neat): v (cm⁻¹): 2959, 2873, 1726, 1596, 1483, 1381, 1286, 1134, 1021, 845, 777.

5-(Trifluoromethoxy)pentyl 5-bromothiophene-2-carboxylate (19a)



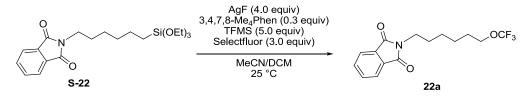
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 5-bromothiophene-2-carboxylate (**S-19**) (220 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then

sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 113 mg 5-(trifluoromethoxy)pentyl 5-bromothiophene-2-carboxylate (**19a**) as a colorless liquid (62% yield).


 $R_f = 0.39$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 4.0 Hz, 1H), 7.06 (d, J = 4.0 Hz, 1H), 4.28 (t, J = 6.5 Hz, 2H), 3.97 (t, J = 6.4 Hz, 2H), 1.81 – 1.71 (m, 4H), 1.56 – 1.49 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 135.0 133.7, 131.0, 121.8 (q, J = 254.8 Hz), 120.3, 67.2 (q, J = 3.1 Hz), 65.1, 28.4, 28.2, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.68. Mass Spectrometry: HRMS-ESI (m/z): Calcd for $C_{11}H_{13}BrF_3O_3S$ [M + H]⁺, 360.9721. Found, 360.9708. IR (neat): υ (cm⁻¹): 2956, 2873, 1713, 1612, 1554, 1469, 1418, 1328, 1253, 1139, 1091, 1047, 974, 856, 745.

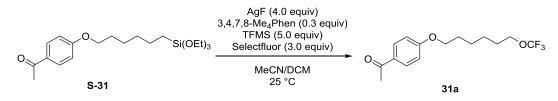
5-(Trifluoromethoxy)pentyl benzofuran-2-carboxylate (20a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl benzofuran-2-carboxylate (S-20) (197 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 88.6 mg 5-(trifluoromethoxy)pentyl benzofuran-2-carboxylate (20a) as a colorless liquid (56% yield). $R_f = 0.39$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.66 (m, 1H), 7.59 – 7.57 (m, 1H), 7.52 (d, *J* = 0.84 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.31 -7.27 (m, 1H), 4.38 (t, J = 6.6 Hz, 2H), 3.98 (t, J = 6.4 Hz, 2H), 1.86 -1.73 (m, 4H), 1.60 -1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 155.7, 145.5, 127.6, 126.9, 123.8, 122.8, 121.7 (q, J = 254.8 Hz), 113.8, 112.3, 67.1 (q, J = 3.1 Hz), 65.0, 28.3, 28.1, 22.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.66. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₆F₃O₄ [M + H]⁺, 317.1001. Found, 317.0996. IR (neat): v (cm⁻¹): 2947, 2871, 1727, 1692, 1572, 1554, 1295, 1258, 1210, 1177, 1143, 1096, 885, 749.


4-Methyl-7-((6-(trifluoromethoxy)hexyl)oxy)-2H-chromen-2-one (21a)

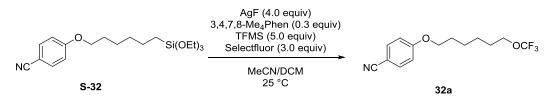
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 4-methyl-7-((6-(triethoxysilyl)hexyl)oxy)-2H-chromen-2-one (**S-21**) (211 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 5:1 (v/v) to afford 88.0 mg 4-methyl-7-((6-(trifluoromethoxy)hexyl)oxy)-2H-chromen-2-one (**21a**) as a colorless liquid (51% yield).

 R_f = 0.27 (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.8 Hz, 1H), 6.83 – 6.81 (m, 1H), 6.76 (d, *J* = 1.6 Hz, 1H), 6.09 (s, 1H), 4.01 – 3.94 (m, 4H), 2.36 (s, 3H), 1.85 – 1.78 (m, 2H), 1.75 – 1.68 (m, 2H), 1.53 – 1.46 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.4, 155.3, 152.7, 125.6, 121.8 (q, *J* = 254.8 Hz), 113.5, 112.6, 111.9, 101.4, 68.4, 67.4 (q, *J* = 3.1 Hz), 28.9, 28.7, 25.6, 25.3, 18.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.60. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₇H₂₀F₃O₄ [M + H]⁺, 345.1314. Found, 345.1310. IR (neat): v (cm⁻¹): 2944, 2864, 1730, 1614, 1554, 1432, 1388, 1369, 1277, 1201, 1138, 1070, 1015, 848.


2-(6-(Trifluoromethoxy)hexyl)isoindoline-1,3-dione (22a)

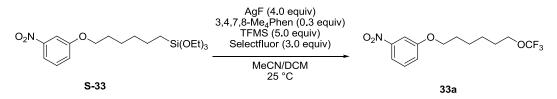
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 2-(6-(triethoxysilyl)hexyl)isoindoline-1,3-dione (**S-22**) (197 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 15:1 (v/v) to afford 102 mg 2-(6-(trifluoromethoxy)hexyl)isoindoline-1,3-dione (**22a**) as a white solid (65% yield).

 $R_f = 0.25$ (hexanes/EtOAc 15:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.79 (m, 2H), 7.71 – 7.67 (m, 2H), 3.92 (t, J = 6.5 Hz, 2H), 3.66 (t, J = 7.3 Hz, 2H), 1.71 – 1.63 (m, 4H), 1.46 – 1.32 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 134.0, 132.2, 123.3, 121.7 (q, J = 254.6 Hz), 67.4 (q, J = 3.1 Hz), 37.9, 28.6, 28.5, 26.4, 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.63. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₇F₃NO₃ [M + H]⁺, 316.1161. Found, 316.1155. IR (neat): v (cm⁻¹): 2939, 2860, 1772, 1714, 1396, 1265, 1135, 1054, 719.

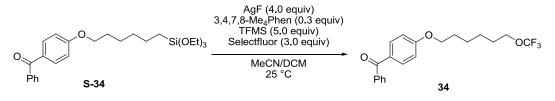

1-(4-((6-(Trifluoromethoxy)hexyl)oxy)phenyl)ethan-1-one (31a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 1-(4-((6-(triethoxysilyl)hexyl)oxy)phenyl)ethan-1-one (**S-31**) (191 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 63.0 mg 1-(4-((6-(trifluoromethoxy)hexyl)oxy)phenyl)ethan-1-one (**31a**) as a colorless liquid (41% yield).

 $R_f = 0.13$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.89 (m, 2H), 6.91 – 6.88 (m, 2H), 4.00 (t, J = 6.4 Hz, 2H), 3.95 (t, J = 6.4 Hz, 2H), 2.53 (s, 3H), 1.84 – 1.77 (m, 2H), 1.74 – 1.67 (m, 2H), 1.54 – 1.41 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 163.1, 130.6, 130.2, 121.8 (q, *J* = 254.6 Hz), 114.2, 68.0, 67.4 (q, *J* = 3.1 Hz), 29.0, 28.7, 26.4, 25.6, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.65. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₂₀F₃O₃ [M + H]⁺, 305.1365. Found, 305.1365. IR (neat): v (cm⁻¹): 2944, 2868, 1678, 1601, 1419, 1359, 1255, 1171, 1136, 1019, 834.

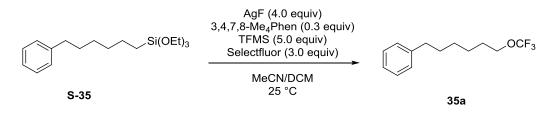

4-((6-(Trifluoromethoxy)hexyl)oxy)benzonitrile (32a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600


mg, 2.50 mmol, 5.00 equiv), 4-((6-(triethoxysilyl)hexyl)oxy)benzonitrile (**S-32**) (183 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 15:1 (v/v) to afford 77.7 mg 4-((6-(trifluoromethoxy)hexyl)oxy)benzonitrile (**32a**) as a colorless liquid (54% yield). R_f = 0.22 (hexanes/EtOAc 15:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 4.01 – 3.94 (m, 4H), 1.84 – 1.70 (m, 4H), 1.54 – 1.46 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 134.0, 121.8 (q, *J* = 254.7 Hz), 119.3, 115.3, 103.8, 68.2, 67.4 (q, *J* = 3.0 Hz), 28.9, 28.7, 25.5, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.63. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₇F₃NO₂ [M + H]⁺, 288.1211. Found, 288.1209. IR (neat): v (cm⁻¹): 2947, 2879, 2261, 1605, 1494, 1258, 1171, 1135, 1016, 834, 737.

1-Nitro-3-((6-(trifluoromethoxy)hexyl)oxy)benzene (33a)

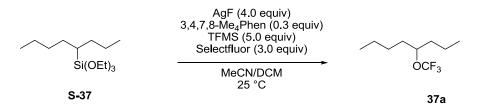
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), triethoxy(6-(3-nitrophenoxy)hexyl)silane (S-33) (193 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H_2O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 100:1 (v/v) to afford 98.8 mg 1-nitro-3-((6-(trifluoromethoxy)hexyl)oxy)benzene (33a) as a colorless liquid (64% yield). $R_f = 0.26$ (hexanes/EtOAc 100:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.77 (m, 1H), 7.70 (t, J = 2.3 Hz, 1H), 7.41 (t, J = 8.2 Hz, 1H), 7.22 - 7.19 (m, 1H), 4.03 (t, J = 6.4 Hz, 2H), 3.97 (t, J = 6.4 Hz, 2H), 1.87 - 1.80 (m, 2H), 1.76 - 1.70 (m, 2H), 1.57 - 1.44 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 149.3, 130.0, 121.8 (q, J = 254.7) Hz), 121.7, 115.7, 108.7, 68.5, 67.4 (q, J = 3.1 Hz), 28.9, 28.7, 25.6, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.62. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₂₀F₃N₂O₄ [M + NH_4 ⁺, 325.1375. Found, 325.1368. IR (neat): v (cm⁻¹): 2902, 2885, 1619, 1580, 1473, 1407, 1350, 1287, 1245, 1139, 1027, 860, 759.


Phenyl(4-((6-(trifluoromethoxy)hexyl)oxy)phenyl)methanone (34)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), phenyl(4-((6-(triethoxysilyl)hexyl)oxy)phenyl)methanone (**S-34**) (222 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 20:1 (v/v) to afford 100 mg phenyl(4-((6-(trifluoromethoxy)hexyl)oxy)phenyl)methanone (**34**) as a white solid (55% yield).

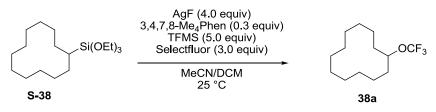
 $R_f = 0.19$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.79 (m, 2H), 7.75 – 7.73 (m, 2H), 7.57 – 7.52 (m, 1H), 7.47 – 7.43 (m, 2H), 6.95 – 6.92 (m, 2H), 4.02 (t, J = 6.4 Hz, 2H), 3.96 (t, J = 6.5 Hz, 2H), 1.86 – 1.79 (m, 2H), 1.75 – 1.69 (m, 2H), 1.55 – 1.47 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 195.5, 162.8, 138.4, 132.6, 131.9, 130.0, 129.7, 128.2, 121.8 (q, *J* = 254.6 Hz), 114.0, 68.0, 67.4 (q, *J* = 3.1 Hz), 29.0, 28.6, 25.6, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.66. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₀H₂₂F₃O₃ [M + H]⁺, 367.1521. Found, 367.1521. IR (neat): ν (cm⁻¹): 2943, 2870, 1657, 1599, 1279, 1255, 1171, 1145, 1022, 792, 700.

(6-(Trifluoromethoxy)hexyl)benzene (35a)

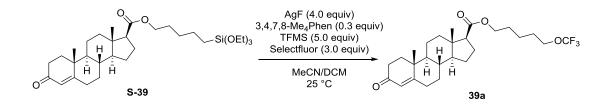


In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), triethoxy(6-phenylhexyl)silane (**S-35**) (162 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes to afford 74.8 mg (6-(trifluoromethoxy)hexyl)benzene (**35a**) as a

colorless liquid (61% yield).


 $R_f = 0.57$ (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.18 – 7.15 (m, 3H), 3.91 (t, J = 6.6 Hz, 2H), 2.60 (t, J = 7.8 Hz, 2H), 1.68 – 1.58 (m, 4H), 1.43 – 1.31 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 128.5, 128.4, 125.8, 121.9 (q, J = 254.5 Hz), 67.6 (q, J = 3.1 Hz), 35.9, 31.4, 28.8, 28.8, 25.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.42. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₇F₃O [M]⁺, 246.1231. Found, 246.1232. IR (neat): ν (cm⁻¹): 2917, 2849, 1622, 1555, 1538, 1415, 1264, 1148, 1023, 856, 795.

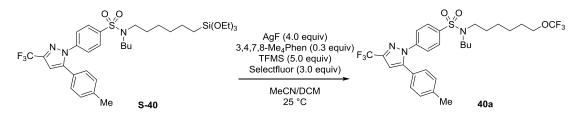
4-(Trifluoromethoxy)octane (37a)


In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), triethoxy(octan-4-yl)silane (**S-37**) (138 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (50.0 μ L, 0.407 mmol) was added. The ¹⁹F NMR yield of the volatile 4-(trifluoromethoxy)octane (**37a**) was determined by comparing the integration of the ¹⁹F NMR (376 MHz, CDCl3) resonance of benzotrifluoride (-207.53 ppm) with that of 4-(trifluoromethoxy)octane (-57.26 ppm). (12% ¹⁹F NMR Yield). NMR Spectroscopy: ¹⁹F NMR (376 MHz, CDCl₃) δ -57.26.

(Trifluoromethoxy)cyclododecane (38a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), cyclododecyltriethoxysilane (**S-38**) (165 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (50.0 μ L, 0.407 mmol) was added. The ¹⁹F NMR yield of the volatile (trifluoromethoxy)cyclododecane (**38a**) was determined by comparing the integration of the ¹⁹F NMR (376 MHz, CDCl₃) resonance of benzotrifluoride (-62.8 ppm) with that of (trifluoromethoxy)cyclododecane (-57.73 ppm). (9% ¹⁹F NMR Yield).

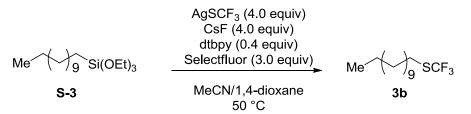
NMR Spectroscopy: ¹⁹F NMR (376 MHz, CDCl₃) δ -57.73. **38a** is a known compound and spectral data match the reported literature values ^[5].


5-(Trifluoromethoxy)pentyl androst-4-en-3-one-17β-carboxylate (39a)

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl androst-4-en-3-one-17 β -carboxylate (**S-39**) (274 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 5:1 (v/v) to afford 147 mg 5-(trifluoromethoxy)pentyl androst-4-en-3-one-17 β -carboxylate (**39a**) as a white solid (62% yield).

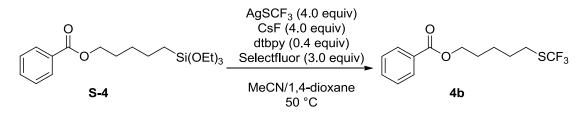
 $R_f = 0.17$ (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 5.68 (s, 1H), 4.11 – 3.98 (m, 2H), 3.93 (t, J = 6.3 Hz, 2H), 2.43 – 2.22 (m, 5H), 2.15 – 2.06 (m, 1H), 2.01 – 1.98 (m, 2H), 1.84 – 1.19 (m, 17H), 1.14 (s, 3H), 1.11 – 0.89 (m, 3H), 0.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.5, 174.0, 171.1, 123.9, 121.7 (q, *J* = 254.9 Hz), 67.2 (q, *J* = 2.9 Hz), 63.8, 55.4, 55.2, 53.8, 44.0, 38.7, 38.2, 35.8, 34.0, 32.9, 32.0, 28.3, 28.3, 24.5, 23.6, 22.2, 20.9, 17.4, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.52. Mass Spectrometry:

HRMS-ESI (m/z): Calcd for $C_{26}H_{38}F_{3}O_{4}$ [M + H]⁺, 471.2722. Found, 471.2720. IR (neat): v (cm⁻¹): 2942, 2856, 1734, 1685, 1663, 1559, 1448, 1270, 1139, 1052, 868.


N-butane-N-(6-(trifluoromethoxy)hexyl)-Celecoxib (40a)

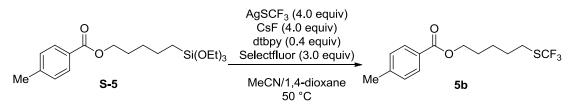
In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), tmph (35.4 mg, 0.150 mmol, 0.300 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at

room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), N-butane-N-(6-(triethoxysilvl)hexyl)-Celecoxib (S-40) (274 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 15:1 (v/v) to get a crude product, which was then purified by preparative TLC, eluting with hexanes/DCM 2:1 (v/v) to afford 96.6 mg N-butane-N-(6-(trifluoromethoxy)hexyl)-Celecoxib (40a) as a white solid (32% yield). $R_f = 0.33$ (hexanes/EtOAc 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 7.17 – 7.15 (m, 2H), 7.10 – 7.08 (m, 2H), 6.74 (s, 1H), 3.94 (t, J = 6.4 Hz, 2H), 3.10 (t, J = 7.5 Hz, 4H), 2.37 (s, 3H), 1.70 - 1.63 (m, 2H), 1.57 - 1.23 (m, 10H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 144.1 (q, J = 38.7 Hz), 142.3, 139.9, 139.8, 129.8, 128.8, 128.1, 125.8, 125.6, 121.8 (q, J = 254.6 Hz), 121.2 (q, J = 269.8 Hz), 106.3, 67.4 (q, J = 2.9 Hz), 48.1, 30.7, 28.7, 28.6, 26.2, 25.2, 21.4, 20.0, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.65, -62.42. Mass Spectrometry: HRMS-ESI (m/z): Calcd for $C_{28}H_{34}F_6N_3NaO_3S$ [M + Na]⁺, 628.2045. Found, 628.2040. IR (neat): v (cm^{-1}) : 2961, 2938, 2866, 1622, 1588, 1472, 1373, 1340, 1263, 1237, 1160, 1136, 1024, 975, 804.


Dodecyl(trifluoromethyl)sulfane (3b)

In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (166 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes to afford 108 mg dodecyl(trifluoromethyl)sulfane (**3b**) as a colorless liquid (80% yield).

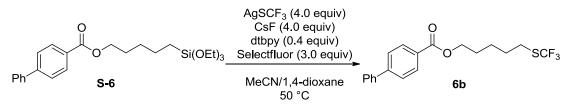
 R_f = 0.75 (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 2.87 (t, *J* = 7.5 Hz, 2H), 1.73 – 1.63 (m, 2H), 1.43 – 1.20 (m, 18H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 131.4 (q, *J* = 305.6 Hz), 32.1, 30.0 (q, *J* = 1.8 Hz), 29.9, 29.7, 29.6, 29.6, 29.5, 29.1, 28.7, 22.9, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.56. **3b** is a known compound and spectral data match the reported literature values ^[6]. IR (neat): v (cm⁻¹): 2926, 2856, 1473, 1283, 1154, 1119, 756.


5-((Trifluoromethyl)thio)pentyl benzoate (4b)

In a glovebox, to a solution of 5-(triethoxysilyl)pentyl benzoate (S-4) (177 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 12:1 (v/v) to afford 98.4 mg 5-((trifluoromethyl)thio)pentyl benzoate (**4b**) as a colorless liquid (67% yield).

 $R_f = 0.49$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.62 – 7.51 (m, 1H), 7.46 – 7.42 (m, 2H), 4.33 (t, *J* = 6.5 Hz, 2H), 2.91 (t, *J* = 7.3 Hz, 2H), 1.84 – 1.74 (m, 4H), 1.61 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 131.3 (q, *J* = 305.6 Hz), 130.4, 129.7, 128.5, 64.7, 29.8 (q, *J* = 1.9 Hz), 29.3, 28.3, 25.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.40. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₆F₃O₂S [M + H]⁺, 293.0823. Found, 293.0814. IR (neat): v (cm⁻¹): 2950, 2866, 1720, 1602, 1585, 1452, 1315, 1276, 1147, 1114, 1070, 1026, 755.

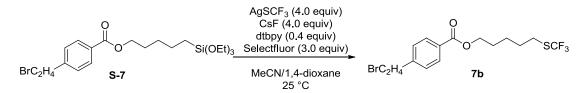
5-((Trifluoromethyl)thio)pentyl 4-methylbenzoate (5b)



In a glovebox, to a solution of 5-(triethoxysilyl)pentyl 4-methylbenzoate (S-5) (184 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM

12:1 (v/v) to afford 107 mg 5-((trifluoromethyl)thio)pentyl 4-methylbenzoate (**5b**) as a colorless liquid (70% yield).

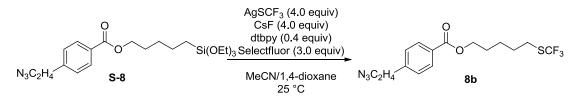
 $R_f = 0.42$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 4.22 (t, J = 6.5 Hz, 2H), 2.81 (t, J = 7.4 Hz, 2H), 2.31 (s, 3H), 1.74 – 1.64 (m, 4H), 1.51 – 1.44 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 143.7, 131.2 (q, J = 305.6 Hz), 129.6, 129.2, 127.7, 64.4, 29.8 (q, J = 1.9 Hz), 29.2, 28.3, 25.2, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.40. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₈F₃O₂S [M + H]⁺, 307.0980. Found, 307.0969. IR (neat): v (cm⁻¹): 2953, 2866, 1718, 1613, 1459, 1375, 1276, 1178, 1112, 1020, 841, 754.


5-((Trifluoromethyl)thio)pentyl [1,1'-biphenyl]-4-carboxylate (6b)

In a glovebox, to a solution of 5-(triethoxysilyl)pentyl [1,1'-biphenyl]-4-carboxylate (**S-6**) (215 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 12:1 (v/v) to afford 78.6 mg 5-((trifluoromethyl)thio)pentyl [1,1'-biphenyl]-4-carboxylate (**6b**) as a colorless liquid (43% yield).

R_f = 0.35 (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 7.2 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 4.25 (t, J = 6.5 Hz, 2H), 2.81 (t, J = 7.4 Hz, 2H), 1.87 – 1.77 (m, 4H), 1.64 – 1.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 144.6, 138.9, 130.1 (q, J = 305.7 Hz), 129.0, 128.0, 127.9, 127.1, 126.2, 126.0, 63.5, 28.7 (q, J = 1.7 Hz), 28.1, 27.2, 24.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.43. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₉H₂₀F₃O₂S [M + H]⁺, 369.1136. Found, 369.1126. IR (neat): υ (cm⁻¹): 2947, 2864, 1715, 1609, 1487, 1450, 1405, 1311, 1278, 1114, 1007, 858, 783, 748.

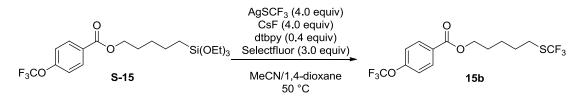
5-((Trifluoromethyl)thio)pentyl 4-(2-bromoethyl)benzoate (7b)



In a glovebox, to a solution of 5-(triethoxysilyl)pentyl 4-(2-bromoethyl)benzoate (S-7) (231

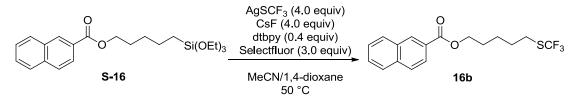
mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 10:1 (v/v) to afford 128 mg 5-((trifluoromethyl)thio)pentyl 4-(2-bromoethyl)benzoate (7b) as a colorless liquid (64% yield).

R_f = 0.30 (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 4.32 (t, J = 6.5 Hz, 2H), 3.59 (t, J = 7.4 Hz, 2H), 3.22 (t, J = 7.4 Hz, 2H), 2.91 (t, J = 7.4 Hz, 2H), 1.84 – 1.74 (m, 4H), 1.60 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 144.2, 131.2 (q, J = 305.8 Hz), 130.0, 129.1, 128.9, 64.7, 39.2, 32.3, 29.8 (q, J = 2.1 Hz), 29.3, 28.3, 25.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.49. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₉BrF₃O₂S [M + H]⁺, 399.0241. Found, 399.0226. IR (neat): v (cm⁻¹): 2946, 2861, 1715, 1611, 1415, 1308, 1276, 1179, 1114, 1020, 756.


5-((Trifluoromethyl)thio)pentyl 4-(2-azidoethyl)benzoate (8b)

In a glovebox, to a solution of 5-(triethoxysilyl)pentyl 4-(2-azidoethyl)benzoate (S-8) (212 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 25:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 12:1 (v/v)to afford 112 mg 5-((trifluoromethyl)thio)pentyl 4-(2-azidoethyl)benzoate (8b) as a colorless liquid (62% yield).

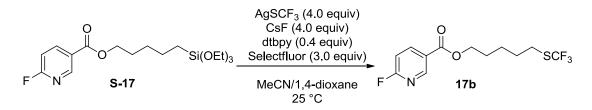
R_f = 0.24 (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 4.32 (t, J = 6.4 Hz, 2H), 3.53 (t, J = 7.1 Hz, 2H), 2.97 – 2.88 (m, 4H), 1.85 – 1.75 (m, 4H), 1.62 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 143.5, 131.2 (q, J = 305.9 Hz), 130.0, 129.0, 128.9, 64.6, 52.0, 35.4, 29.8 (q, J = 1.3 Hz), 29.2, 28.2, 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.20. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₉F₃N₃O₂S [M + H]⁺, 362.1150. Found, 362.1142. IR (neat): ν (cm⁻¹): 2946, 2869, 2097. 1722, 1612, 1415, 1276, 1179, 1147, 1114, 1020, 852.


5-((Trifluoromethyl)thio)pentyl 4-(trifluoromethoxy)benzoate (15b)

In a glovebox, to a solution of 5-(triethoxysilyl)pentyl 4-(trifluoromethoxy)benzoate (S-15) (219 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 12:1 (v/v) to afford 99.7 mg 5-((trifluoromethyl)thio)pentyl 4-(trifluoromethoxy)benzoate (**15b**) as a colorless liquid (53% yield).

 $R_f = 0.41$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 4.35 (t, J = 6.5 Hz, 2H), 2.92 (t, J = 7.3 Hz, 2H), 1.85 – 1.75 (m, 4H), 1.61 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 152.8 (q, J = 1.6 Hz), 131.7, 131.3 (q, J = 305.7 Hz), 128.8, 120.4 (q, J = 258.5 Hz), 120.4, 65.0, 29.8 (q, J = 1.8 Hz), 29.2, 28.2, 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.11, -57.60. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₄F₆NaO₃S [M + Na]⁺, 399.0466. Found, 399.0465. IR (neat): v (cm⁻¹): 2958, 2869, 1720, 1605, 1561, 1460, 1375, 1263, 1158, 1116, 1018, 858, 769.

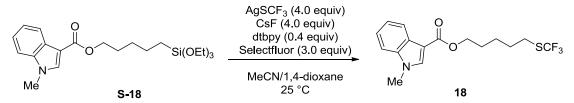
5-((Trifluoromethyl)thio)pentyl 2-naphthoate (16b)



In a glovebox, to a solution of 5-(triethoxysilyl)pentyl 2-naphthoate (**S-16**) (202 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 12:1 (v/v) to afford 112 mg 5-((trifluoromethyl)thio)pentyl 2-naphthoate (**16b**) as a colorless liquid (65% yield).

 $R_f = 0.40$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ

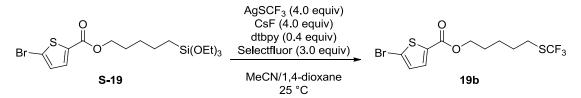
8.62 (s, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.90 – 7.87 (m, 2H), 7.62 – 7.53 (m, 2H), 4.39 (t, J = 6.5 Hz, 2H), 2.92 (t, J = 7.4 Hz, 2H), 1.88 – 1.76 (m, 4H), 1.63 – 1.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 135.6, 132.6, 131.3 (d, J = 305.8 Hz), 131.1, 129.4, 128.3, 128.2, 127.8, 127.6, 126.7, 125.3, 64.8, 29.8 (q, J = 1.6 Hz), 29.2, 28.3, 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.41. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₇H₁₈F₃O₂S [M + H]⁺, 343.0980. Found, 343.0978. IR (neat): υ (cm⁻¹): 3062, 2947, 2864, 1718, 1632, 1599, 1507, 1466, 1389, 1353, 1285, 1228, 1196, 1116, 957, 866, 827, 779, 762.


5-((Trifluoromethyl)thio)pentyl 6-fluoronicotinate (17b)

In a glovebox, to a solution of 5-(triethoxysilyl)pentyl 6-fluoronicotinate (S-17) (187 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 10:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 2:1 (v/v) to afford 83.0 mg 5-((trifluoromethyl)thio)pentyl 6-fluoronicotinate (17b) as a colorless liquid (53% yield).

R_f = 0.18 (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 2.4 Hz, 1H), 8.40 – 8.36 (m, 1H), 6.99 (dd, J = 8.5, 2.8 Hz, 1H), 4.35 (t, J = 6.5 Hz, 2H), 2.89 (t, J = 7.3 Hz, 2H), 1.84 – 1.73 (m, 4H), 1.59 – 1.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (d, J = 245.7 Hz), 164.3, 150.4 (d, J = 16.4 Hz), 142.6 (d, J = 8.9 Hz), 131.2 (q, J = 305.3 Hz), 124.7 (d, J = 4.5 Hz), 109.6 (d, J = 37.3 Hz), 65.3, 29.8 (q, J = 1.9 Hz), 29., 28.2, 25.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.40, -61.64. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₄F₄NO₂S [M + H]⁺, 312.0681. Found, 312.0680. IR (neat): v (cm⁻¹): 2949, 2866, 1725, 1595, 1483, 1381, 1282, 1114, 1020, 844, 777.

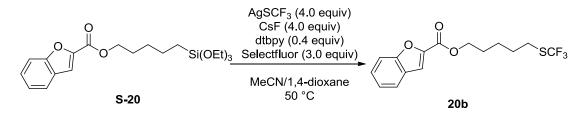
5-((Trifluoromethyl)thio)pentyl 1-methyl-1H-indole-3-carboxylate (18)



In a glovebox, to a solution of 5-(triethoxysilyl)pentyl1-methyl-1H-indole-3- carboxylate (S-18) (204 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531

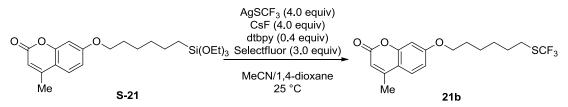
mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 4:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 1:3 (v/v) to afford 70.5 mg 5-((trifluoromethyl)thio)pentyl 1-methyl-1H-indole-3-carboxylate (**18**) as a colorless liquid (41% yield).

 R_f = 0.33 (hexanes/EtOAc 4:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.13 (m, 1H), 7.77 (s, 1H), 7.35 – 7.26 (m, 3H), 4.34 (t, *J* = 6.5 Hz, 2H), 3.83 (s, 3H), 2.92 (t, *J* = 7.3 Hz, 2H), 1.86 – 1.75 (m, 4H), 1.63 – 1.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 137.2, 135.2, 131.3 (q, *J* = 305.6 Hz), 126.7, 122.9, 122.0, 121.7, 109.9, 107.1, 63.4, 33.5, 29.9 (q, *J* = 1.9 Hz), 29.3, 28.5, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.33. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₆H₁₉F₃NO₂S [M + H]⁺, 346.1089. Found, 346.1082. IR (neat): ν (cm⁻¹): 3121, 3055, 2946, 2865, 1695, 1616, 1575, 1468, 1424, 1401, 1378, 1268, 1223, 1151, 1104, 1012, 775.


5-((Trifluoromethyl)thio)pentyl 5-bromothiophene-2-carboxylate (19b)

In a glovebox, to a solution of 5-(triethoxysilyl)pentyl 5-bromothiophene-2- carboxylate (S-19) (220 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 25:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 10:1 (v/v) to afford 112 mg 5-((trifluoromethyl)thio)pentyl 5-bromothiophene-2-carboxylate (**19b**) as a colorless liquid (60% yield).

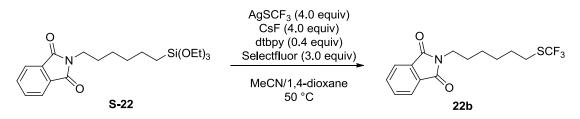
 $R_f = 0.46$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 4.0 Hz, 1H), 7.06 (d, J = 4.0 Hz, 1H), 4.27 (t, J = 6.5 Hz, 2H), 2.89 (t, J = 7.4 Hz, 2H), 1.79 – 1.72 (m, 4H), 1.57 – 1.49 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 135.0, 133.7,131.2 (q, J = 305.8 Hz), 131.0, 120.3, 65.1, 29.8 (q, J = 1.9 Hz), 29.2, 28.2, 25.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.11. Mass Spectrometry: HRMS-EI (m/z): Calcd for $C_{11}H_{12}BrF_{3}O_{2}S_{2}$ [M]+, 375.9414. Found, 375.9413. IR (neat): v (cm⁻¹): 2946, 2863, 1718, 1532, 1418, 1328, 1282, 1251, 1148, 1116, 1047, 973, 810, 745.


5-((Trifluoromethyl)thio)pentyl benzofuran-2-carboxylate (20b)

In a glovebox, to a solution of 5-(triethoxysilyl)pentyl benzofuran-2-carboxylate (S-20) (197 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 25:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 8:1 (v/v) to afford 108 mg 5-((trifluoromethyl)thio)pentyl benzofuran-2-carboxylate (**20b**) as a colorless liquid (65% yield).

 $R_f = 0.31$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.8 Hz, 1H), 7.59 (dd, *J* = 8.4, 0.7 Hz, 1H), 7.52 (d, *J* = 0.8 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.33 – 7.27 (m, 1H), 4.39 (t, *J* = 6.6 Hz, 2H), 2.91 (t, *J* = 7.4 Hz, 2H), 1.87 – 1.74 (m, 4H), 1.61 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 155.9, 145.6, 131.3 (q, *J* = 305.8 Hz), 127.7, 127.1, 123.9, 122.9, 114.0, 112.5, 65.1, 29.8 (q, *J* = 1.9 Hz), 29.2, 28.2, 25.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.40. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₆F₃O₃S [M + H]⁺, 333.0772. Found, 333.0769. IR (neat): υ (cm⁻¹): 3067, 2947, 2864, 1733, 1614, 1589, 1475, 1448, 1348, 1296, 1258, 1180, 1146, 1117, 955, 885, 857, 750.

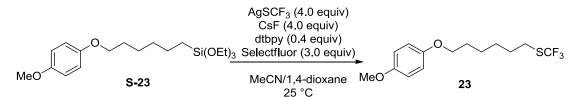
4-Methyl-7-((6-((trifluoromethyl)thio)hexyl)oxy)-2H-chromen-2-one (21b)

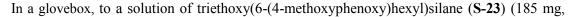


In a glovebox, to a solution of 4-methyl-7-((6-(triethoxysilyl)hexyl)oxy)-2H- chromen-2-one (S-21) (211 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated in vacuo. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 5:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 1:2 (v/v)to afford 111 mg 4-methyl-7-((6-((trifluoromethyl)thio)hexyl)oxy)-2H-chromen-2-one (21b) as a colorless

liquid (62% yield).

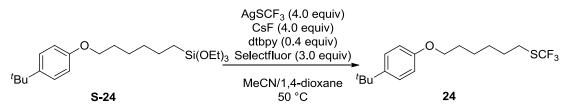
R_f = 0.57 (hexanes/EtOAc 4:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.8 Hz, 1H), 6.82 (dd, J = 8.8, 2.5 Hz, 1H), 6.75 (d, J = 2.5 Hz, 1H), 6.08 (d, J = 1.4 Hz, 1H), 3.99 (t, J = 6.4 Hz, 2H), 2.88 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H), 1.84 – 1.75 (m, 2H), 1.72 – 1.68 (m, 2H), 1.54 – 1.45 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.3, 155.3, 152.7, 131.2 (q, J = 305.9 Hz), 125.6, 113.5, 112.6, 111.9, 101.4, 68.3, 29.8 (q, J = 3.0 Hz), 29.4, 28.9, 28.2, 25.5, 18.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.42. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₇H₂₀F₃O₃S [M + H]⁺, 361.1085. Found, 361.1080. IR (neat): ν (cm⁻¹): 2942, 2862, 1734, 1718, 1616, 1559, 1498, 1465, 1387, 1146, 1116, 1070, 856, 777.

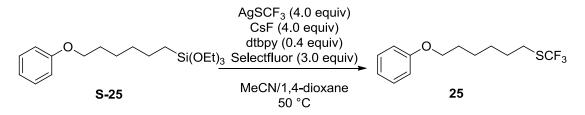

2-(6-((Trifluoromethyl)thio)hexyl)isoindoline-1,3-dione (22b)



In a glovebox, to a solution of 2-(6-(triethoxysilyl)hexyl)isoindoline-1,3-dione (S-22) (197 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated in vacuo. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated in *vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 10:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 3:1 (v/v)afford 103 to mg 2-(6-((trifluoromethyl)thio)hexyl)isoindoline-1,3-dione (22b) as a colorless liquid (61% vield).

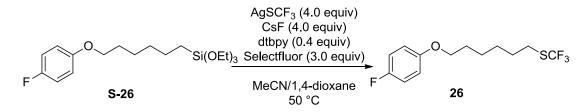
 $R_f = 0.16$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.79 (m, 2H), 7.70 – 7.67 (m, 2H), 3.64 (t, *J* = 7.2 Hz, 2H), 2.82 (t, *J* = 7.4 Hz, 2H), 1.76 – 1.54 (m, 4H), 1.49 – 1.26 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 133.9, 132.1, 131.2 (q, *J* = 305.8 Hz), 123.2, 37.8, 29.8 (q, *J* = 1.8 Hz), 29.3, 28.4, 28.0, 26.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.38. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₇F₃NO₂S [M + H]⁺, 332.0932. Found, 332.0927. IR (neat): υ (cm⁻¹): 2939. 2861, 1713, 1599, 1467, 1437, 1396, 1370, 1178, 1116, 1048, 755, 719.


(6-(4-Methoxyphenoxy)hexyl)(trifluoromethyl)sulfane (23)


0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 8:1 afford 95.1 (v/v)mg (6-(4-methoxyphenoxy)hexyl)(trifluoromethyl)sulfane (23) as a colorless liquid (62% yield). $R_f = 0.39$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.85 - 6.80 (m, 4H), 3.91 (t, J = 6.4 Hz, 2H), 3.77 (s, 3H), 2.89 (t, J = 7.4 Hz, 2H), 1.81 - 6.41.70 (m, 4H), 1.54 - 1.45 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 153.3, 131.5 (q, J = 305.6 Hz), 115.6, 114.8, 68.5, 55.9, 29.9 (q, *J* = 1.9 Hz), 29.5, 29.3, 28.4, 25.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.59. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₄H₁₉F₃O₂S [M]⁺, 308.1058. Found, 308.1057. IR (neat): v (cm⁻¹): 2939, 2861, 2835, 1601, 1508, 1468, 1232, 1146, 1116, 1039, 824.

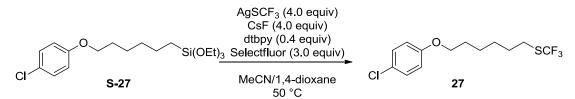
(6-(4-(*Tert*-butyl)phenoxy)hexyl)(trifluoromethyl)sulfane (24)

In a glovebox, to a solution of (6-(4-(*tert*-butyl)phenoxy)hexyl)triethoxysilane (S-24) (198 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford 113 mg (6-(4-(*tert*-butyl)phenoxy)hexyl)(trifluoromethyl)sulfane (24) as a colorless liquid (68% yield).


 $R_f = 0.49$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 3.97 (t, J = 6.3 Hz, 2H), 2.91 (t, J = 7.4 Hz, 2H), 1.85 – 1.72 (m, 4H), 1.56 – 1.46 (m, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 143.4, 131.3 (q, J = 305.7 Hz), 126.3, 114.0, 67.7, 34.2, 31.7, 29.9 (q, J = 1.9 Hz), 29.5, 29.3, 28.4, 25.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.20. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₇H₂₅F₃OS [M]⁺, 334.1578. Found, 334.1580. IR (neat): ν (cm⁻¹): 3039, 2949, 2865, 1611, 1581, 1513, 1462, 1391, 1364, 1294, 1247, 1183, 1149, 1116, 1077, 828. (6-Phenoxyhexyl)(trifluoromethyl)sulfane (25)

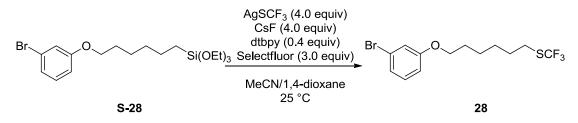
In a glovebox, to a solution of triethoxy(6-phenoxyhexyl)silane (S-25) (170 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford 101 mg (6-phenoxyhexyl)(trifluoromethyl)sulfane (25) as a colorless liquid (73% yield).

 $R_f = 0.51$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, *J* = 7.3 Hz, 2H), 6.99 – 6.91 (m, 3H), 3.98 (t, *J* = 6.2 Hz, 2H), 2.92 (t, *J* = 7.3 Hz, 2H), 1.86 – 1.71 (m, 4H), 1.58 – 1.48 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 131.3 (q, *J* = 305.5 Hz), 129.6, 120.7, 114.6, 67.6, 29.9 (q, *J* = 1.8 Hz), 29.5, 29.2, 28.4, 25.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.02. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₇F₃OS [M]⁺, 278.0952. Found, 278.0952. IR (neat): ν (cm⁻¹): 2936, 2863, 1618, 1586, 1498, 1246, 1150, 1119, 755.


(6-(4-Fluorophenoxy)hexyl)(trifluoromethyl)sulfane (26)

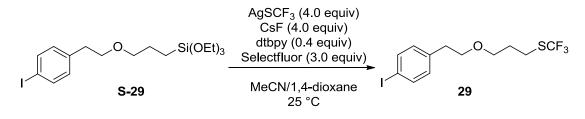
In a glovebox, to a solution of triethoxy(6-(4-fluorophenoxy)hexyl)silane (S-26) (179 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford 92.0 mg (6-(4-fluorophenoxy)hexyl)(trifluoromethyl)sulfane (26) as a colorless liquid (63% yield).

 $R_f = 0.48$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.00 - 6.94 (m, 2H), 6.85 - 6.80 (m, 2H), 3.91 (t, J = 6.4 Hz, 2H), 2.90 (t, J = 7.4 Hz, 2H), 1.82 - 1.70 (m, 4H), 1.54 - 1.44 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (d, J = 237.8Hz), 155.3 (d, J = 2.1 Hz), 131.3 (q, J = 305.7 Hz), 115.9 (d, J = 23.0 Hz), 115.5 (d, J = 7.9 Hz), 68.4, 29.9 (q, J = 2.0 Hz), 29.5, 29.2, 28.4, 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.13, -124.27. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₆F₄OS [M]⁺, 296.0858. Found, 296.0859. IR (neat): υ (cm⁻¹): 2944, 2864, 1600, 1507, 1475, 1390, 1248, 1220, 1117, 828, 758, 722.


(6-(4-Chlorophenoxy)hexyl)(trifluoromethyl)sulfane (27)

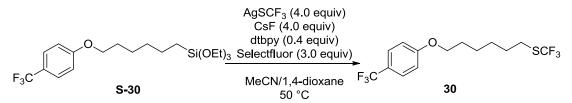
In a glovebox, to a solution of (6-(4-chlorophenoxy)hexyl)triethoxysilane (S-27) (188 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford 99.8 mg (6-(4-chlorophenoxy)hexyl)(trifluoromethyl)sulfane (27) as a colorless liquid (64% yield).

 $R_f = 0.53$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 6.84 – 6.80 (m, 2H), 3.92 (t, J = 6.4 Hz, 2H), 2.90 (t, J = 7.4 Hz, 2H), 1.82 – 1.70 (m, 4H), 1.54 – 1.44 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 131.3 (q, J =305.5 Hz), 129.4, 125.5, 115.9, 68.1, 29.9 (q, J = 1.3 Hz), 29.5, 29.1, 28.4, 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.32. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₆ClF₃OS [M]⁺, 312.0562. Found, 312.0566. IR (neat): v (cm⁻¹): 2943, 2860, 1597, 1579, 1492, 1473, 1390, 1285, 1244, 1147, 1116, 1005, 824, 755.


(6-(3-Bromophenoxy)hexyl)(trifluoromethyl)sulfane (28)

In a glovebox, to a solution of (6-(3-bromophenoxy)hexyl)triethoxysilane (S-28) (210 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford 103 mg (6-(3-bromophenoxy)hexyl)(trifluoromethyl)sulfane (28) as a colorless liquid (58% yield).

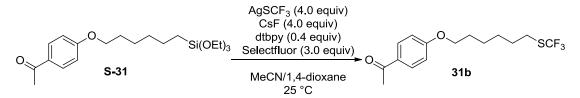
 $R_f = 0.59$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, J = 8.0 Hz, 1H), 7.08 – 7.03 (m, 2H), 6.83 – 6.80 (m, 1H), 3.93 (t, J = 6.4 Hz, 2H), 2.89 (t, J = 7.4 Hz, 2H), 1.83 – 1.69 (m, 4H), 1.53 – 1.45 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 131.3 (q, J = 305.6 Hz), 130.7, 123.8, 122.9, 117.8, 113.7, 68.0, 29.9 (q, J =1.9 Hz), 29.5, 29.1, 28.3, 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.46. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₆BrF₃OS [M]⁺, 356.0057. Found, 356.0058. IR (neat): v (cm⁻¹): 2964, 2882, 1589, 1572, 1478, 1468, 1284, 1244, 1147,1103, 1025, 861, 766.


(3-(4-Iodophenethoxy)propyl)(trifluoromethyl)sulfane (29)

In a glovebox, to a solution of triethyl(3-(4-iodophenethoxy)propyl)silane (S-29) (226 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to afford 118 mg (3-(4-iodophenethoxy)propyl)(trifluoromethyl)sulfane (**29**) as a colorless liquid (61% yield).

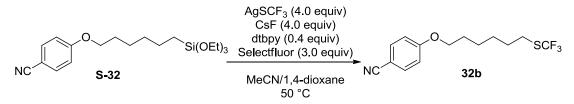
 $R_f = 0.34$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 3.61 (t, J = 6.8 Hz, 2H), 3.51 (t, J = 5.8 Hz, 2H), 2.94 (t, J = 7.1 Hz, 2H), 2.82 (t, J = 6.7 Hz, 2H), 1.96 – 1.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.8, 137.5, 131.3 (q, J = 305.8 Hz), 131.1, 91.5, 71.5, 68.4, 35.9, 29.7, 26.9 (q, J = 1.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -41.52. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂H₁₄F₃IOS [M]⁺, 389.9762. Found, 389.9760. IR (neat): v (cm⁻¹): 2930, 2863, 1584, 1484, 1248, 1146, 1112, 1006, 807, 754.

(Trifluoromethyl)(6-(4-(trifluoromethyl)phenoxy)hexyl)sulfane (30)



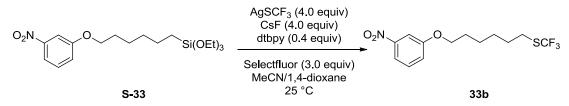
In a glovebox, to a solution of triethoxy(6-(4-(trifluoromethyl)phenoxy)hexyl)silane (S-30) (237 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531

mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford 118 mg (trifluoromethyl)(6-(4-(trifluoromethyl)phenoxy)hexyl)sulfane (**30**) as a colorless liquid (68% yield).


 $R_f = 0.55$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 8.6 Hz, 2H), 4.00 (t, J = 6.3 Hz, 2H), 2.91 (t, J = 7.4 Hz, 2H), 1.87 – 1.70 (m, 4H), 1.56 – 1.44 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 131.3 (q, J = 305.6 Hz), 127.0 (q, J = 3.7 Hz), 124.7 (q, J = 271.0 Hz), 122.8 (q, J = 32.7 Hz), 114.5, 68.0, 29.9 (q, J = 1.9 Hz), 29.5, 29.0, 28.3, 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.27, -61.49. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₄H₁₆F₆OS [M]⁺, 346.0826. Found, 346.0826. IR (neat): v (cm⁻¹): 2944, 2864, 1616, 1590, 1519, 1469, 1424, 1330, 1311, 1259, 1158, 1110, 1067, 1009, 836, 755.

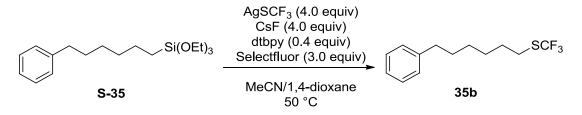
1-(4-((6-((Trifluoromethyl)thio)hexyl)oxy)phenyl)ethanone (31b)

In a glovebox, to a solution of 1-(4-((6-(triethoxysilyl)hexyl)oxy)phenyl)ethanone (S-31) (191 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated in vacuo. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 10:1 (v/v) to give a crude product, which was then purified by preparative TLC, eluting with hexanes/DCM 4:1 (v/v)to afford 102 mg 1-(4-((6-((trifluoromethyl)thio)hexyl)oxy)phenyl)ethanone (**31b**) as a colorless liquid (64%) yield).


 $R_f = 0.11$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 4.02 (t, J = 6.4 Hz, 2H), 2.89 (t, J = 7.4 Hz, 2H), 2.55 (s, 3H), 1.86 – 1.78 (m, 2H), 1.77 – 1.70 (m, 2H), 1.54 – 1.46 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 163.1, 131.3 (q, J = 305.6 Hz), 130.7, 130.4, 114.2, 68.1, 29.9 (q, J = 1.9 Hz), 29.5, 29.0, 28.3, 26.5, 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.42. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₂₀F₃O₂S [M + H]⁺, 321.1136. Found, 321.1135. IR (neat): ν (cm⁻¹): 2902, 2844, 1677, 1601, 1511, 1422, 1358, 1306, 1255, 1171, 1116, 954, 835, 756. 4-((6-((Trifluoromethyl)thio)hexyl)oxy)benzonitrile (32b)

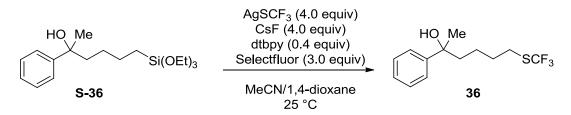
In a glovebox, to a solution of 4-((6-(triethoxysilyl)hexyl)oxy)benzonitrile (**S-32**) (183 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 15:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 5:1 (v/v) to afford 89.5 mg 4-((6-((trifluoromethyl)thio)hexyl)oxy)benzonitrile (**32b**) as a colorless liquid (53% yield).

 $R_f = 0.19$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 4.00 (t, J = 6.3 Hz, 2H), 2.89 (t, J = 7.4 Hz, 2H), 1.85 – 1.78 (m, 2H), 1.77 – 1.69 (m, 2H), 1.54 – 1.46 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 134.1, 131.3 (q, J = 305.7 Hz), 119.4, 115.3, 103.9, 68.2, 29.9 (q, J = 1.4 Hz), 29.4, 28.9, 28.6, 25.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.43. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₇F₃NOS [M + H]⁺, 304.0983. Found, 304.0977. IR (neat): v (cm⁻¹): 2941, 2862, 2224, 1606, 1572, 1509, 1467, 1422, 1302, 1260, 1171, 1116, 1079, 834, 755.


(6-(3-Nitrophenoxy)hexyl)(trifluoromethyl)sulfane (33b)

In a glovebox, to a solution of triethoxy(6-(3-nitrophenoxy)hexyl)silane (**S-33**) (193 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 30:1 (v/v) to afford 115 mg (6-(3-nitrophenoxy)hexyl)(trifluoromethyl)sulfane (**33b**) as a yellow liquid (71% yield). R_f = 0.31 (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 8.1, 2.1 Hz, 1H), 7.69 (t, *J* = 2.3 Hz, 1H), 7.40 (t, *J* = 8.2 Hz, 1H), 7.20 (dd, *J* = 8.3, 2.5 Hz, 1H), 4.02 (t, *J* = 6.3 Hz, 2H), 2.89 (t, *J* = 7.4 Hz, 2H), 1.86 – 1.79 (m, 2H), 1.77 – 1.69 (m, 2H), 1.56 – 1.46 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 149.2, 131.3 (q, *J* =

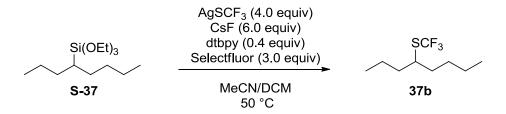
305.7 Hz), 130.0, 121.7, 115.7, 108.7, 68.5, 29.9 (q, J = 1.9 Hz), 29.4, 28.9, 28.3, 25.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.50. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₆F₃NO₃S [M]⁺, 323.0803. Found, 323.0808. IR (neat): υ (cm⁻¹): 2940, 2861, 1618, 1578, 1527, 1482, 1439, 1389, 1320, 1246, 1115, 1049, 1027, 874, 860, 813, 795, 737.


(6-Phenylhexyl)(trifluoromethyl)sulfane (35b)

In a glovebox, to a solution of triethoxy(6-phenylhexyl)silane (S-35) (162 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford 78.5 mg (6-phenylhexyl)(trifluoromethyl)sulfane (**35b**) as a colorless liquid (58% yield). $R_f = 0.83$ (hexanes/EtOAc 40:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.22 – 7.17 (m, 3H), 2.87 (t, *J* = 7.4 Hz, 2H), 2.61 (t, *J* = 7.4 Hz, 2H),

1.73 – 1.59 (m, 4H), 1.49 – 1.35 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 131.3 (q, J = 305.5 Hz), 128.5, 128.4, 125.7, 35.8, 31.2, 30.0 (q, J = 2.0 Hz), 29.3, 28.6, 28.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.50. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₇F₃S [M]⁺, 262.1003. Found, 262.1003. IR (neat): ν (cm⁻¹): 2930, 2860, 2840, 1604, 1572, 1451, 1260, 1149, 1116, 1026, 746.

2-Phenyl-6-((trifluoromethyl)thio)hexan-2-ol (36b)

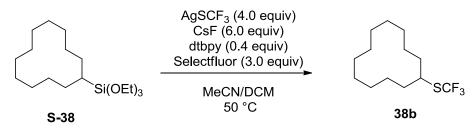


In a glovebox, to a solution of 2-phenyl-6-(triethoxysilyl)hexan-2-ol (**S-36**) (170 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 8:1 (v/v) to get a crude product, which was then purified by preparative TLC, eluting with hexanes/DCM 2:1 (v/v) to

afford 53.4 mg 2-phenyl-6-((trifluoromethyl)thio)hexan-2-ol (**36b**) as a colorless liquid (38% yield).

 $R_f = 0.11$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.25 (t, J = 7.2 Hz, 1H), 2.80 (t, J = 7.5 Hz, 2H), 1.85 – 1.72 (m, 3H), 1.67 – 1.59 (m, 2H),1.57 (s, 3H), 1.45 – 1.34 (m, 1H), 1.30 – 1.20 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 131.3 (q, J = 305.6 Hz), 128.4, 126.8, 124.8, 74.6, 43.6, 30.4, 29.9, 29.8 (q, J = 1.8 Hz), 23.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.07. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₅F₃S [M - H₂O]⁺, 260.0847. Found, 260.0857. IR (neat): v (cm⁻¹): 3423, 2972, 2866, 1600, 1572, 1445, 1263, 1116, 1028, 833, 765.

Octan-4-yl(trifluoromethyl)sulfane (37b)

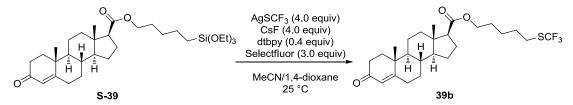


In a glovebox, to a solution of triethoxy(octan-4-yl)silane (S-37) (138 mg, 0.500 mmol, 1.00 equiv) in 4.00 mL MeCN/DCM 1:1 (v/v) at room temperature were added in sequence CsF (456 mg, 3.00 mmol, 6.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 *u*L, 1.96 mmol) was added to the reaction mixture. The ¹⁹F NMR yield of the volatile octan-4-yl(trifluoromethyl)sulfane (**37b**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl(trifluoromethyl)sulfane (-39.39 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). (25% ¹⁹F NMR Yield).

NMR Spectroscopy: ¹⁹F NMR (376 MHz, CDCl₃) δ -39.39.

37b is a known compound and spectral data match the reported literature values ^[7].

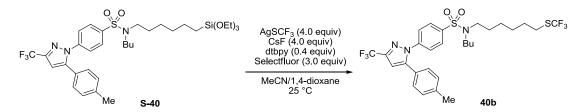
Cyclododecyl(trifluoromethyl)sulfane (38b)



In a glovebox, to a solution of cyclododecyltriethoxysilane (S-38) (165 mg, 0.500 mmol, 1.00 equiv) in 4.00 mL MeCN/DCM 1:1(v/v) at room temperature were added in sequence CsF (456 mg, 3.00 mmol, 6.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 uL, 1.96 mmol) was added to the reaction mixture. The ¹⁹F NMR yield of the volatile cyclododecyl(trifluoromethyl)sulfane (**38b**) was the integration of 19 F determined comparing the NMR resonance by of dodecyl(trifluoromethyl)sulfane (-39.43 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm). $(27\%^{19}F NMR Yield)$.

NMR Spectroscopy: ¹⁹F NMR (376 MHz, CDCl₃) δ -39.43.

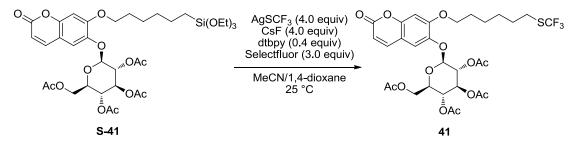
38b is a known compound and spectral data match the reported literature values ^[7].


5-((Trifluoromethyl)thio)pentyl androst-4-en-3-one-17β-carboxylate (39b)

In a glovebox, to a solution of 5-(triethoxysilyl)pentyl androst-4-en-3-one-17β-carboxylate (S-39) (274 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated in vacuo. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 6:1 (v/v) to give a crude product, then the residue was purified by preparative TLC, eluting with hexanes/DCM 2:1 (v/v) to afford 168 mg 5-((trifluoromethyl)thio)pentyl androst-4-en-3-one-17β-carboxylate (**39b**) as a colorless oil (69% yield). $R_f = 0.30$ (hexanes/EtOAc 6:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 5.69 (s, 1H), 4.12 - 3.98 (m, 2H), 2.86 (t, J = 7.2 Hz, 2H), 2.44 - 2.21 (m, 5H), 2.15 - 2.06 (m, 1H), 2.00 (d, J = 11.8 Hz, 2H), 1.87 - 1.34 (m, 13H), 1.31 - 1.21 (m, 2H), 1.15 (s, 3H), 1.10 - 1.21 (m, 2H), 1.15 - 1.21 (m, 2H), 1.21 (m, 2H), 1.15 - 1.21 (m, 2H), 1.21 (m, 2H), 1.00 (m, 2H), 0.96 – 0.89 (m, 1H), 0.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.4, 173.9, 171.0, 131.2 (q, J = 305.7 Hz), 124.0, 63.7, 55.4, 55.2, 53.8, 43.9, 38.7, 38.2, 35.6, 34.0, 32.8, 32.0, 29.8 (q, J = 1.2 Hz), 29.1, 28.2, 25.1, 24.5, 23.6, 20.9, 17.4, 13.5. ¹⁹F NMR (376 MHz,

CDCl₃) δ -41.02. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₆H₃₇F₃NaO₃S [M + Na]⁺, 509.2313. Found, 509.2313. IR (neat): υ (cm⁻¹): 2978, 2886, 1720, 1672, 1617, 1450, 1436, 1384, 1350, 1227, 1112, 956, 866, 755.

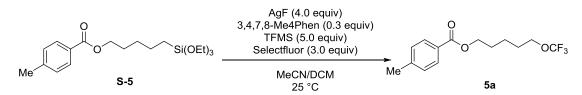
N-butane-N-(6-(trifluoromethylthio)hexyl)-Celecoxib (40b)



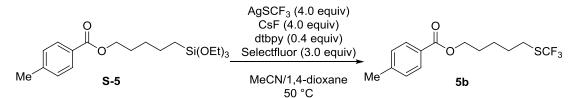
In a glovebox, to a solution of *N*-butane-*N*-(6-(triethoxysilyl)hexyl)-Celecoxib (**S-40**) (342 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*.

The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 8:1 (v/v) to get a crude product, which was then purified by preparative TLC, eluting with hexanes/DCM 2:1 (v/v) to afford 168 mg *N*-butane-*N*-(6-(trifluoromethylthio)hexyl)-Celecoxib (**40b**) as a white solid (57% yield).

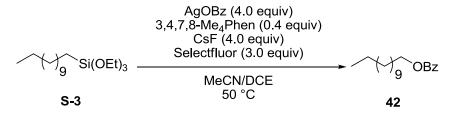
R_f = 0.59 (hexanes/EtOAc 8:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 6.73 (s, 1H), 3.12 – 3.06 (m, 4H), 2.85 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H), 1.71 – 1.63 (m, 2H), 1.58 – 1.35 (m, 6H), 1.33 – 1.22 (m, 4H), 0.88 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 144.1 (q, J = 38.5 Hz), 142.3, 139.8, 139.6, 131.2 (q, J = 305.8 Hz), 129.8, 128.8, 128.1, 125.7, 125.6, 121.2 (q, J = 269.2 Hz), 106.3 (q, J = 1.8 Hz), 48.1, 48.1, 30.7, 29.8 (q, J = 1.8 Hz), 29.4, 28.5, 28.1, 26.1, 21.4, 20.0, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.76, -63.01. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₈H₃₄F₆N₃O₂S₂ [M + H]⁺, 622.1997. Found, 622.1999. IR (neat): ν (cm⁻¹): 2936, 2868, 1597, 1497, 1472, 1374, 1341, 1271, 1237, 1160, 1118, 975, 843, 768.


7-O-(6-(trifluoromethylthio)hexyl)-Esculin tetracetate (41)

In a glovebox, to a solution of 7-*O*-(6-(triethoxysilyl)hexyl)-Esculin tetracetate (**S-41**) (377 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 20 mL EtOAc and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 3:1 (v/v) to get a crude product, which was then purified by preparative TLC, eluting with DCM/MeOH 100:3 (v/v) to afford 204 mg 7-*O*-(6-(trifluoromethylthio)hexyl)-Esculin tetracetate (**41**) as a white solid (59% yield).

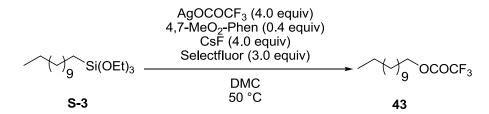

R_f = 0.20 (hexanes/EtOAc 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 9.5 Hz, 1H), 7.13 (s, 1H), 6.75 (s, 1H), 6.21 – 6.18 (m, 1H), 5.26 – 5.19 (m, 2H), 5.15 – 5.09 (m, 1H), 4.99 – 4.93 (m, 1H), 4.23 (dd, J = 12.3, 5.0 Hz, 1H), 4.11 (d, J = 12.3 Hz, 1H), 3.96 (t, J = 6.4 Hz, 2H), 3.78 – 3.73 (m, 1H), 2.86 (t, J = 7.3 Hz, 2H), 2.01 (s, 3H), 2.01 (s, 3H), 1.98 (s, 6H), 1.83 – 1.75 (m, 2H), 1.75 – 1.67 (m, 2H), 1.55 – 1.40 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 170.1, 169.3, 169.0, 160.9, 153.4, 151.8, 143.1, 142.3, 135.7, 135.7, 131.13 (q, J = 305.9 Hz), 117.7, 113.6, 111.3, 101.1, 99.9, 72.4, 72.0, 71.0, 69.0, 68.2, 61.7, 29.7, 29.2, 28.8 – 28.6 (m), 28.1, 25.3, 20.6, 20.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.66. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₃₀H₃₆F₃O₁₂S [M + H]⁺, 693.1829. Found, 693.1825. IR (neat): ν (cm⁻¹): 2935, 2865, 1730, 1606, 1572, 1460,1377, 1258, 1179, 1115, 1026, 859, 755.

Gram scale synthesis of 5-(trifluoromethoxy)pentyl 4-methylbenzoate (5a)



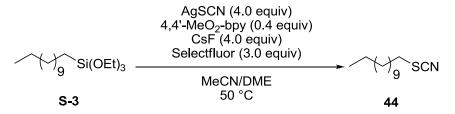
In a glovebox, to a mixture of AgF (1.52 g, 12.0 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (213 mg, 0.900 mmol, 0.300 equiv) and Selectfluor (3.19 g, 9.00 mmol, 3.00 equiv) in a 100 mL round flask at room temperature were sequentially added DCM (12.0 mL), TFMS (3.60 g, 15.0 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl 4-methylbenzoate (S-5) (1.11 g, 3.00 mmol, 1.00 equiv) and MeCN (42.0 mL). The round flask was then sealed, taken out from the glovebox and added an N₂ balloon. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 20 mL H₂O and extracting three times with DCM (50 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by by chromatography on silica gel, eluting with hexanes/DCM 12:1 (v/v) to get a crude product, which was then purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford afford 387 mg 5-(trifluoromethoxy)pentyl 4-methylbenzoate (**5a**) as a colorless liquid (44% yield).

Gram-scale synthesis of 5-((Trifluoromethyl)thio)pentyl 4-methylbenzoate (5b)


In a glovebox, to a solution of 5-(triethoxysilyl)pentyl 4-methylbenzoate (S-5) (1.11 g, 3.00 mmol, 1.00 equiv) in 60.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (1.82 g, 12.00 mmol, 4.00 equiv), Selectfluor (3.19 g, 9.00 mmol, 3.00 equiv), dtbpy (321 mg, 1.20 mmol, 0.400 equiv) and AgSCF₃ (2.51 g, 12.0 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 60 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v) to give a crude product , then the residue was purified by chromatography on silica gel, eluting with hexanes/DCM 12:1 (v/v) to afford 634 mg 5-((trifluoromethyl)thio)pentyl 4-methylbenzoate (**5b**) as a colorless liquid (69% yield).

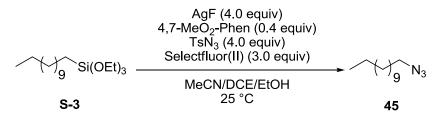
In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (166 mg, 0.500 mmol, 1.00 equiv) in 4.0 mL MeCN/DCE 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), 3,4,7,8-Me₄Phen (47.2 mg, 0.20 mmol, 0.400 equiv) and AgOBz (458 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 40:1 (v/v) to afford 88 mg dodecyl benzoate (42) as a colorless liquid (61% yield).

 R_f = 0.15 (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.3 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 4.31 (t, *J* = 6.7 Hz, 2H), 1.80 – 1.73 (m, 2H), 1.48 – 1.40 (m, 2H), 1.40 – 1.22 (m, 16H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 132.9, 130.7, 129.7, 128.5, 65.3, 32.1, 29.8, 29.8, 29.7, 29.7, 29.5, 29.4, 28.9, 26.2, 22.8, 14.3. **42** is a known compound and spectral data match the reported literature values ^[8]. IR (neat): v (cm⁻¹): 2924, 2853, 1721, 1461, 1433, 1313, 1271, 1250, 1175, 1111, 1069, 1026, 710.


Dodecyl 2,2,2-trifluoroacetate (43)

In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (166 mg, 0.500 mmol, 1.00 equiv) in 4.0 mL DMC at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), 4,7-MeO₂-Phen (48.0 mg, 0.20 mmol, 0.400 equiv) and AgOCOCF₃ (440 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes to afford 86 mg dodecyl 2,2,2-trifluoroacetate (43) as a colorless liquid (61% yield).

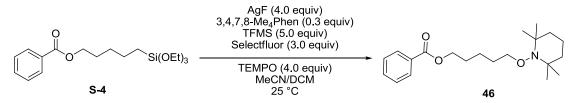
R_f = 0.65 (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 4.34 (t, J = 6.7 Hz, 2H), 1.77 – 1.70 (m, 2H) , 1.42 – 1.20 (m, 18H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.8 (q, J = 42.0 Hz), 114.7 (q, J = 285.6 Hz), 68.5, 32.1, 29.8, 29.7, 29.6, 29.5, 29.2, 28.3, 25.7, 22.8, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -75.15. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₄H₂₅F₃O₂ [M]⁺, 282.1807. Found, 282.1811. IR (neat): ν (cm⁻¹): 2925, 2855, 1744, 1461, 1453, 1365, 1237, 1168, 1039.


1-Thiocyanatododecane (44)

In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (166 mg, 0.500 mmol, 1.00 equiv) in 4.0 mL MeCN:DME 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), 4,4'-MeO₂-bpy (43.2 mg, 0.20 mmol, 0.400 equiv) and AgSCN (332 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes to afford 50 mg 1-thiocyanatododecane (44) as a colorless liquid (43% yield).

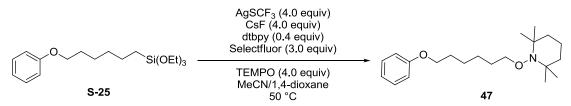
 R_f = 0.15 (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 2.94 (t, *J* = 7.3 Hz, 2H), 1.87 – 1.77 (m, 2H), 1.48 – 1.30 (m, 2H), 1.35 – 1.22 (m, 16H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 112.6, 34.2, 32.0, 30.0, 29.7, 29.6, 29.5, 29.5, 29.0, 28.1, 22.8, 14.3. **44** is a known compound and spectral data match the reported literature values ^[9]. IR (neat): ν (cm⁻¹): 2925, 2854, 2155, 1465, 1376, 1282, 1242.

1-Azidododecane (45)



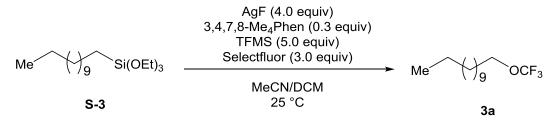
In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (166 mg, 0.500 mmol, 1.00 equiv) in 1.1 mL MeCN:DCE:EtOH 5:5:1 (v/v) at room temperature were added in sequence AgF (254 mg, 2.00 mmol, 4.00 equiv), Selectfluor(II) (480 mg, 1.50 mmol, 3.00 equiv), 4,4'-MeO₂Phen (48.0 mg, 0.200 mmol, 0.400 equiv) and TsN₃ (394 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 25 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes to afford 64 mg 1-azidododecane (**45**) as a colorless liquid (61% yield).

 $R_f = 0.72$ (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 3.25 (t, J = 7.0 Hz, 2H), 1.63 – 1.56 (m, 2H), 1.40 – 1.20 (m, 18H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 51.6, 32.1, 29.8, 29.7, 29.6, 29.5, 29.3, 29.0, 26.9, 22.8, 14.3. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂H₂₅N₃ [M]⁺, 211.2048. Found, 211.2039. IR (neat): υ (cm⁻¹): 2925, 2854, 2094, 1465, 1348, 1288, 1252, 1209.

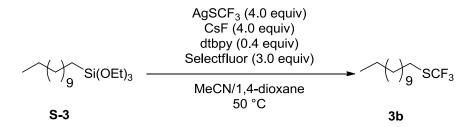

Mechanism Studies

Mechanism studies by radical-trapping reaction

In a glovebox, to a mixture of AgF (253 mg, 2.00 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (35.4 mg, 0.150 mmol, 0.300 equiv), TEMPO (313 mg, 2.00 mmol, 4.00 equiv) and Selectfluor (531 mg, 1.50 mmol, 3.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (2.00 mL), TFMS (600 mg, 2.50 mmol, 5.00 equiv), 5-(triethoxysilyl)pentyl benzoate (**S-4**) (177 mg, 0.500 mmol, 1.00 equiv) and MeCN (7.00 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, the reaction mixture was quenching with 10 mL H₂O and extracting three times with DCM (10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by preparative TLC, eluting with hexanes/EtOAc 50:1 (v/v) to afford 45.8 mg 5-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentyl benzoate (**46**) as a colorless liquid (25% yield).


 $R_f = 0.12$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.3 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 4.33 (t, J = 6.6 Hz, 2H), 3.75 (t, J = 6.2 Hz, 2H), 1.84 – 1.77 (m, 2H), 1.63 – 1.42 (m, 8H), 1.36 – 1.25 (m, 2H), 1.14 (s, 6H), 1.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 132.9, 130.6, 129.7, 128.4, 76.5, 65.1, 59.8, 39.7, 33.2, 28.9, 28.5, 23.2, 20.2, 17.3. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₁H₃₄NO₃ [M + H]⁺, 348.2539. Found, 348.2540. IR (neat): v (cm⁻¹): 2936, 2855, 1726, 1598, 1442, 1386, 1275, 1109, 1027, 802, 711.

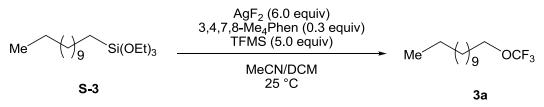
In a glovebox, to a solution of triethoxy(6-phenoxyhexyl)silane (S-25) (170 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv), AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv) and TEMPO (313 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated in vacuo. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated in vacuo. The residue was purified by preparative TLC, eluting hexanes/EtOAc 40:1 (v/v)afford with to to 63.3 mg 2,2,6,6-tetramethyl-1-(6-phenoxyhexyloxy)piperidine (47) as a colorless liquid (38% yield). $R_f = 0.22$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, J = 7.6 Hz, 2H), 6.94 – 6.88 (m, 3H), 3.95 (t, J = 6.2 Hz, 2H), 3.74 (t, J = 6.1 Hz, 2H),


1.83 – 1.76 (m, 2H), 1.57 – 1.41 (m, 11H), 1.34 – 1.28 (m, 1H), 1.15 (s, 6H), 1.09 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 129.5, 120.6, 114.6, 76.8, 67.9, 59.8, 39.7, 33.2, 29.4, 28.8, 26.4, 26.3, 20.3, 17.3. Mass Spectrometry: HRMS-EI (m/z): Calcd for $C_{21}H_{35}NO_2$ [M]⁺, 333.2668. Found, 333.2661. IR (neat): υ (cm⁻¹): 2978, 2936, 2873, 1599, 1493, 1245, 1172, 1133, 1045, 753.

Mechanism studies using radical inhibitor

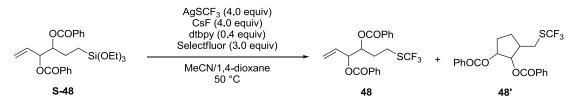
In a glovebox, to a mixture of AgF (102 mg, 0.800 mmol, 4.00 equiv), 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv), Selectfluor (213 mg, 0.600 mmol, 3.00 equiv) and radical inhibitor (BHT or 1,1-diphenylethylene) (2.00 mmol, 4.00 equiv) in a polypropylene vial at room temperature were sequentially added DCM (0.800 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) and MeCN (2.80 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (50.0 μ L, 0.407 mmol) was added. The ¹⁹F NMR yield of dodecyl trifluoromethyl ether (**3a**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). Yields are reported in Table S17.

Table S17: Effect of radical inhibitors on the reaction	
Radical inhibitors	Yield [%] (¹⁹ F NMR)
BHT	0
1,1-diphenylethylene	0


In a glovebox, to a solution of dodecyltriethoxysilane (S-3) (66.4 mg, 0.200 mmol, 1.00 equiv) in 4.00 mL MeCN/1,4-dioxane 1:1 (v/v) at room temperature were added in sequence CsF (121.6 mg, 0.800 mmol, 4.00 equiv), radical inhibitor (BHT or 1,1-diphenylethylene), Selectfluor (212.4 mg, 0.600 mmol, 3.00 equiv), dtbpy (21.4 mg, 0.0800 mmol, 0.400 equiv) and AgSCF₃ (167.2 mg, 0.800 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, (trifluoromethyl)benzene (25.0 μ L, 0.203 mmol) was added to the reaction mixture. The yield

of dodecyl(trifluoromethyl)sulfane (**3b**) was determined by comparing the integration of the 19 F NMR resonance of dodecyl(trifluoromethyl)sulfane (-41.56 ppm) with that of (trifluoromethyl)benzene (-62.80 ppm).

Radical inhibitors	Yield [%] (¹⁹ F NMR)
BHT (4.0 equiv)	39
BHT (6.0 equiv)	24
BHT (8.0 equiv)	9
1,1-diphenylethylene (4.0 equiv)	39


Table S18: Effect of radical inhibitors on the reaction

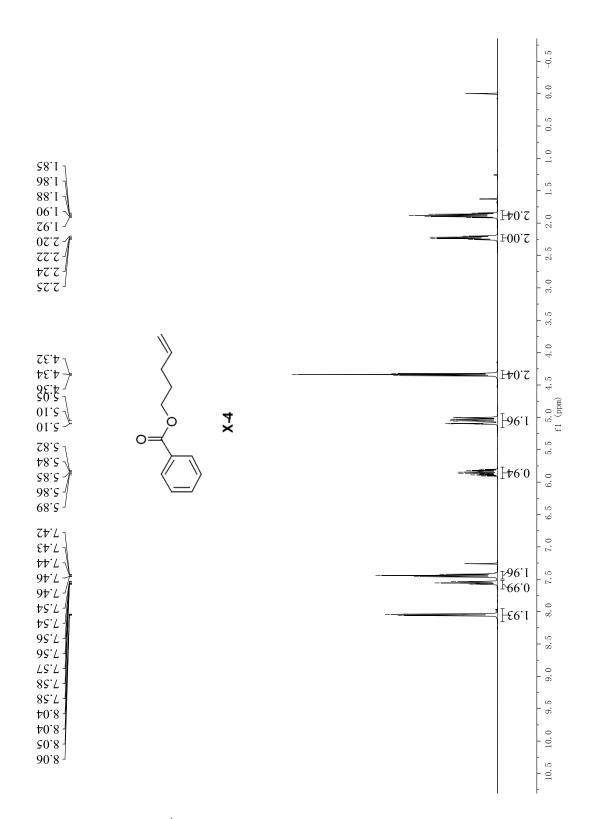
Mechanism studies using AgF₂

In a glovebox, to a mixture of AgF₂ (175 mg, 1.20 mmol, 6.00 equiv) and 3,4,7,8-Me₄Phen (14.2 mg, 0.0600 mmol, 0.300 equiv) in a polypropylene vial at room temperature were sequentially added DCM (0.800 mL), TFMS (240 mg, 1.00 mmol, 5.00 equiv), dodecyltriethoxysilane (**S-3**) (66.5 mg, 0.200 mmol, 1.00 equiv) and MeCN (2.80 mL). The polypropylene vial was then sealed and taken out from the glovebox. After stirring at 25 °C for 5.0 h, benzotrifluoride (100 μ L, 0.814 mmol) was added. The ¹⁹F NMR yield of dodecyl trifluoromethyl ether (**3a**) was determined by comparing the integration of the ¹⁹F NMR resonance of dodecyl trifluoromethyl ether (**3a**) (-60.54 ppm) with that of benzotrifluoride (-62.80 ppm). (28% ¹⁹F NMR Yield).

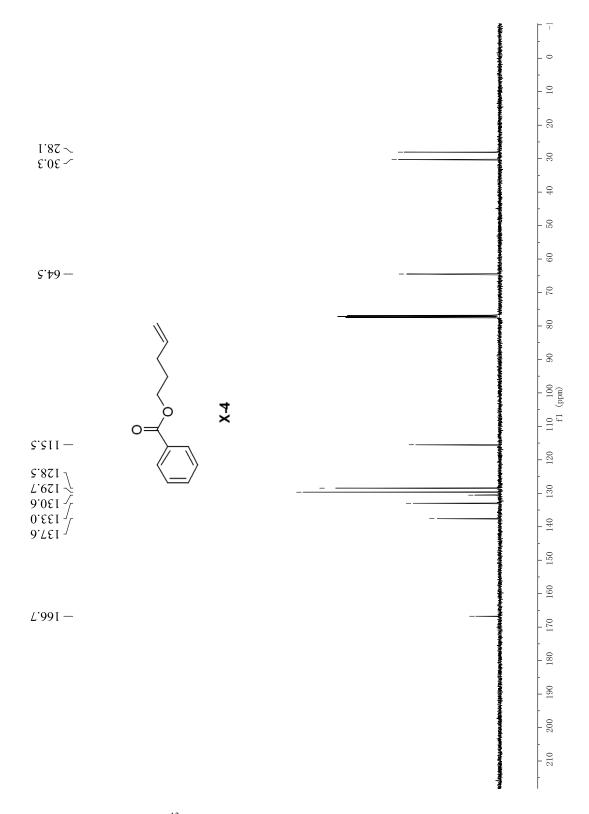
Mechanism studies of radical cyclization

In a glovebox, to a solution of 6-(Triethoxysilyl)hex-1-ene-3,4-diyl dibenzoate (S-48) (243 mg, 0.500 mmol, 1.00 equiv) in 10.0 mL MeCN/1,4-dioxane 1:1(v/v) at room temperature were added in sequence CsF (304 mg, 2.00 mmol, 4.00 equiv), Selectfluor (531 mg, 1.50 mmol, 3.00 equiv), dtbpy (53.6 mg, 0.200 mmol, 0.400 equiv) and AgSCF₃ (418 mg, 2.00 mmol, 4.00 equiv). After stirring for 16.0 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The residue was then added 10 mL DCM and filtered. The organic layer was concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with

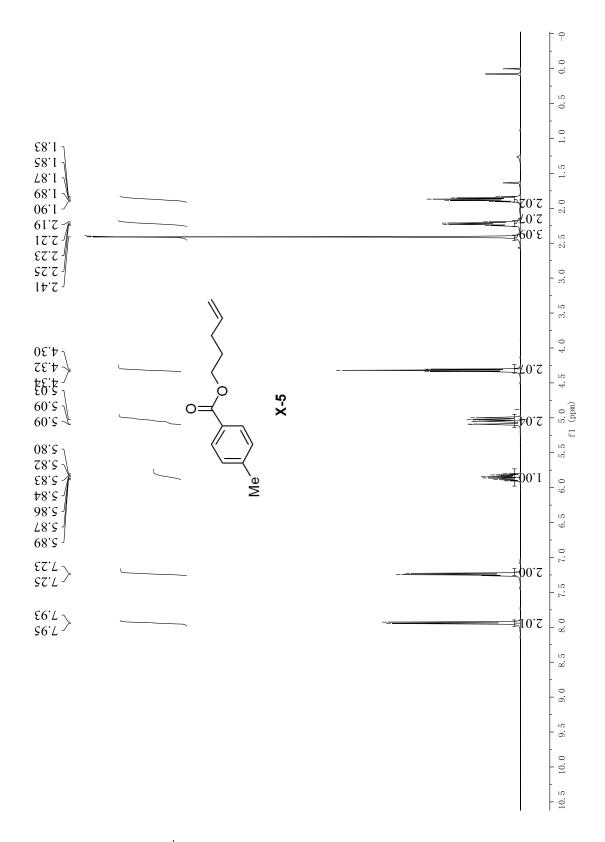
hexanes/EtOAc 20:1 (v/v) to give crude product **48** and **48'**. Further purification was carried through preparative HPLC (3 mL/min, detector UV λ max 200 nm, MeCN/H₂O=75/25) to yield **48** (38 min, 20.7 mg) and **48'** (26 min, 11.8 mg).

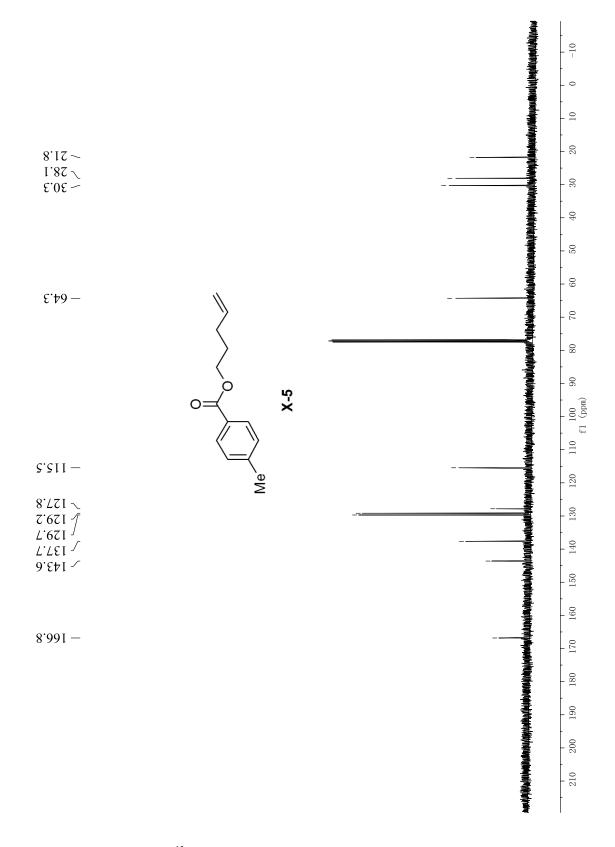

48 (¹⁹F NMR yield: 37%). $R_f = 0.33$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.95 (m, 4H), 7.63 – 7.52 (m, 2H), 7.50 – 7.38 (m, 4H), 6.03 – 5.89 (m, 1H), 5.82 – 5.73 (m, 1H), 5.60 – 5.48 (m, 2H), 5.39 (t, J = 11.4 Hz, 1H), 3.09 – 2.89 (m, 2H), 2.34 – 2.19 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 166.1, 165.5, 165.4, 133.6, 133.4, 131.9, 131.7, 131.0 (q, J = 306.3 Hz), 129.9, 129.9, 129.8, 129.8, 129.7, 129.6, 128.7, 128.6, 120.4, 120.2, 75.4, 75.1, 73.1, 72.7, 31.4, 30.4, 26.3 (q, J = 2.2 Hz), 26.1 (q, J = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -41.34. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₁H₁₉F₃NaO₄S [M + Na]⁺, 447.0854. Found, 447.0839. IR (neat): v (cm⁻¹): 3042, 2945, 2855, 1720, 1677, 1614, 1582, 1331, 1284, 1148, 1115, 1025, 766.

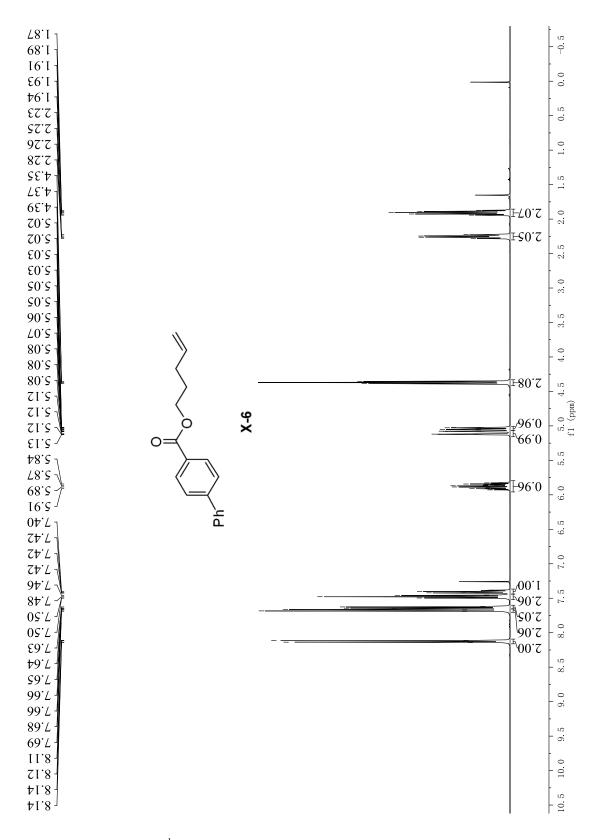
48' (¹⁹F NMR yield: 12%). $R_f = 0.21$ (hexanes/EtOAc 30:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.5 Hz, 2H), 7.84 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.31 (t, J = 7.5 Hz, 2H), 5.77 – 5.73 (m, 1H), 5.56 – 5.49 (m, 1H), 3.18 (dd, J = 13.4, 7.3 Hz, 1H), 3.00 (dd, J = 13.3, 8.2 Hz, 1H), 2.68 – 2.57 (m, 1H), 2.38 – 2.30 (m, 1H), 2.20 – 2.04 (m, 2H), 1.96 – 1.85 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 165.7, 133.5, 133.1, 131.1 (q, J = 306.2 Hz), 129.9, 129.8, 129.7, 128.7, 128.4, 75.1, 75.0, 40.4, 30.4 – 30.2 (m), 28.0, 27.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -41.44. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₁H₁₉F₃NaO₄S [M + Na]⁺, 447.0854. Found, 447.0842. IR (neat): υ (cm⁻¹): 3042, 2973, 2877, 1724, 1601, 1584, 1451, 1314, 1246, 1113, 1025, 759.


Reference

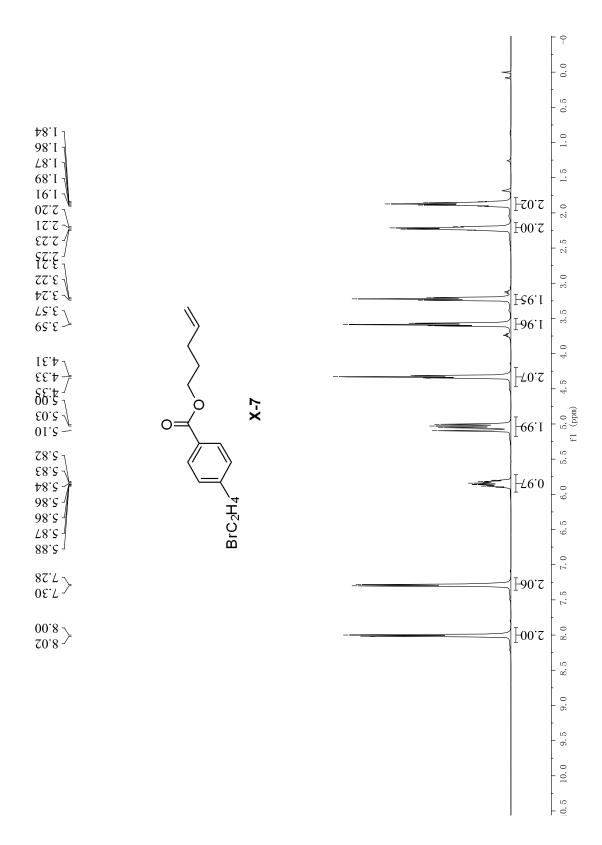
- 1. Teverovskiy. G; Surry. David. S; Buchwald. S. L. Angew. Chem. Int. Ed. 2011, 50, 7312 7314.
- 2. Guo, S; Cong, F; Guo, R; Wang, L; Tang, P.-P. Nat. Chem, 2017, 9, 546-551.
- 3. Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082-14085.
- 4. Ben-David. I; Rechavi. D; Mishani. E; Rozen. S. J. Fluorine Chem, 1999, 97, 75-78.
- 5. Liu, J.-B; Xu, X.-H; Qing, F.-L. Org.Lett. 2015, 17, 5048-5051.
- 6. Xu, C.-F; Chen, Q.-Y; Shen, Q.-L. Chin. J. Chem. 2016, 34, 495-504.
- Wu, H; Xiao, Z.-W; Wu, J.-H; Guo, Y; Xiao, J.-C; Liu, C; Chen, Q.-Y. Angew. Chem. Int. Ed. 2015, 54, 4070 – 4074.
- Liu, H.-X; Dang, Y.-Q; Yuan, Y.-F; Xu, Z.-F; Qiu, S.-X; Tan,H.-B. Org. Lett. 2016, 18, 5584 – 5587.
- 9. Ciszek, J.W.; Stewart, M.P.; Tour, J.M. J. Am. Chem. Soc. 2004, 126, 13172 13173.

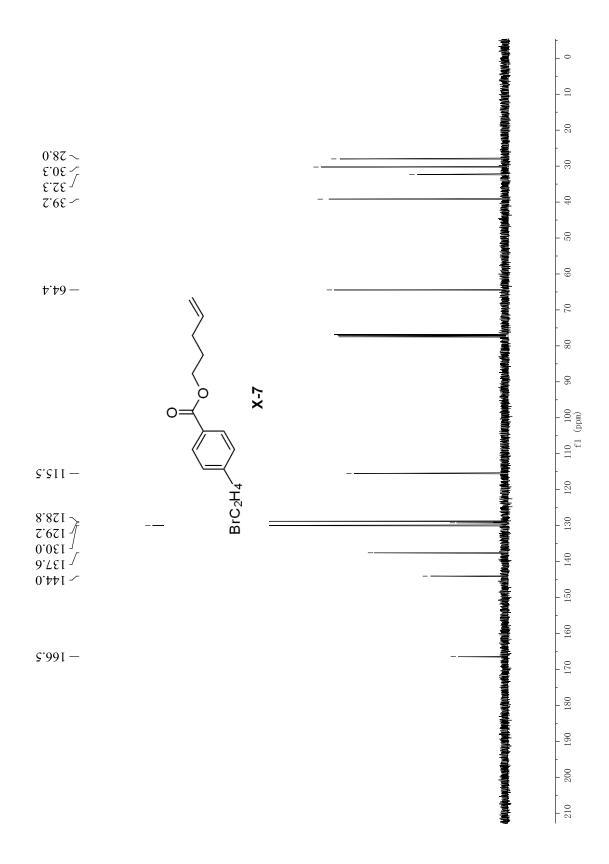

Spectrum Data

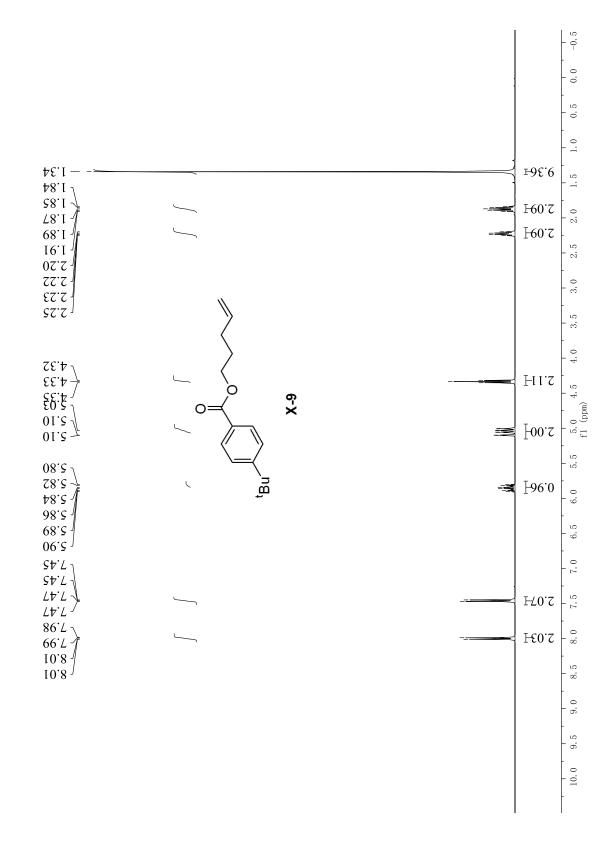

 ^1H NMR spectrum (400 MHz, CDCl_3) of X-4

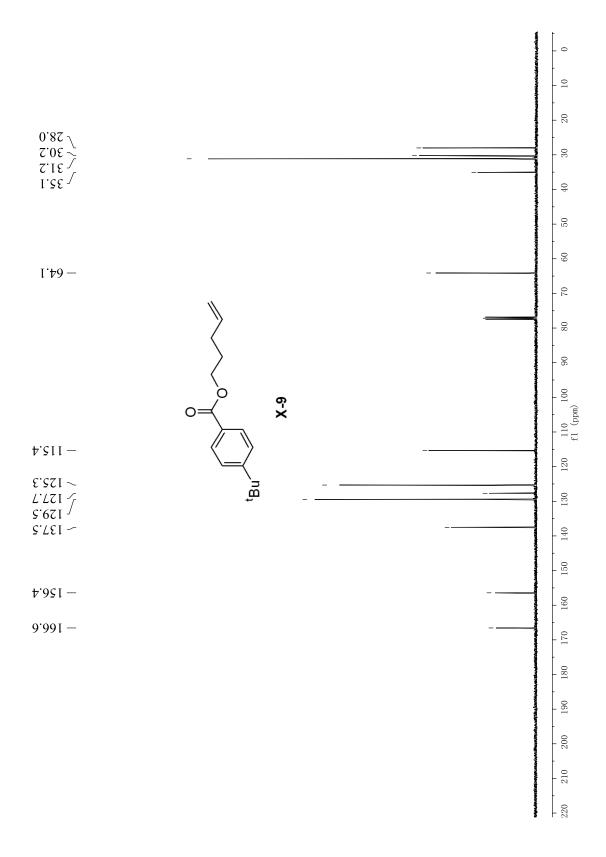

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-4**

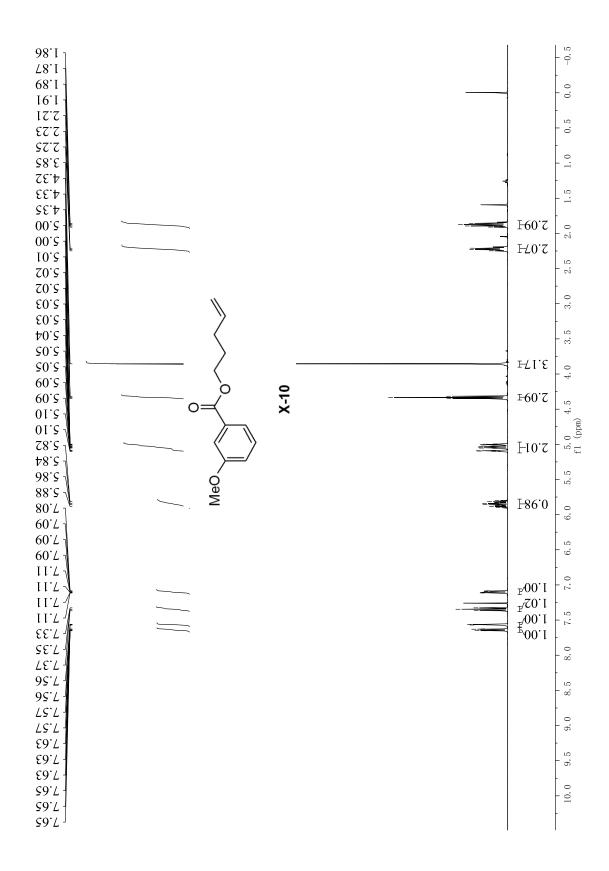

¹H NMR spectrum (400 MHz, CDCl₃) of X-5

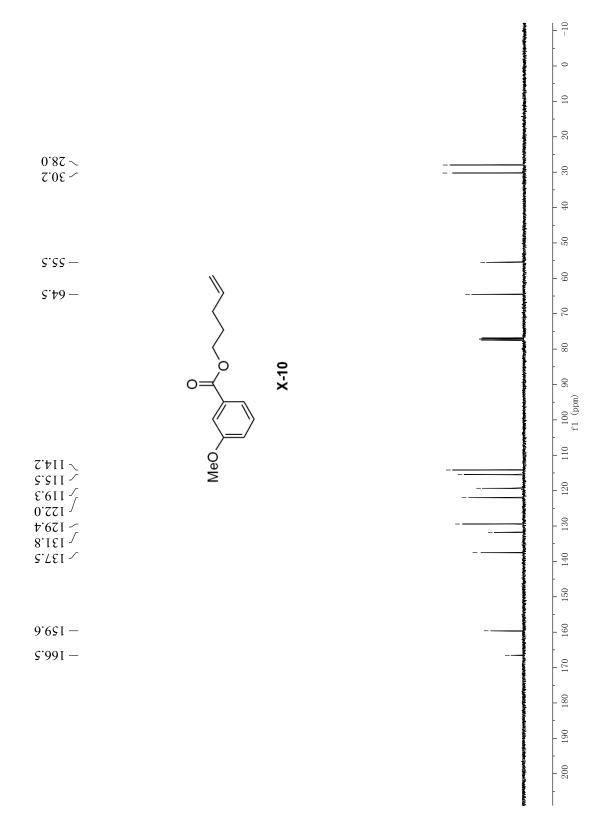

 ^{13}C NMR spectrum (101 MHz, CDCl_3) of X-5

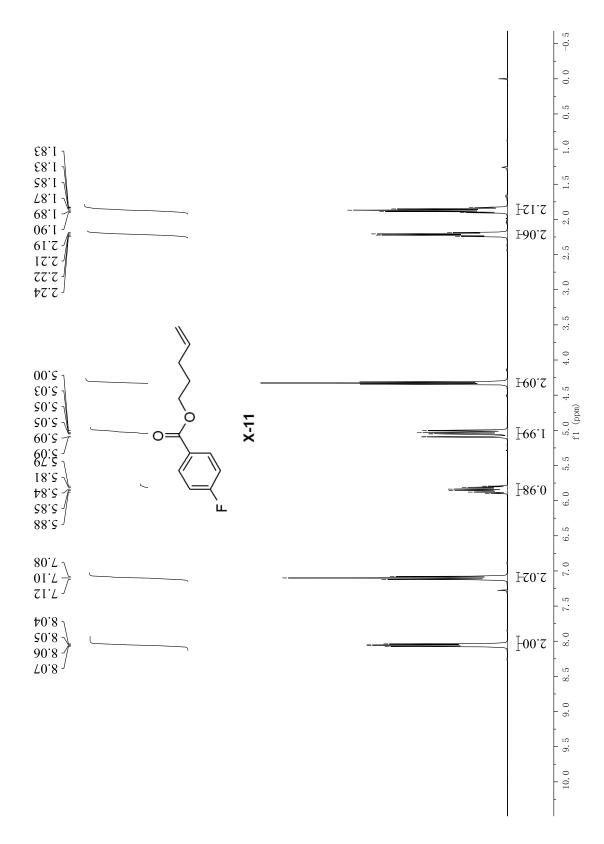

 ^1H NMR spectrum (400 MHz, CDCl₃) of **X-6**

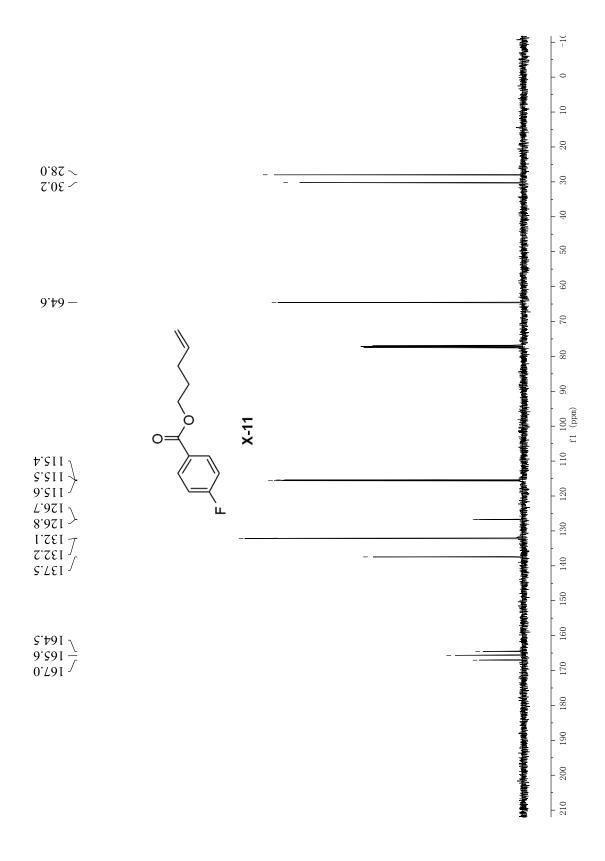

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **X-6**


 $^1\mathrm{H}$ NMR spectrum (400 MHz, CDCl_3) of X-7

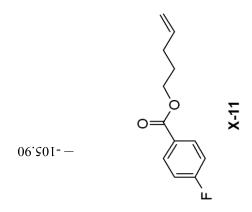

 ^{13}C NMR spectrum (101 MHz, CDCl_3) of X-7


 ^1H NMR spectrum (400 MHz, CDCl₃) of **X-9**

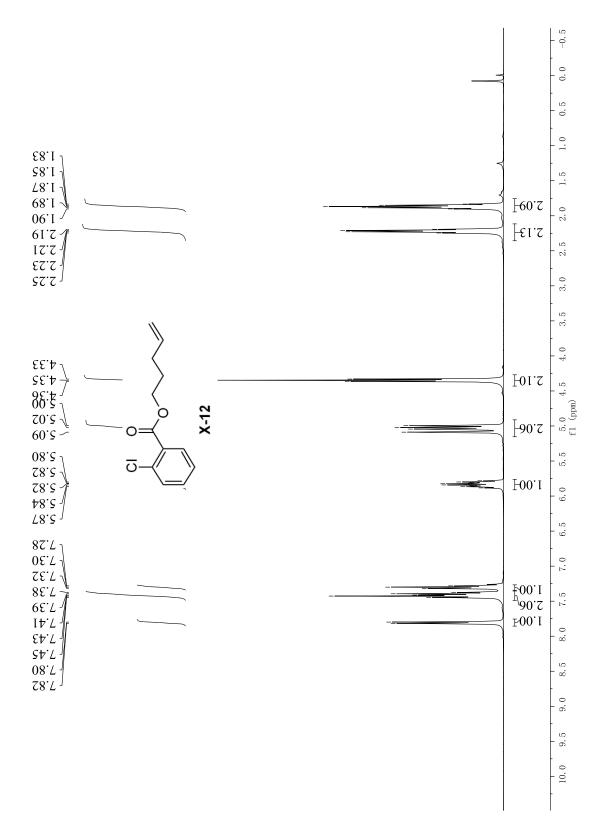

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **X-9**


¹H NMR spectrum (400 MHz, CDCl₃) of X-10

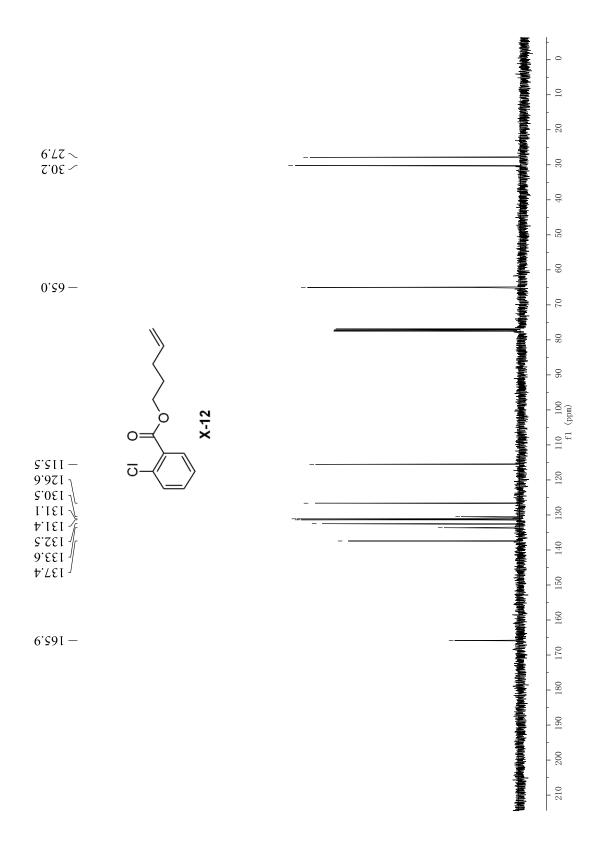
¹³C NMR spectrum (101 MHz, CDCl₃) of X-10

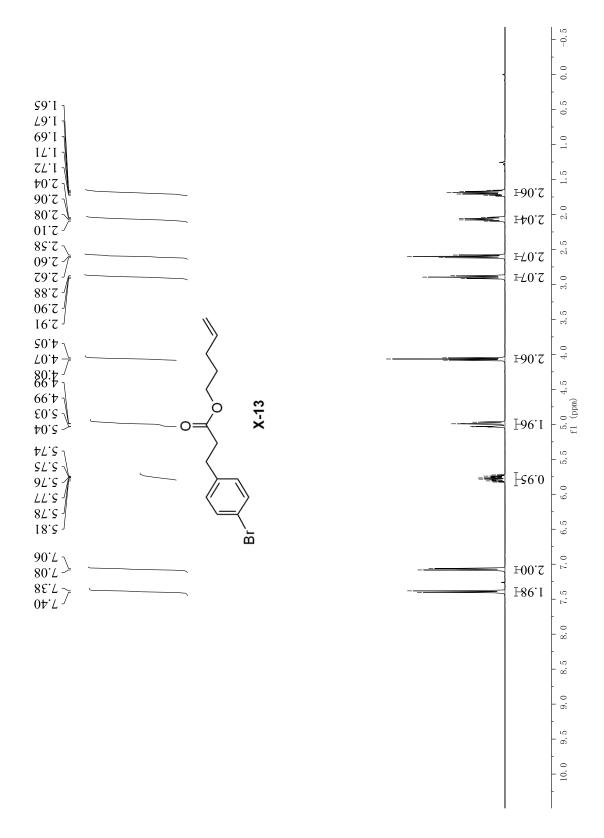


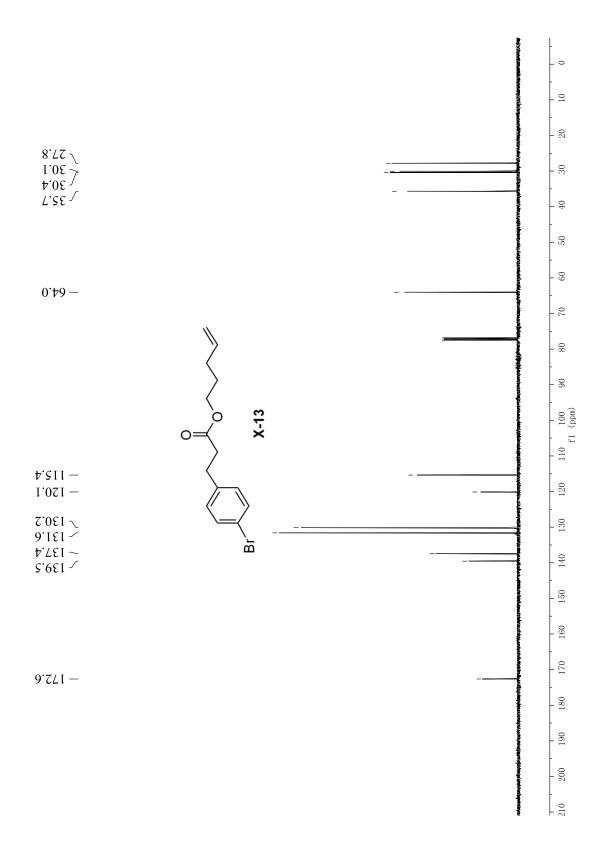
¹H NMR spectrum (400 MHz, CDCl₃) of X-11

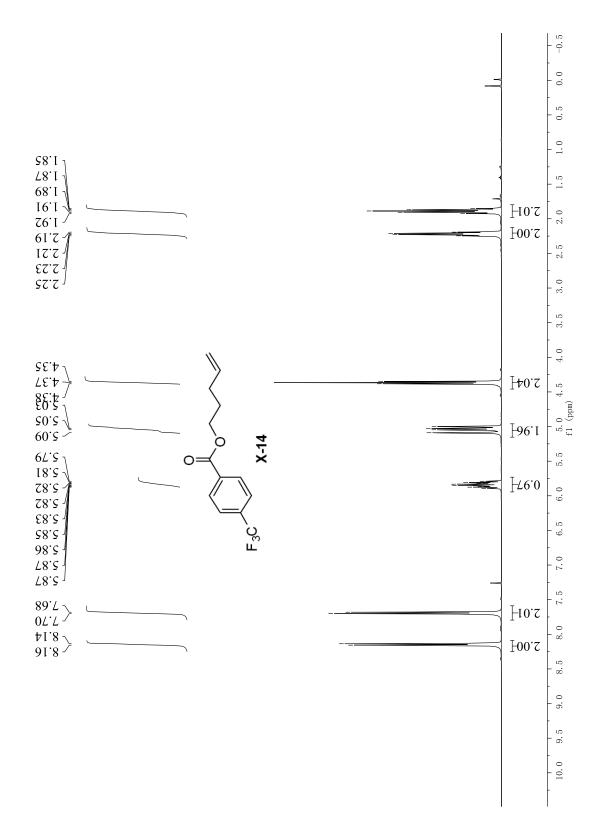


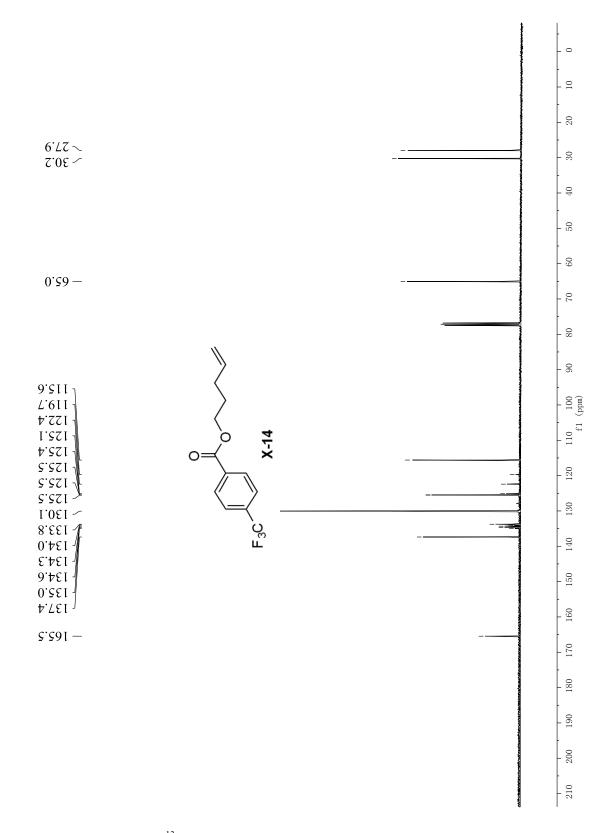
¹³C NMR spectrum (101 MHz, CDCl₃) of X-11

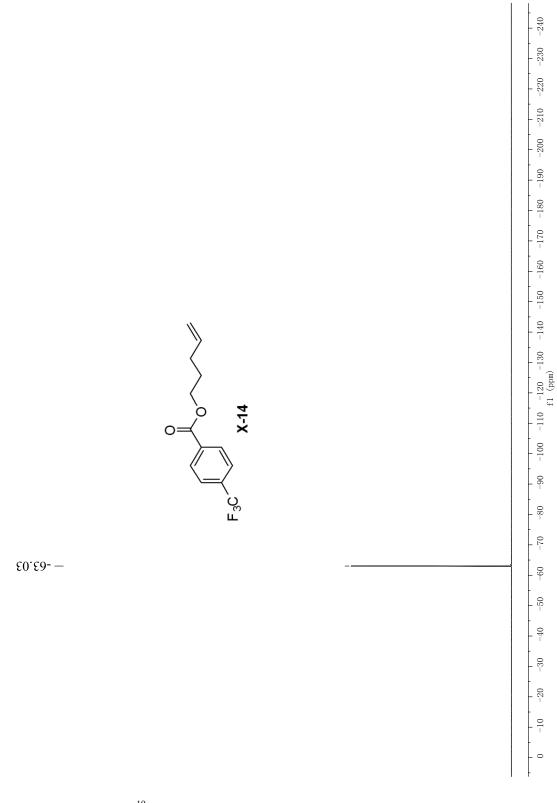

-24 -230-90 -80 -70 -60 -50 $^{-40}$ $^{-30}$ -20 -10 0

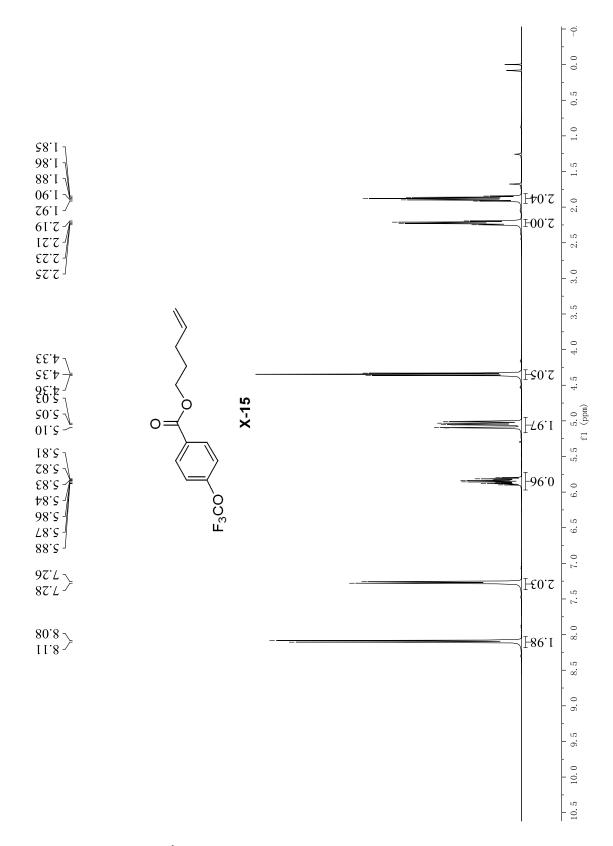

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **X-11**

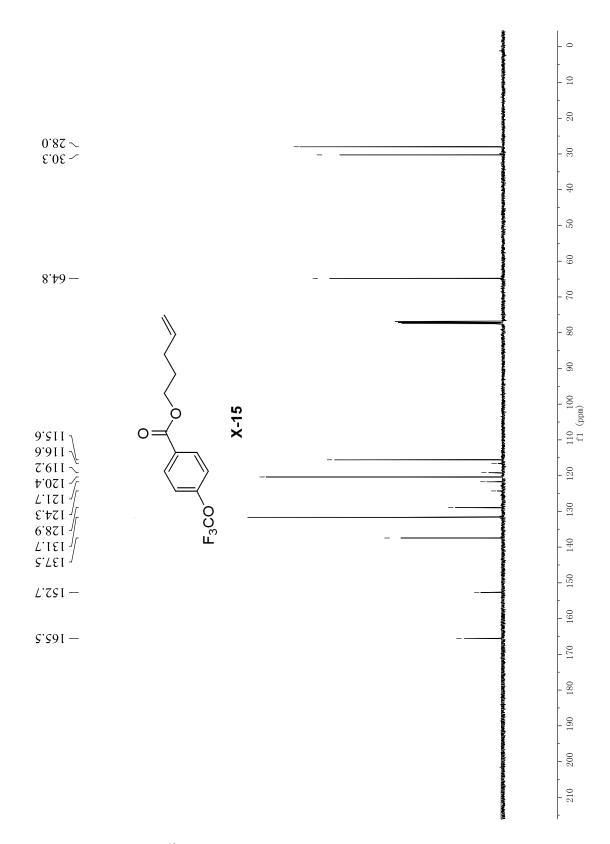

¹H NMR spectrum (400 MHz, CDCl₃) of X-12

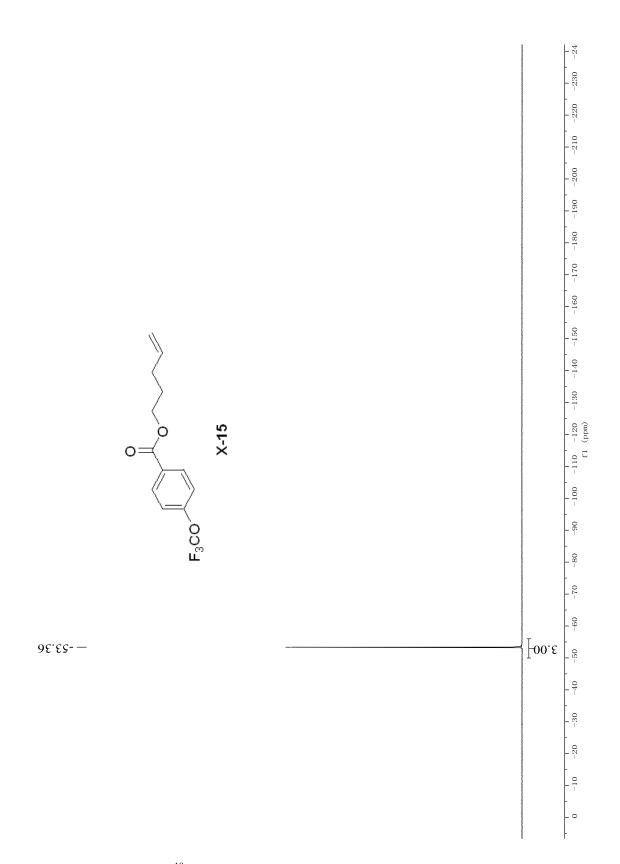

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-12**

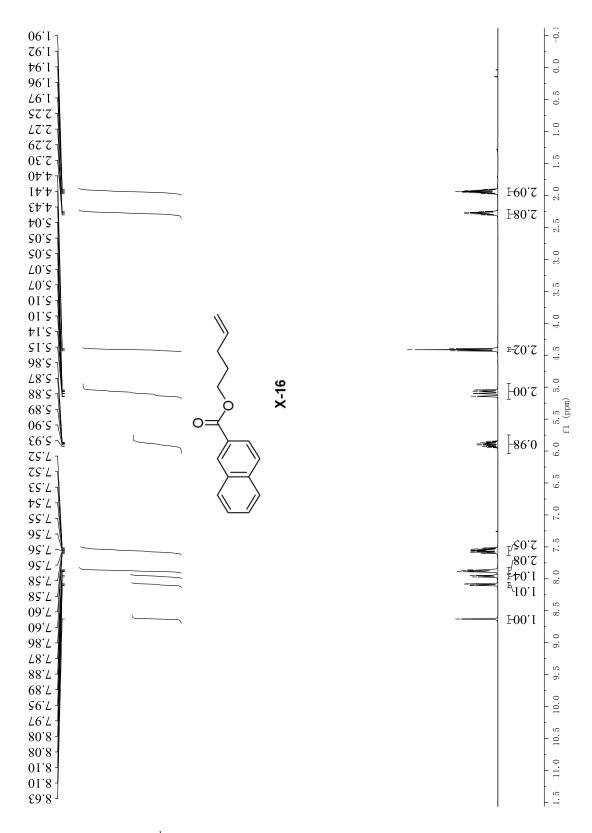

¹H NMR spectrum (400 MHz, CDCl₃) of X-13

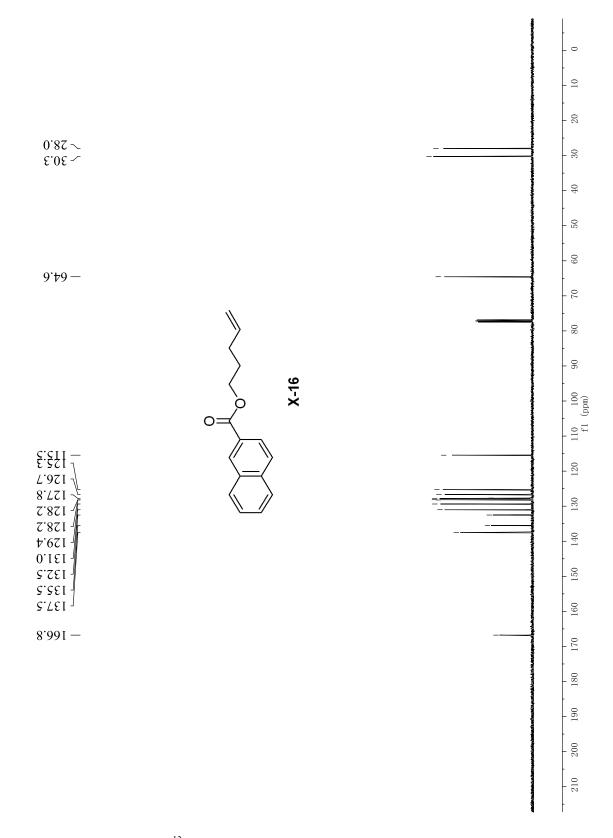

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-13**

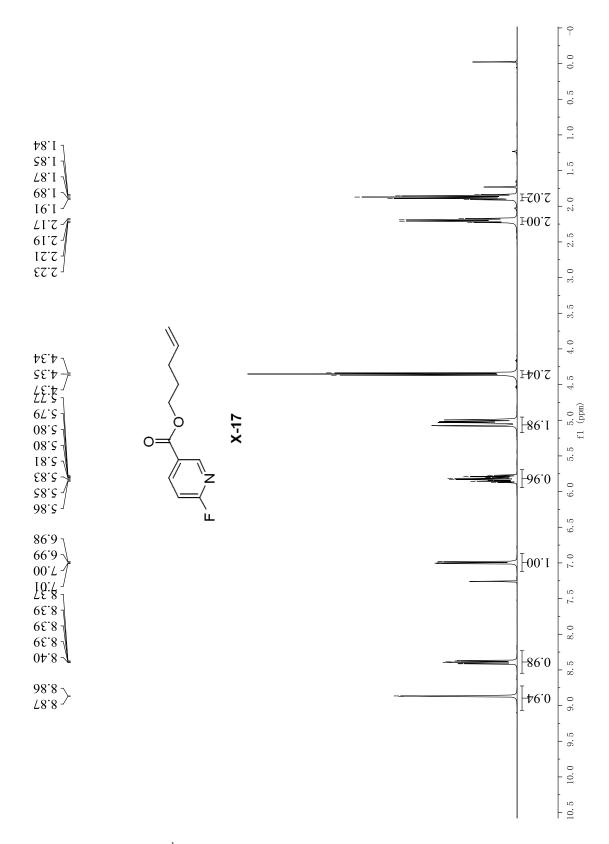

¹H NMR spectrum (400 MHz, CDCl₃) of X-14

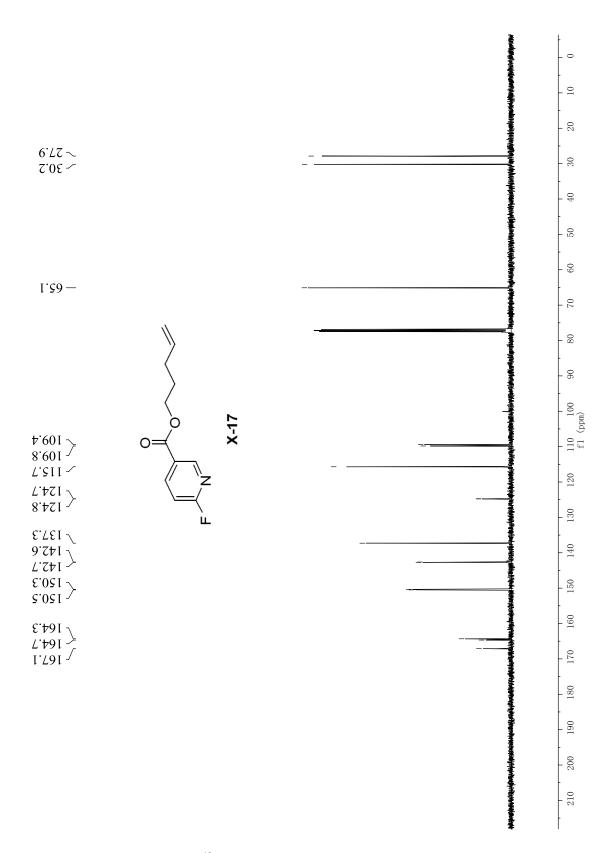

¹³C NMR spectrum (101 MHz, CDCl₃) of X-14

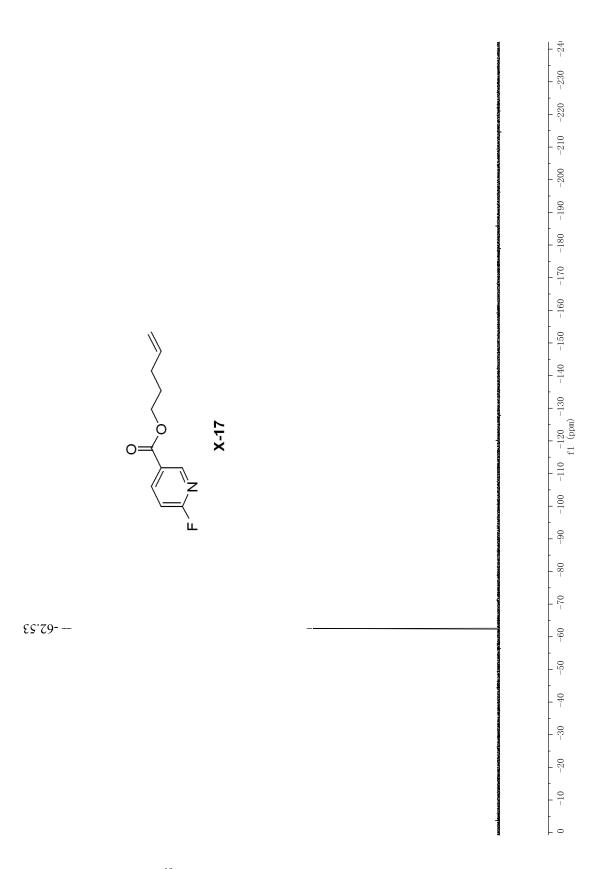

¹⁹F NMR spectrum (376 MHz, CDCl₃) of X-14

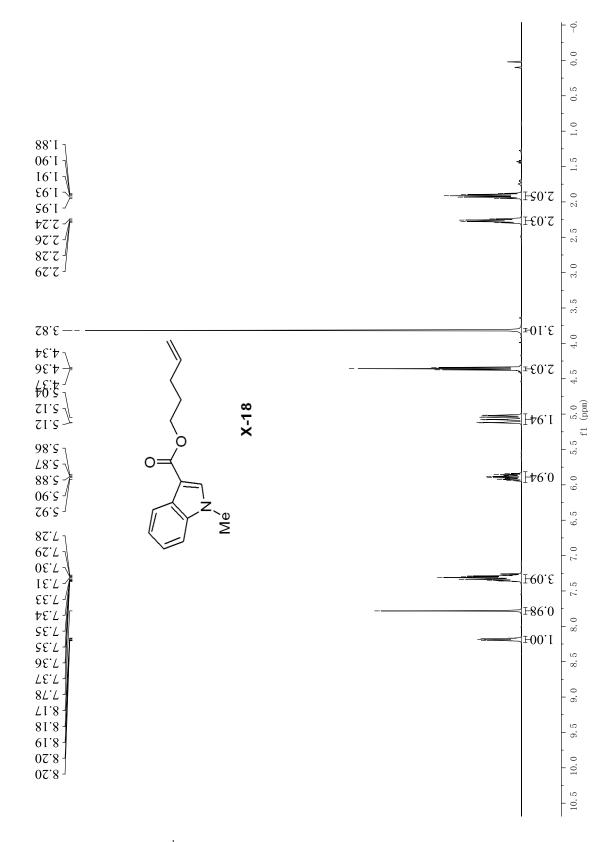

 ^1H NMR spectrum (400 MHz, CDCl₃) of **X-15**

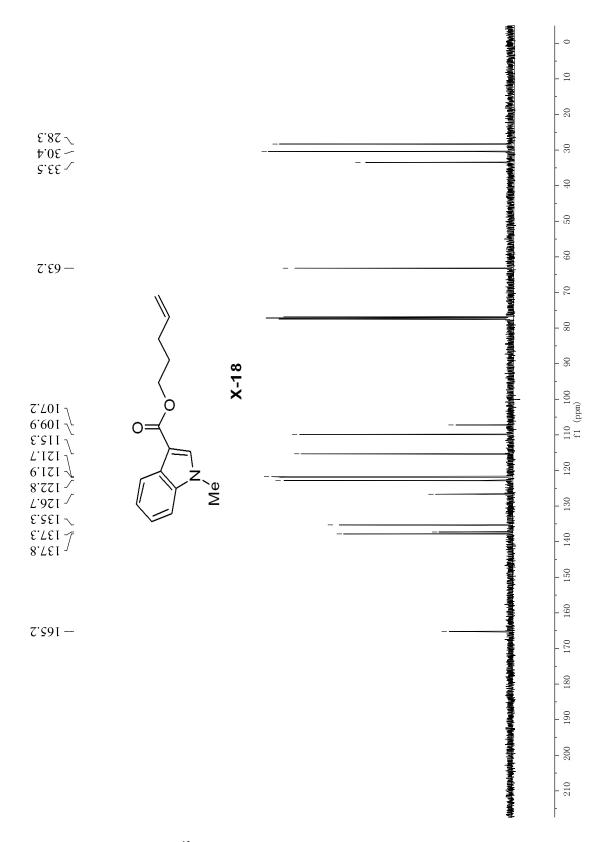

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **X-15**

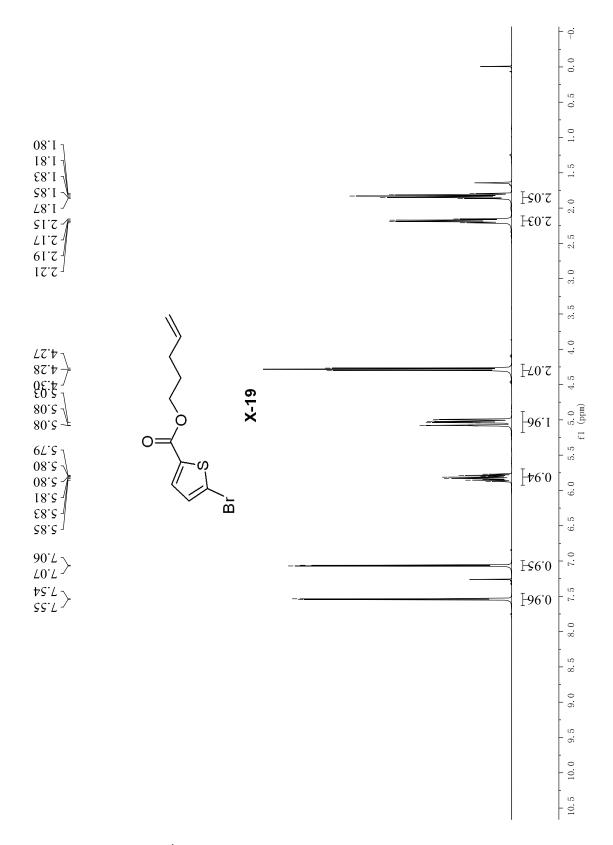

¹⁹F NMR spectrum (376 MHz, CDCl₃) of X-15

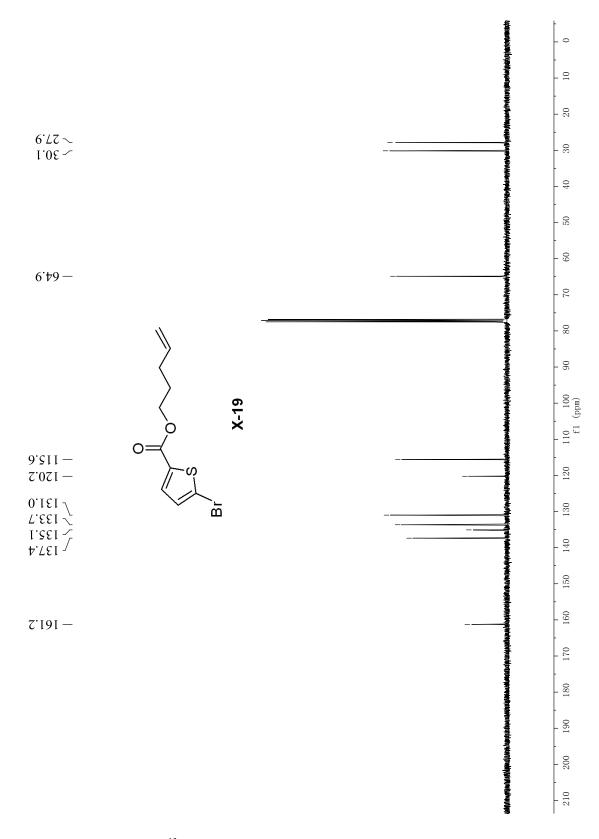

¹H NMR spectrum (400 MHz, CDCl₃) of X-16

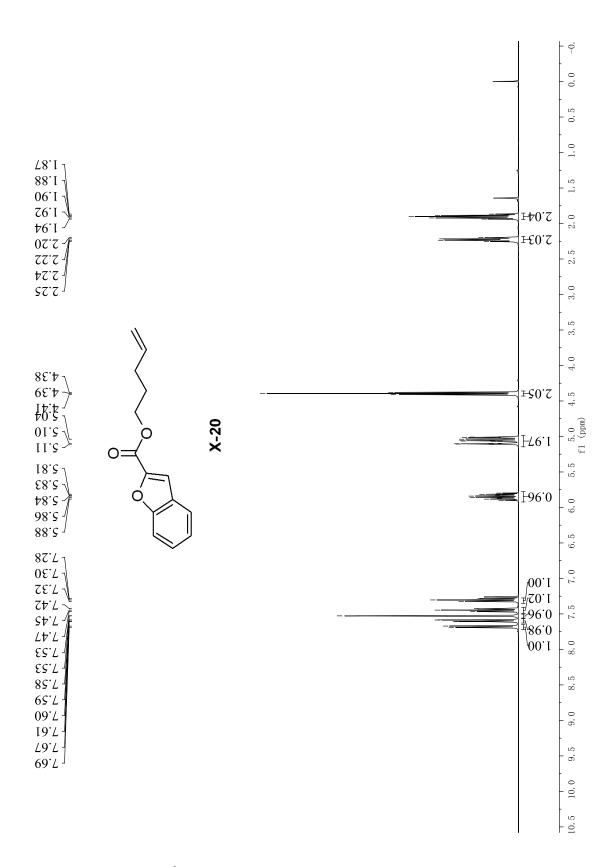

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-16**

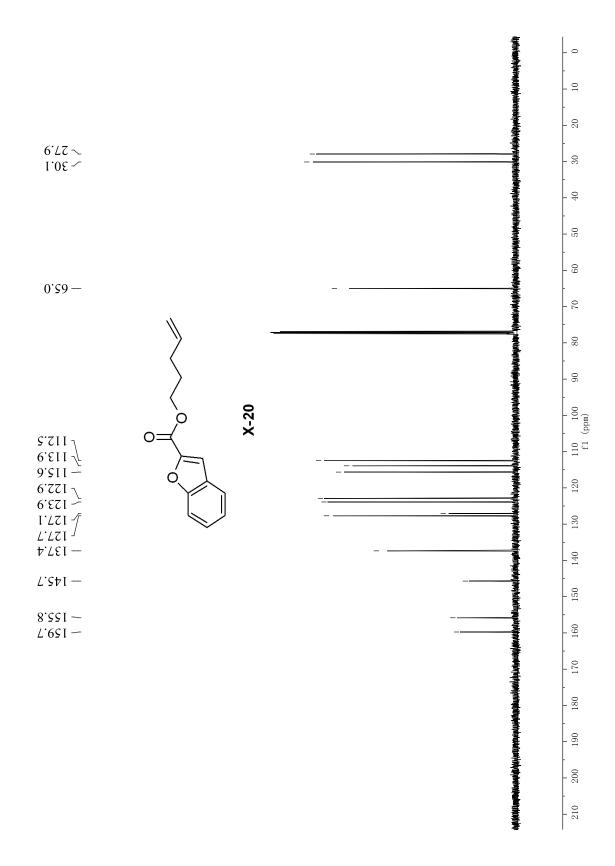

¹H NMR spectrum (400 MHz, CDCl₃) of X-17

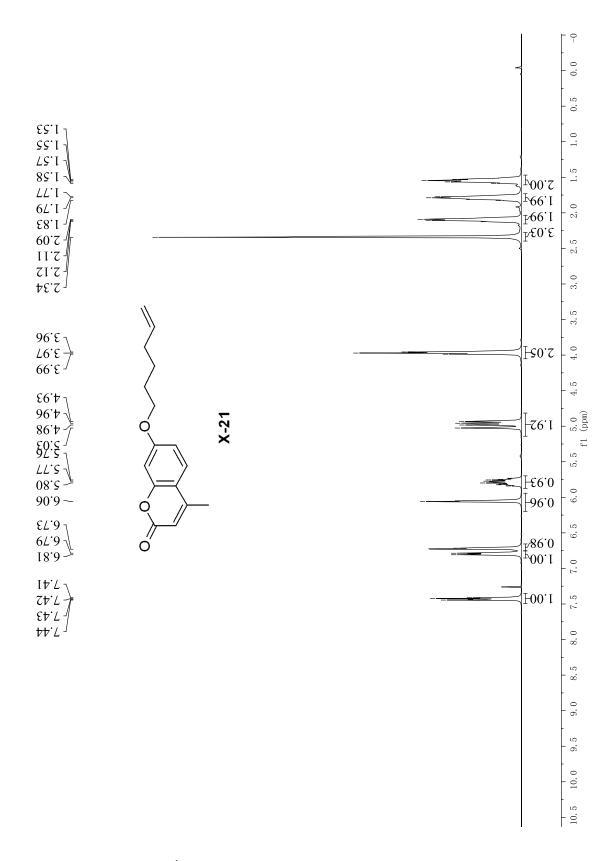

¹³C NMR spectrum (101 MHz, CDCl₃) of X-17

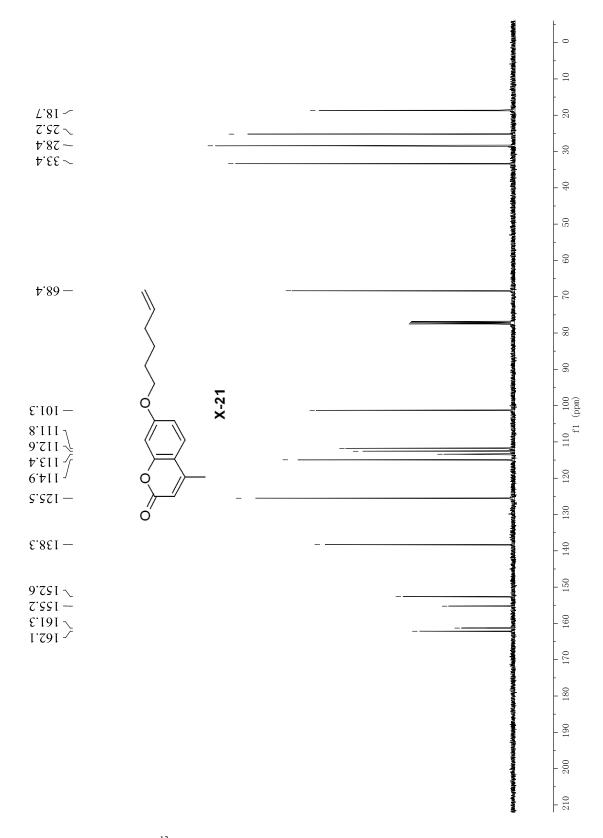

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of X-17

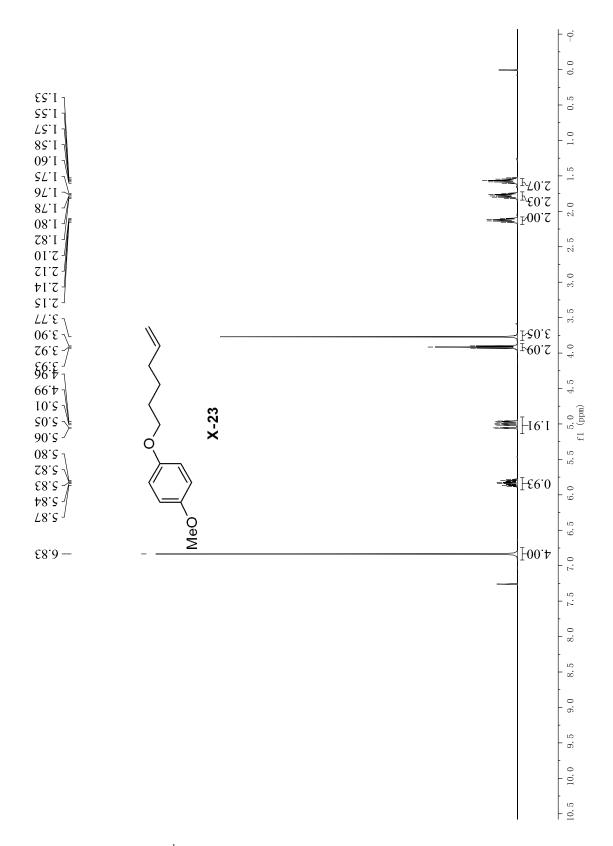

¹H NMR spectrum (400 MHz, CDCl₃) of X-18

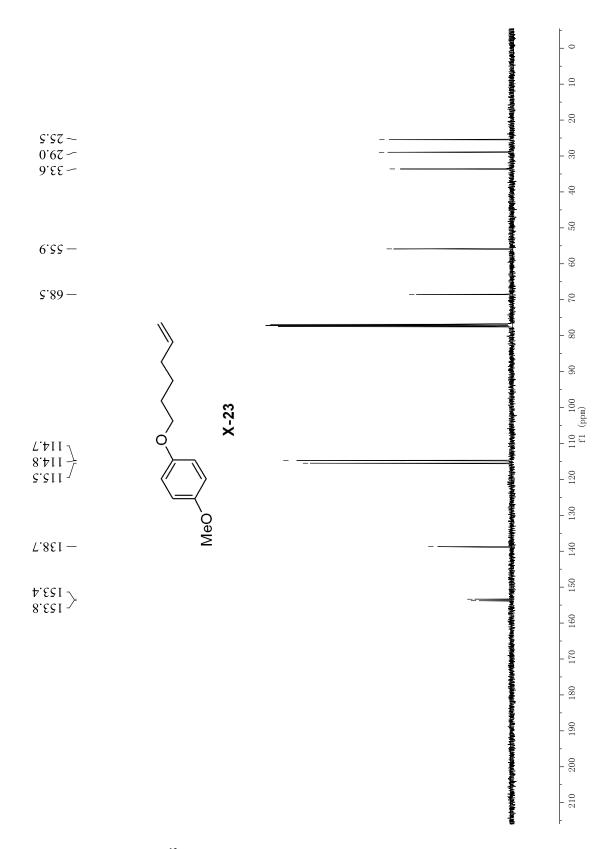

¹³C NMR spectrum (101 MHz, CDCl₃) of X-18

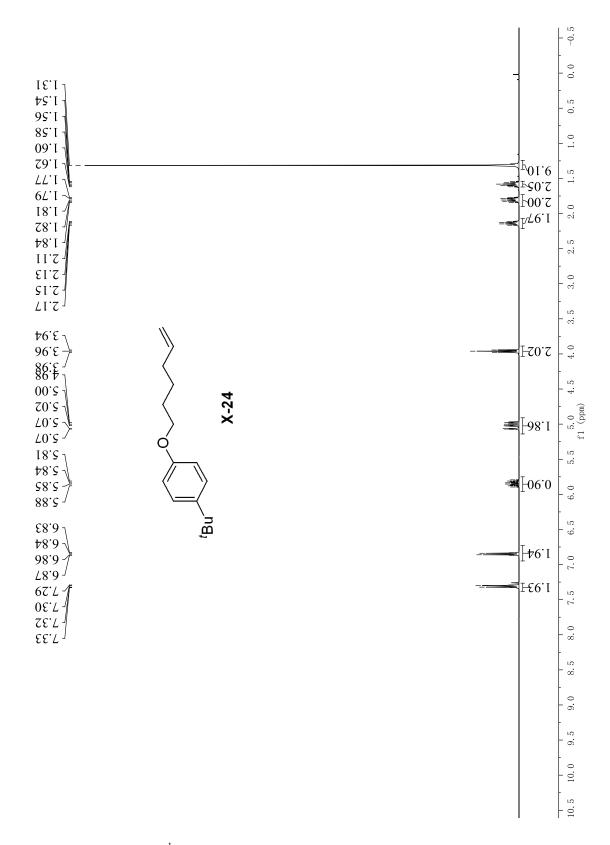

¹H NMR spectrum (400 MHz, CDCl₃) of X-19

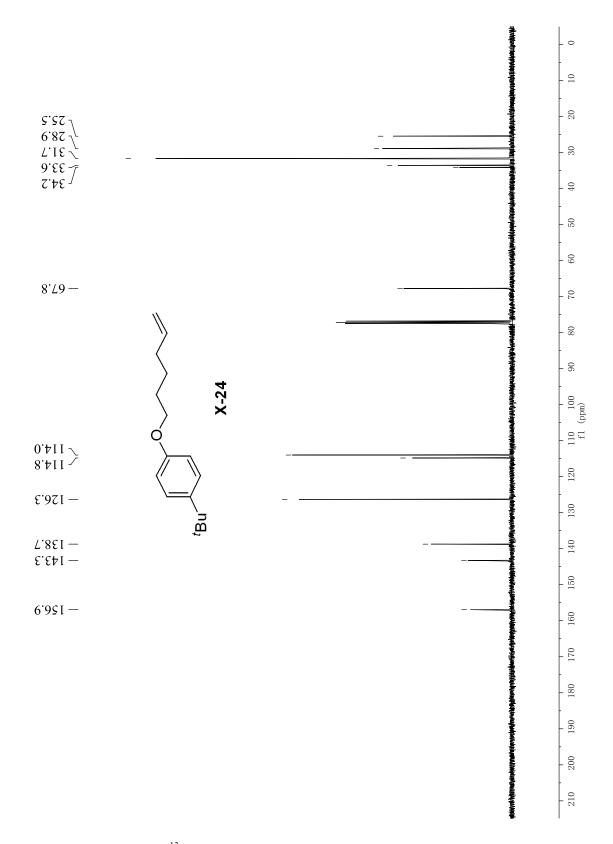

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-19**

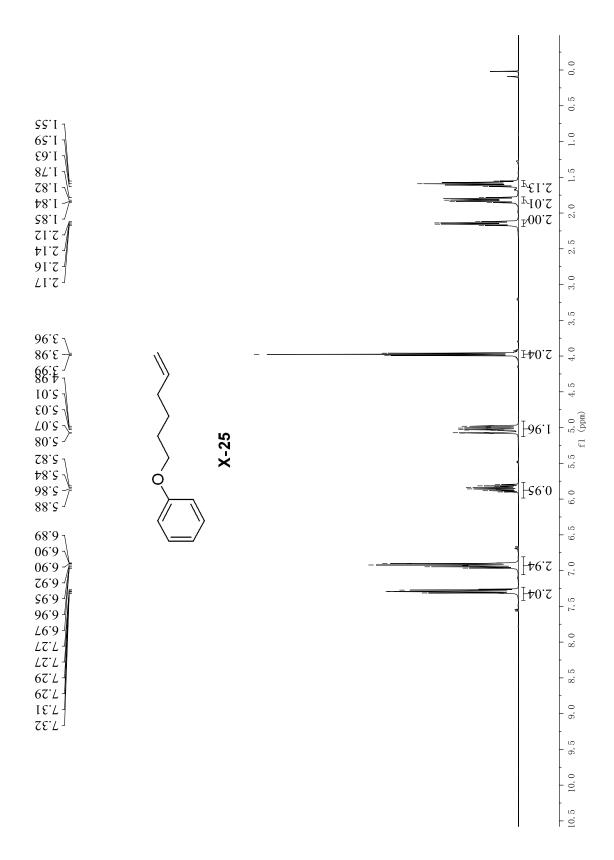

¹H NMR spectrum (400 MHz, CDCl₃) of **X-20**

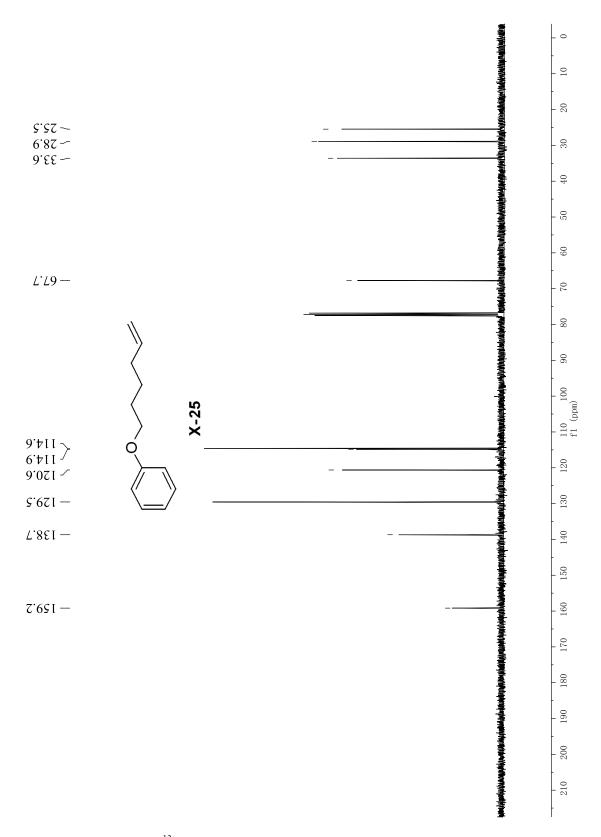

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **X-20**

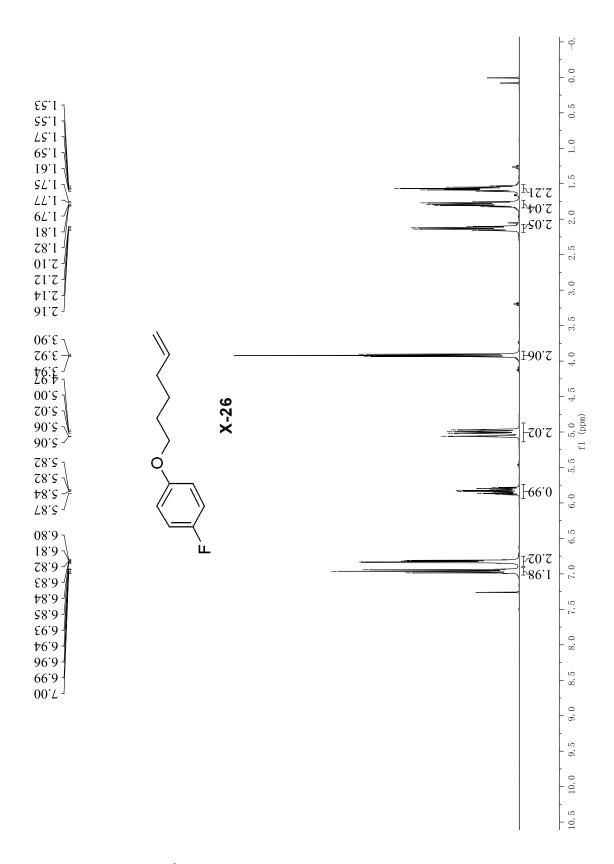

¹H NMR spectrum (400 MHz, CDCl₃) of **X-21**

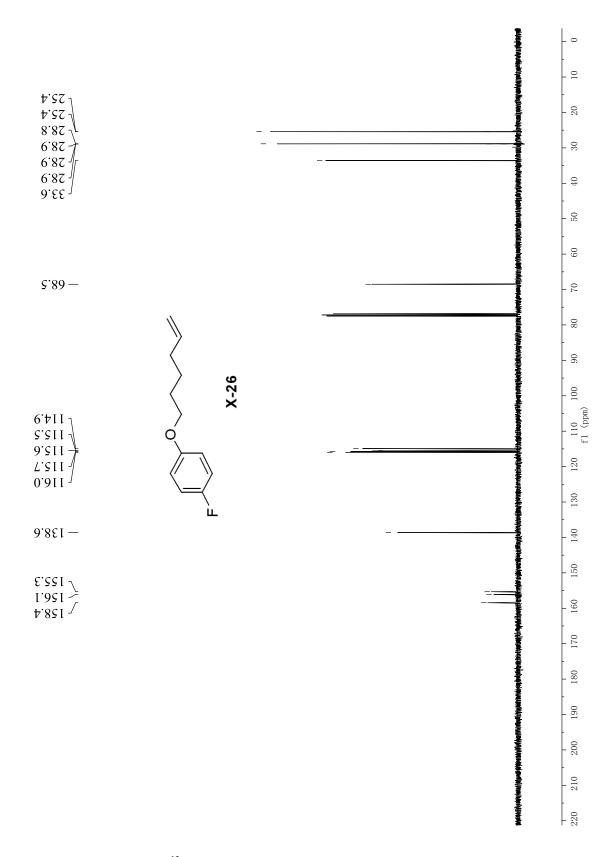

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-21**

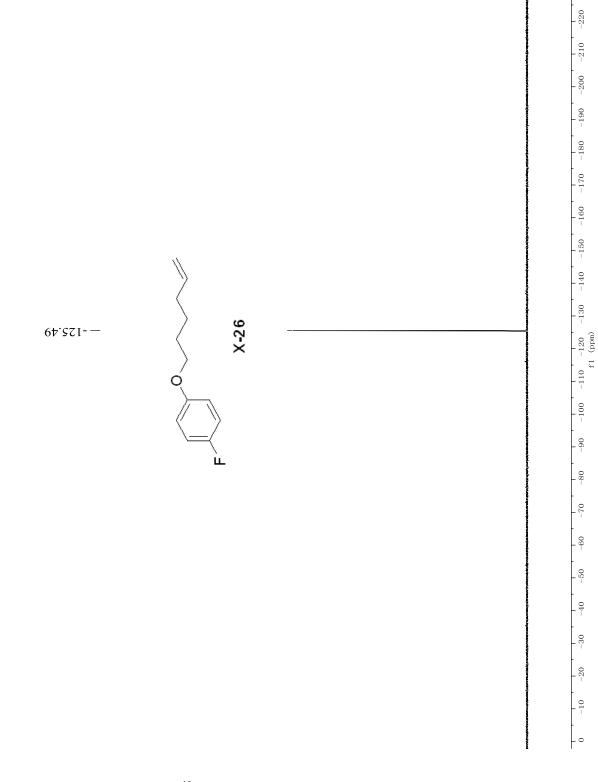

¹H NMR spectrum (400 MHz, CDCl₃) of X-23


¹³C NMR spectrum (101 MHz, CDCl₃) of **X-23**

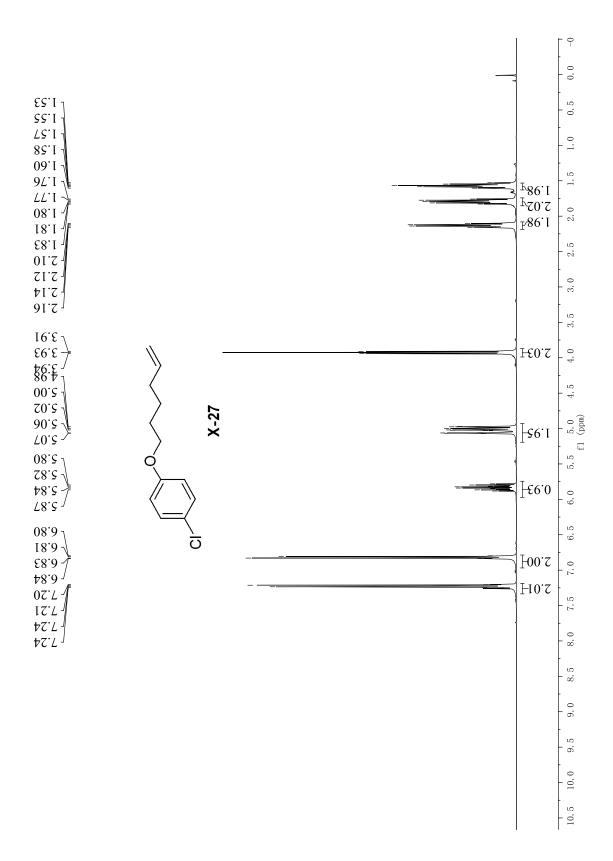

¹H NMR spectrum (400 MHz, CDCl₃) of X-24

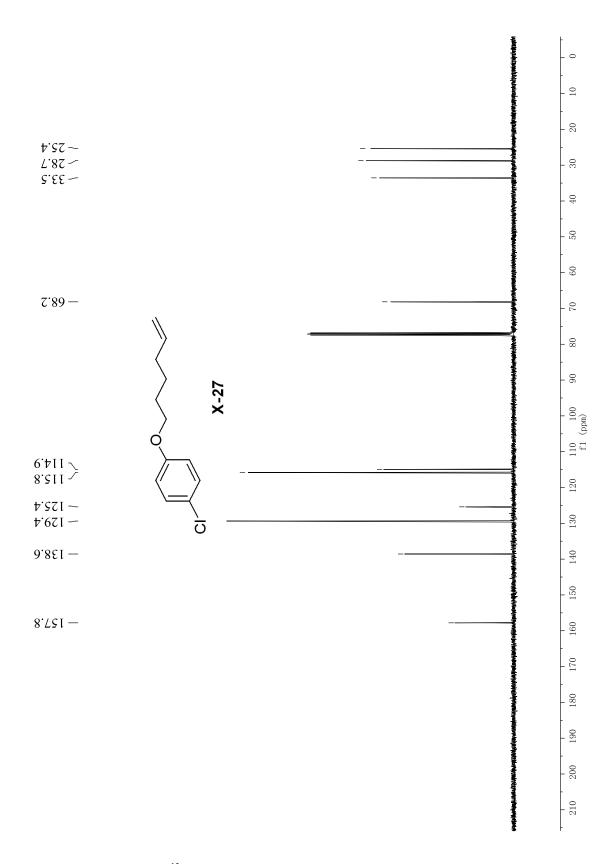

¹³C NMR spectrum (101 MHz, CDCl₃) of X-24


¹H NMR spectrum (400 MHz, CDCl₃) of **X-25**

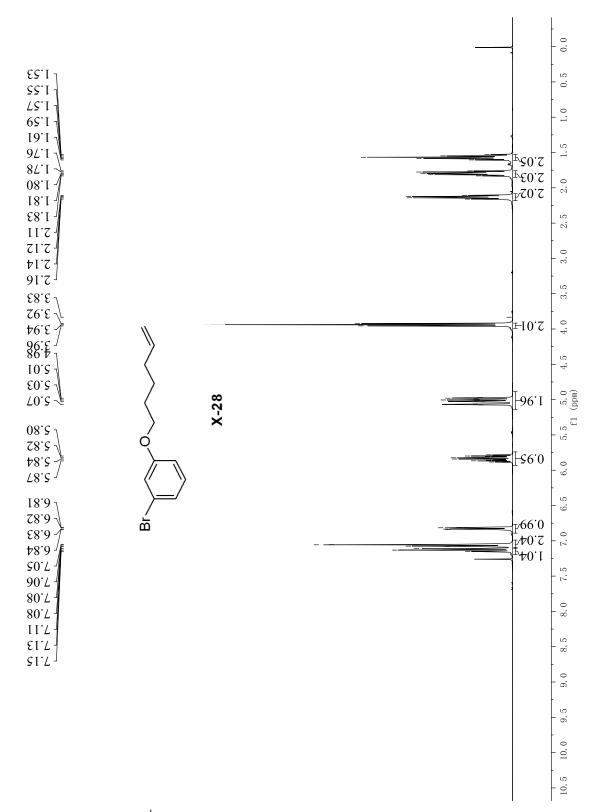

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **X-25**

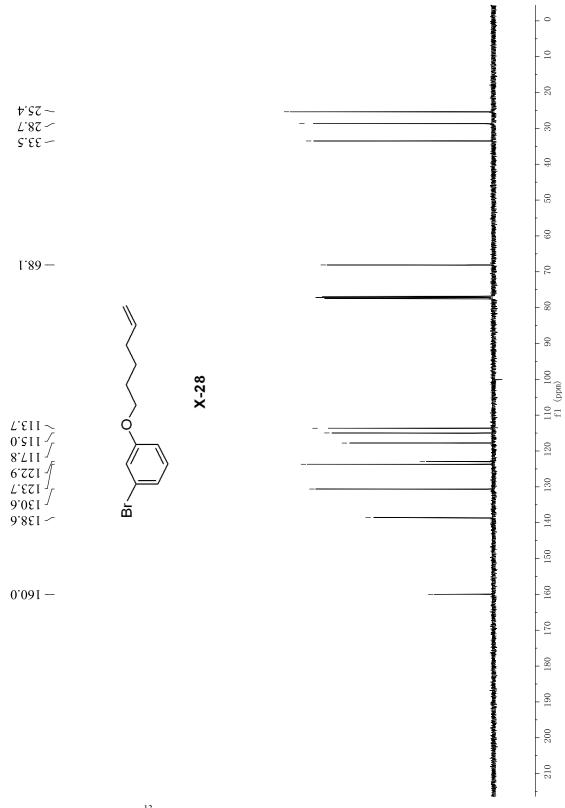
¹H NMR spectrum (400 MHz, CDCl₃) of **X-26**

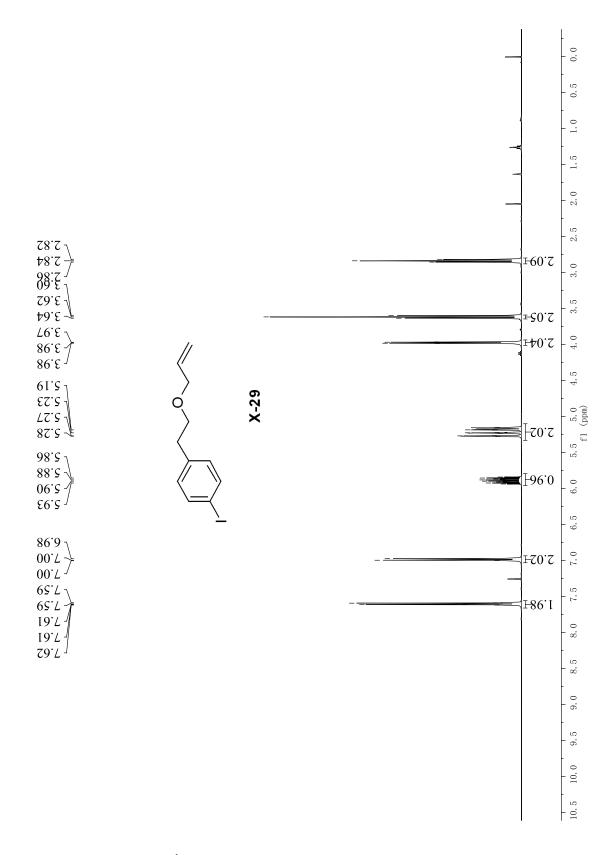

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-26**

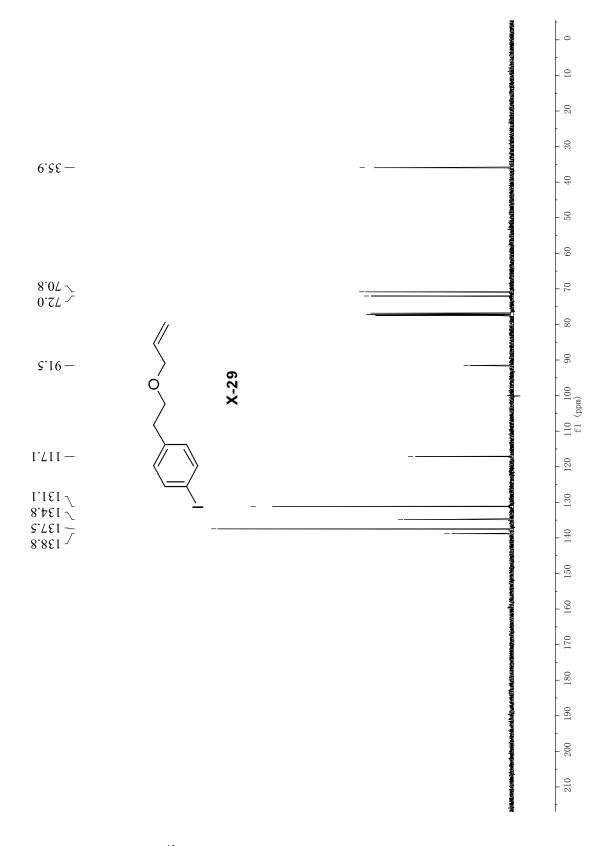

F %

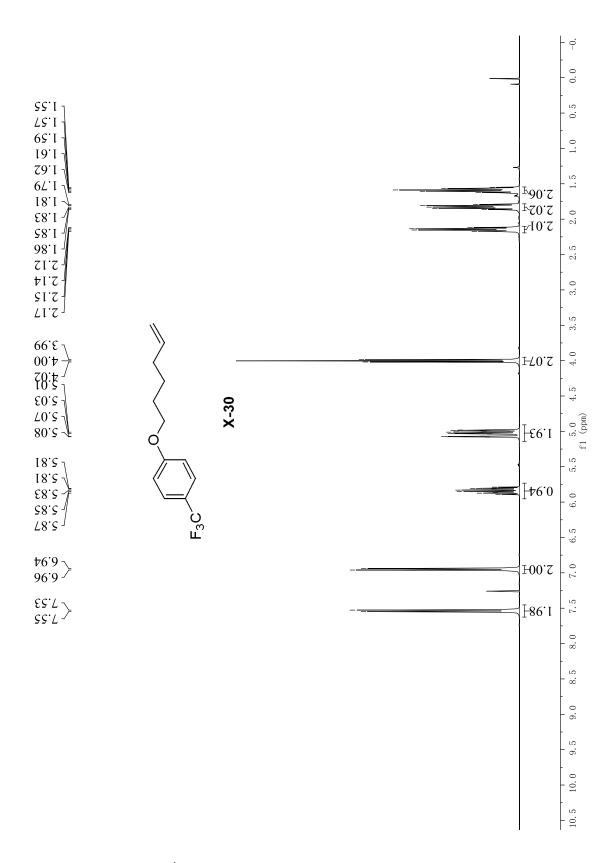
-230

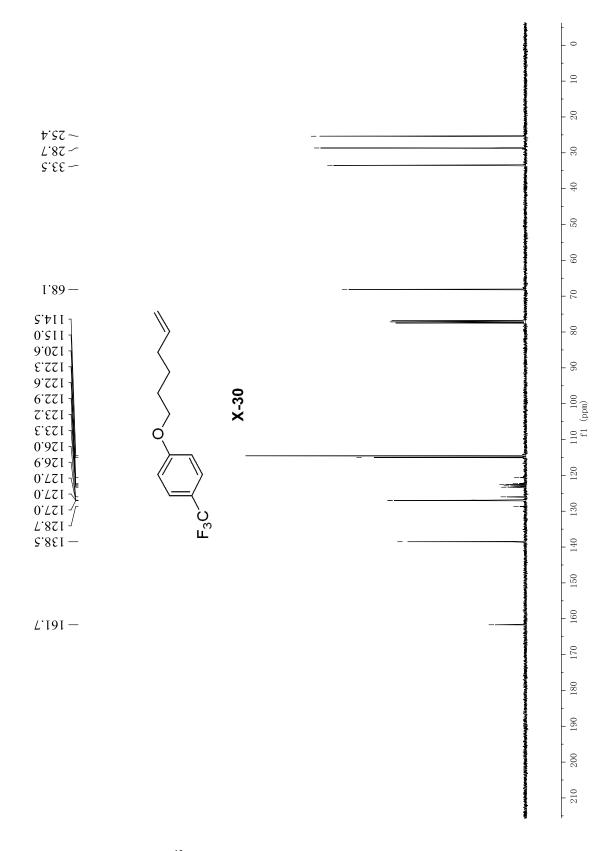

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of **X-26**

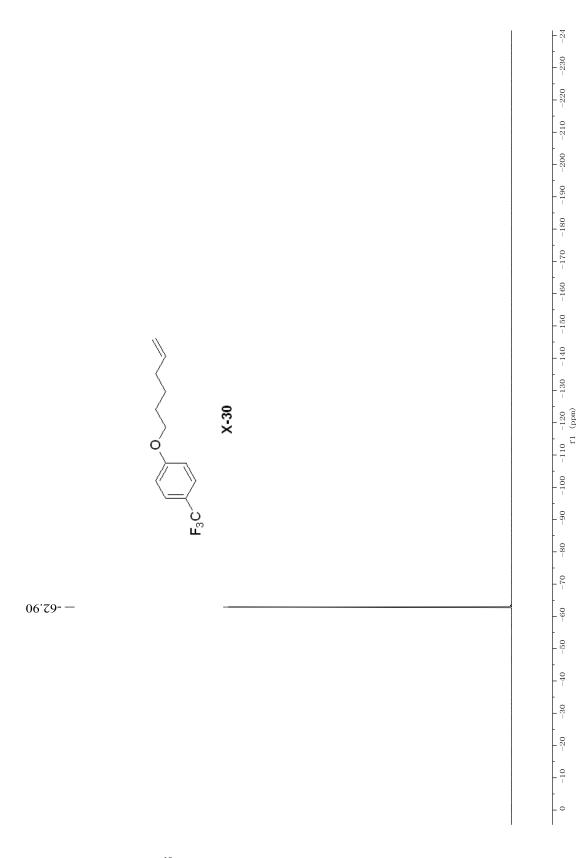

¹H NMR spectrum (400 MHz, CDCl₃) of X-27

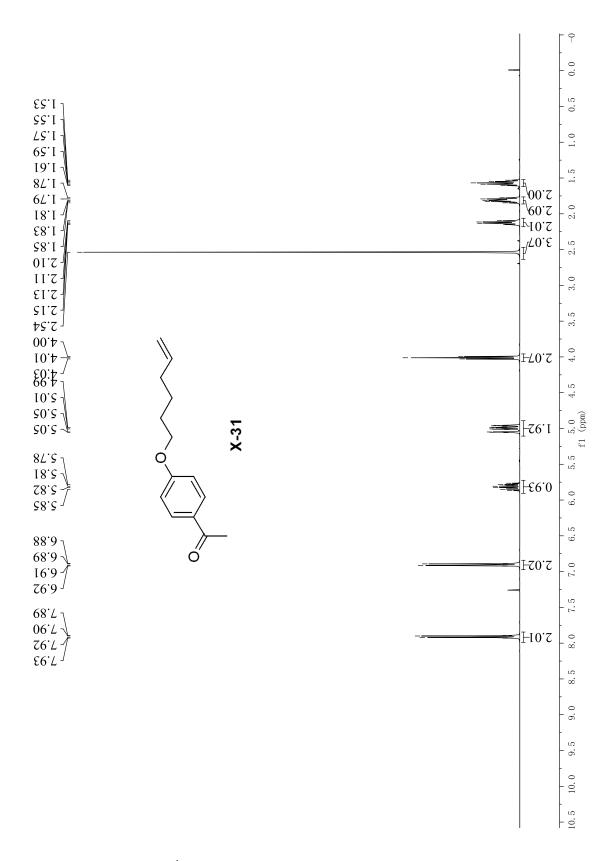

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **X-27**

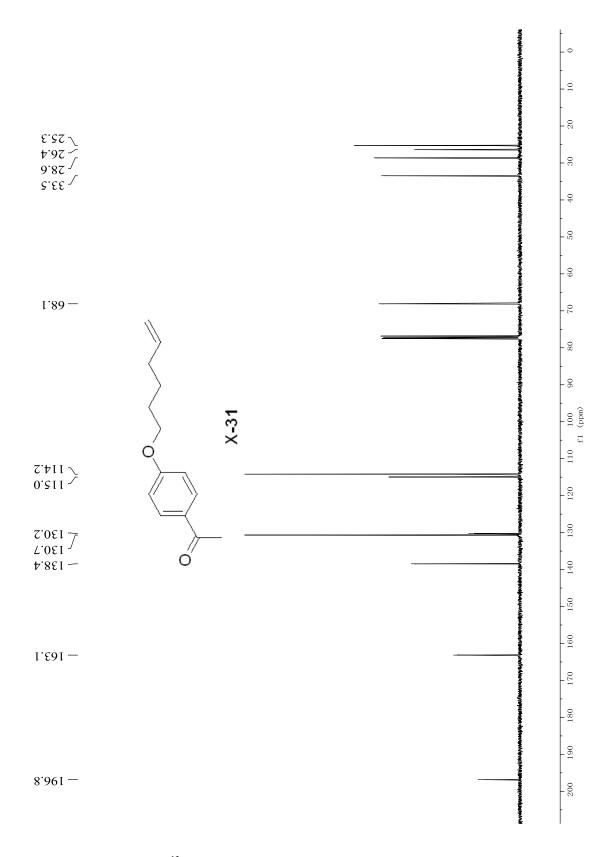

¹H NMR spectrum (400 MHz, CDCl₃) of X-28

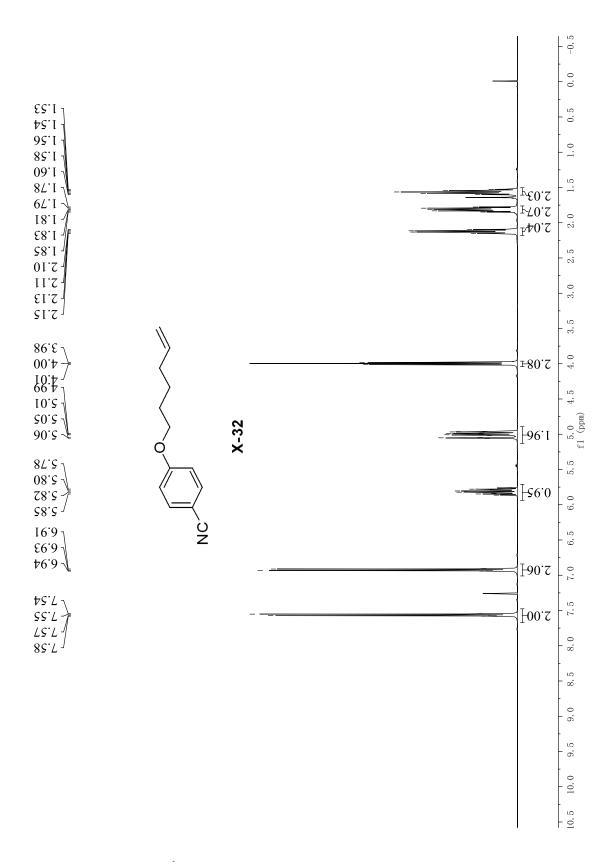

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-28**

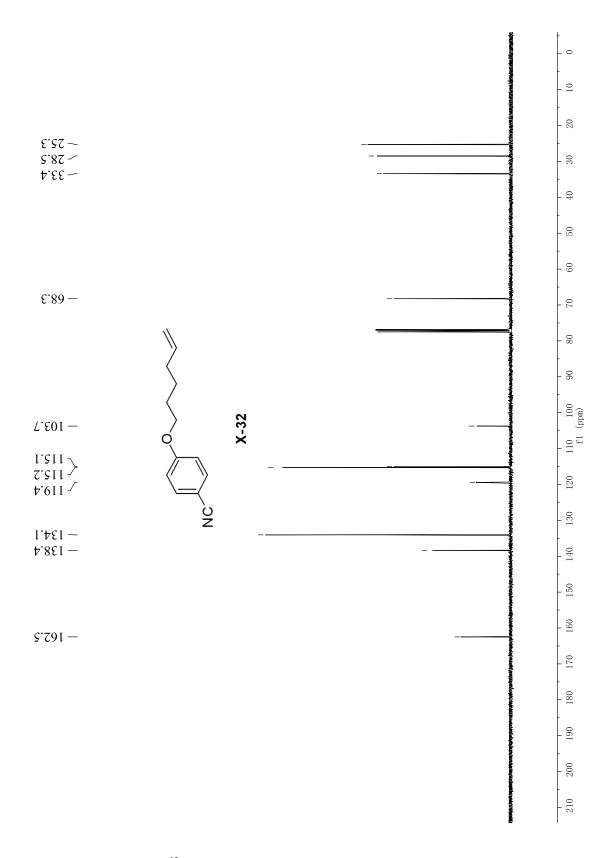

¹H NMR spectrum (400 MHz, CDCl₃) of X-29

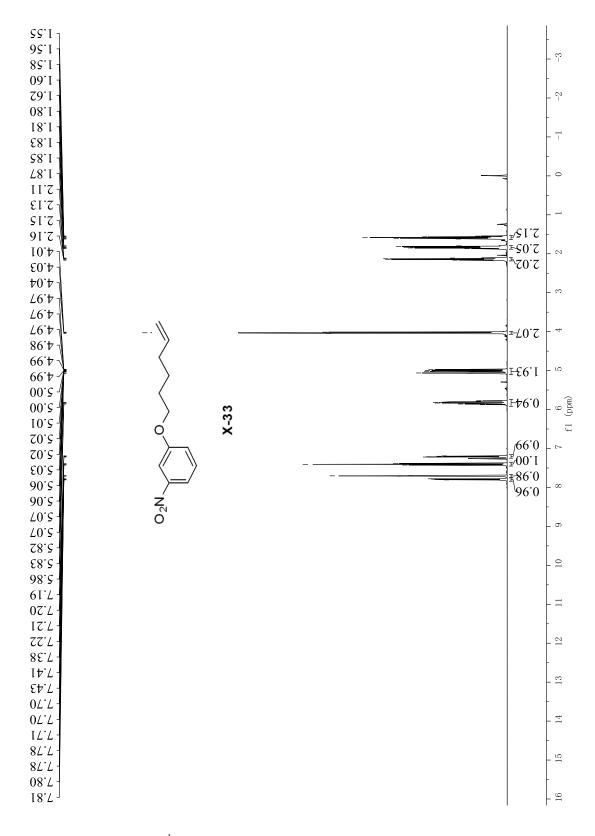

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-29**

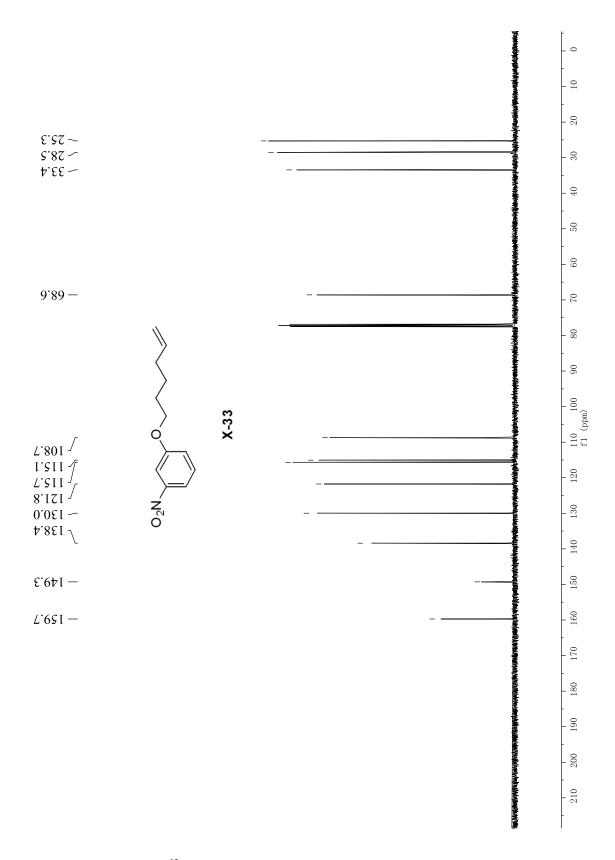

¹H NMR spectrum (400 MHz, CDCl₃) of X-30

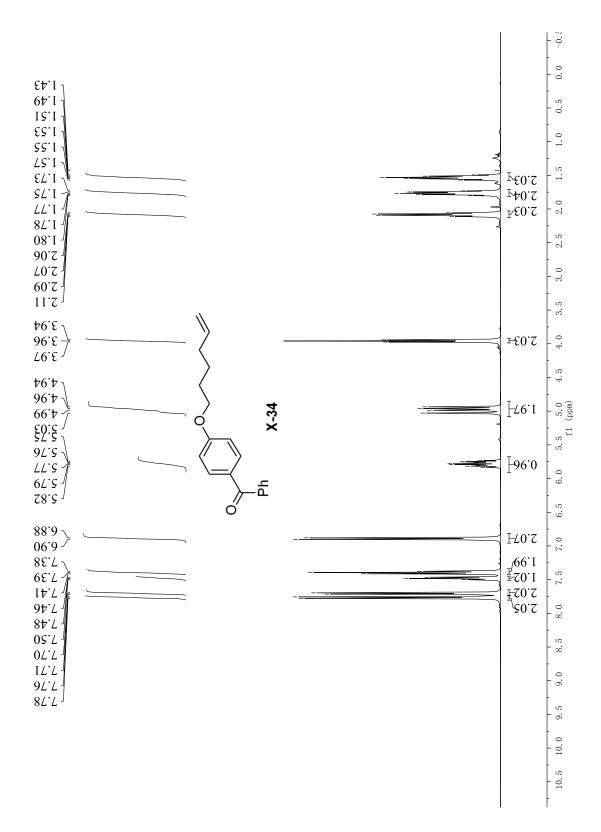

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-30**

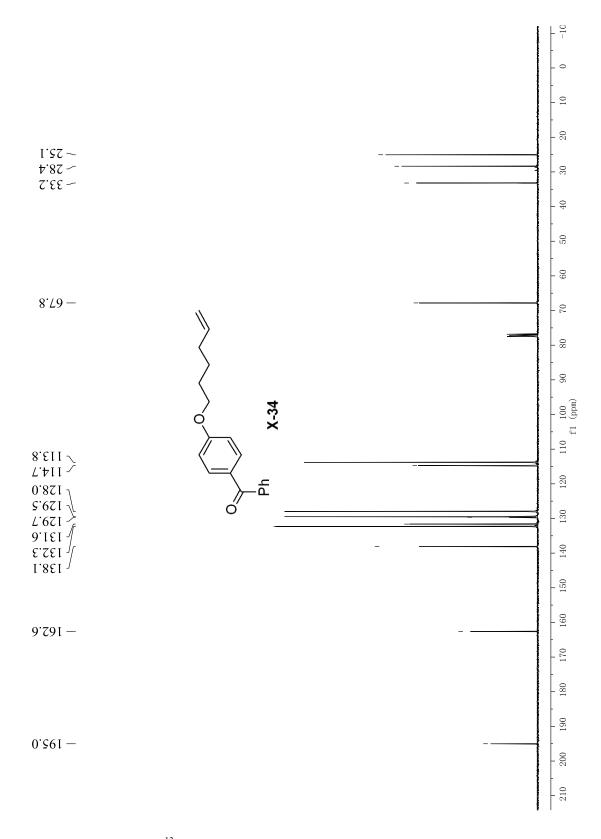

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **X-30**

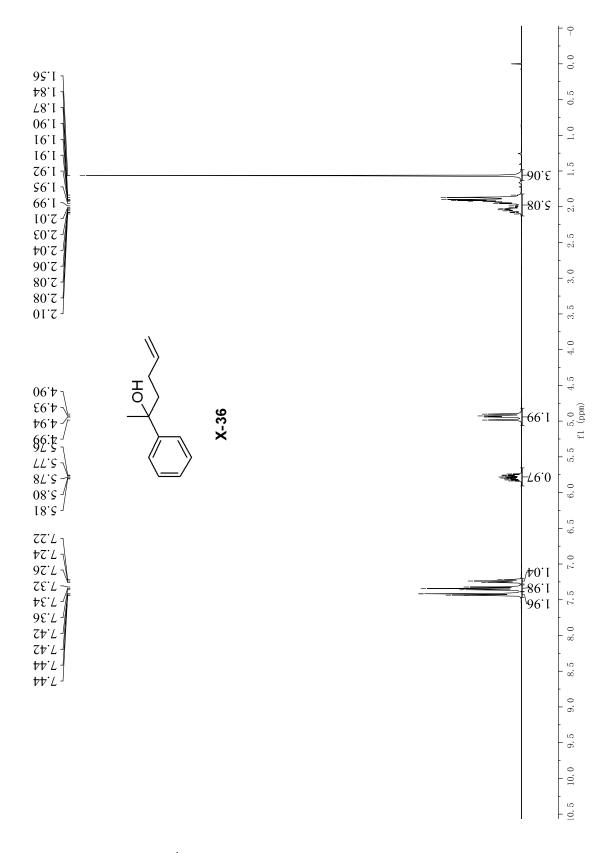

¹H NMR spectrum (400 MHz, CDCl₃) of X-31

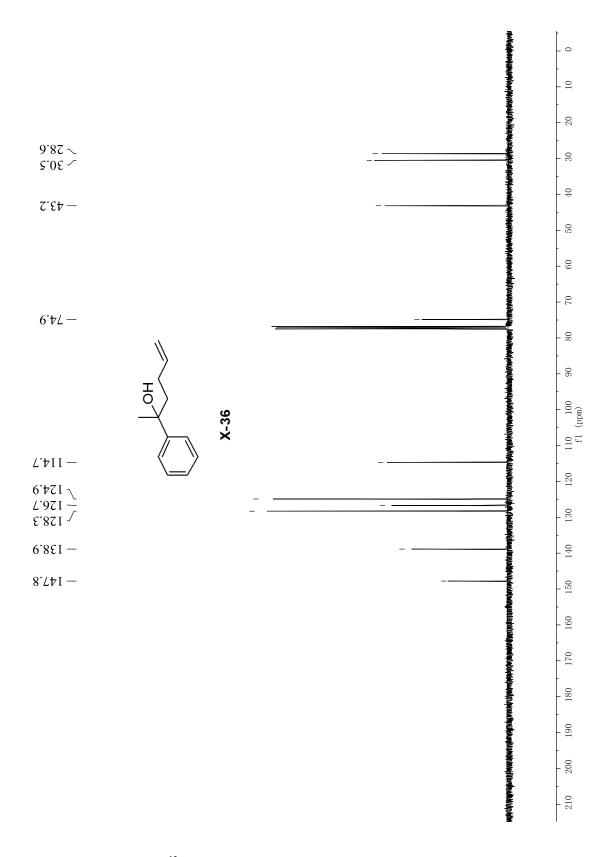

¹³C NMR spectrum (101 MHz, CDCl₃) of X-31

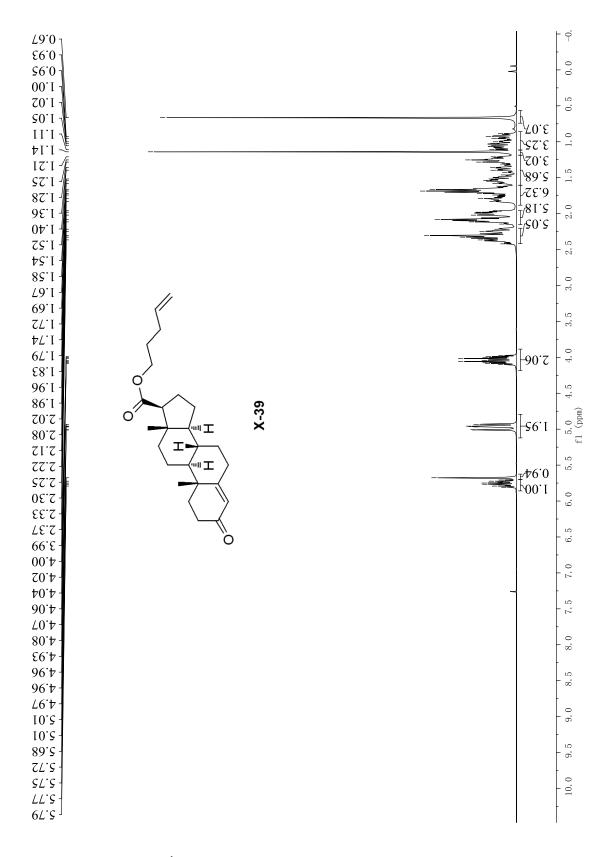

¹H NMR spectrum (400 MHz, CDCl₃) of X-32

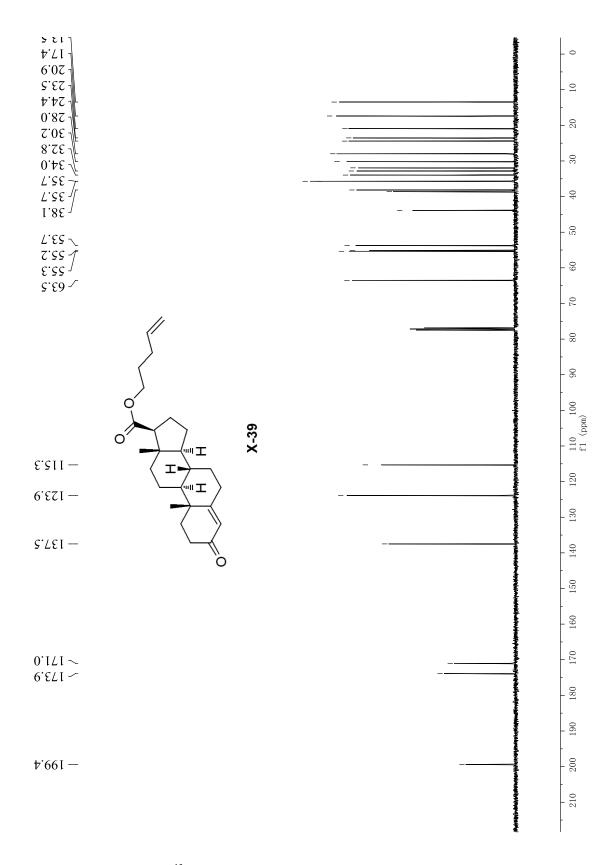

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **X-32**

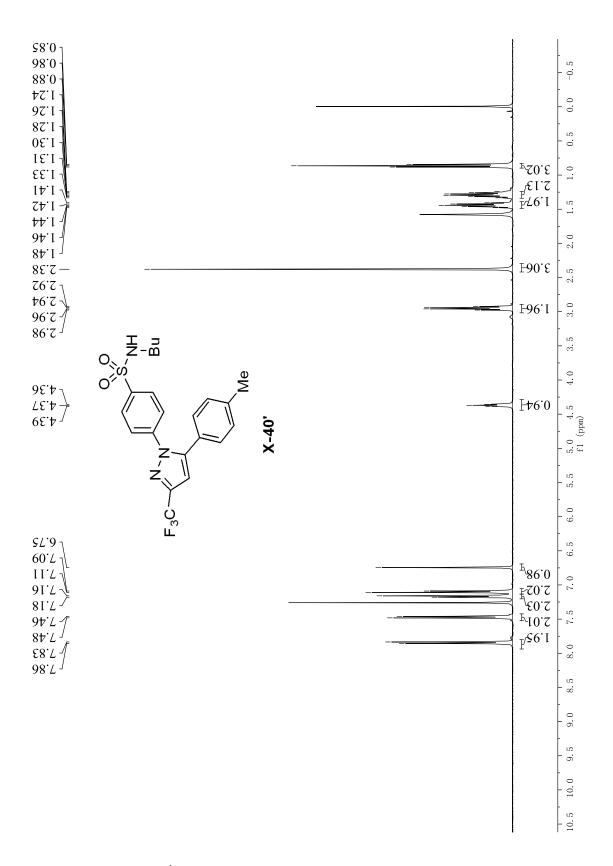

¹H NMR spectrum (400 MHz, CDCl₃) of X-33

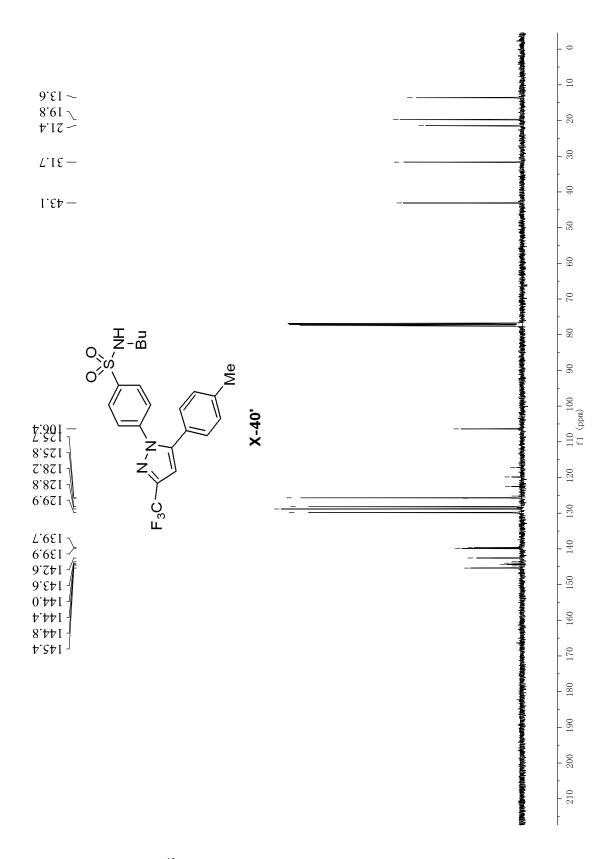

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-33**

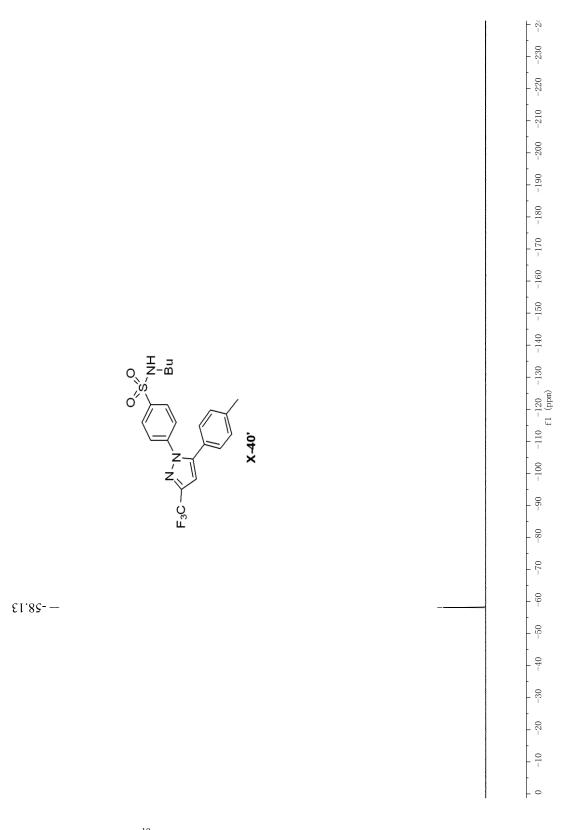

¹H NMR spectrum (400 MHz, CDCl₃) of X-34

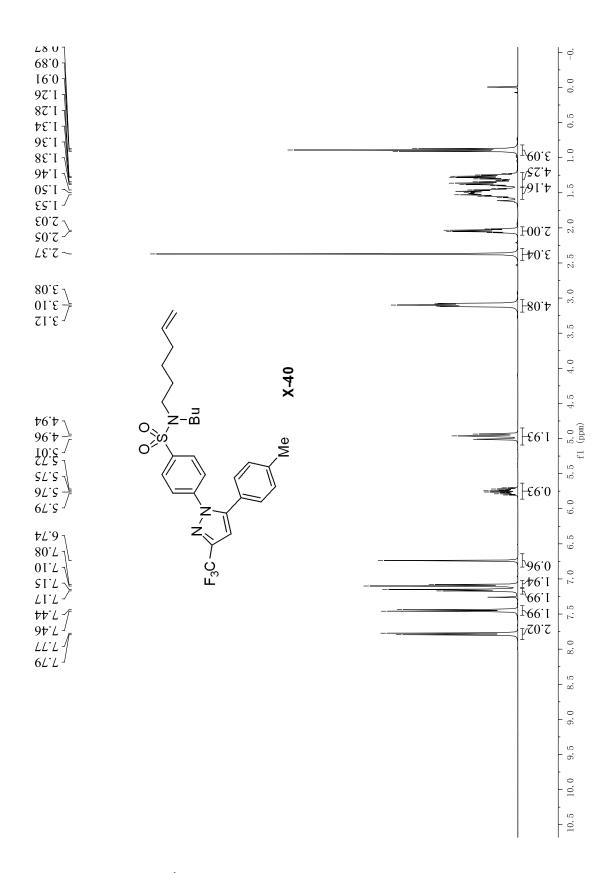

¹³C NMR spectrum (101 MHz, CDCl₃) of X-34

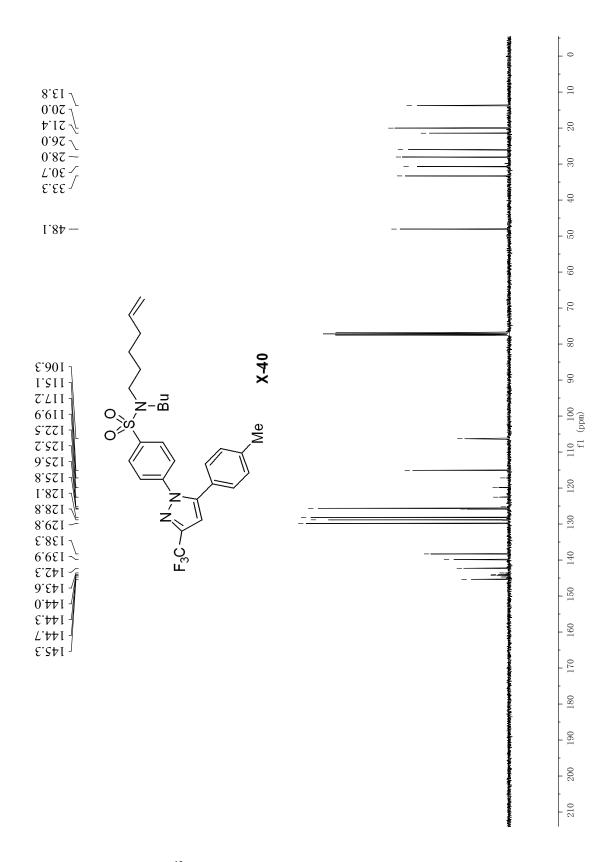

¹H NMR spectrum (400 MHz, CDCl₃) of **X-36**

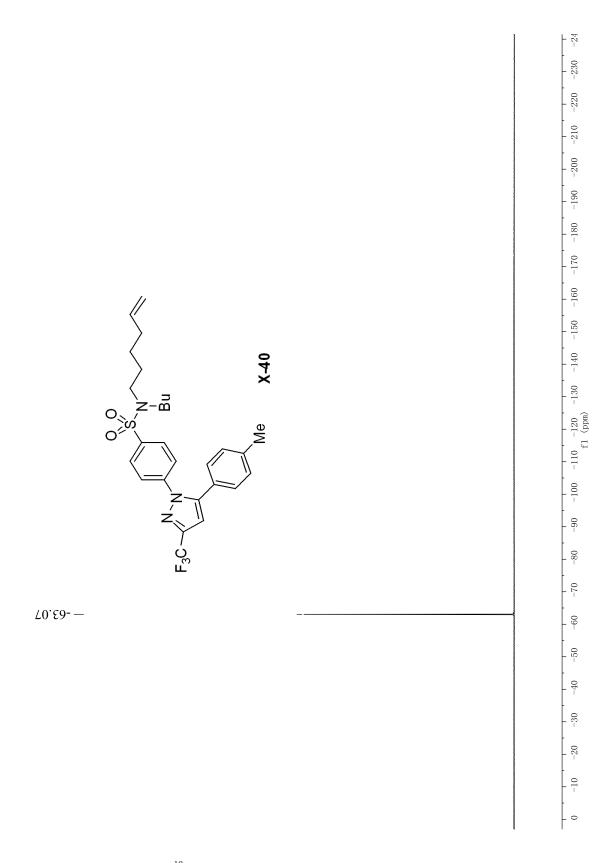

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-36**

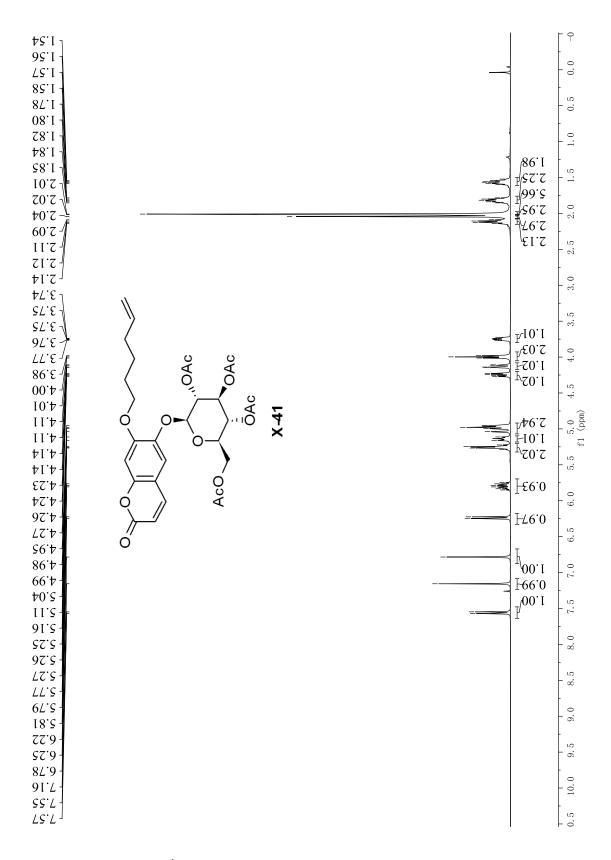

¹H NMR spectrum (400 MHz, CDCl₃) of **X-39**

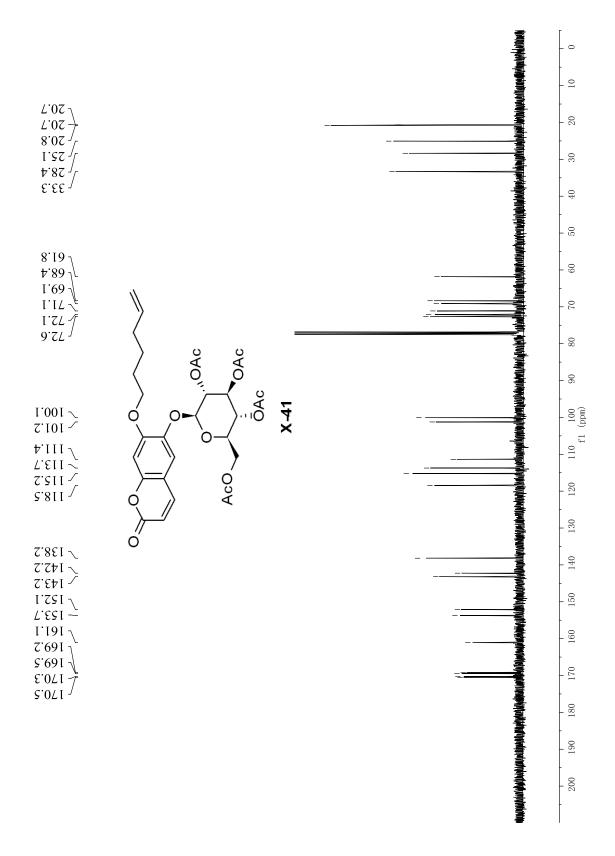

¹³C NMR spectrum (101 MHz, CDCl₃) of X-39

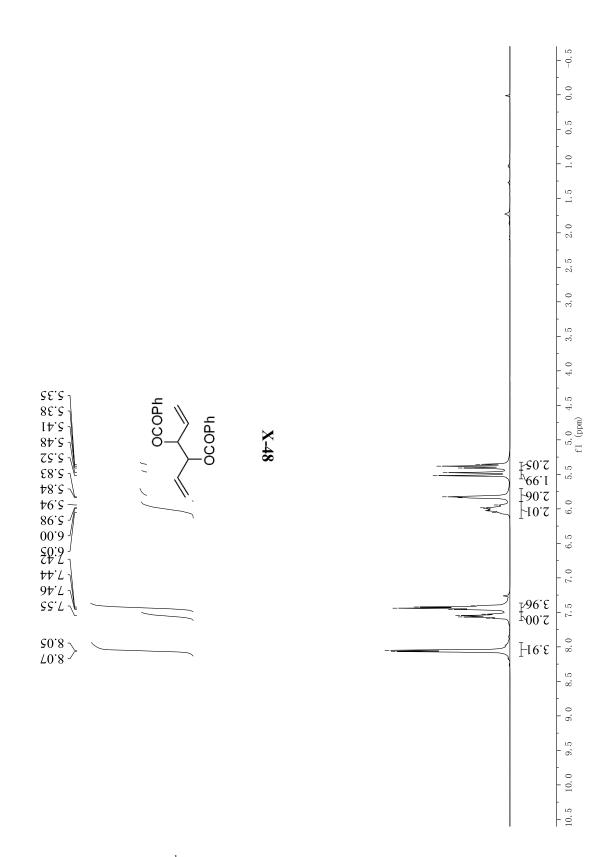

¹H NMR spectrum (400 MHz, CDCl₃) of **X-40'**


¹³C NMR spectrum (101 MHz, CDCl₃) of **X-40'**

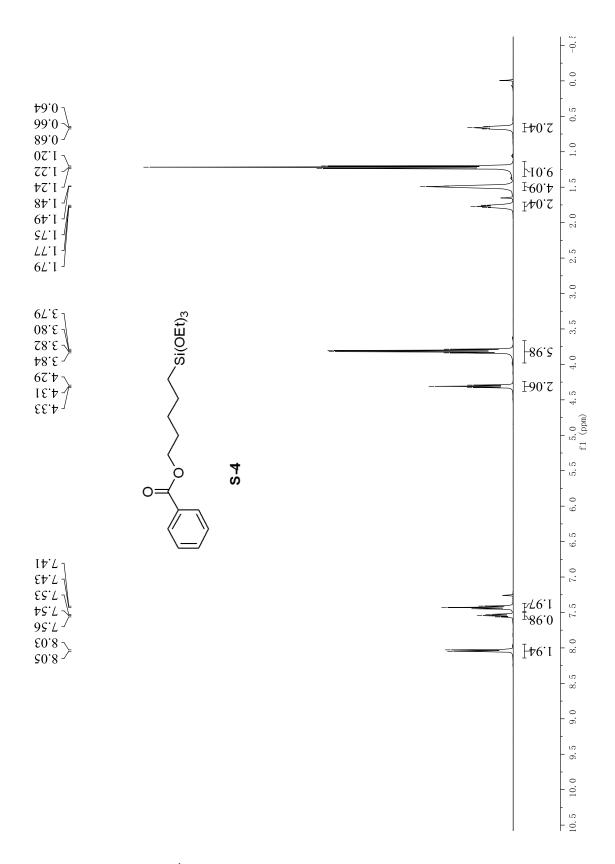

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **X-40'**

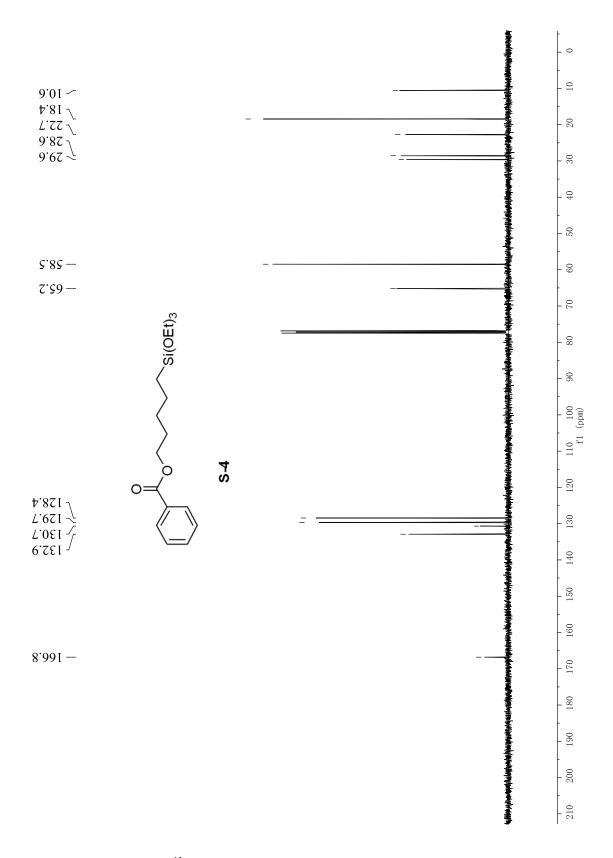

¹H NMR spectrum (400 MHz, CDCl₃) of **X-40**

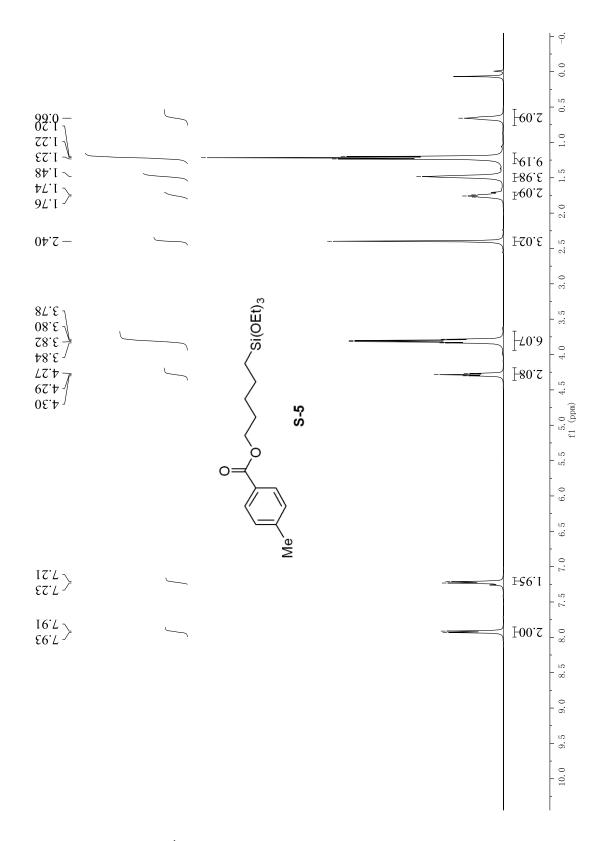

¹³C NMR spectrum (101 MHz, CDCl₃) of **X-40**

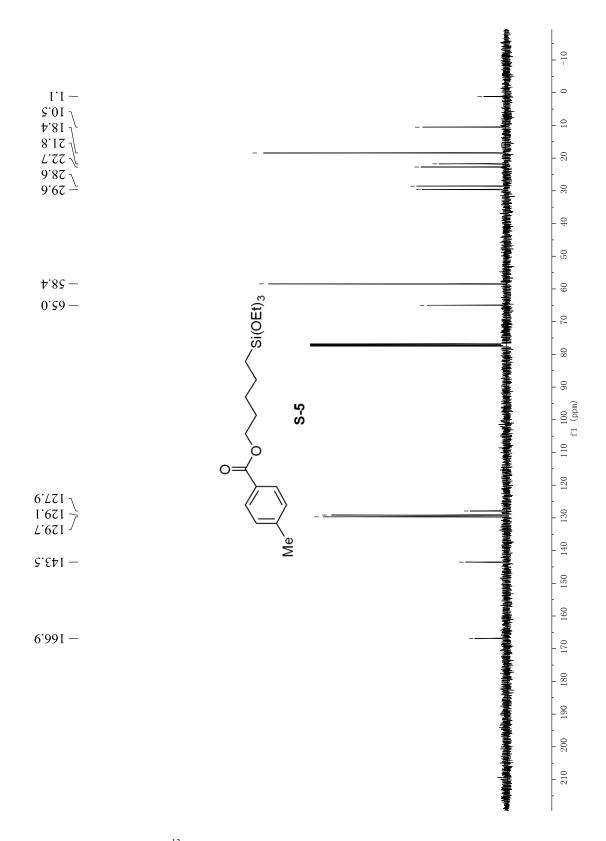

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **X-40'**

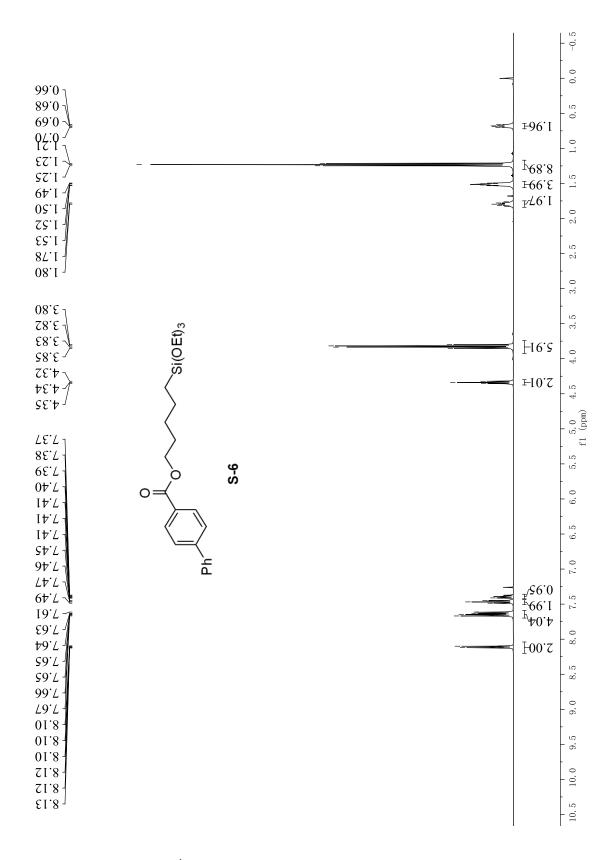
¹H NMR spectrum (400 MHz, CDCl₃) of X-41


¹³C NMR spectrum (101 MHz, CDCl₃) of X-41

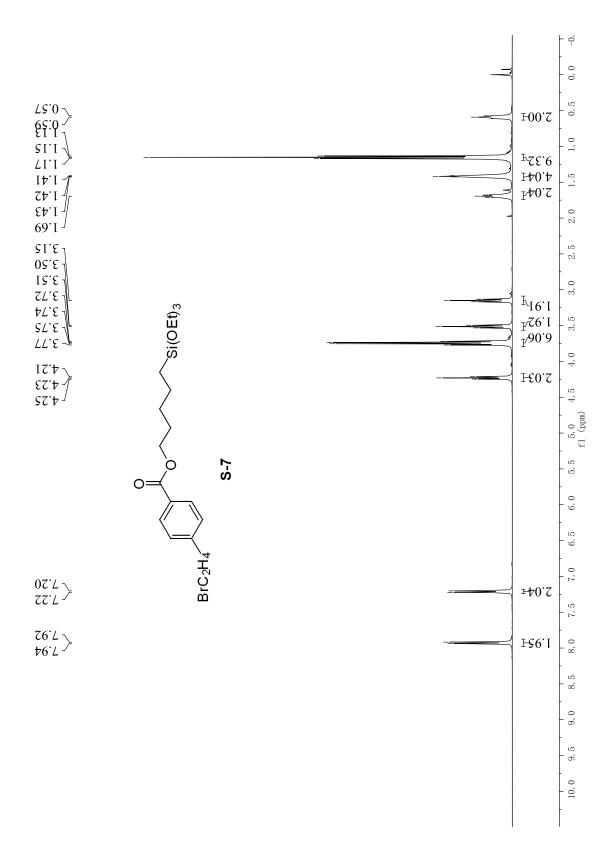

¹H NMR spectrum (400 MHz, CDCl₃) of X-48

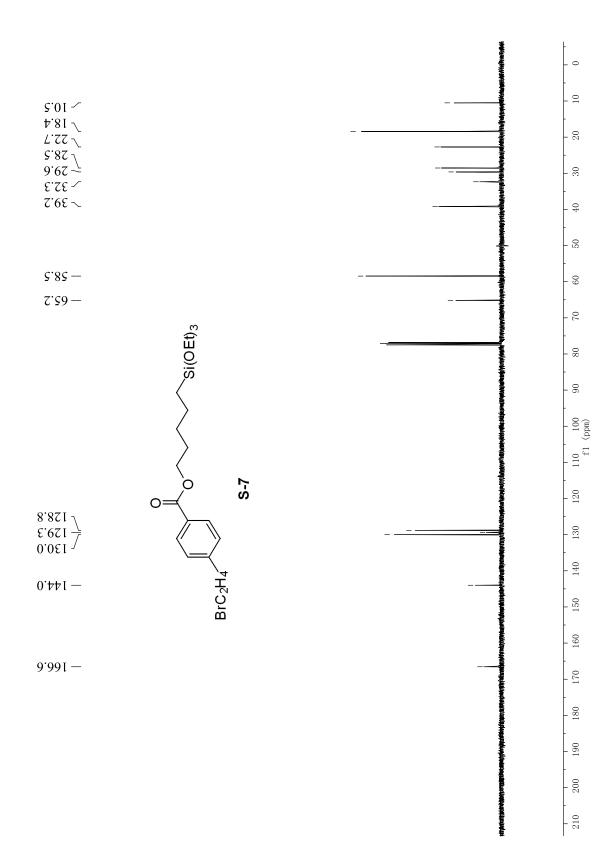

¹³C NMR spectrum (101 MHz, CDCl₃) of X-48

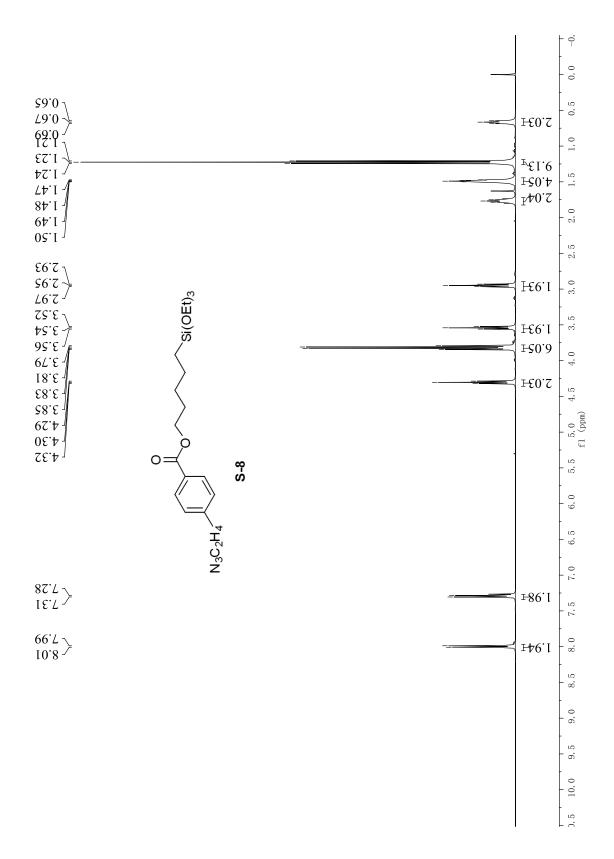

¹H NMR spectrum (400 MHz, CDCl₃) of S-4

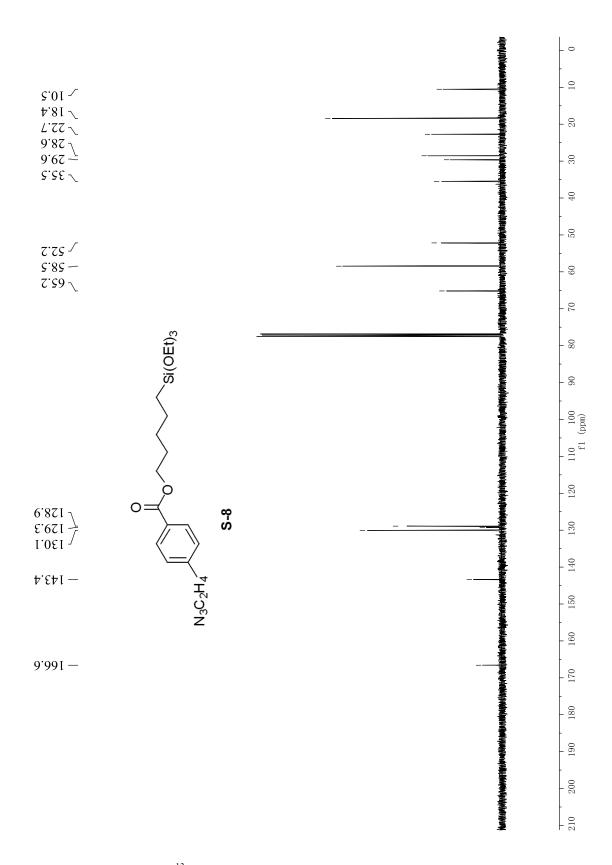

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-4

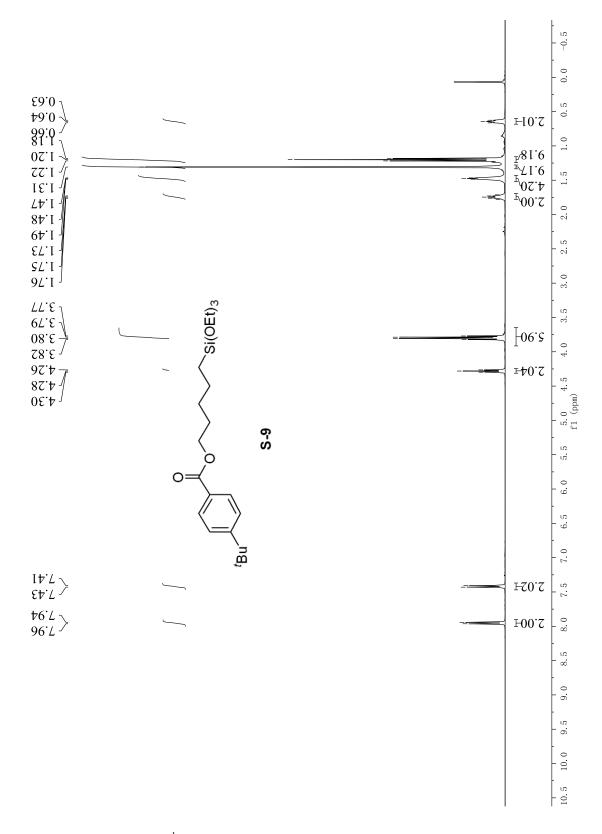
 ^1H NMR spectrum (400 MHz, CDCl₃) of S-5

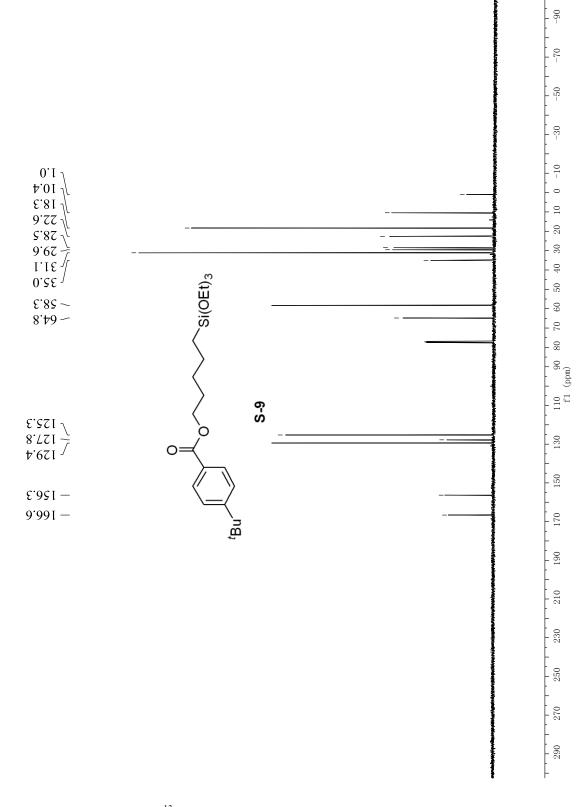

¹³C NMR spectrum (101 MHz, CDCl₃) of S-5

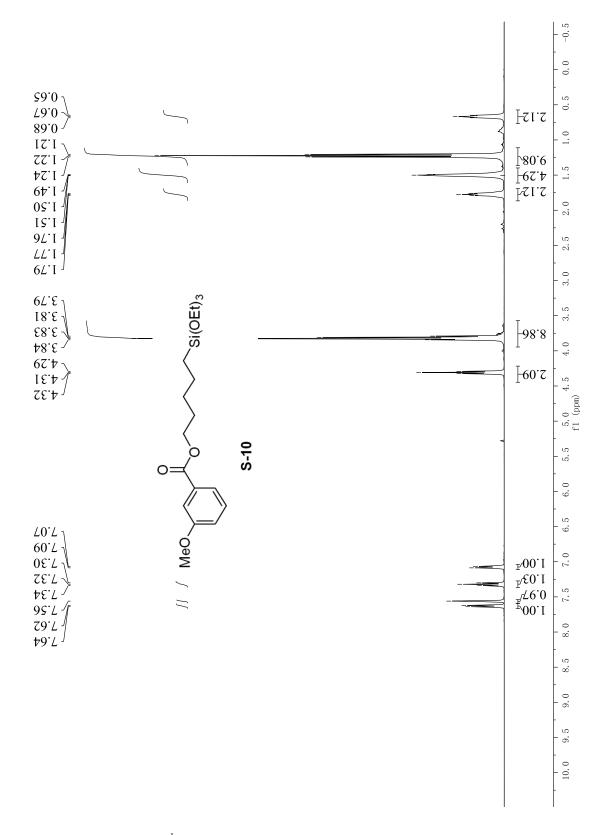

¹H NMR spectrum (400 MHz, CDCl₃) of **S-6**

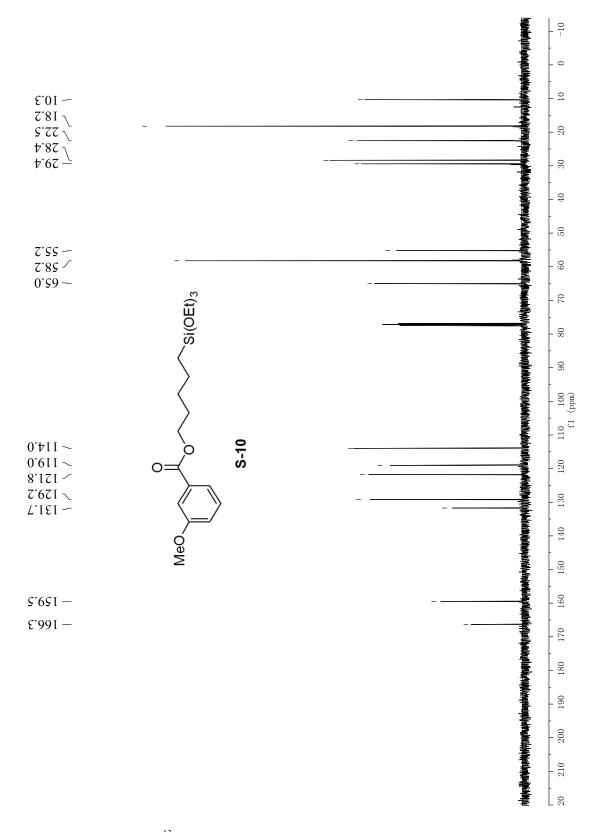

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-6

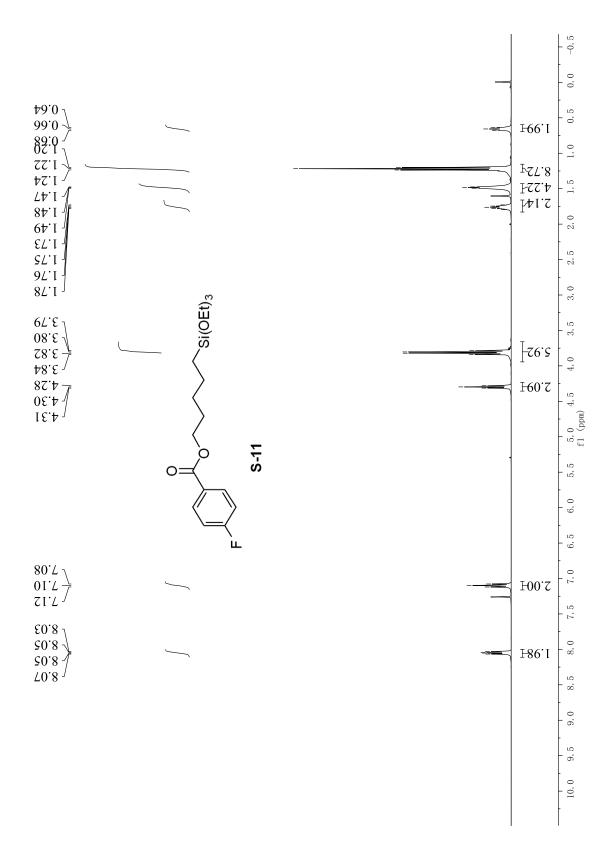

¹H NMR spectrum (400 MHz, CDCl₃) of S-7

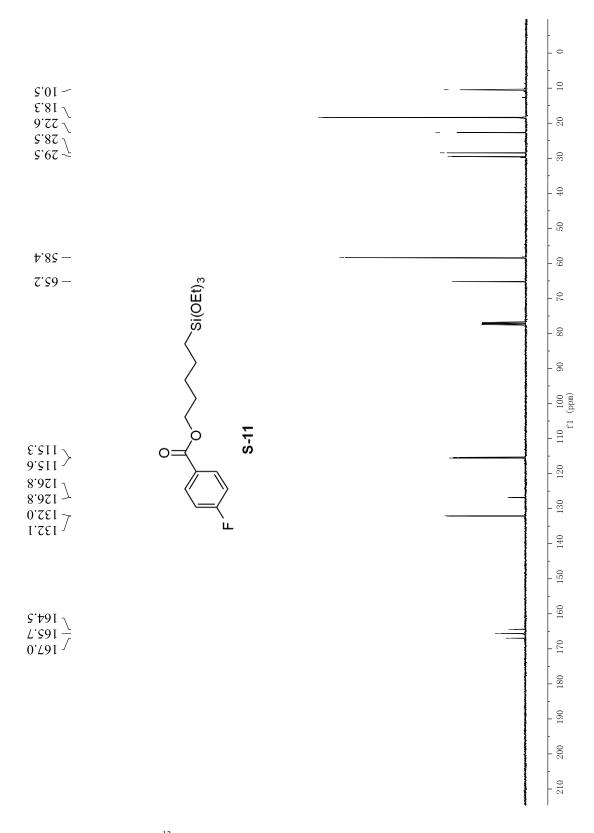

 ^{13}C NMR spectrum (101 MHz, CDCl_3) of S-7

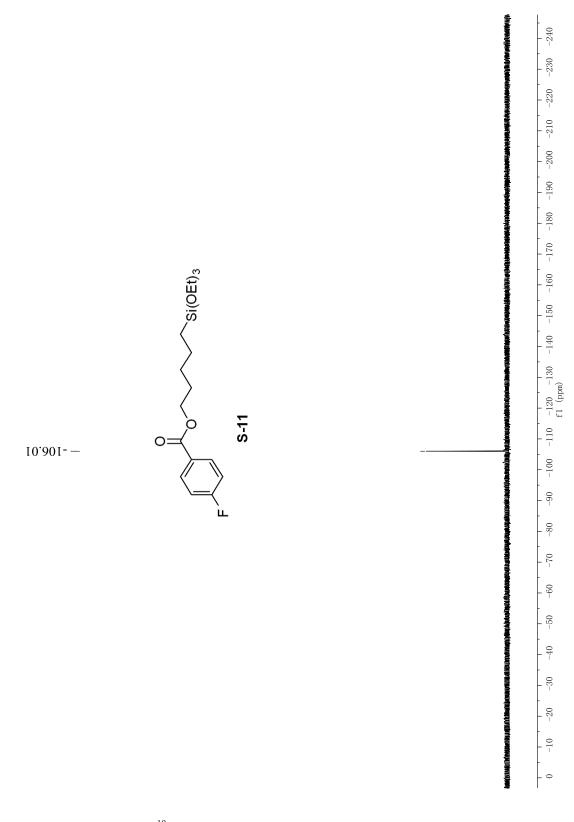

¹H NMR spectrum (400 MHz, CDCl₃) of **S-8**

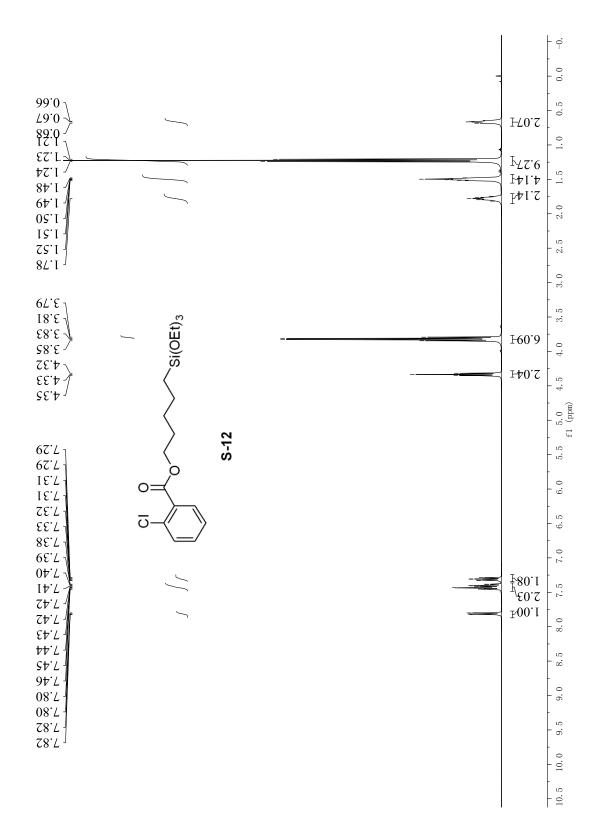

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-8

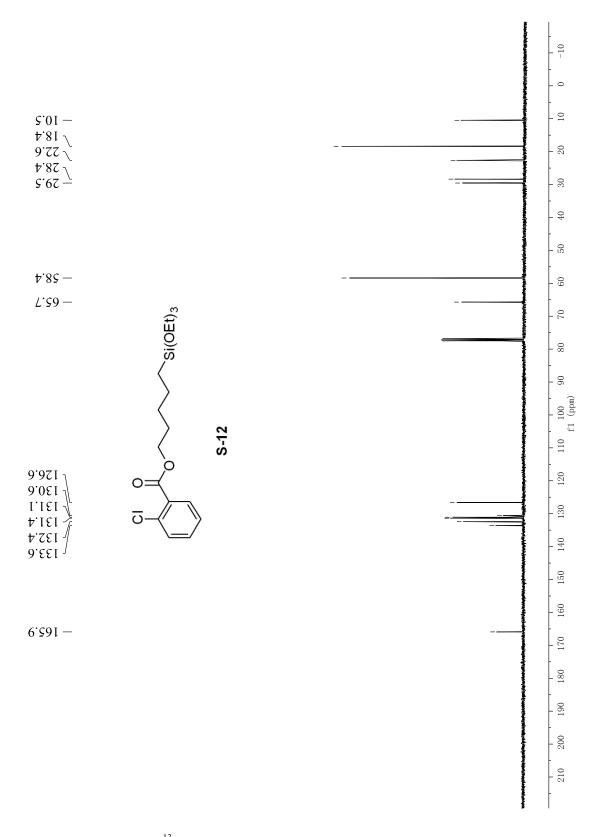

 ^1H NMR spectrum (400 MHz, CDCl₃) of S-9

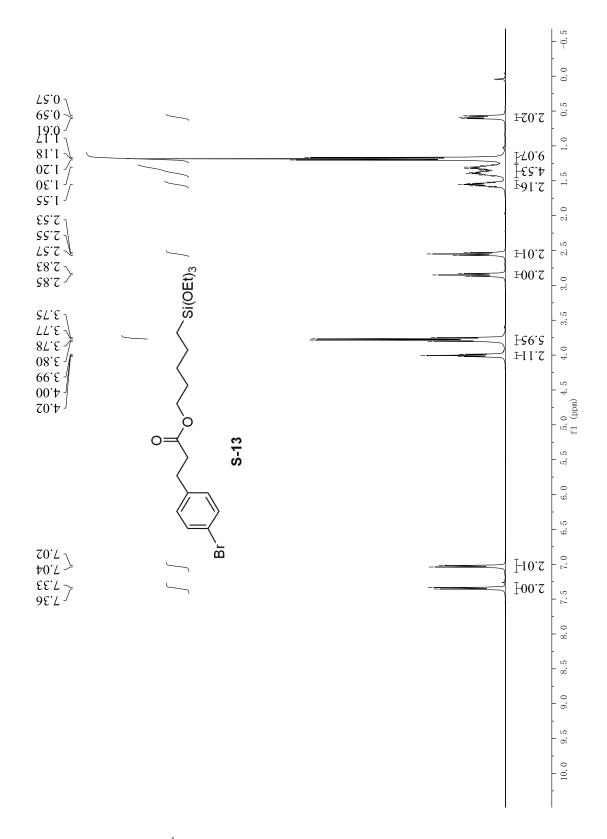

¹³C NMR spectrum (101 MHz, CDCl₃) of **S-9**

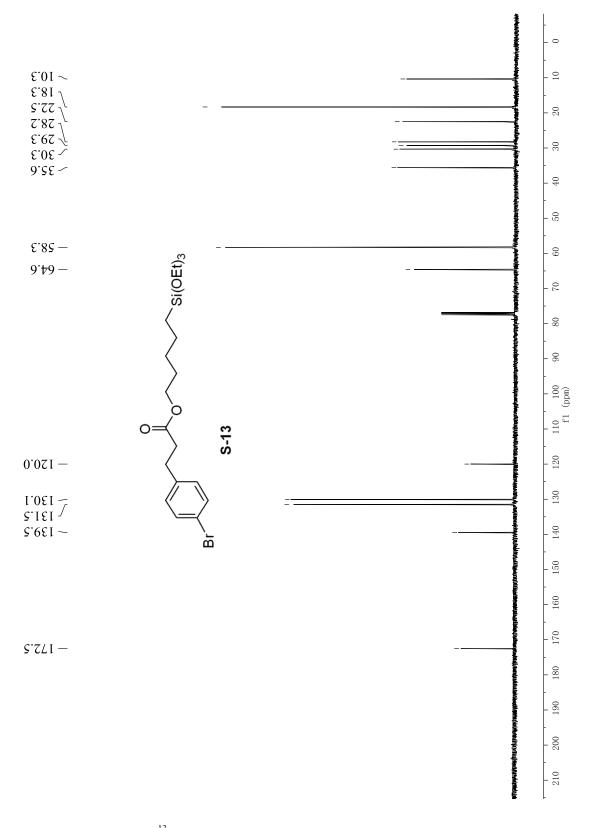

¹H NMR spectrum (400 MHz, CDCl₃) of S-10

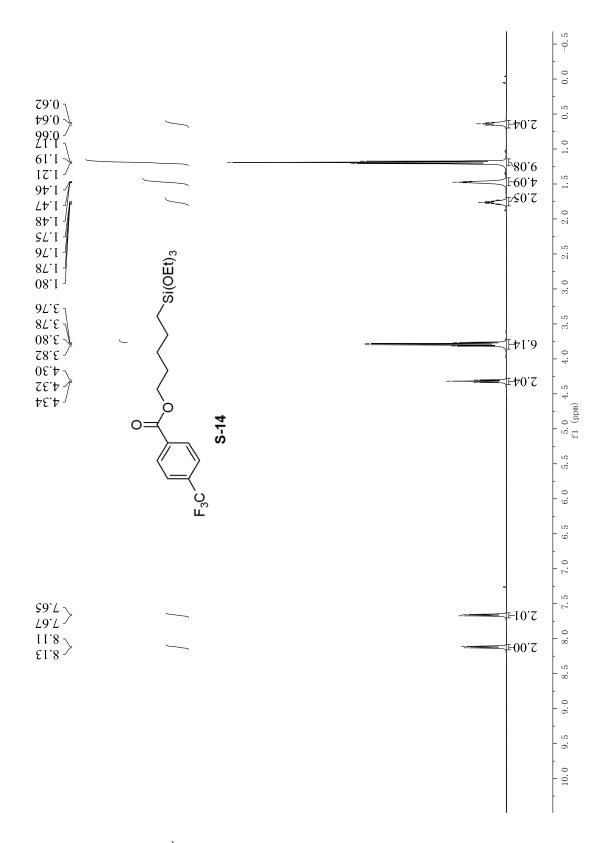

¹³C NMR spectrum (101 MHz, CDCl₃) of S-10

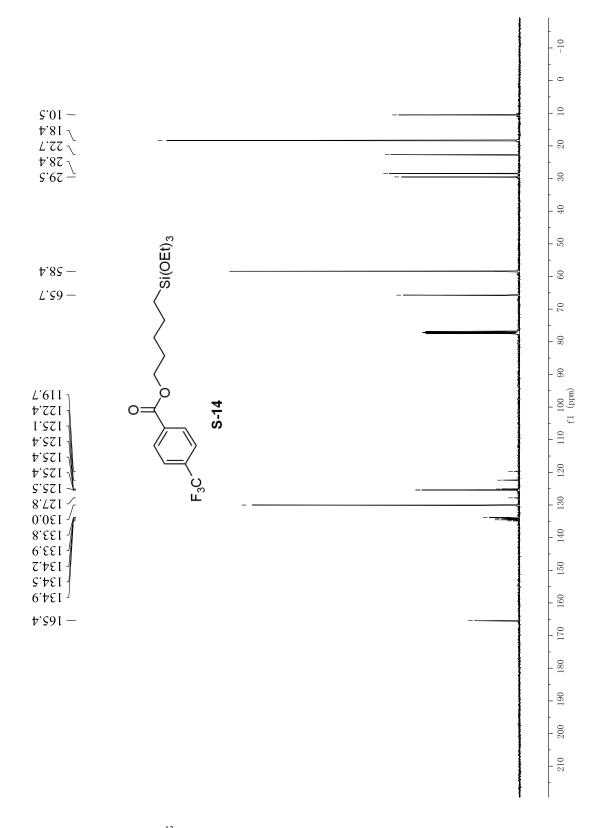

 1 H NMR spectrum (400 MHz, CDCl₃) of S-11

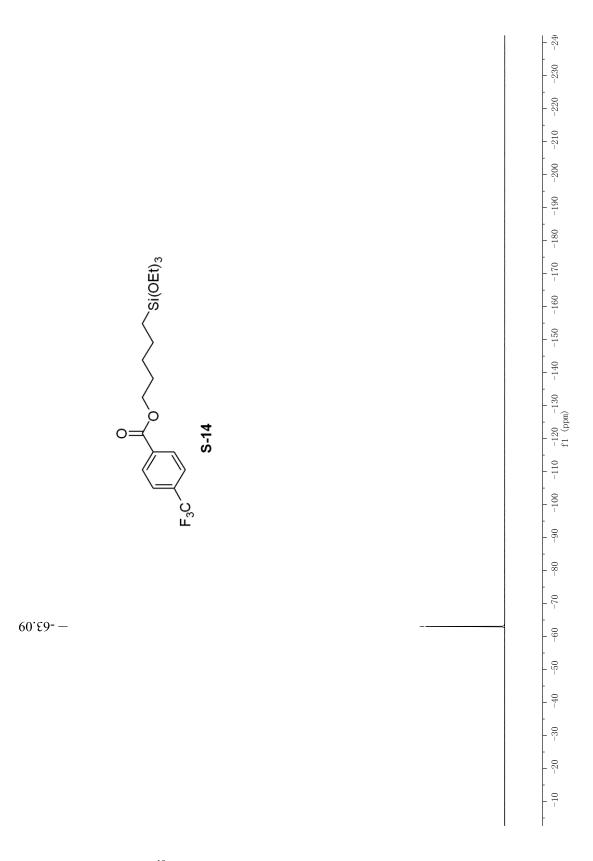

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-11

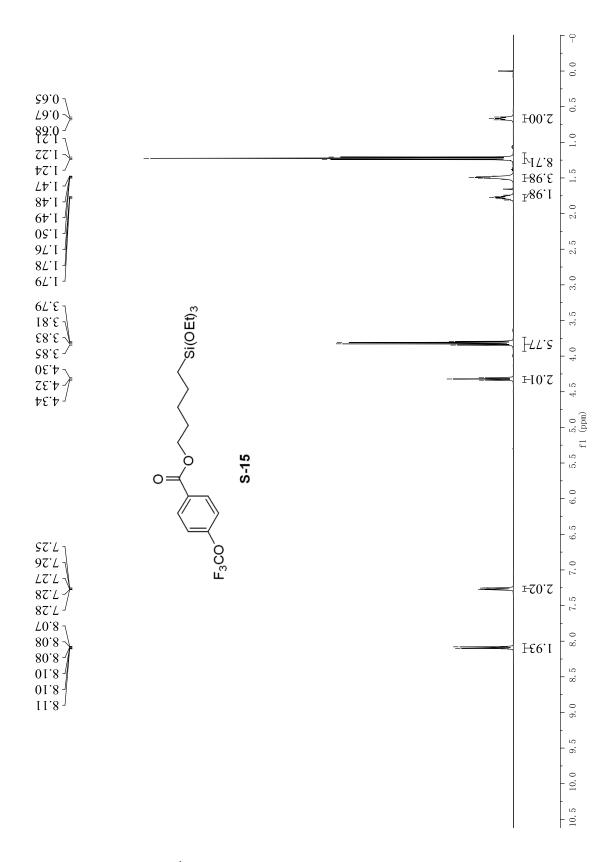

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of S-11

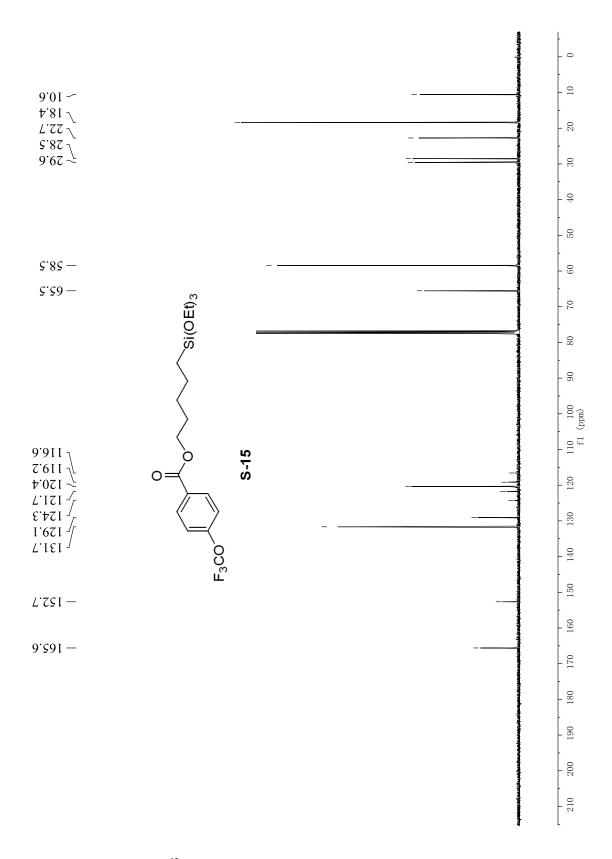

¹H NMR spectrum (400 MHz, CDCl₃) of S-12

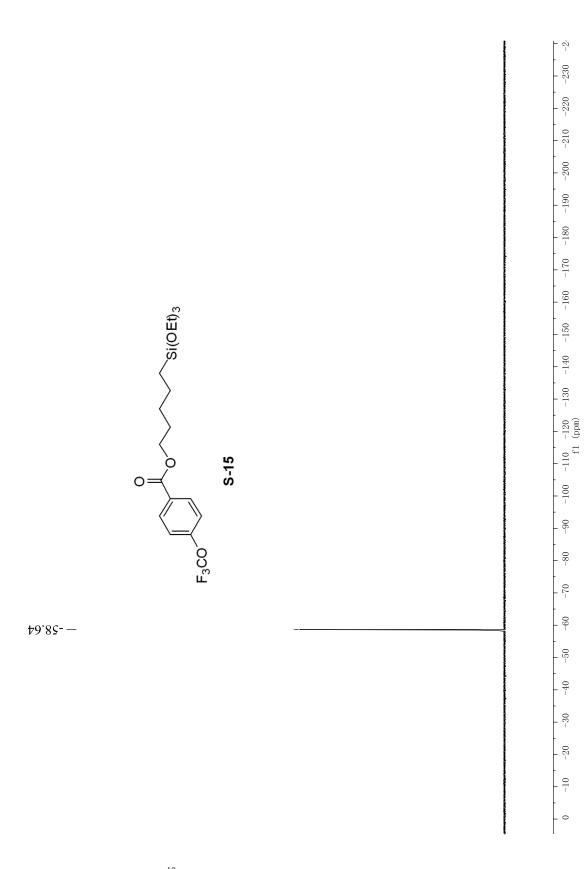

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-12

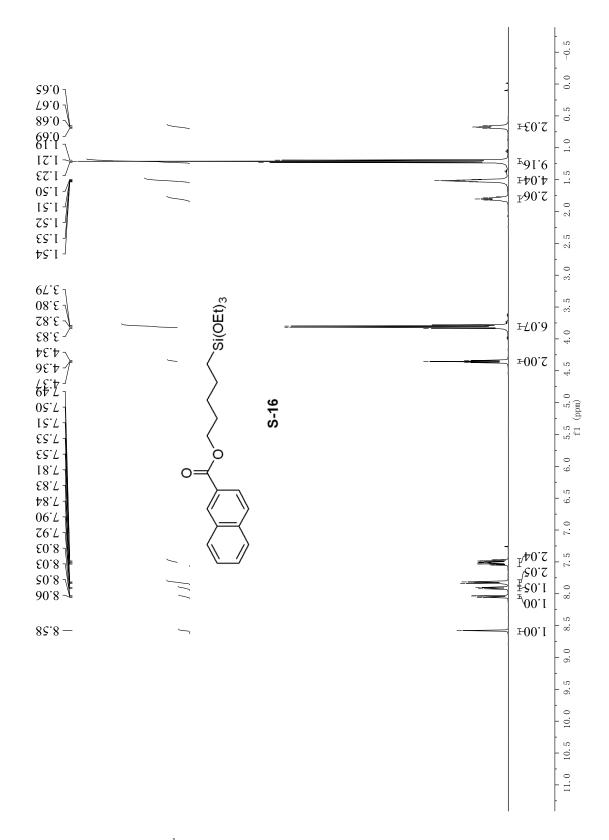

¹H NMR spectrum (400 MHz, CDCl₃) of **S-13**

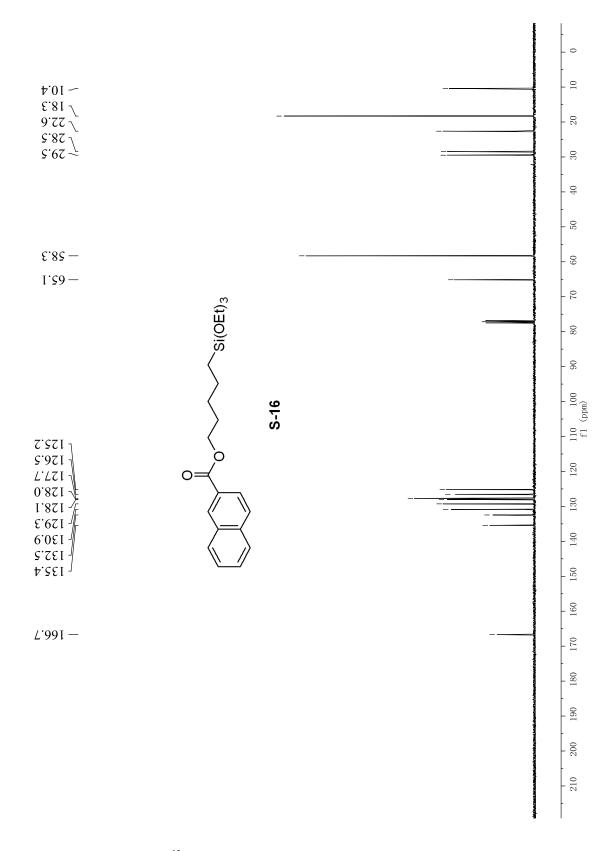

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-13

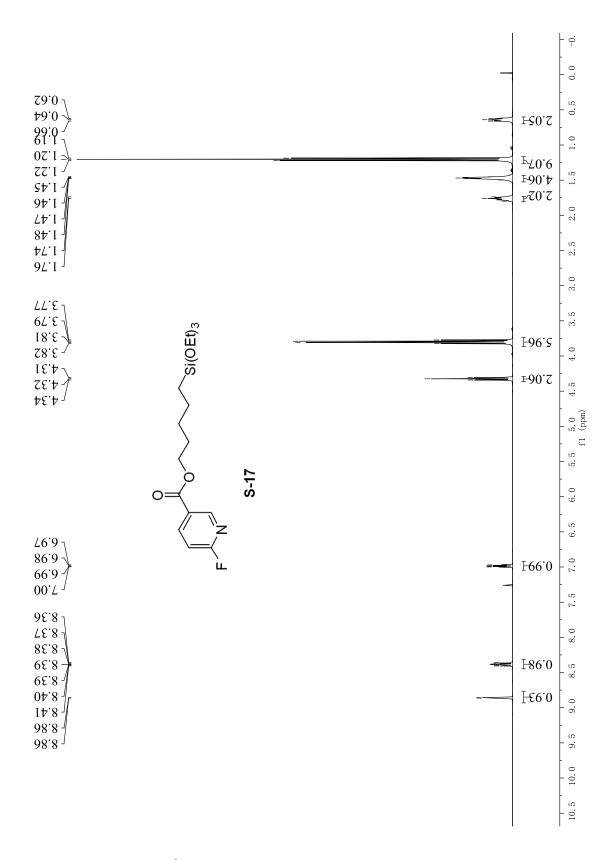

¹H NMR spectrum (400 MHz, CDCl₃) of S-14

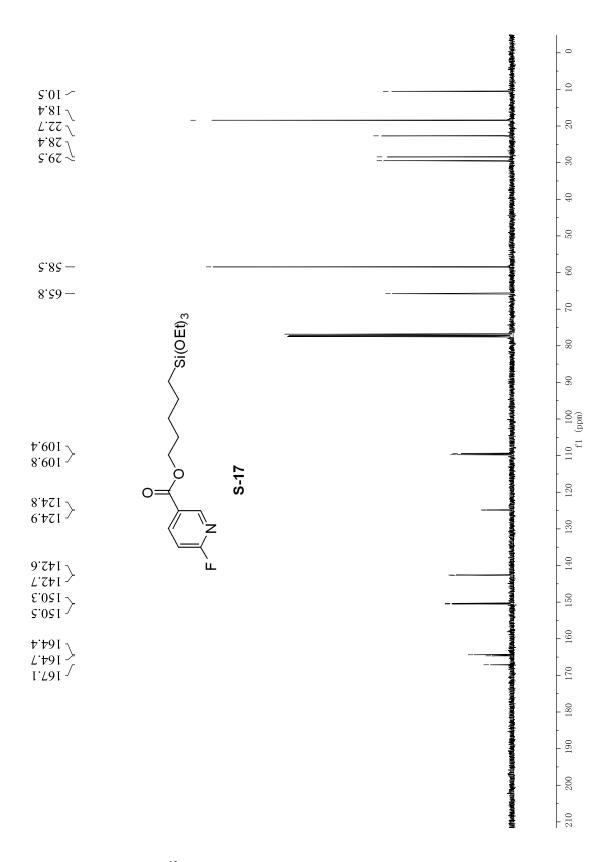

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-14

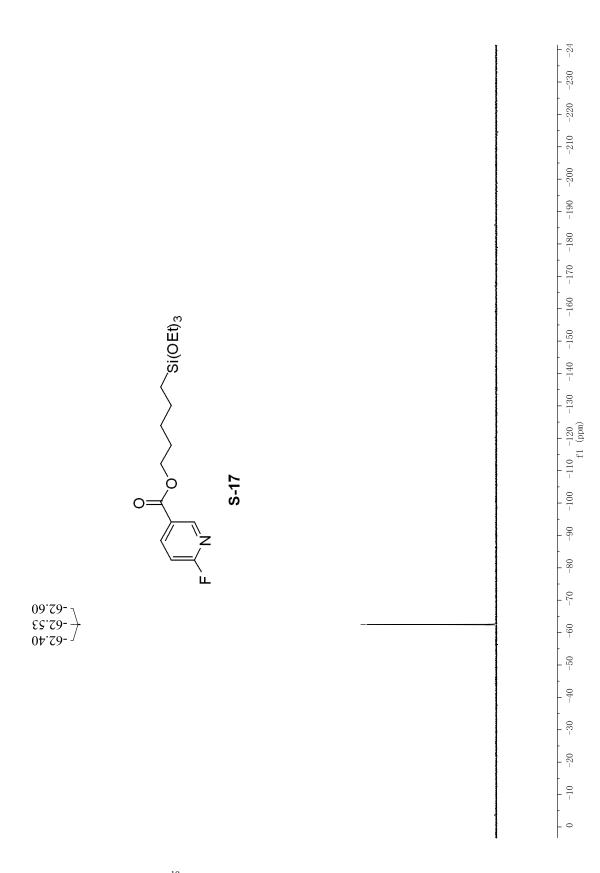

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of S-14

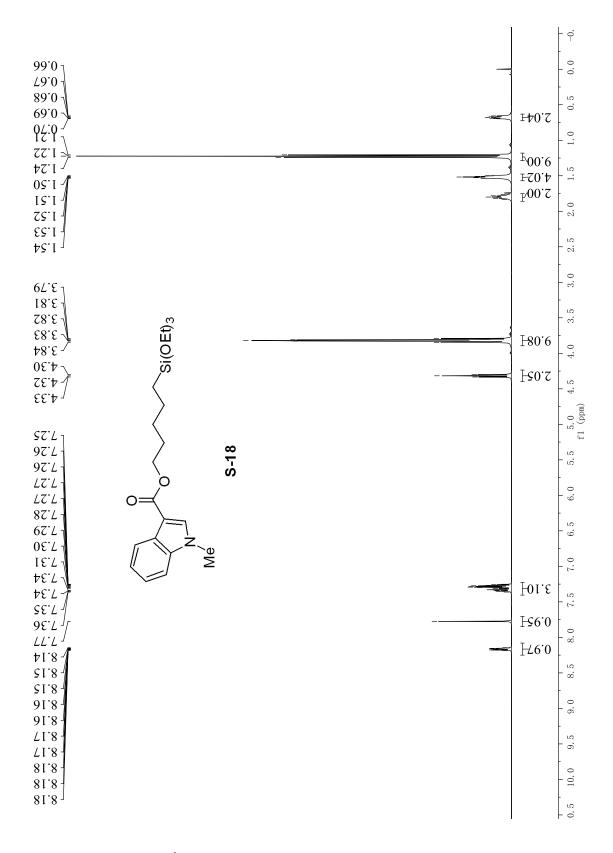

¹H NMR spectrum (400 MHz, CDCl₃) of S-15

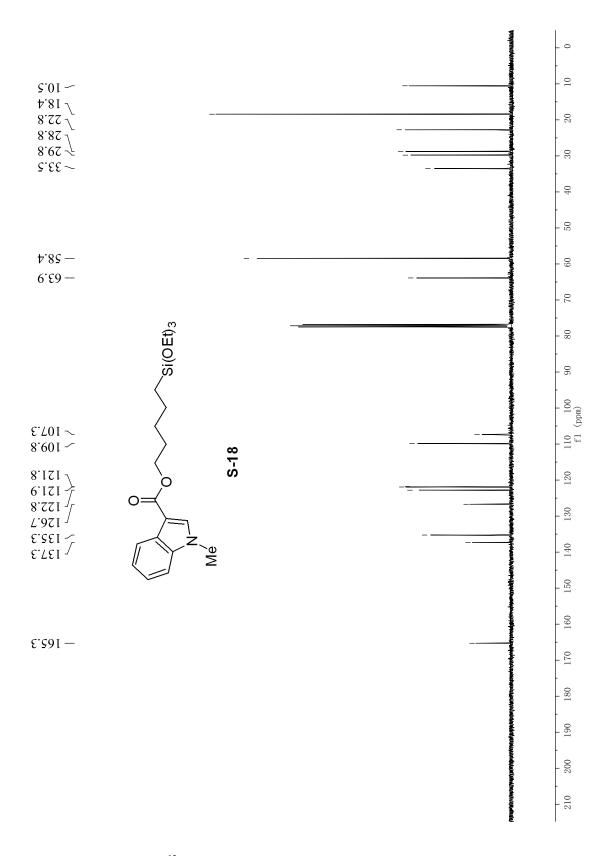

 ^{13}C NMR spectrum (101 MHz, CDCl_3) of **S-15**

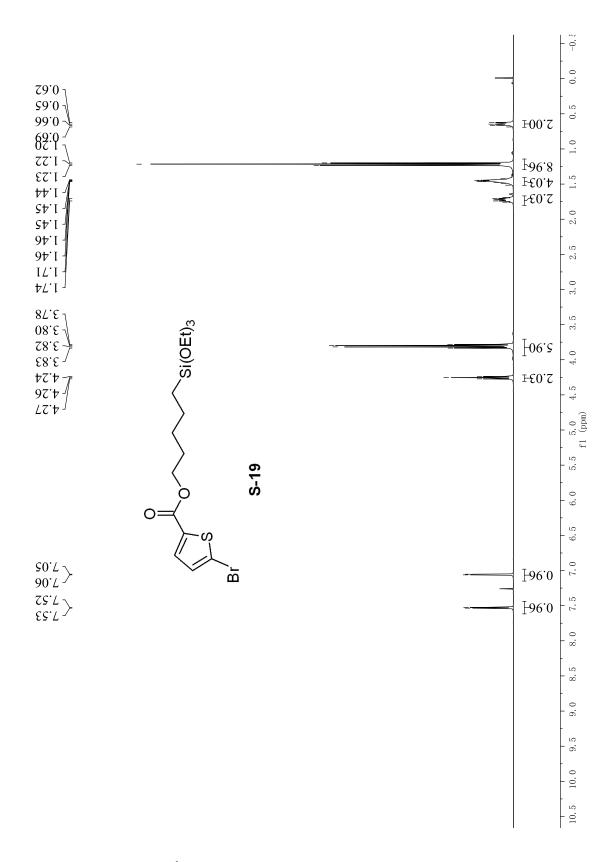

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of S-15

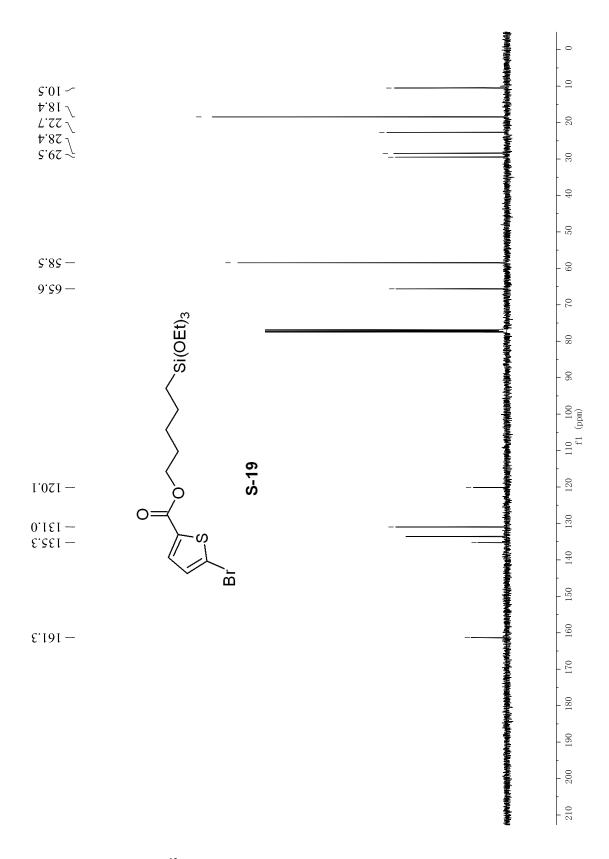

¹H NMR spectrum (400 MHz, CDCl₃) of **S-16**

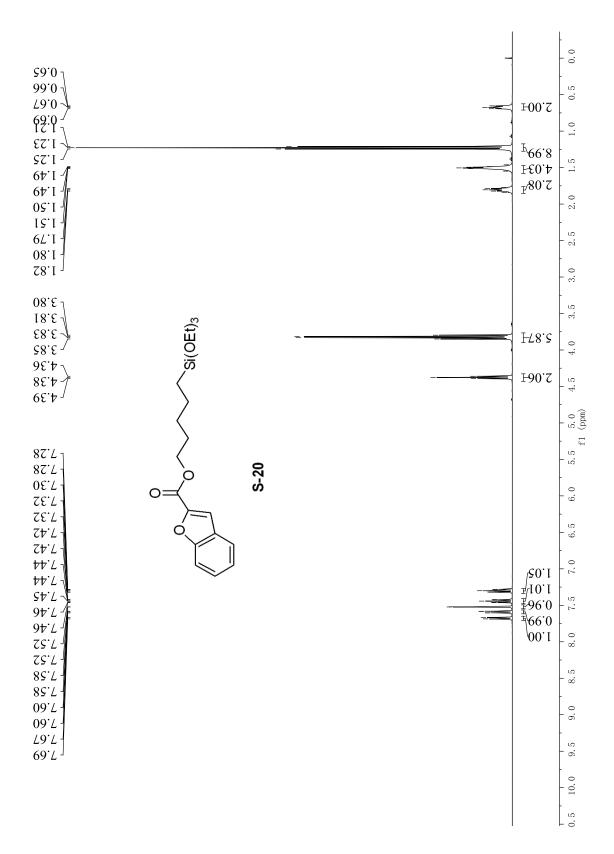

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-16

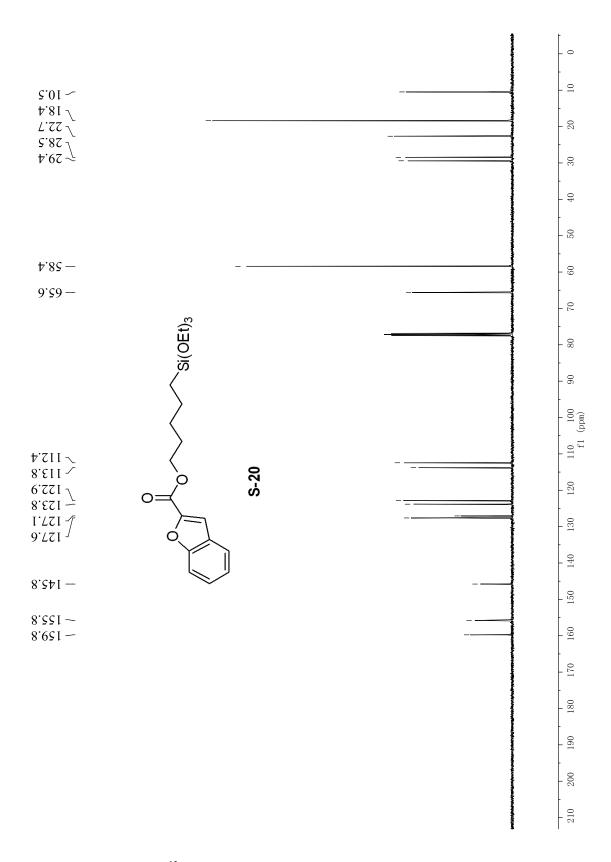

¹H NMR spectrum (400 MHz, CDCl₃) of S-17

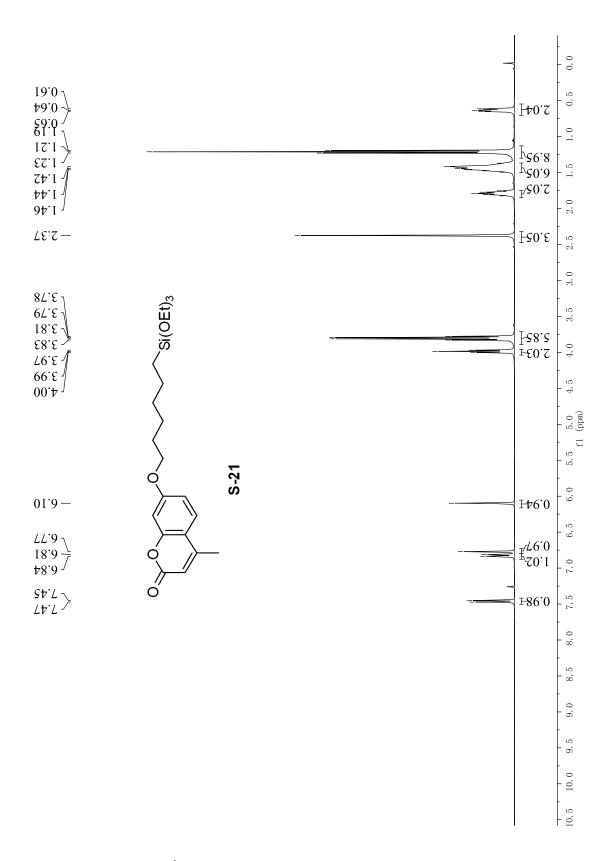

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-17

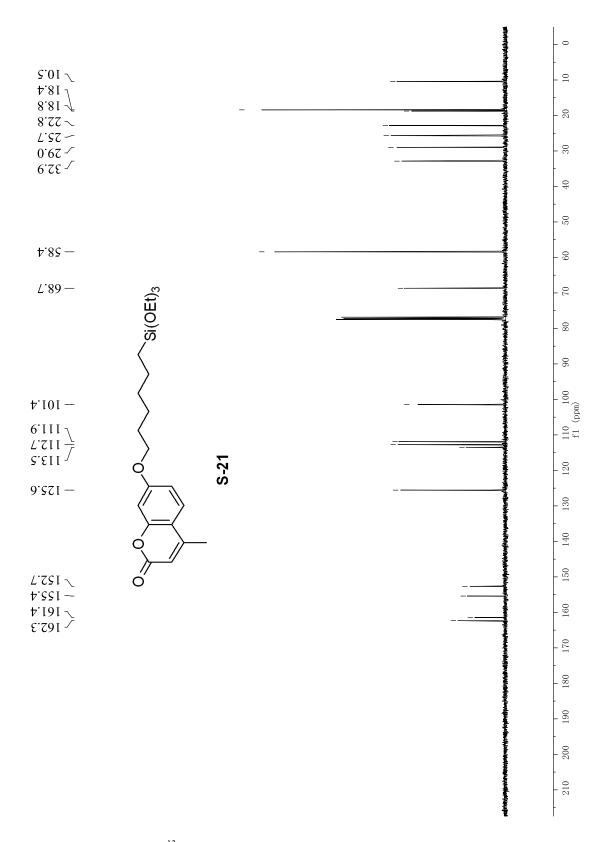

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of S-17

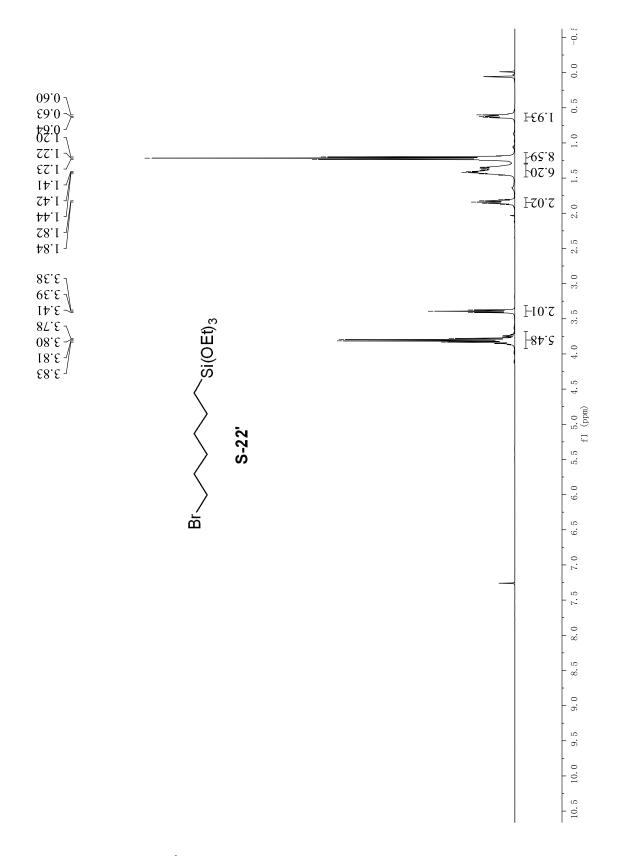

¹H NMR spectrum (400 MHz, CDCl₃) of **S-18**

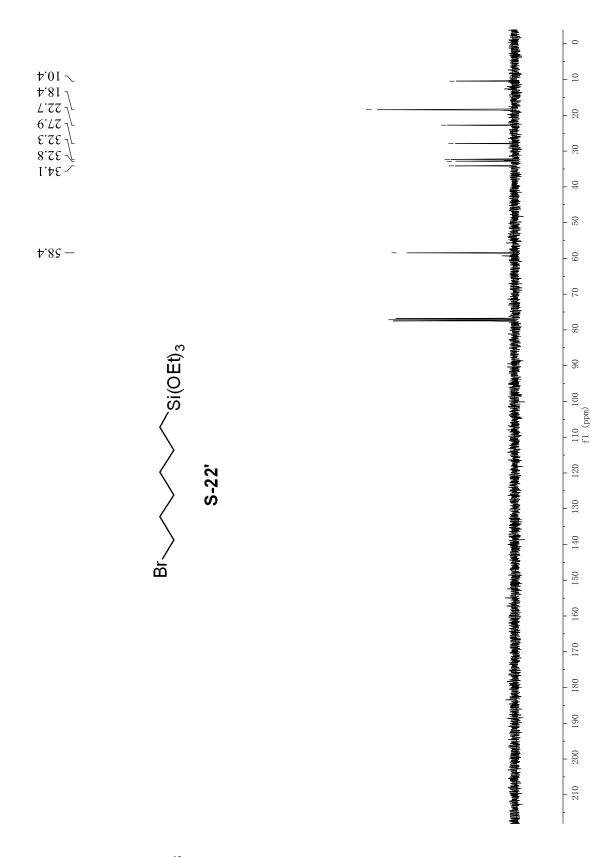

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-18

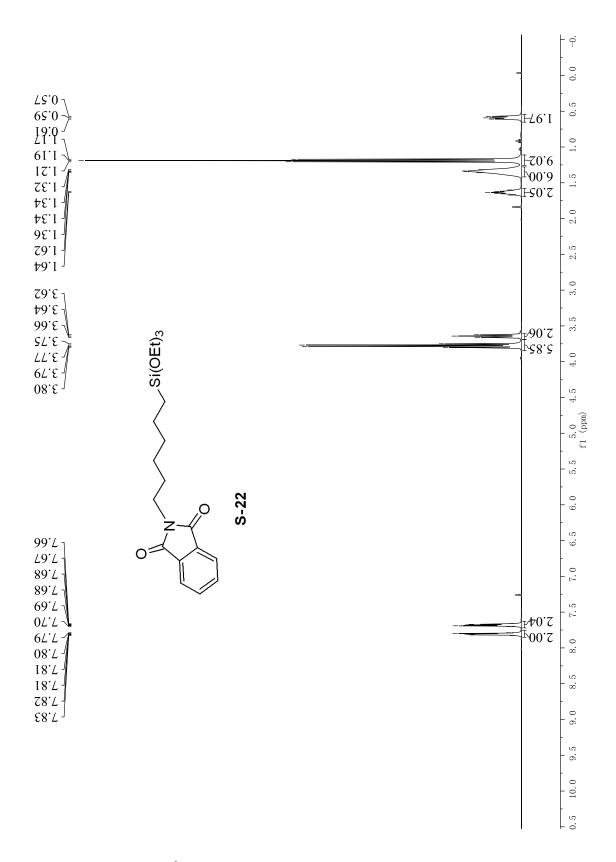

¹H NMR spectrum (400 MHz, CDCl₃) of **S-19**

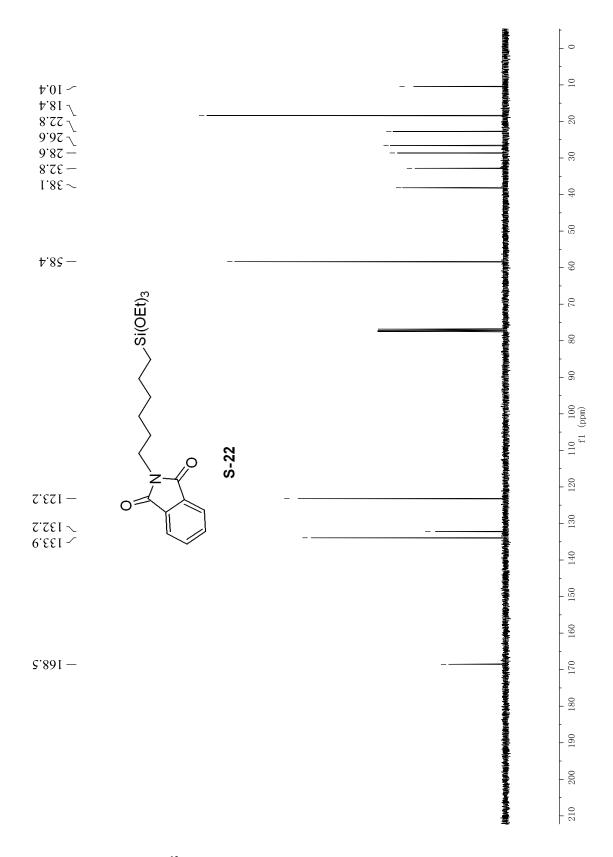

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-19**

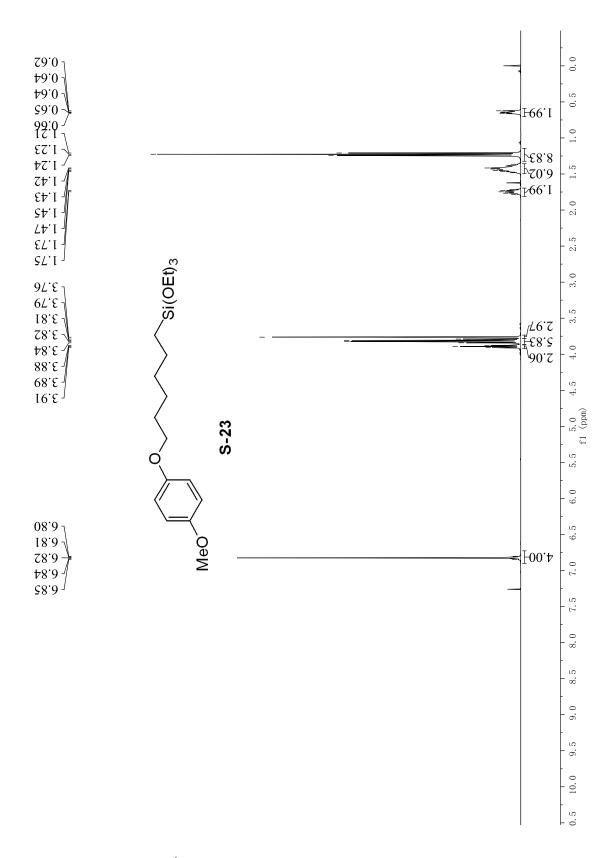

¹H NMR spectrum (400 MHz, CDCl₃) of **S-20**

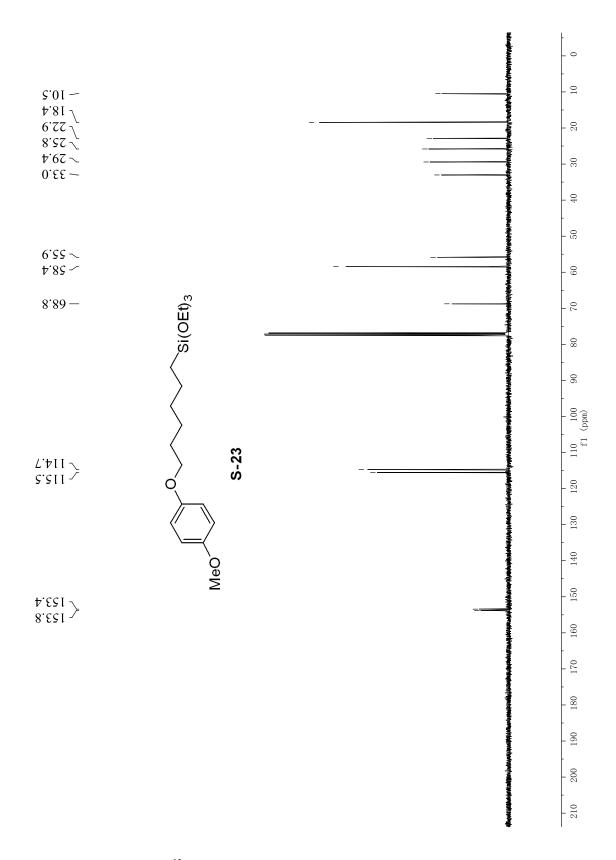

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-20**

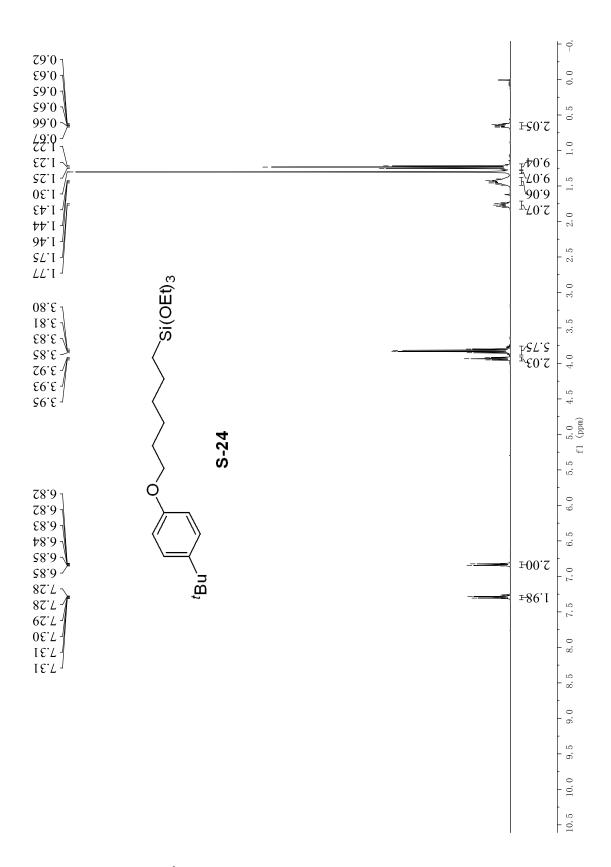

¹H NMR spectrum (400 MHz, CDCl₃) of **S-21**

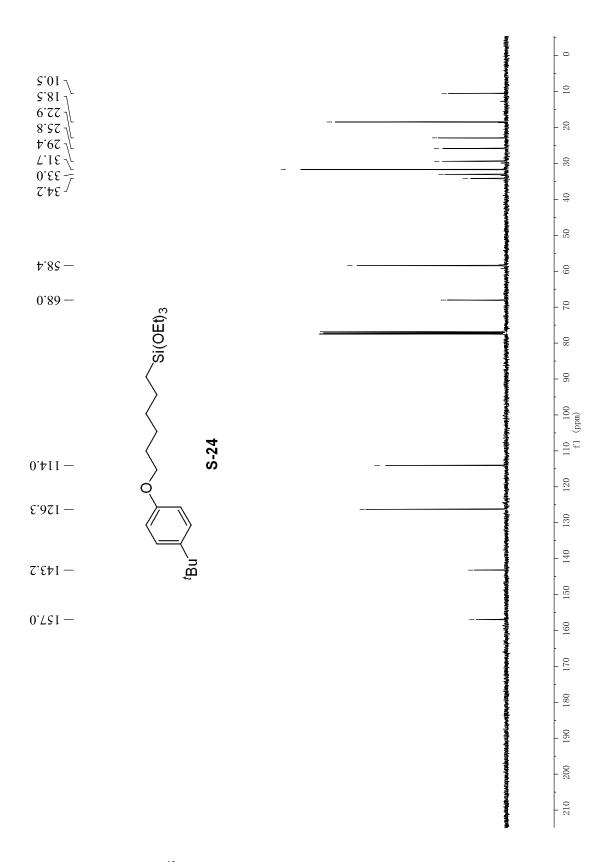

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-21

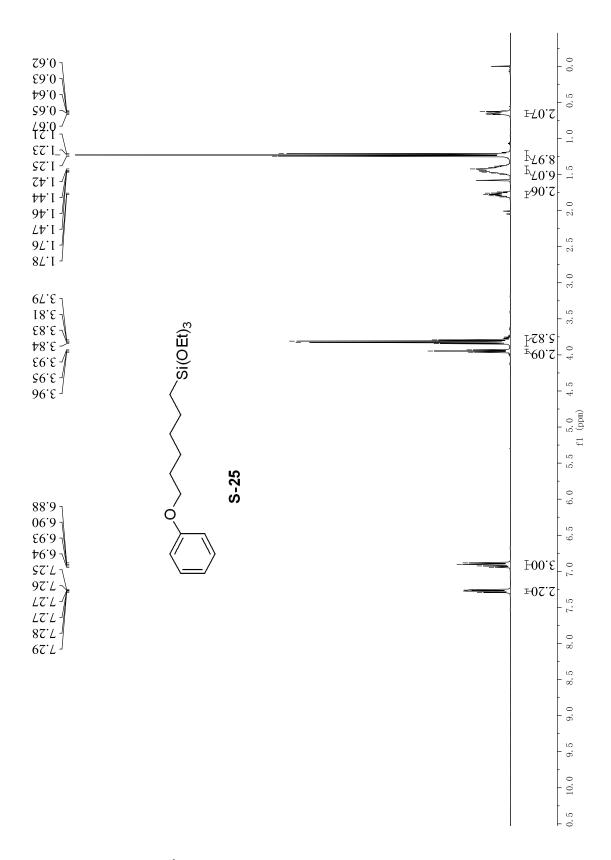

¹H NMR spectrum (400 MHz, CDCl₃) of **S-22'**

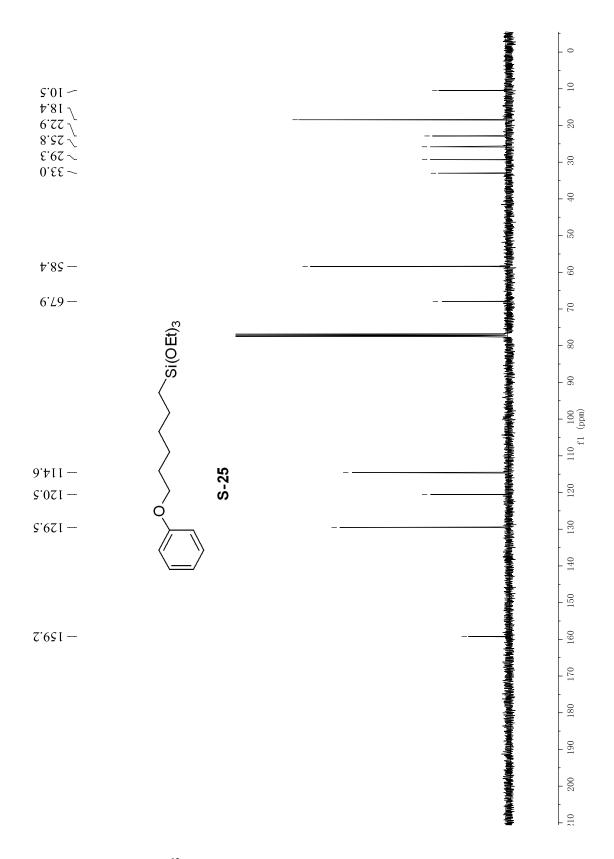

¹³C NMR spectrum (101 MHz, CDCl₃) of **S-22'**

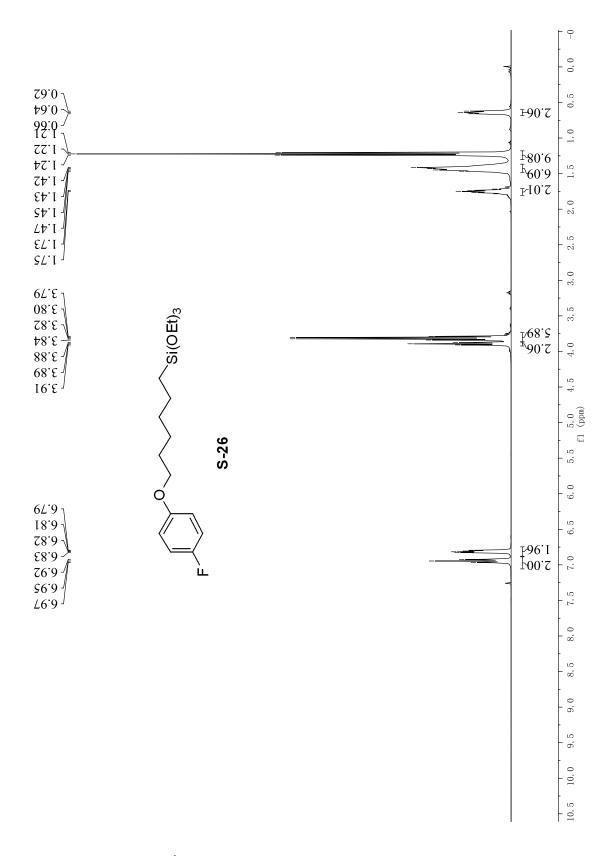

 ^1H NMR spectrum (400 MHz, CDCl₃) of **S-22**

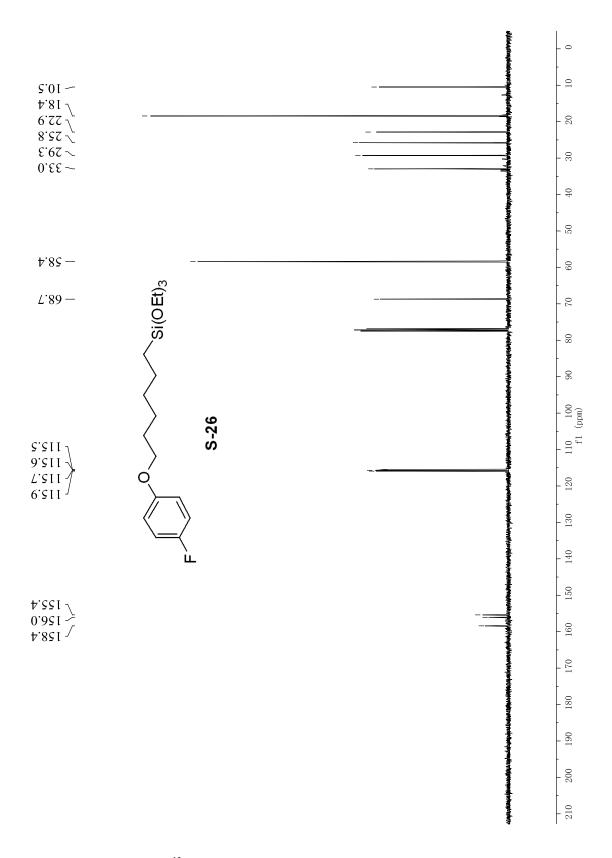

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-22

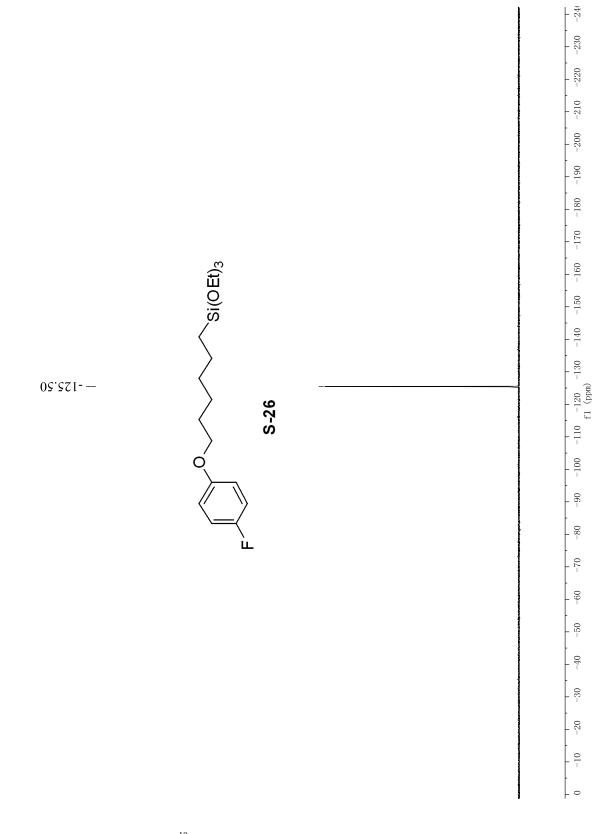

¹H NMR spectrum (400 MHz, CDCl₃) of **S-23**

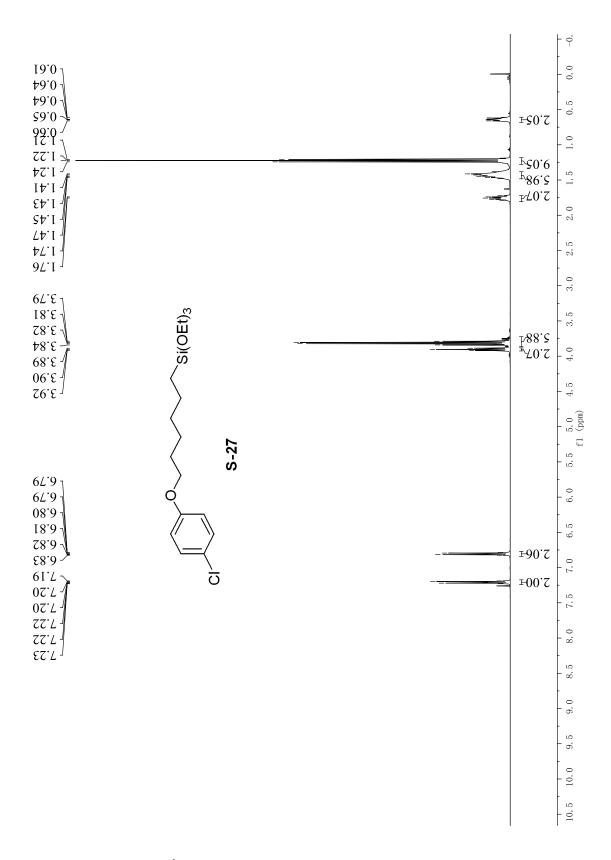

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-23**

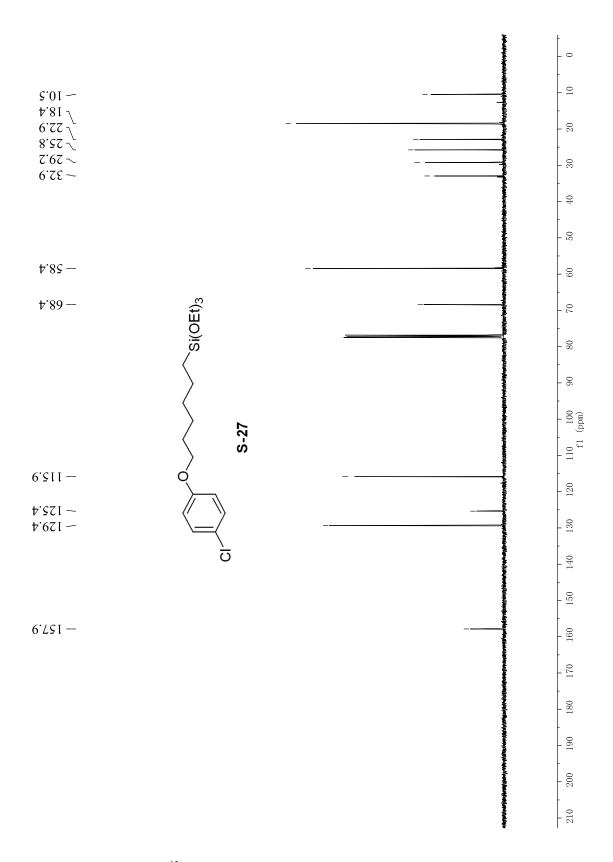

¹H NMR spectrum (400 MHz, CDCl₃) of **S-24**

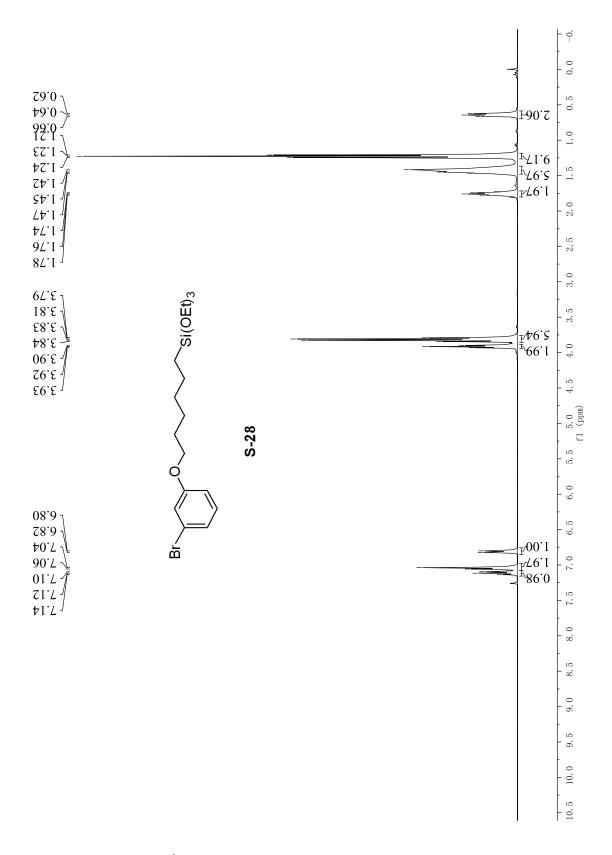

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-24

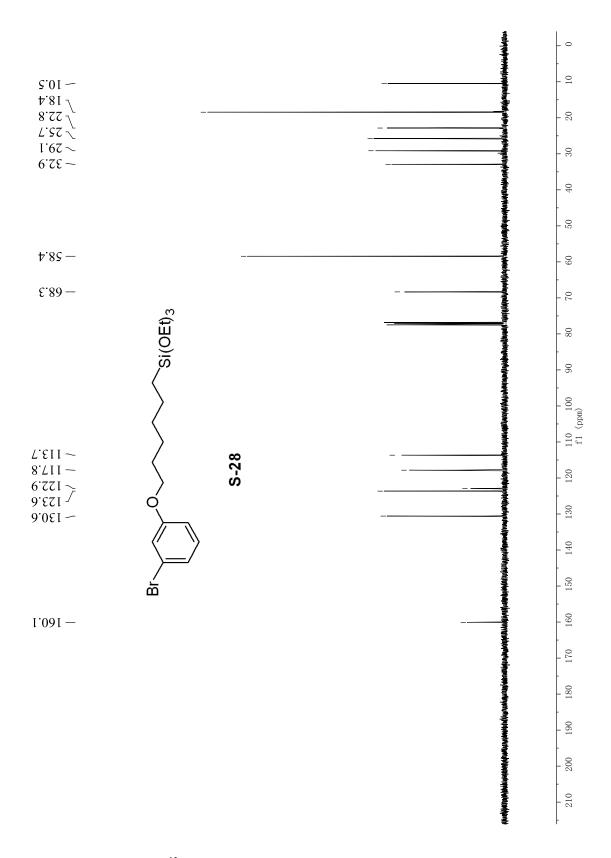

 $^1\mathrm{H}$ NMR spectrum (400 MHz, CDCl_3) of S-25


 ^{13}C NMR spectrum (101 MHz, CDCl_3) of S-25

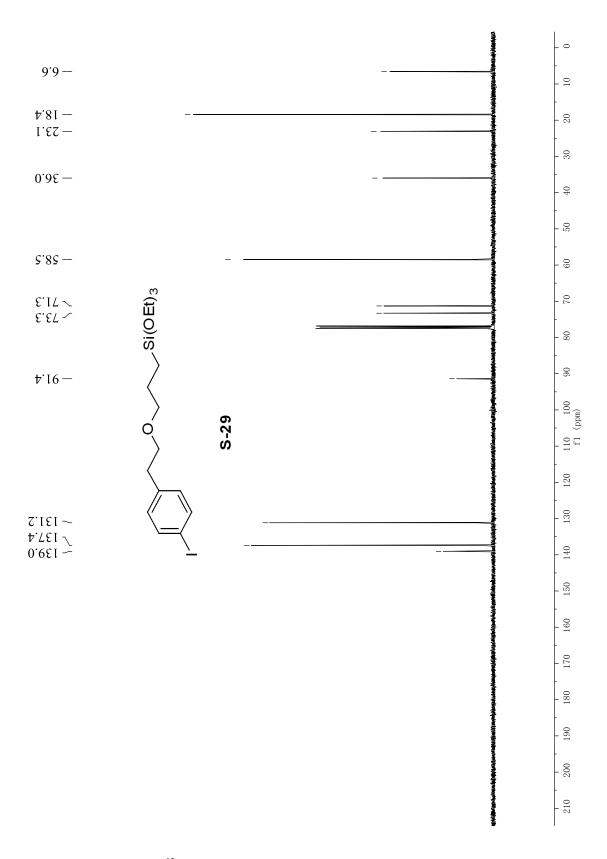

¹H NMR spectrum (400 MHz, CDCl₃) of **S-26**

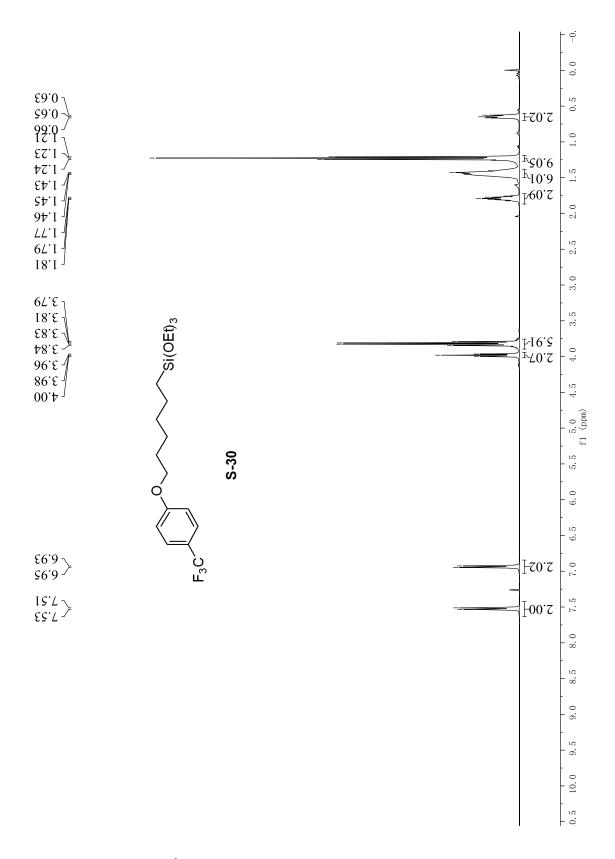

 ^{13}C NMR spectrum (101 MHz, CDCl_3) of S-26

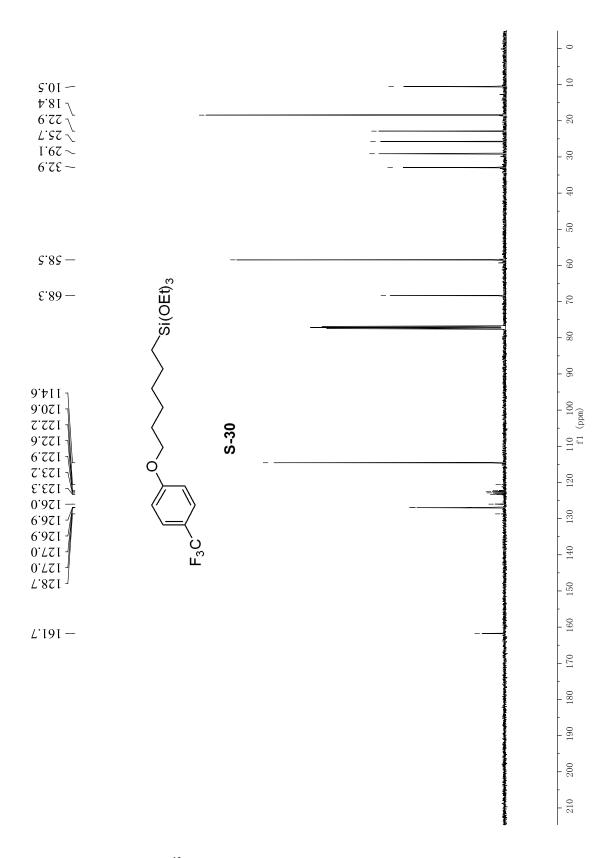

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of S-26

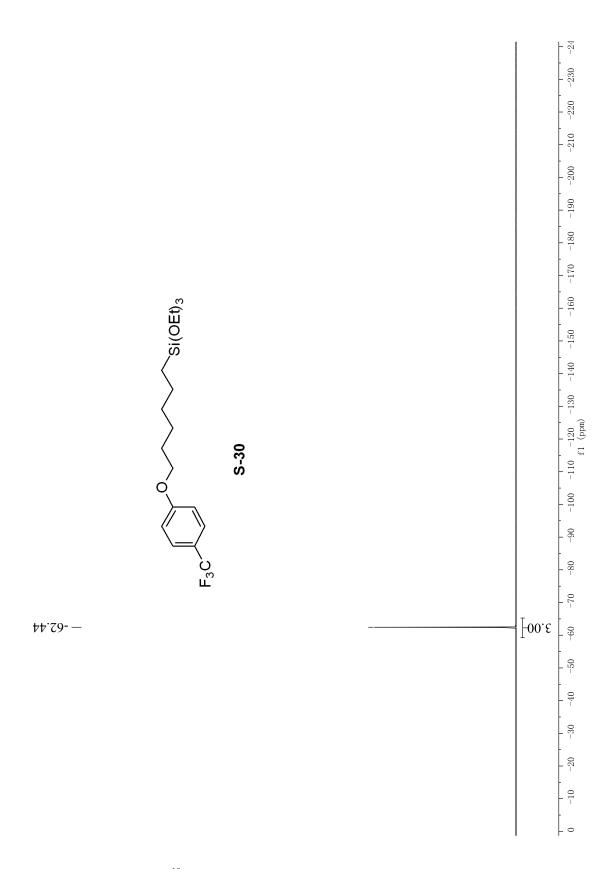

¹H NMR spectrum (400 MHz, CDCl₃) of **S-27**

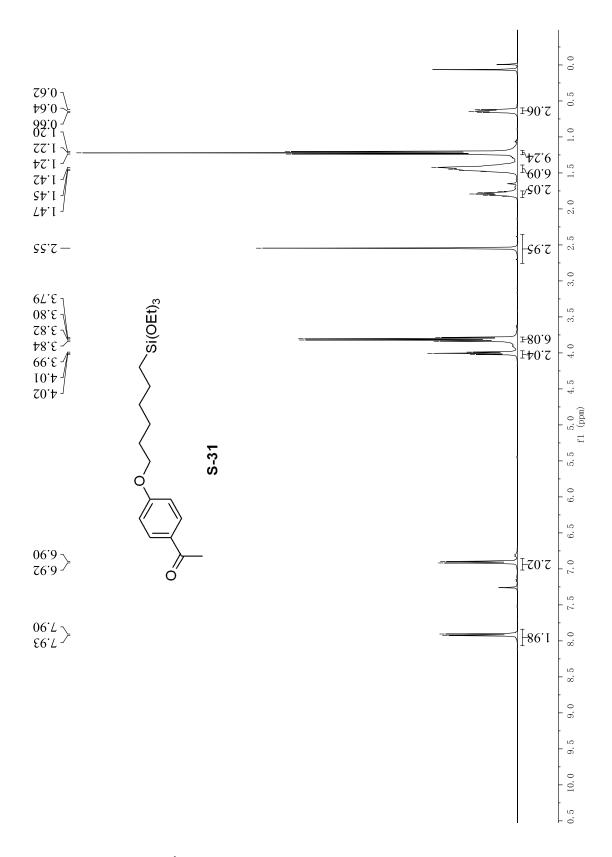
 ^{13}C NMR spectrum (101 MHz, CDCl_3) of S-27

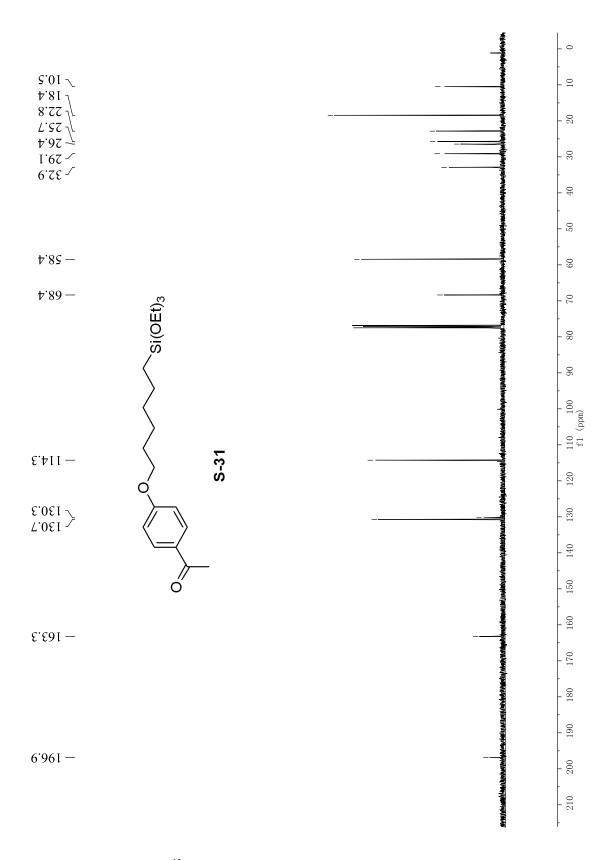

¹H NMR spectrum (400 MHz, CDCl₃) of **S-28**

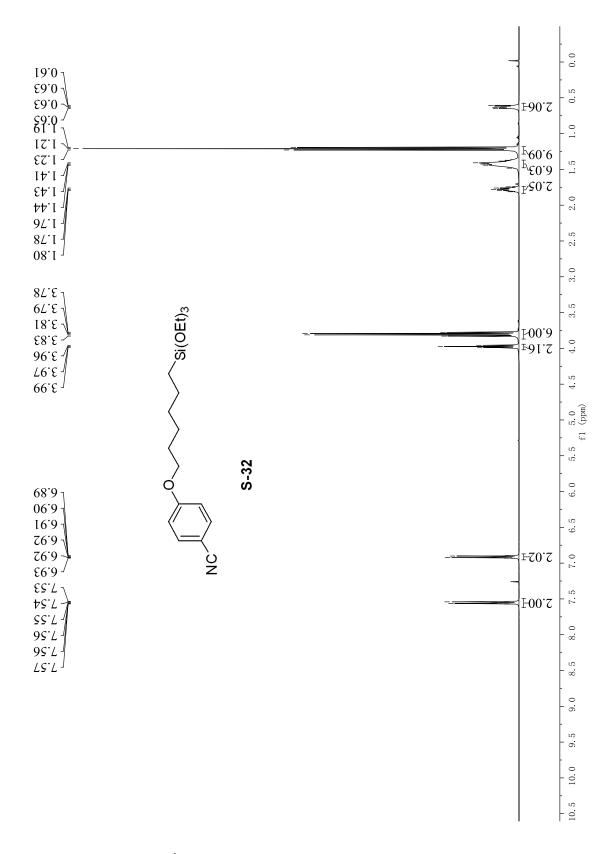

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-28

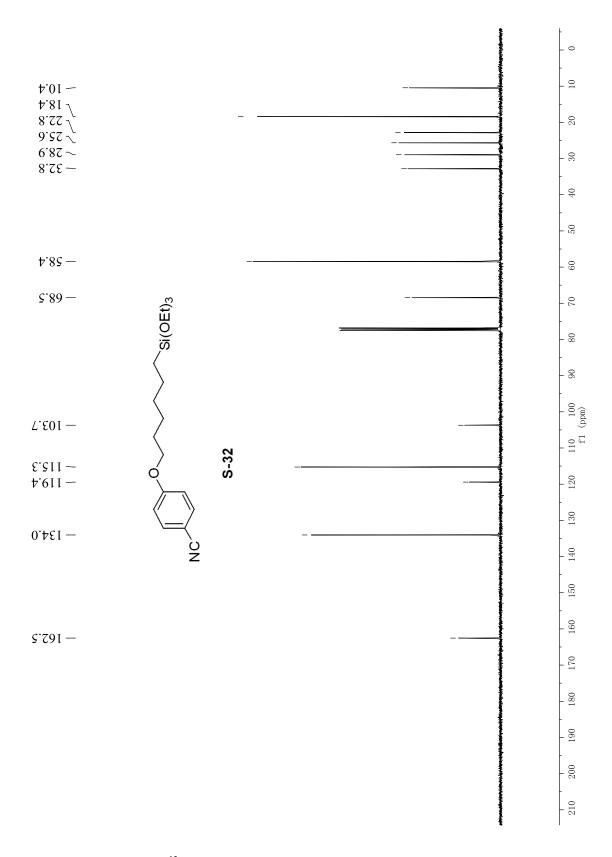

¹H NMR spectrum (400 MHz, CDCl₃) of **S-29**


 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-29**

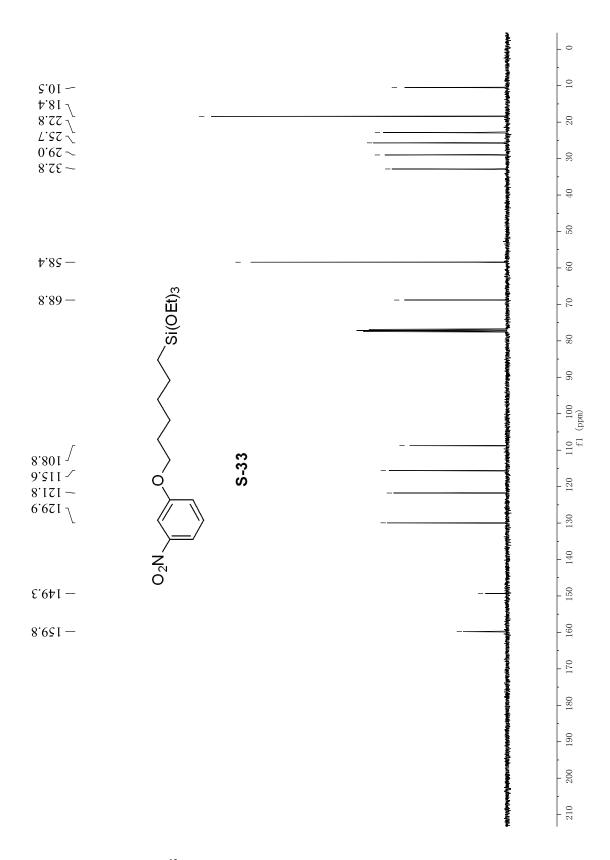

¹H NMR spectrum (400 MHz, CDCl₃) of **S-30**

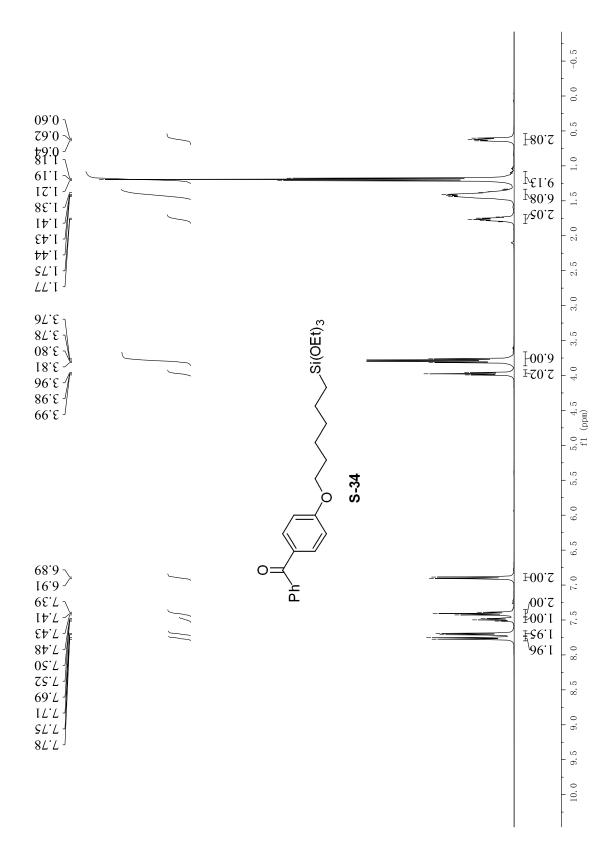

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-30**

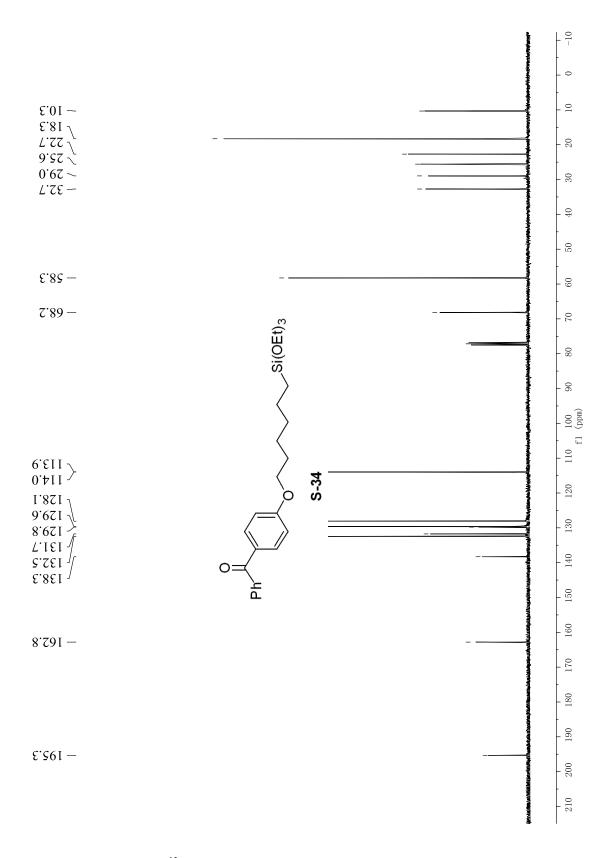

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of S-30

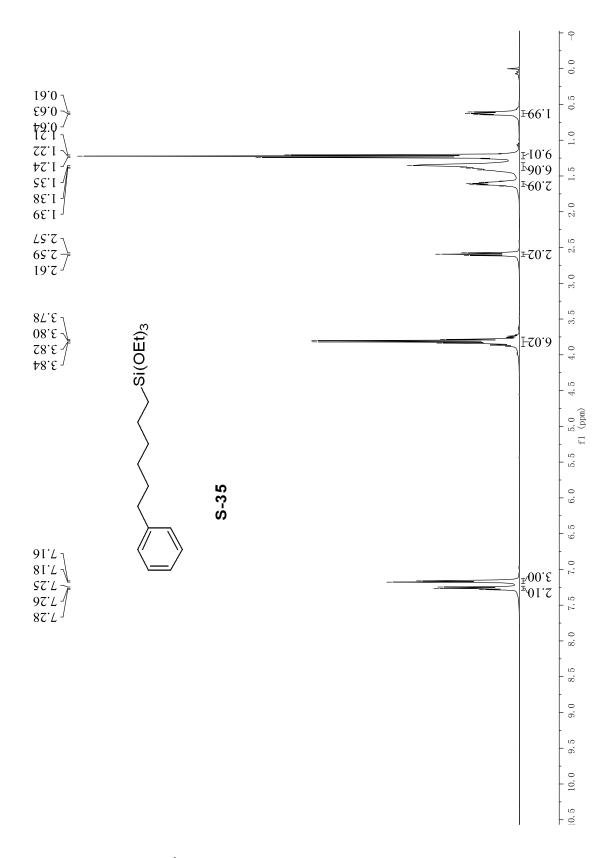

¹H NMR spectrum (400 MHz, CDCl₃) of **S-31**


¹³C NMR spectrum (101 MHz, CDCl₃) of **S-31**

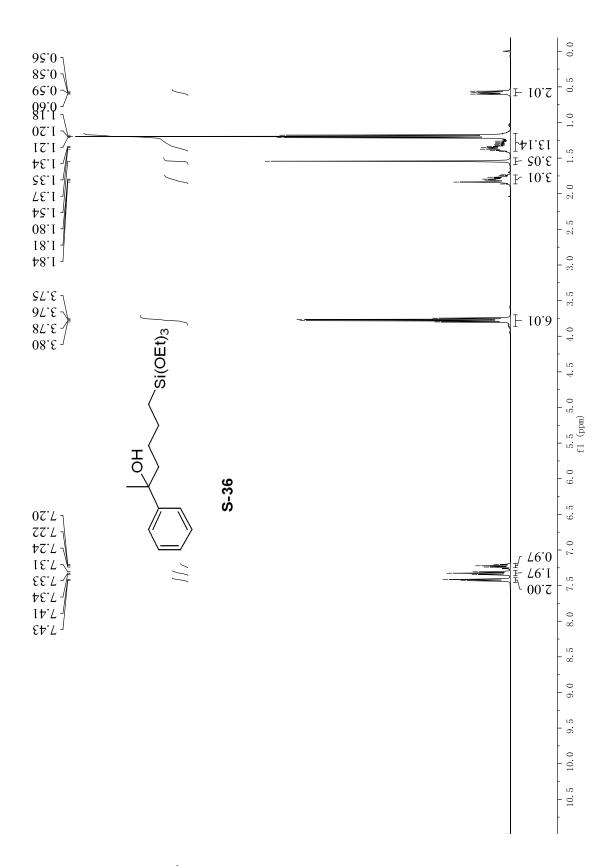

 ^1H NMR spectrum (400 MHz, CDCl₃) of **S-32**

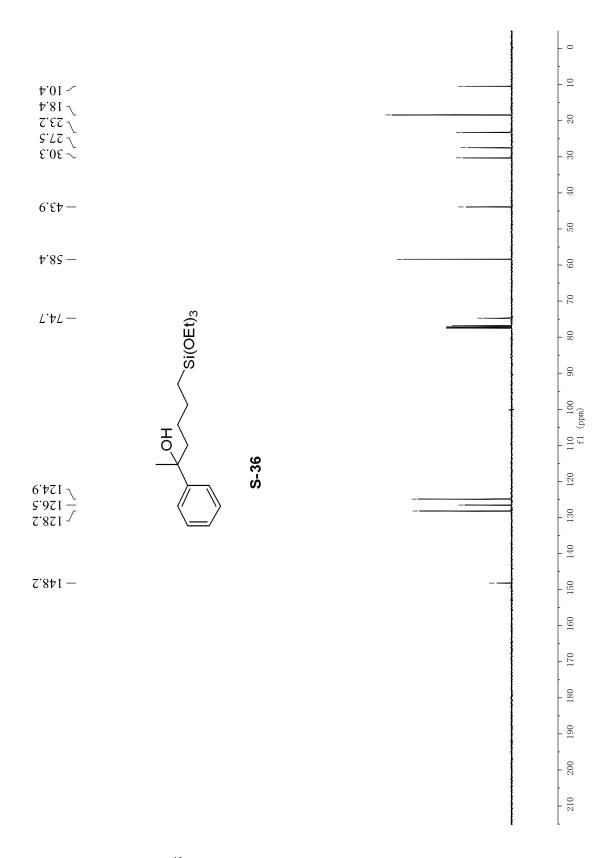

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-32**

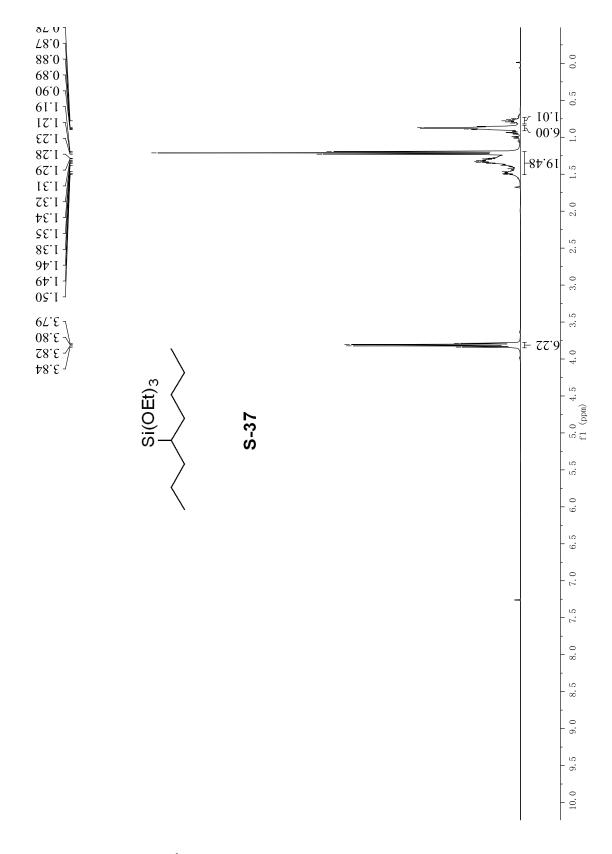

¹H NMR spectrum (400 MHz, CDCl₃) of **S-33**

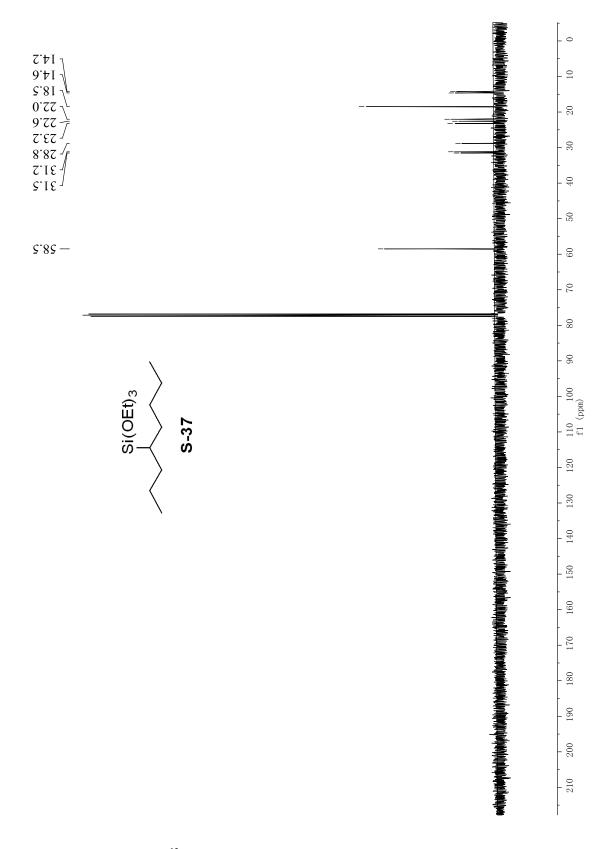

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-33**

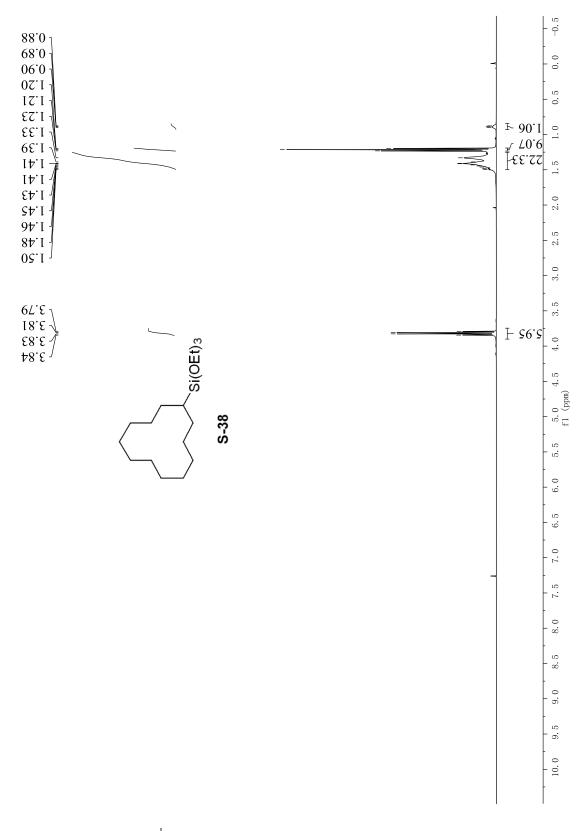
¹H NMR spectrum (400 MHz, CDCl₃) of **S-34**

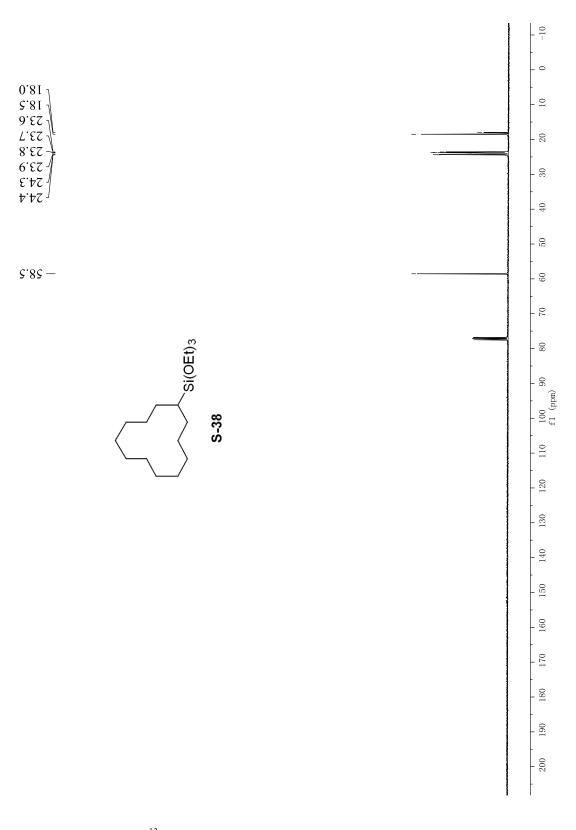

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-34

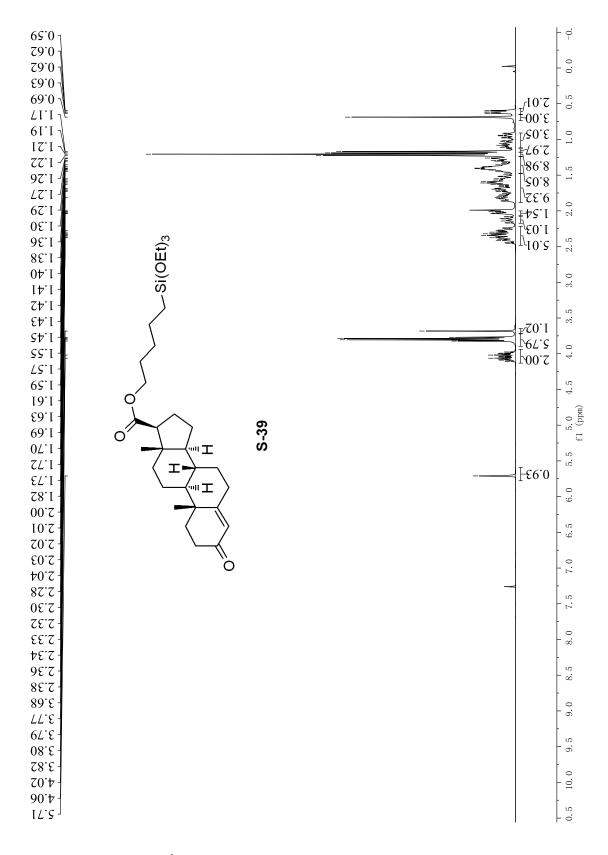

¹H NMR spectrum (400 MHz, CDCl₃) of **S-35**

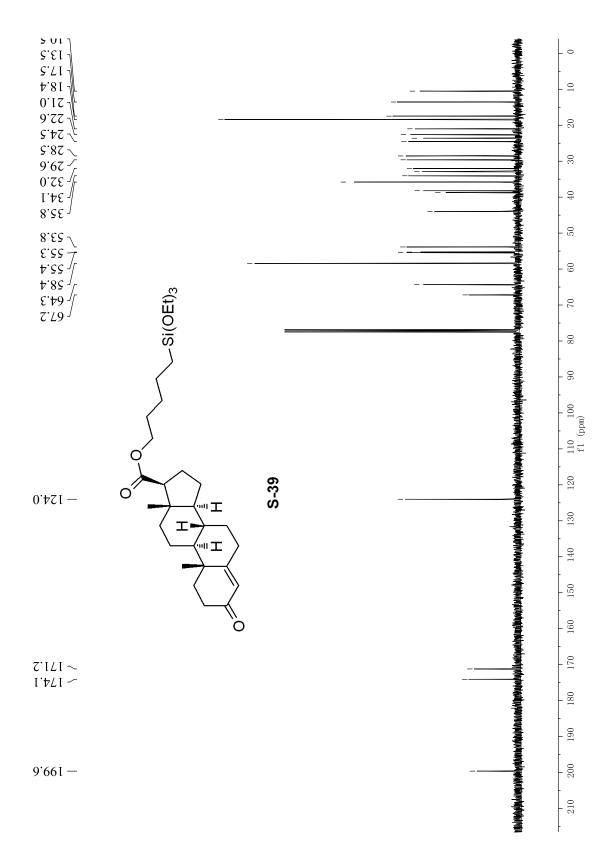

 ^{13}C NMR spectrum (101 MHz, CDCl_3) of S-35

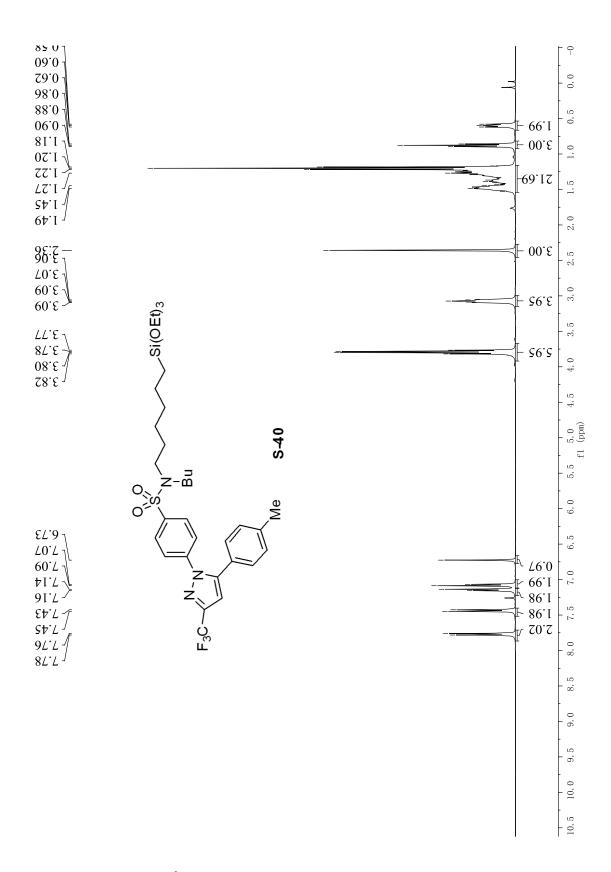

¹H NMR spectrum (400 MHz, CDCl₃) of **S-36**

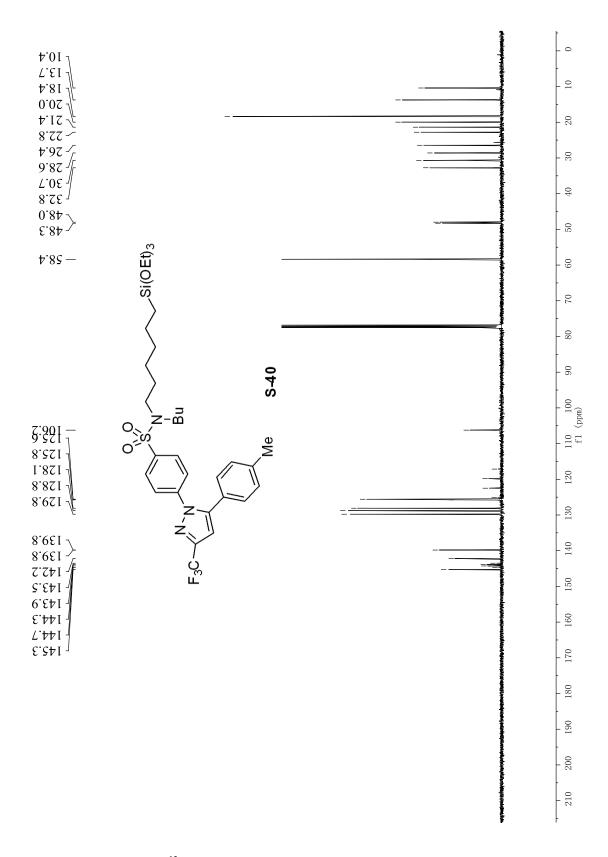

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-36**

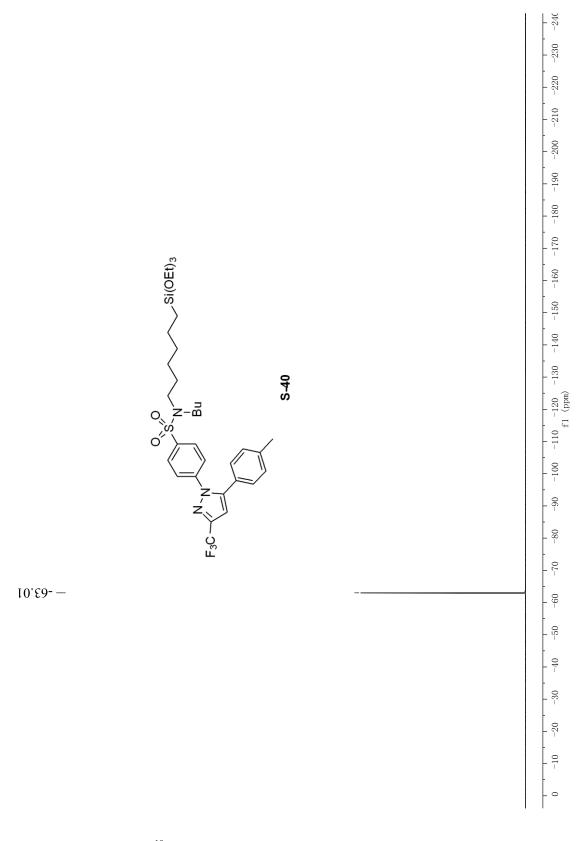

¹H NMR spectrum (400 MHz, CDCl₃) of **S-37**

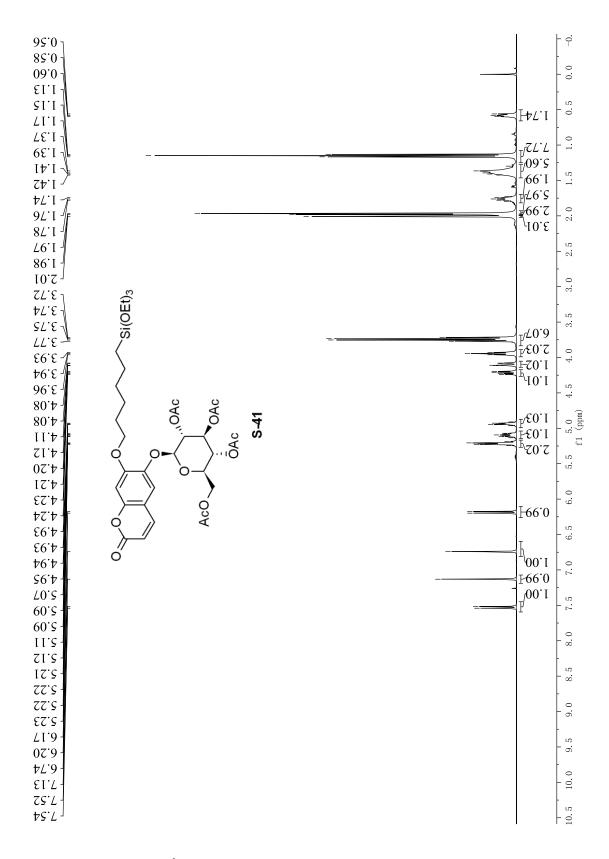

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-37**

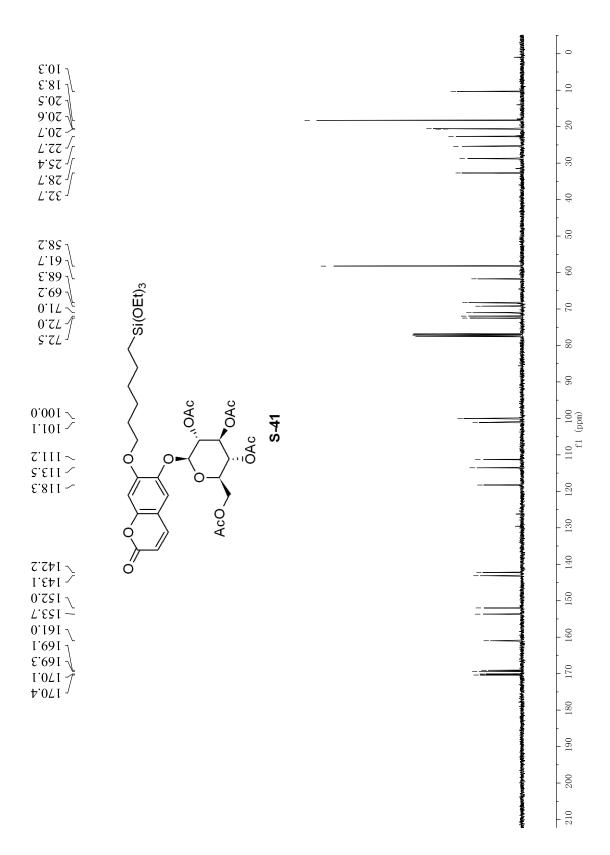

¹H NMR spectrum (400 MHz, CDCl₃) of S-38

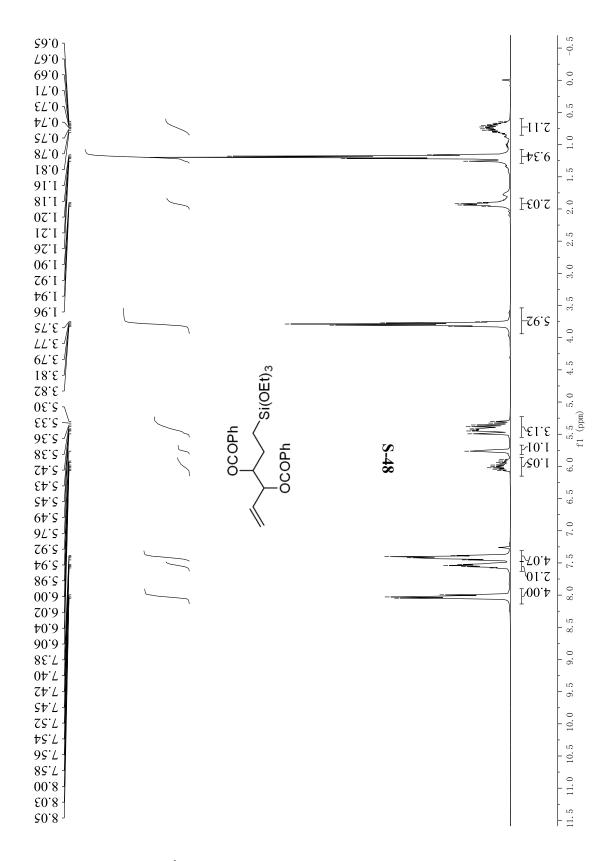

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-38**

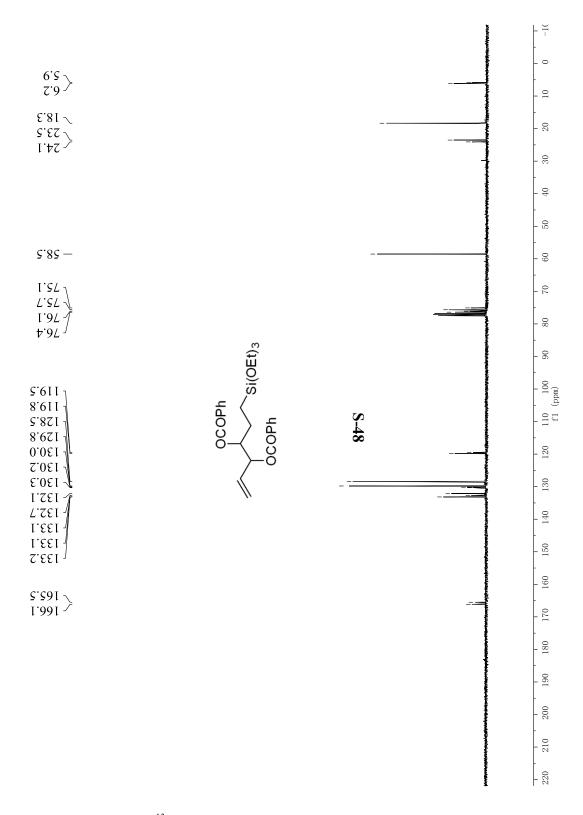

¹H NMR spectrum (400 MHz, $CDCl_3$) of **S-39**

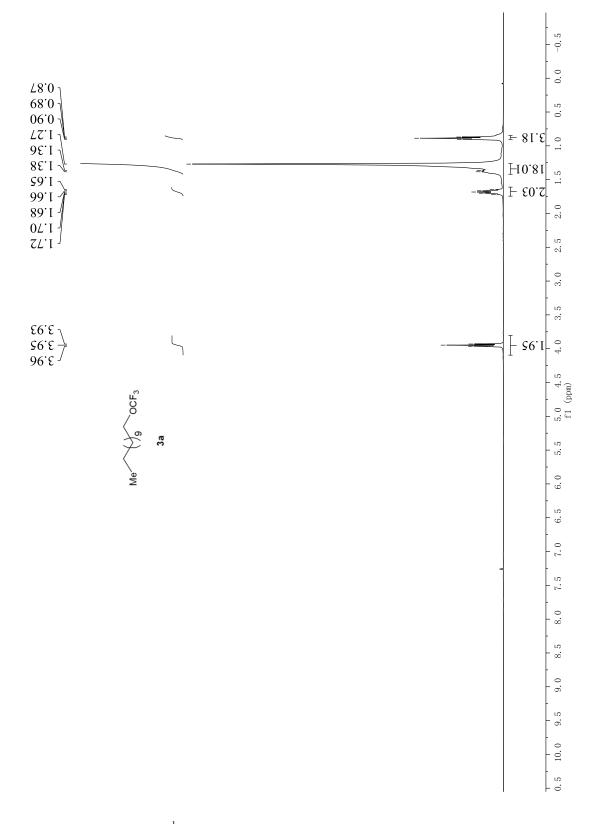

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-39**

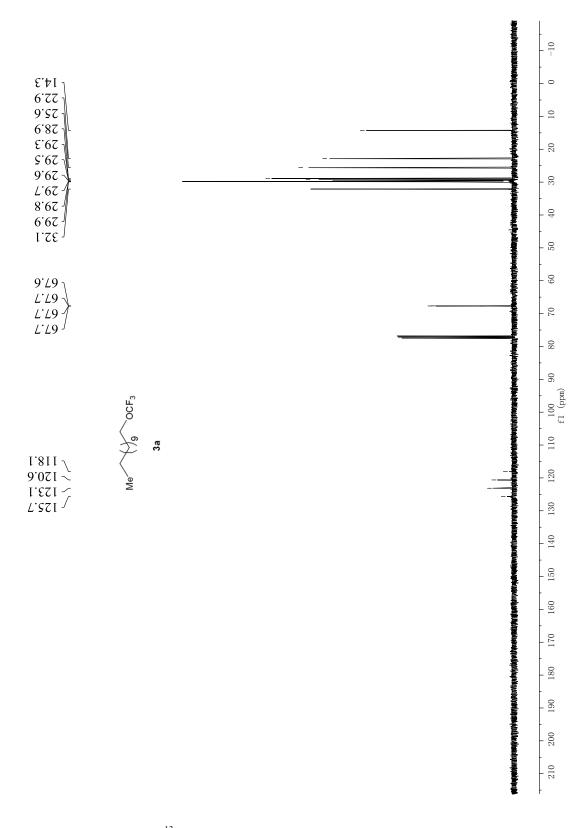

¹H NMR spectrum (400 MHz, CDCl₃) of **S-40**

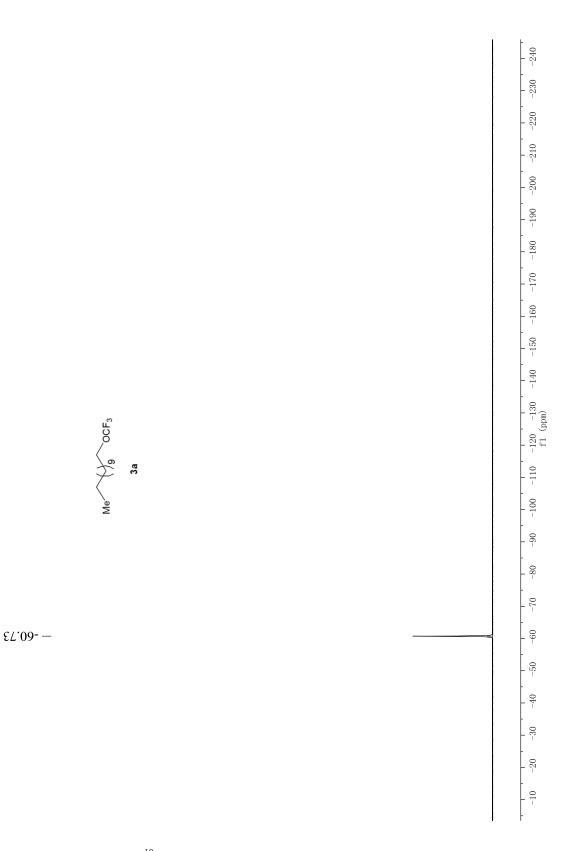

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of S-40

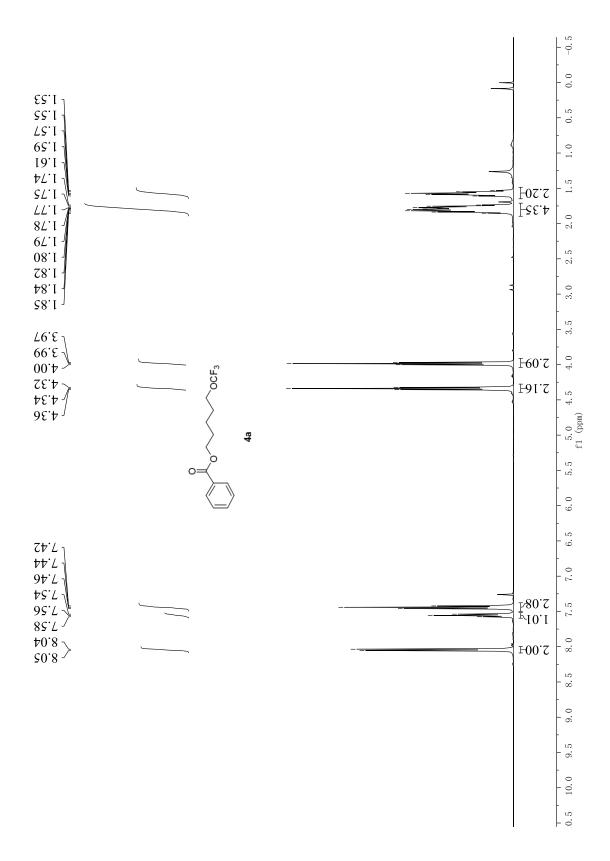

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of S-40

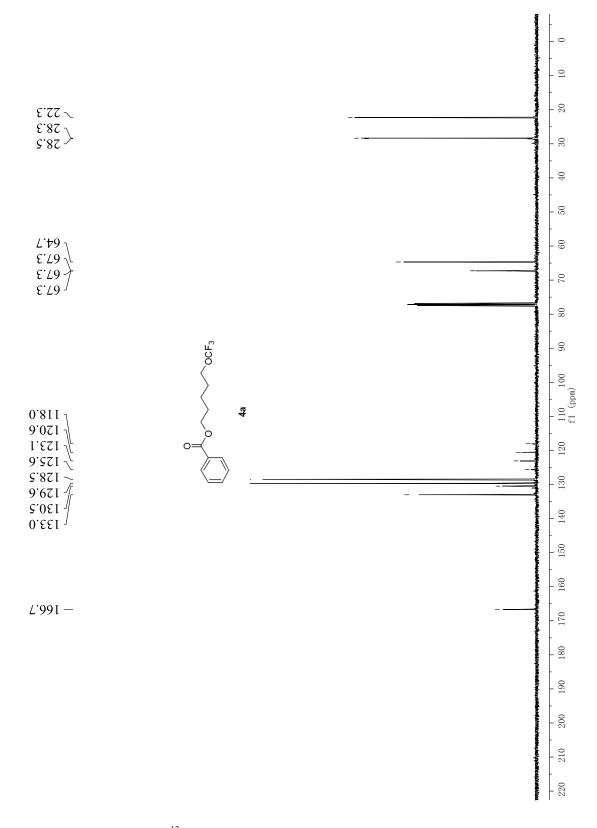

¹H NMR spectrum (400 MHz, CDCl₃) of S-41

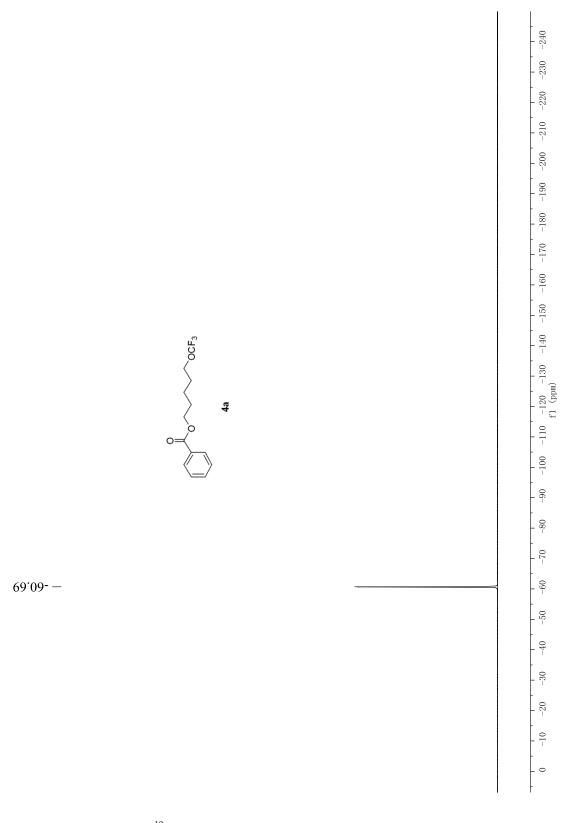

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-41**

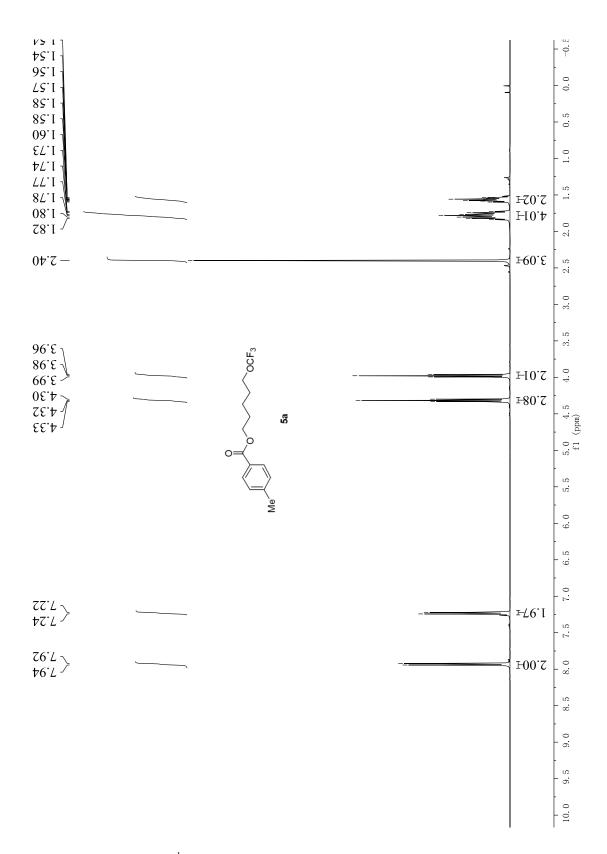

¹H NMR spectrum (400 MHz, CDCl₃) of **S-48**

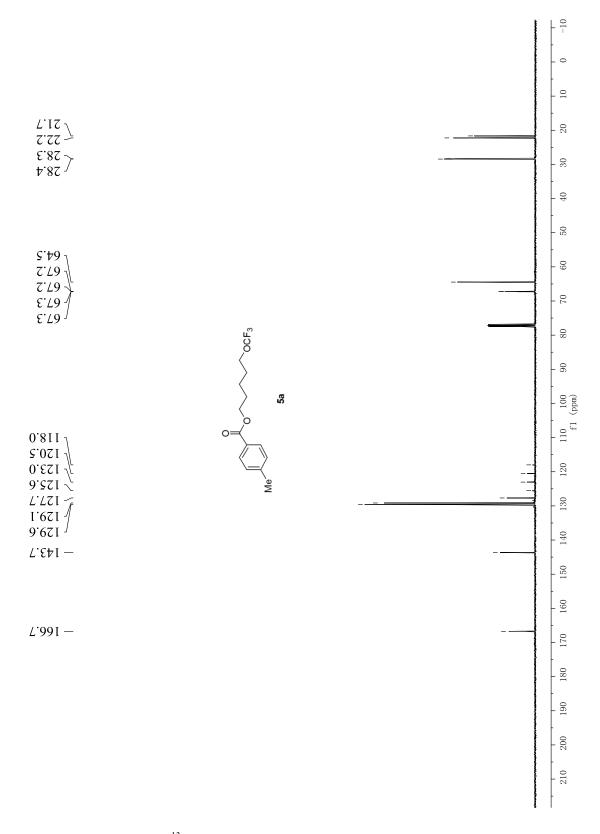

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **S-48**

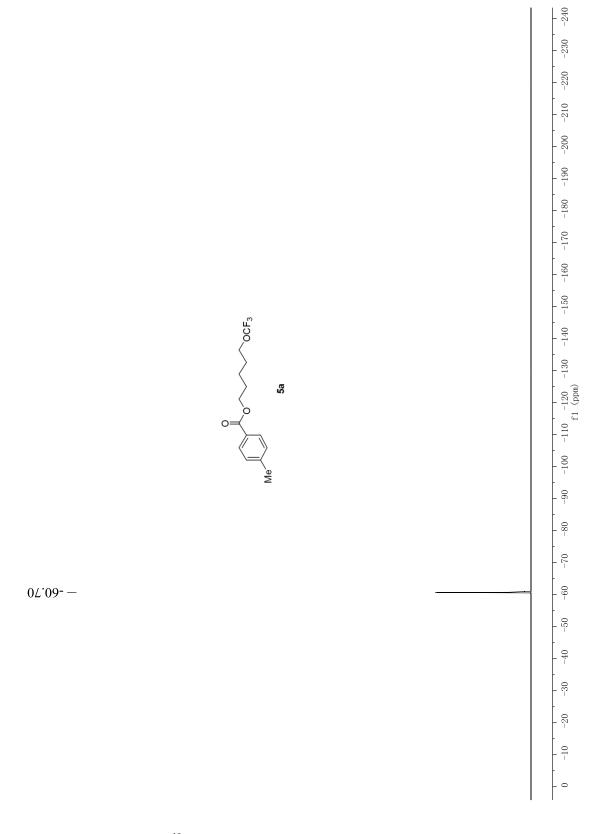

¹H NMR spectrum (400 MHz, CDCl₃) of **3a**

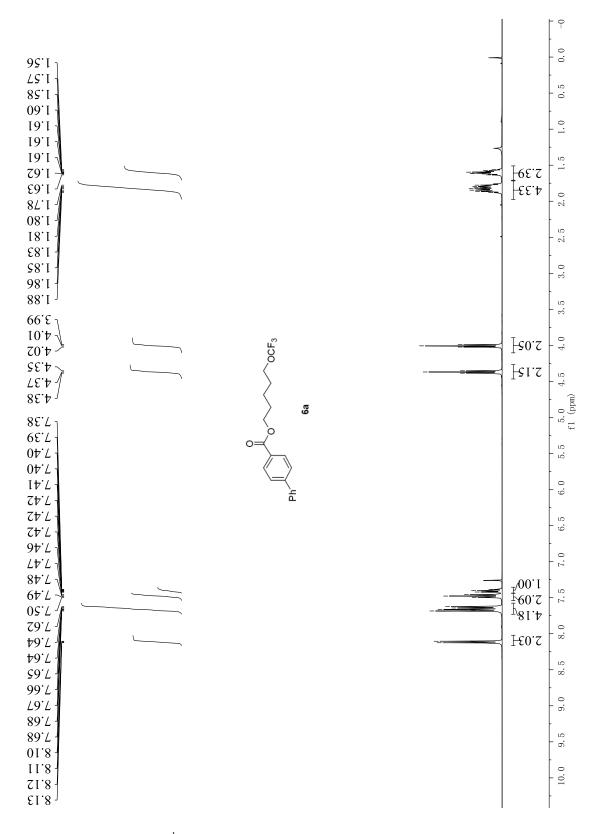

¹³C NMR spectrum (101 MHz, CDCl₃) of **3a**

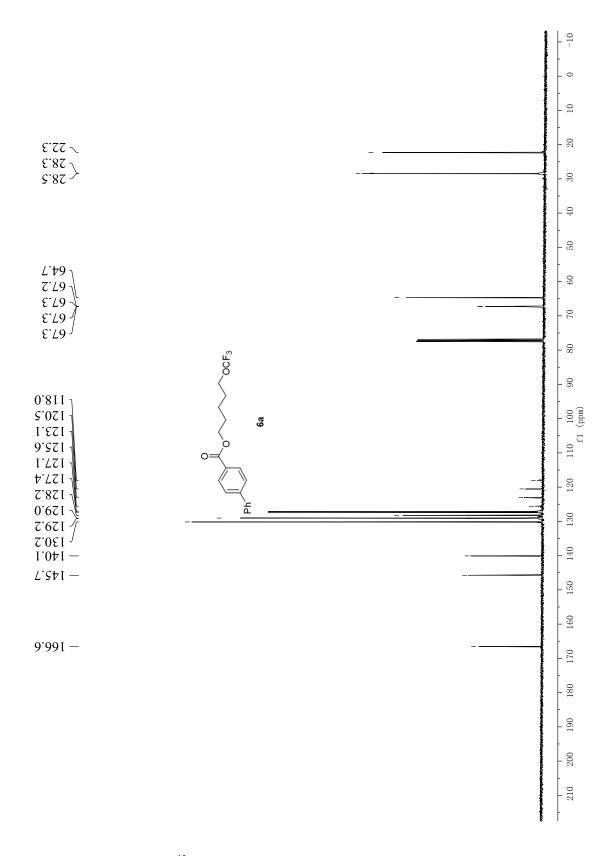

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3a

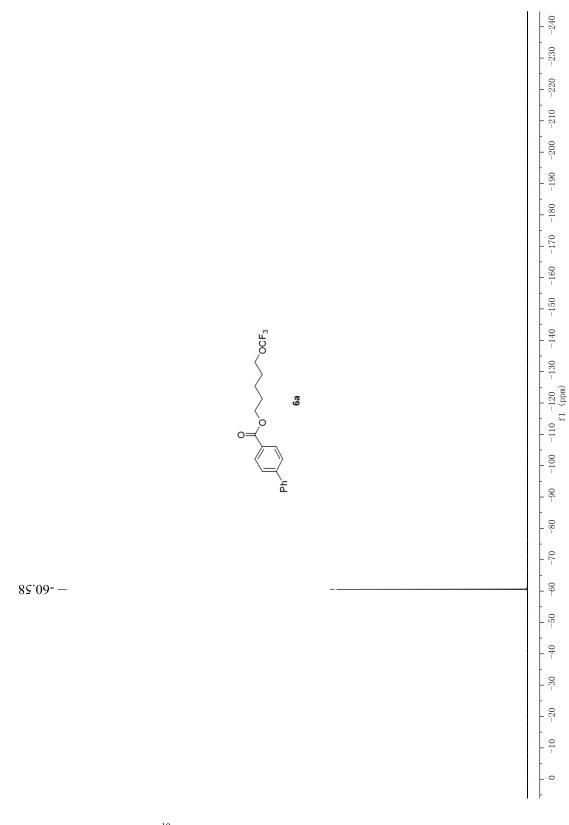

¹H NMR spectrum (400 MHz, CDCl₃) of **4a**

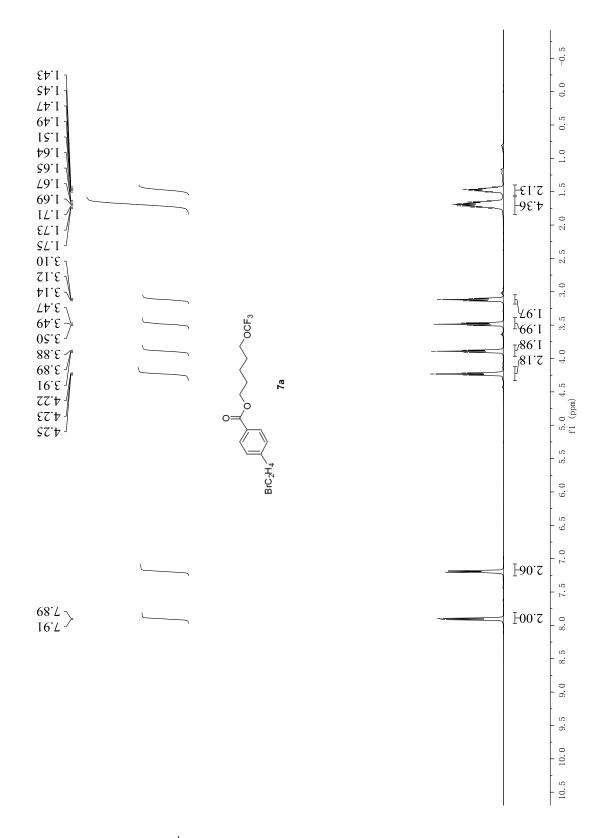

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 4a

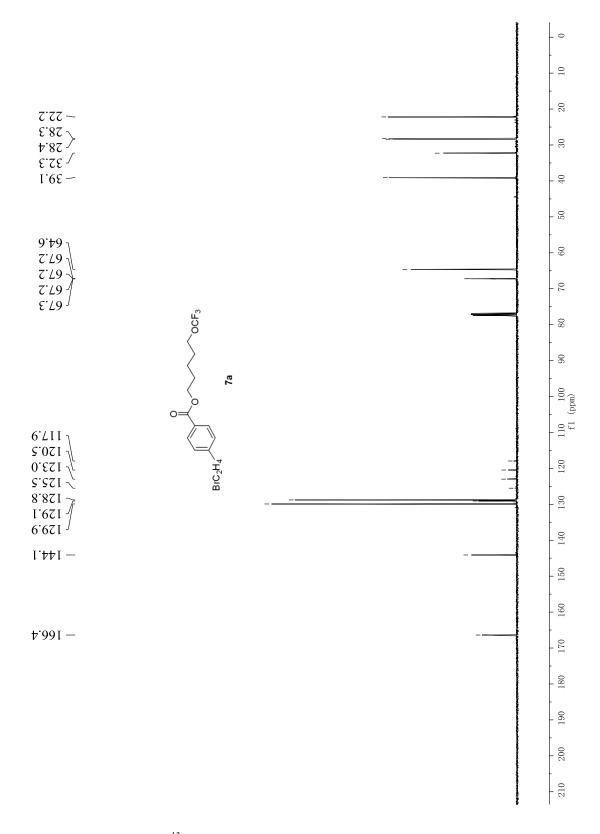

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 4a

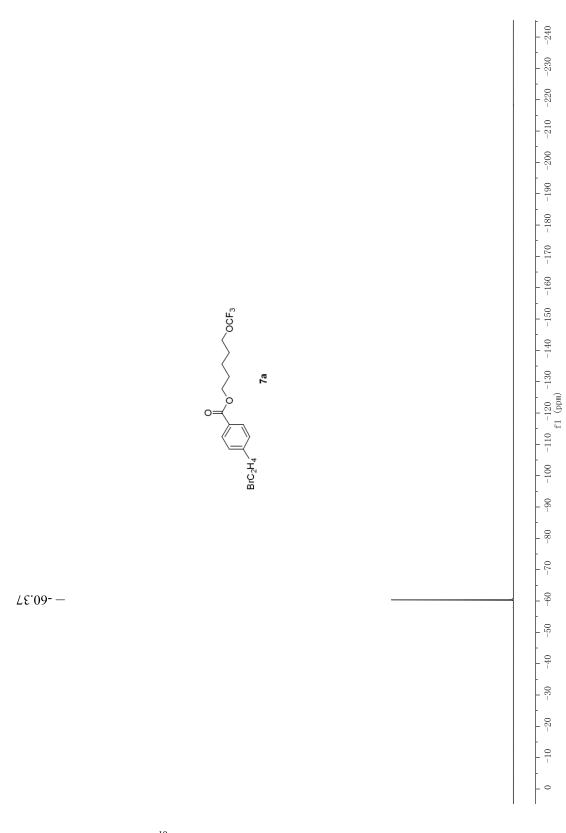

¹H NMR spectrum (400 MHz, CDCl₃) of **5a**

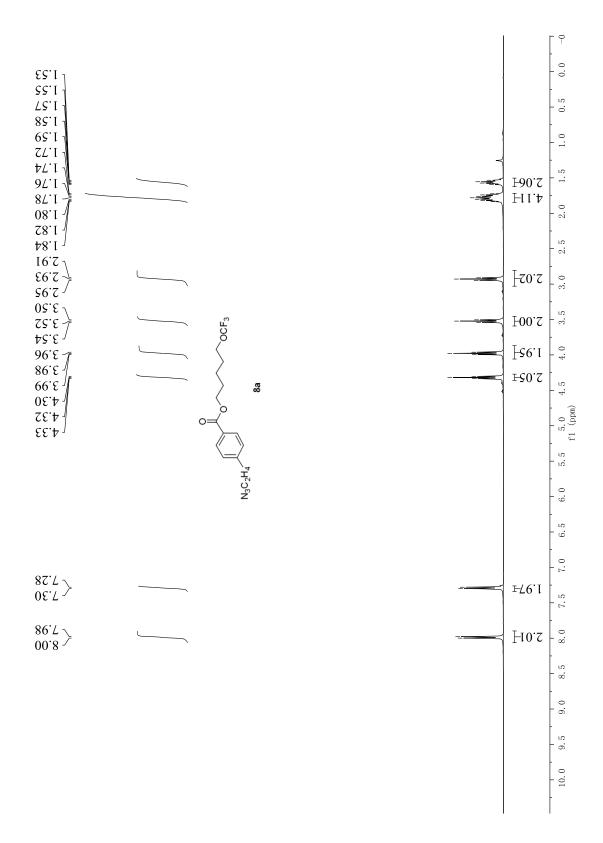

¹³C NMR spectrum (101 MHz, CDCl₃) of **5a**

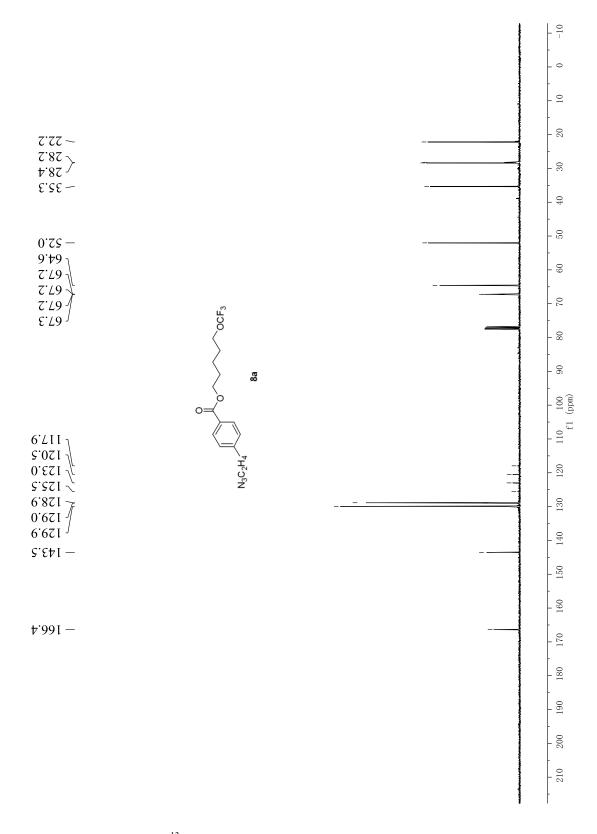

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 5a

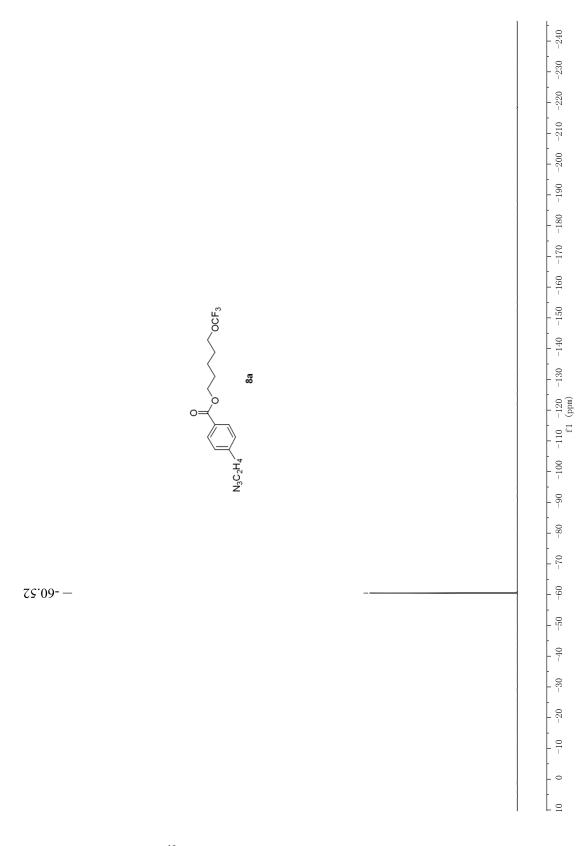

¹H NMR spectrum (400 MHz, CDCl₃) of **6a**

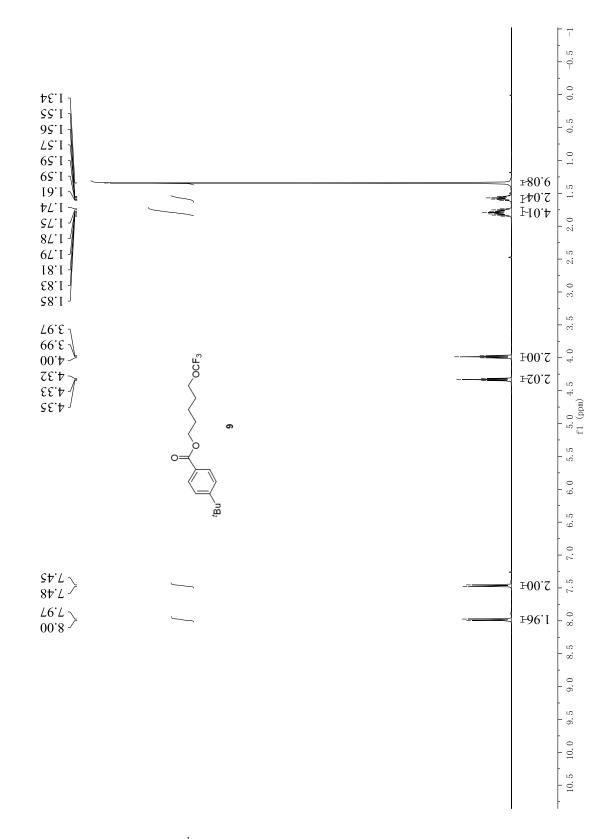

¹³C NMR spectrum (101 MHz, CDCl₃) of **6a**

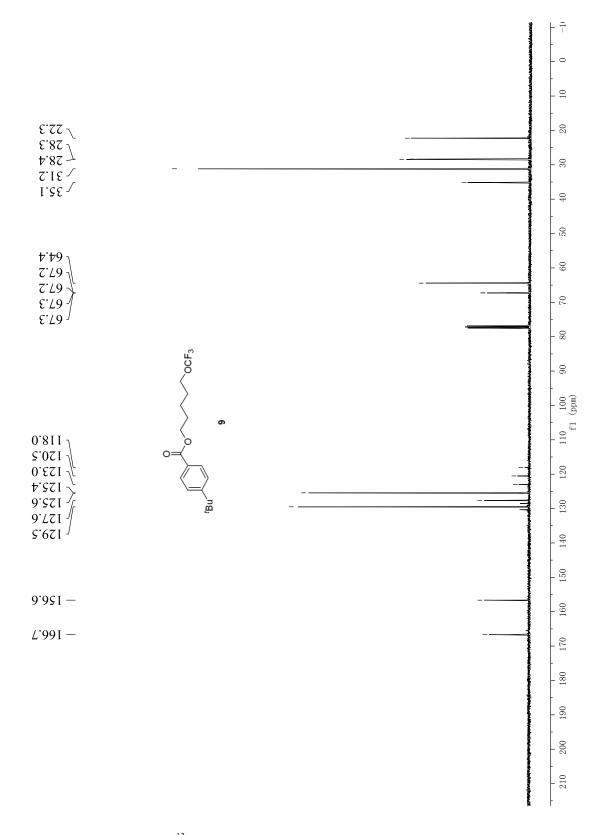

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 6a

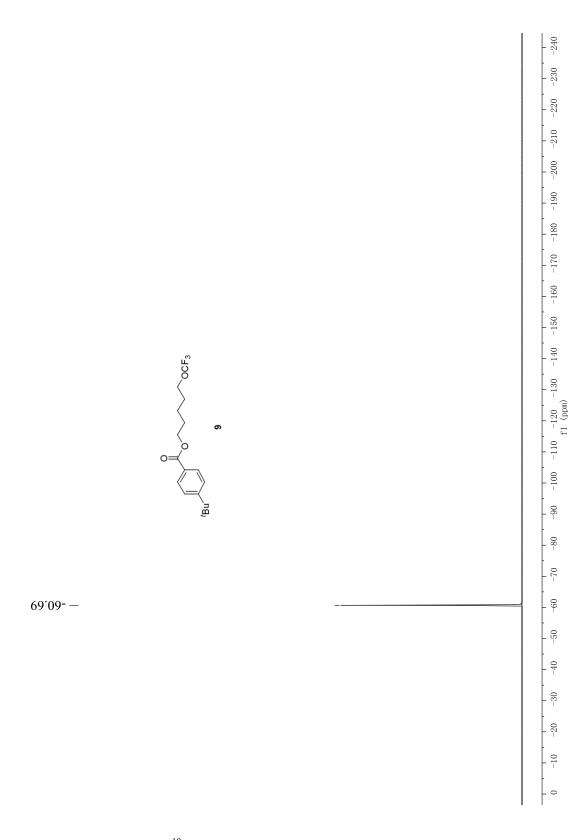

¹H NMR spectrum (400 MHz, CDCl₃) of **7a**

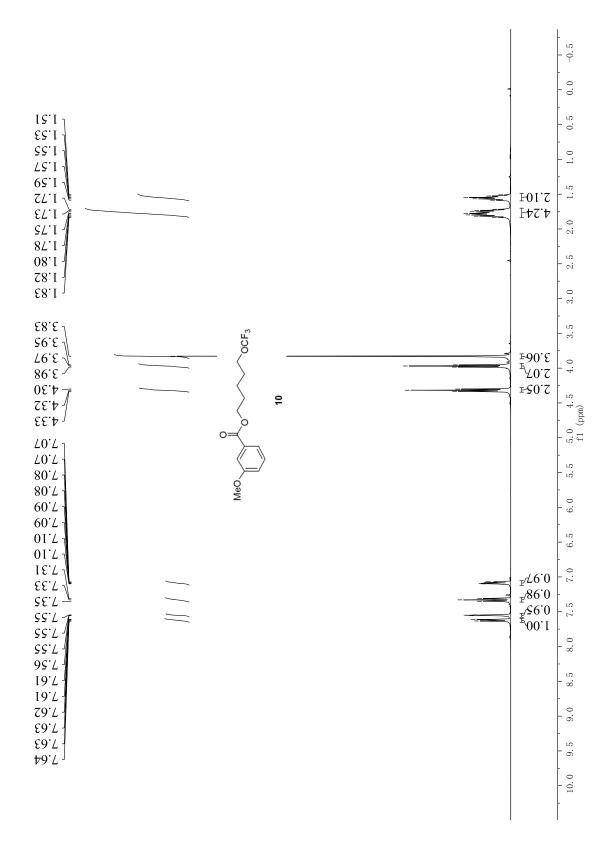

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 7a

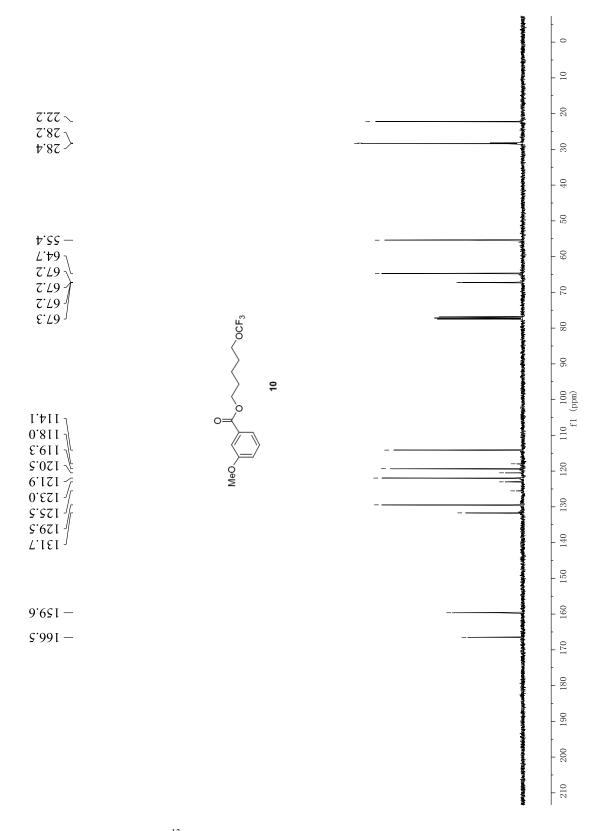

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 7a

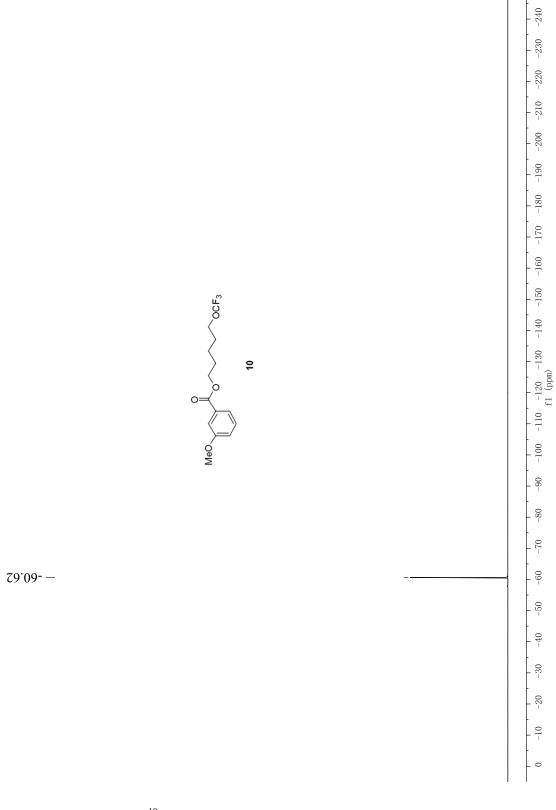

 ^1H NMR spectrum (400 MHz, CDCl₃) of 8a

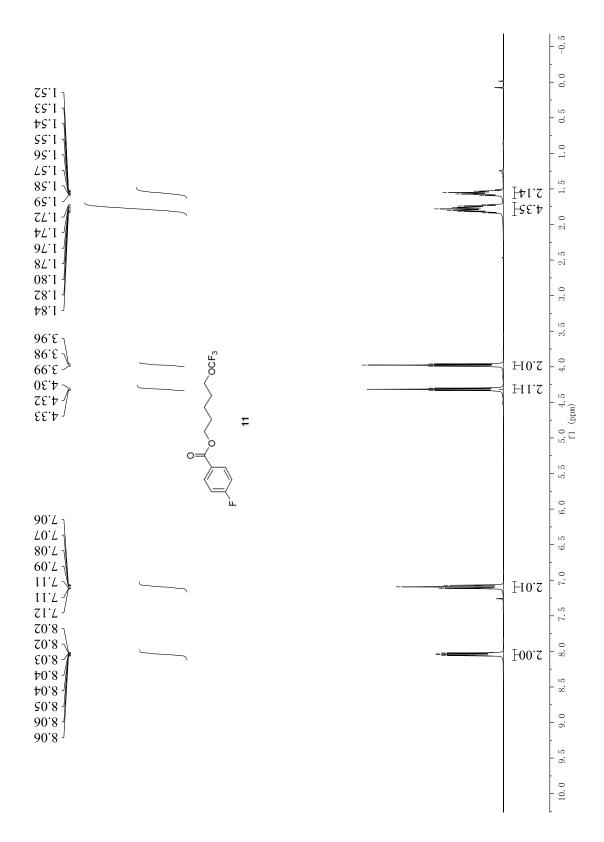

¹³C NMR spectrum (101 MHz, CDCl₃) of 8a

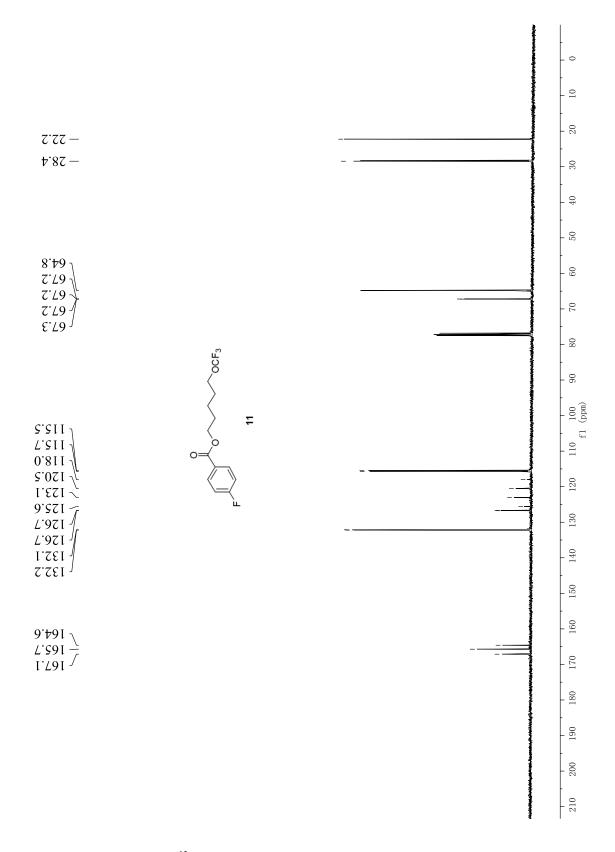

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 8a

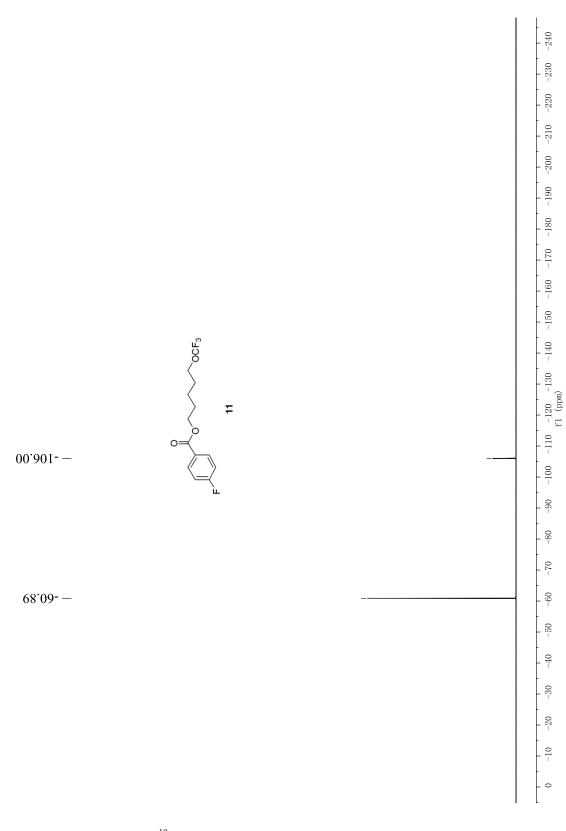

¹H NMR spectrum (400 MHz, CDCl₃) of **9**

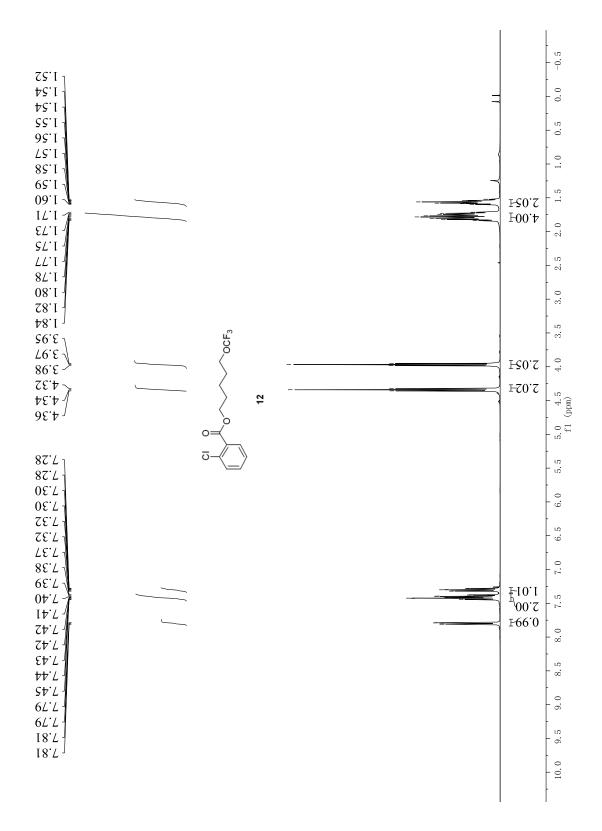

¹³C NMR spectrum (101 MHz, CDCl₃) of **9**

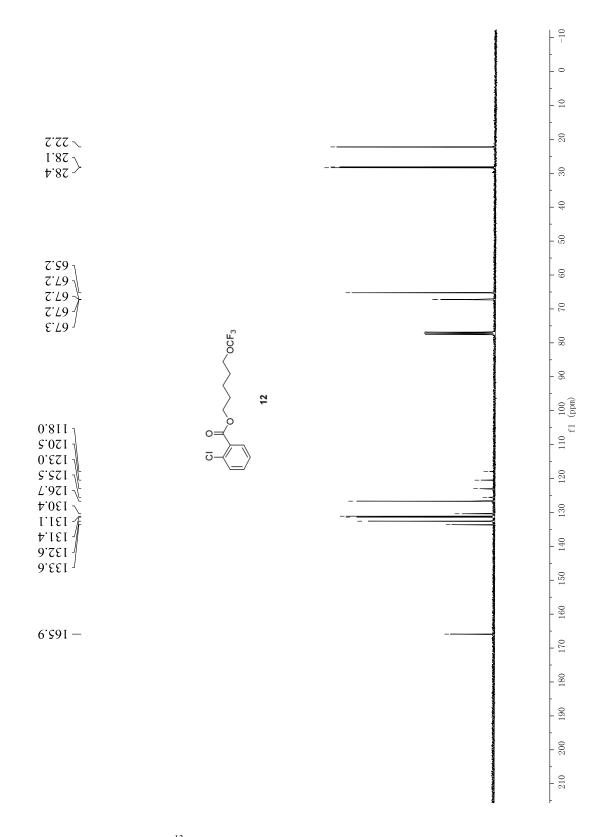

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of $\boldsymbol{9}$

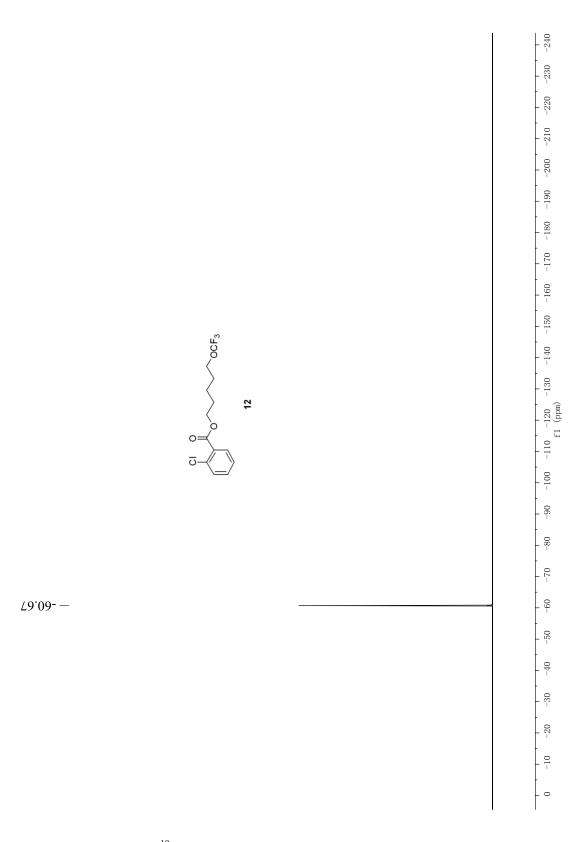

¹H NMR spectrum (400 MHz, $CDCl_3$) of **10**

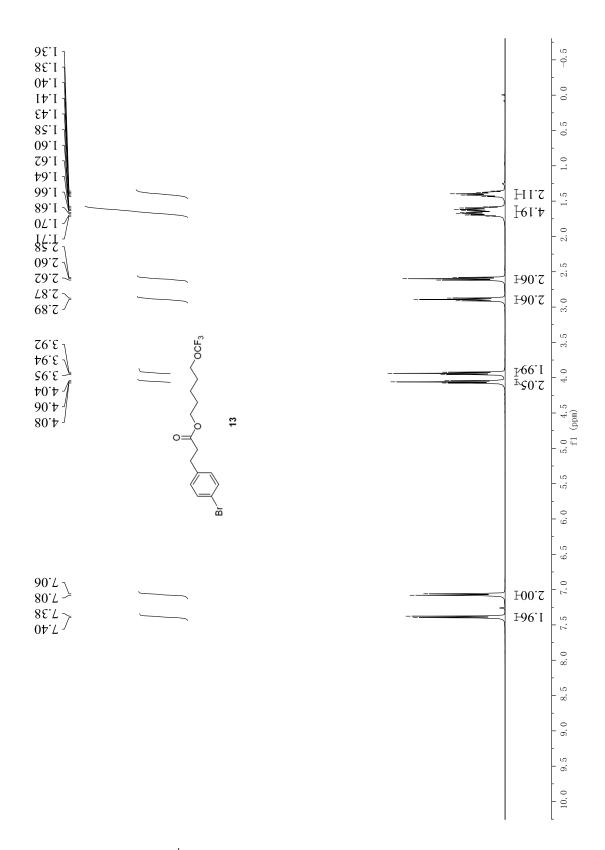

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 10

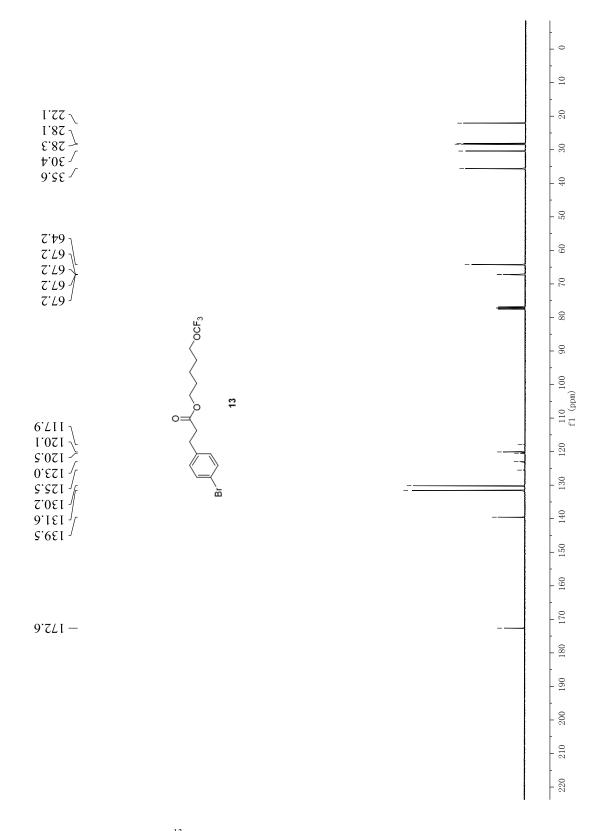

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 10

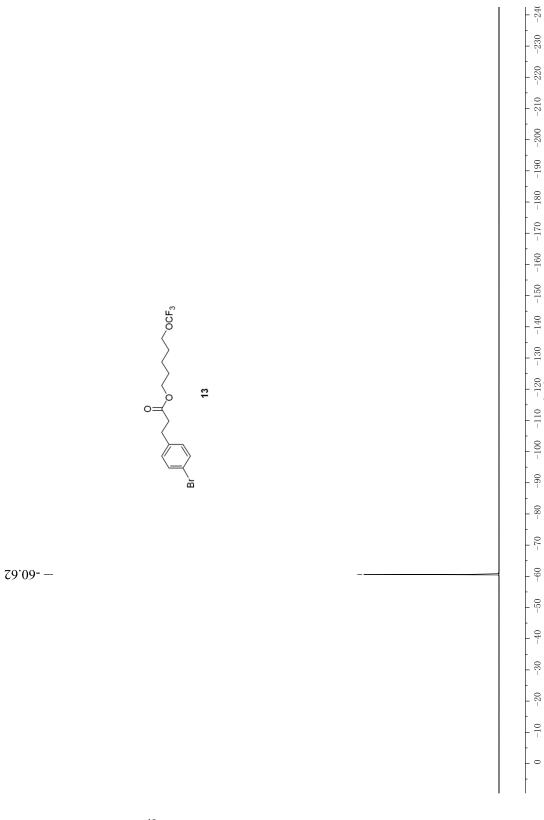

 ^1H NMR spectrum (400 MHz, CDCl₃) of 11


¹³C NMR spectrum (101 MHz, CDCl₃) of **11**


 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 11


 ^1H NMR spectrum (400 MHz, CDCl₃) of 12


¹³C NMR spectrum (101 MHz, CDCl₃) of **12**


 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 12

¹H NMR spectrum (400 MHz, CDCl₃) of **13**

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 13

-90

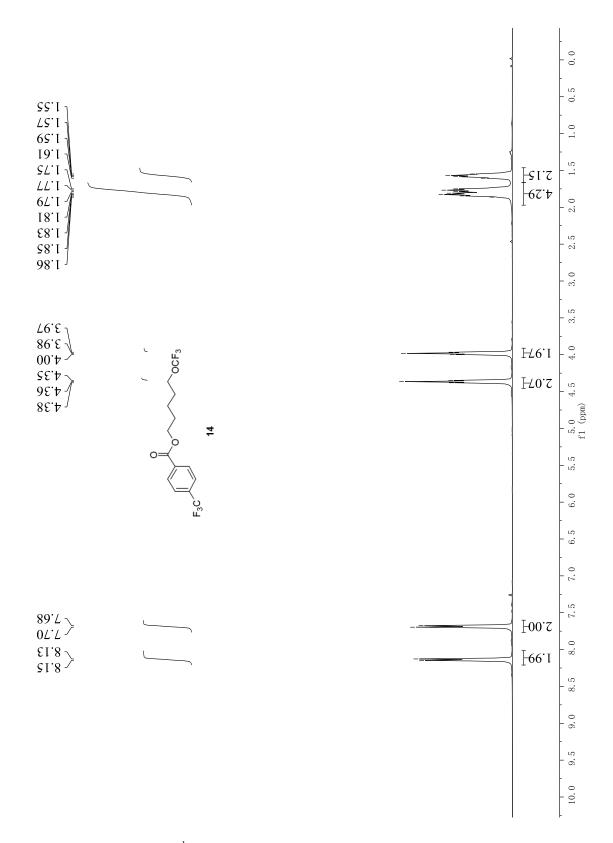
-80

-70

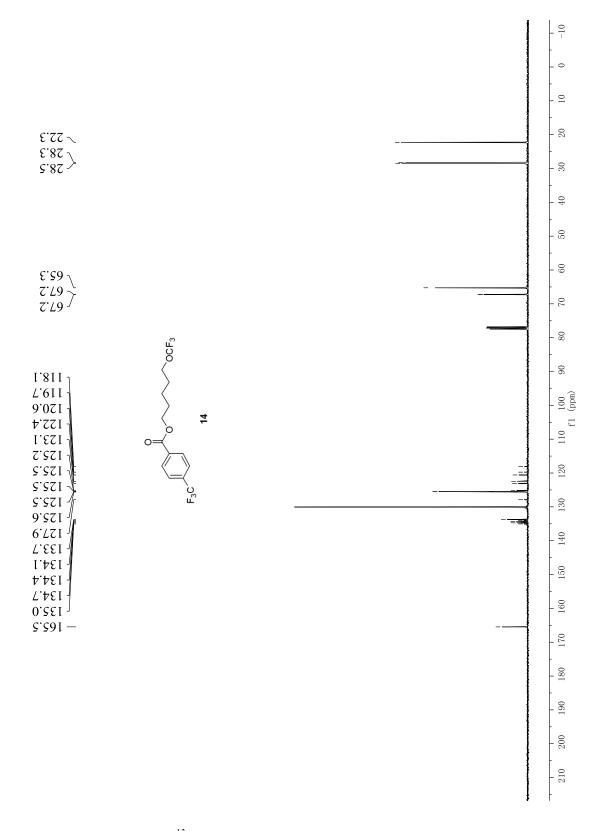
-60

-50

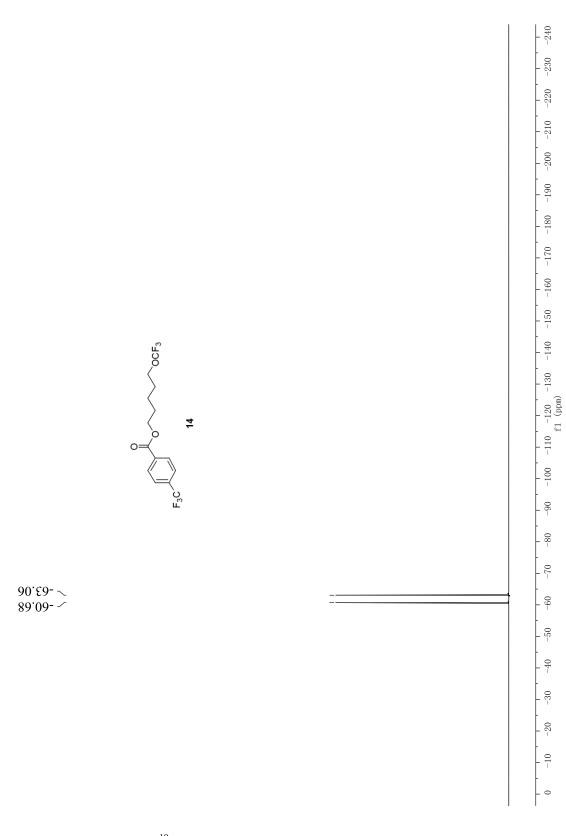
-40

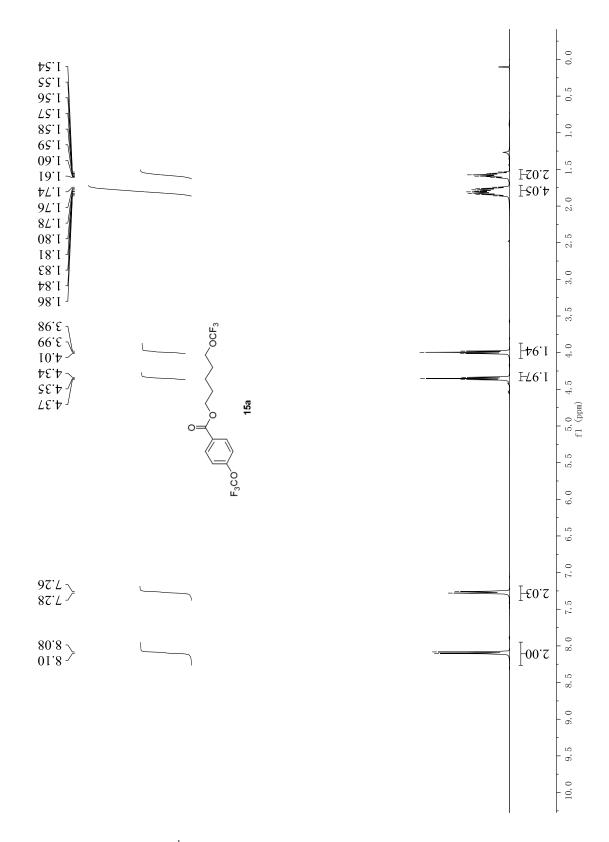

-30

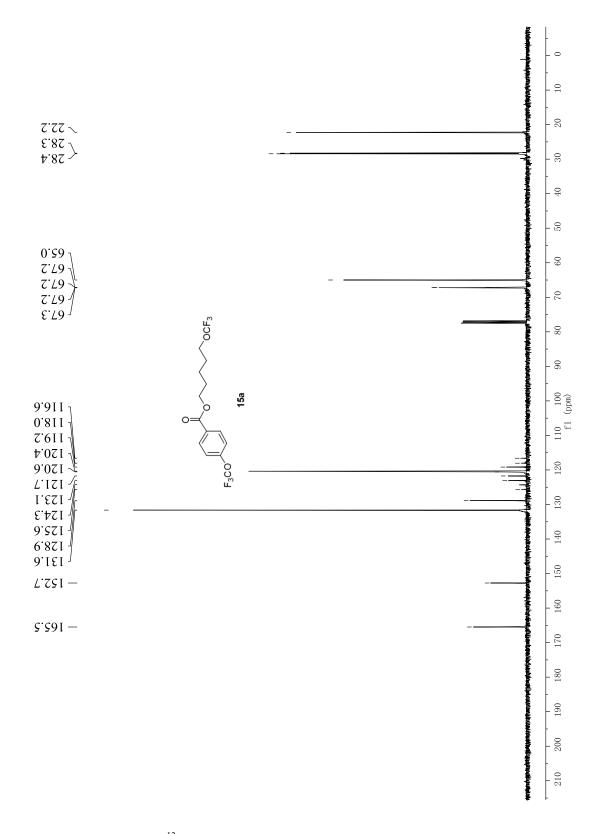
-20

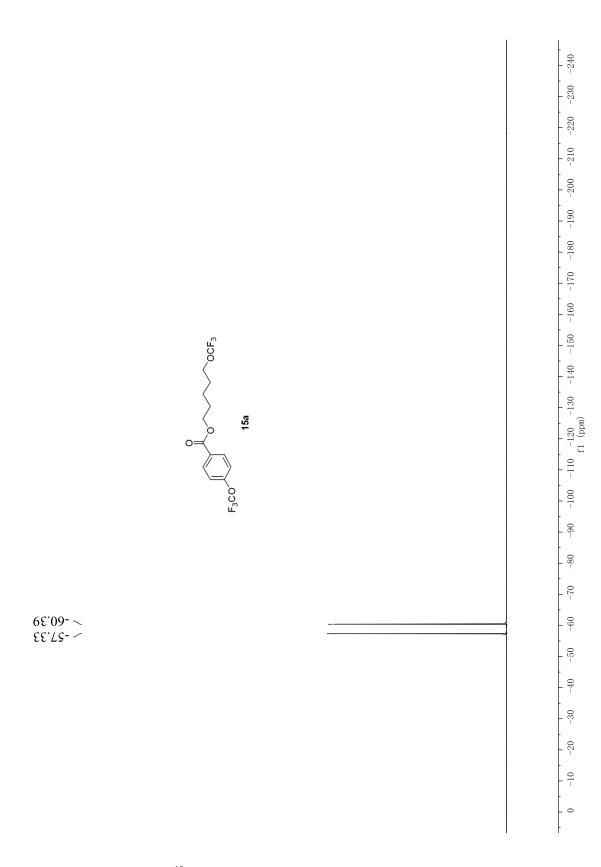

-10

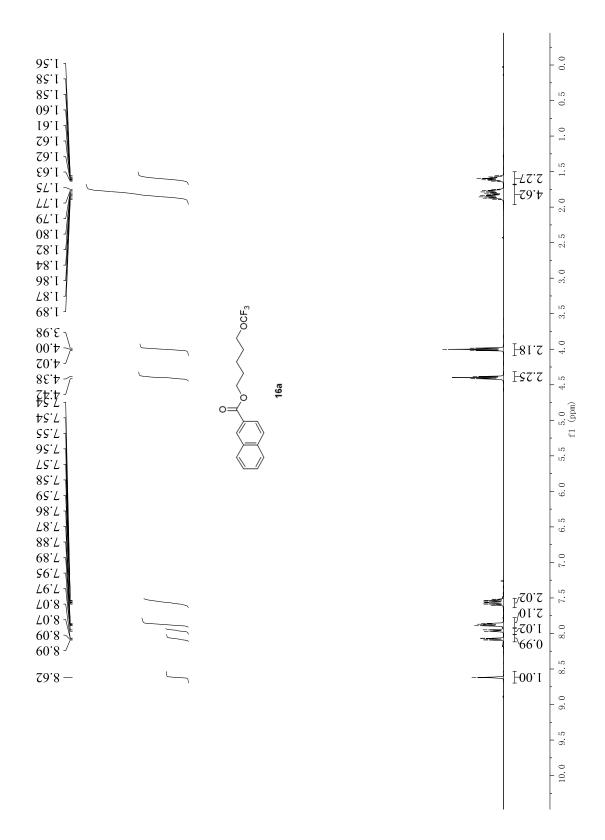
0

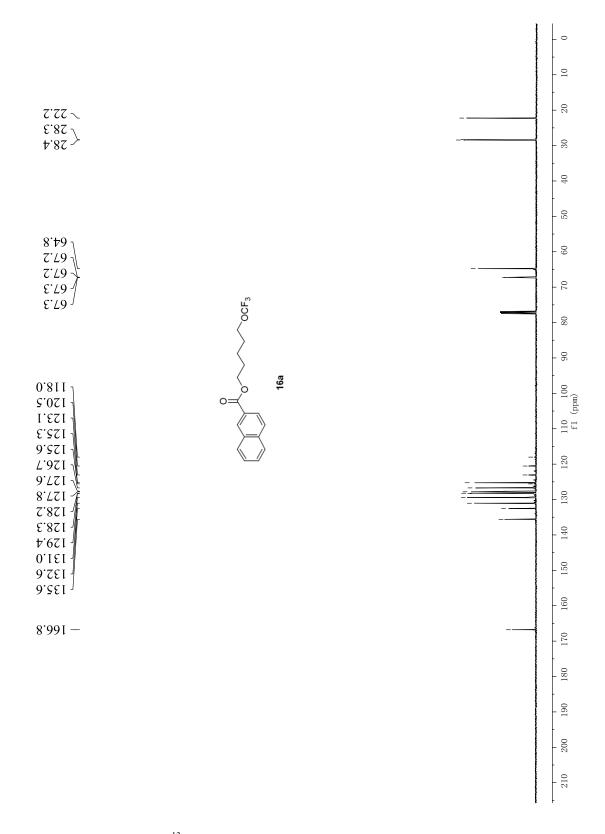

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 13

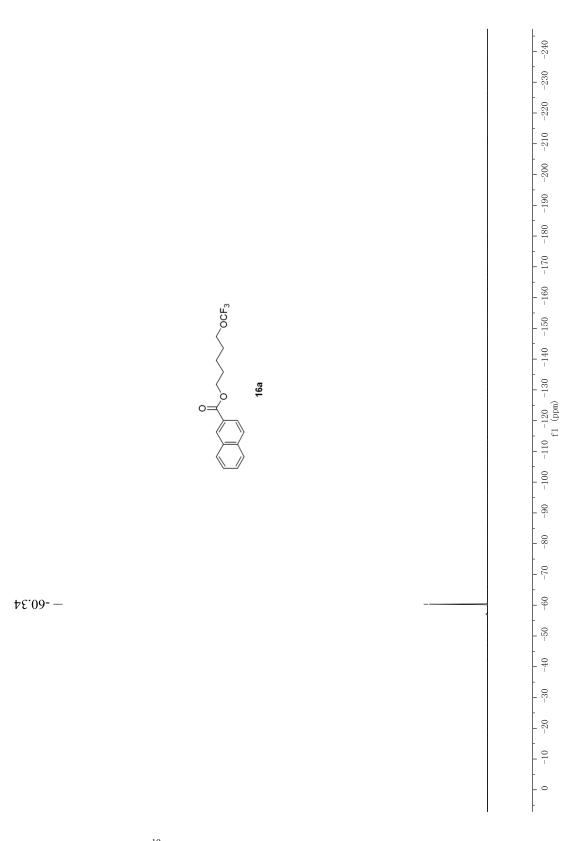

¹H NMR spectrum (400 MHz, CDCl₃) of 14

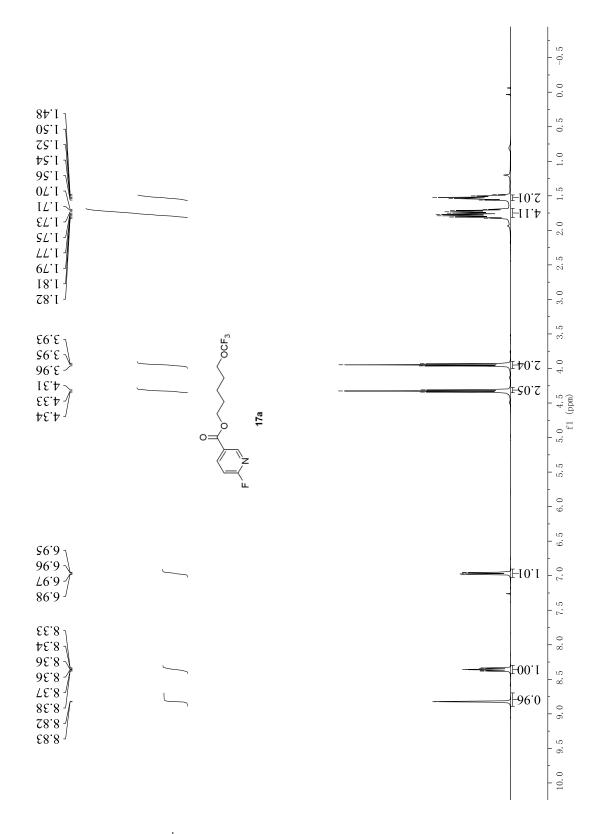

¹³C NMR spectrum (101 MHz, CDCl₃) of 14

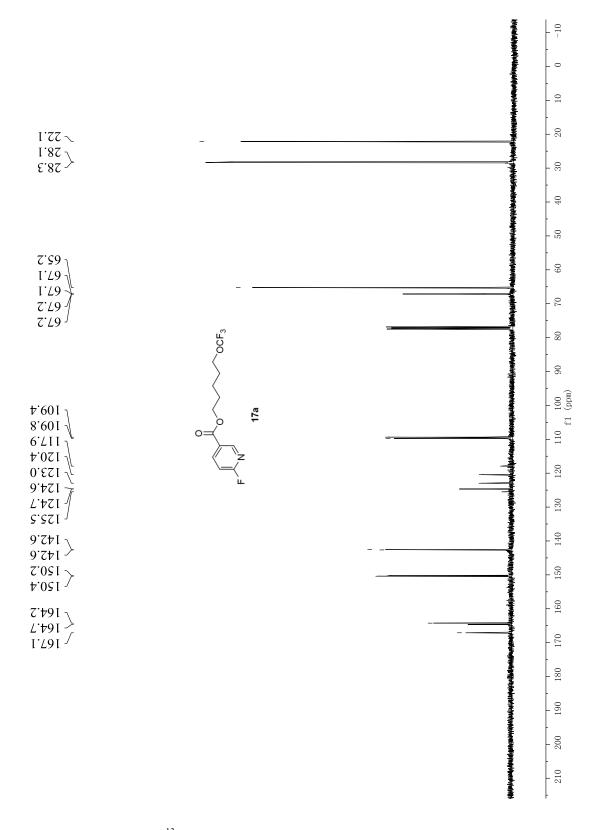

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 14

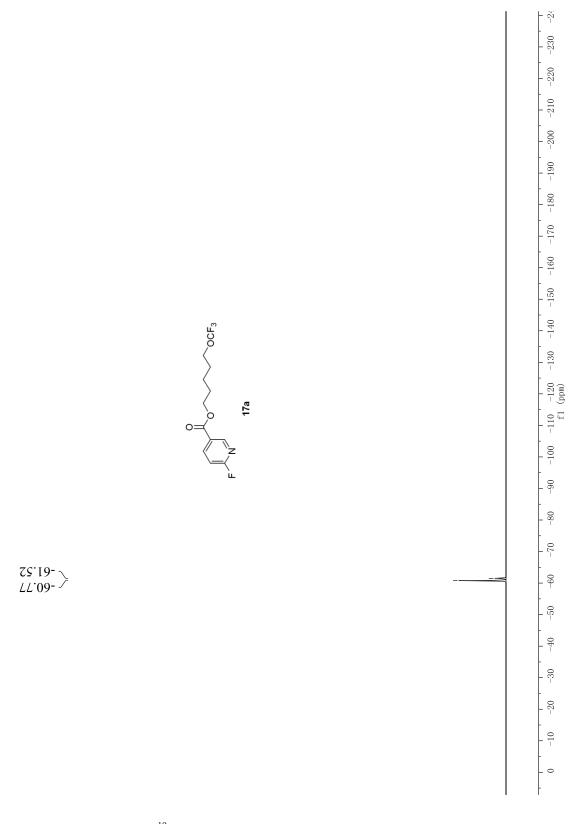

¹H NMR spectrum (400 MHz, CDCl₃) of **15a**

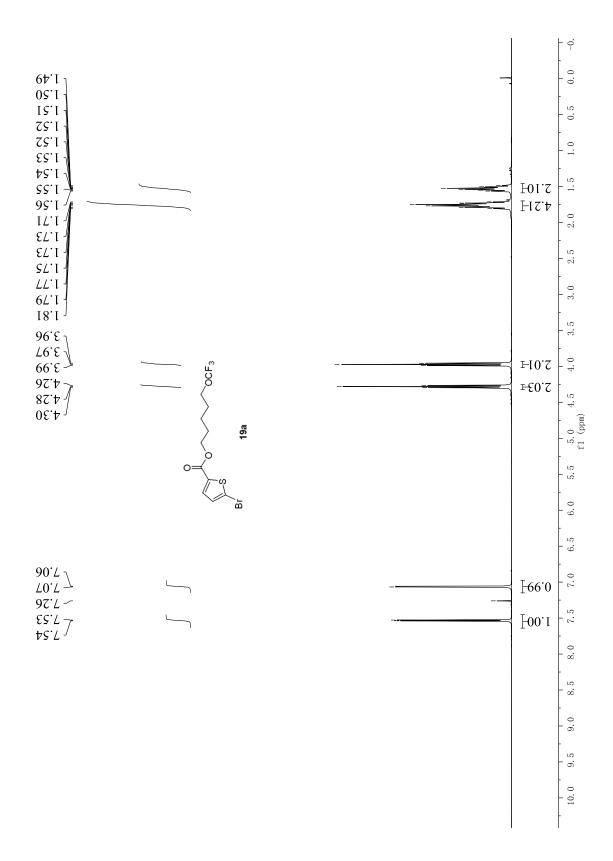

¹³C NMR spectrum (101 MHz, CDCl₃) of **15a**

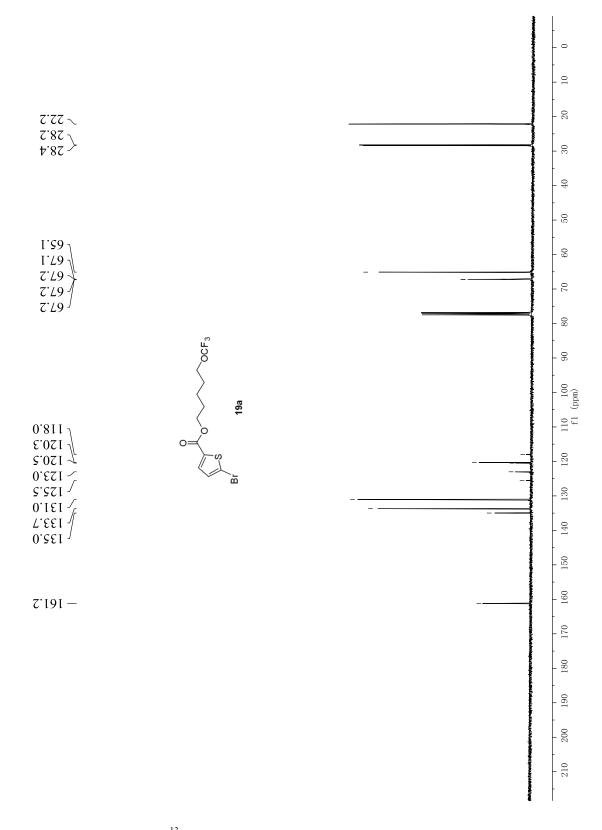

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 15a

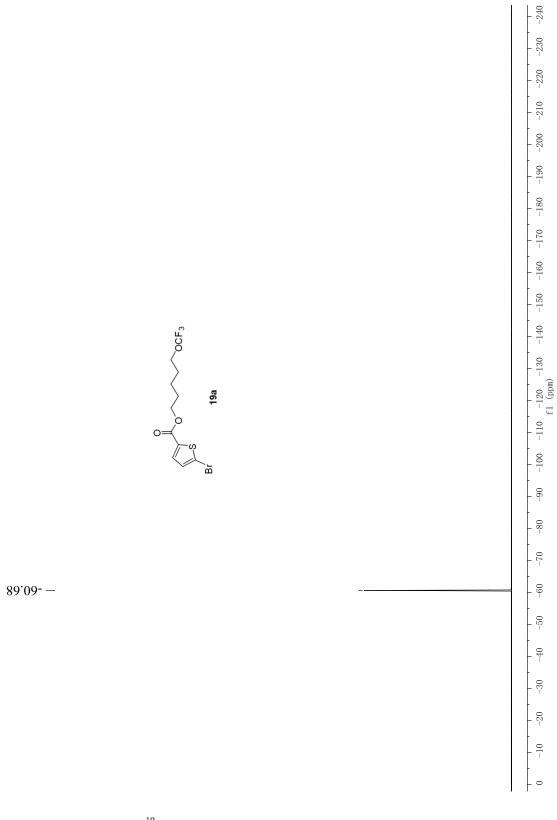

 1 H NMR spectrum (400 MHz, CDCl₃) of **16a**

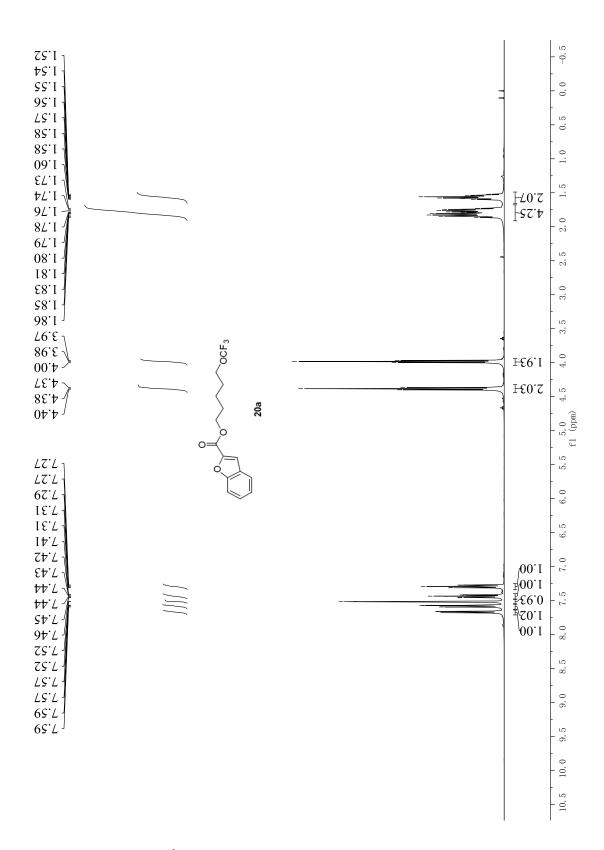

¹³C NMR spectrum (101 MHz, CDCl₃) of 16a

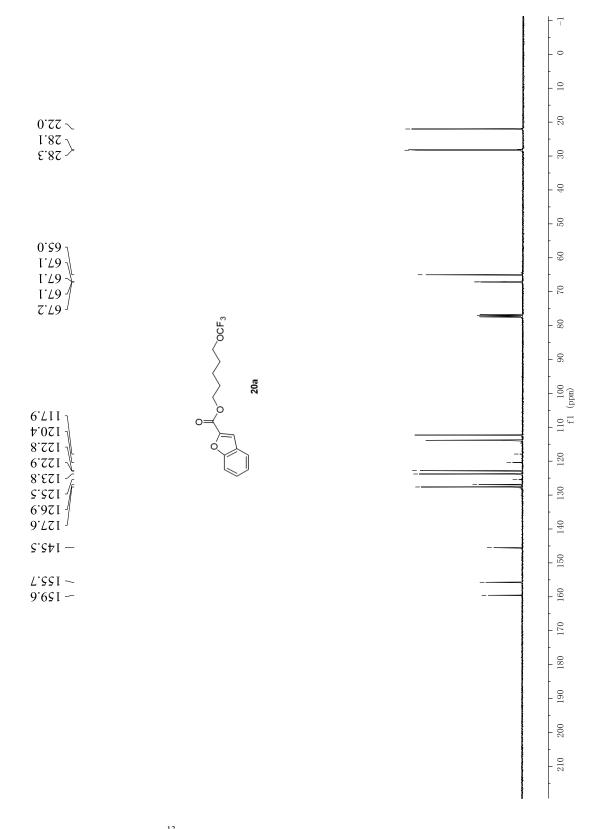

¹⁹F NMR spectrum (376 MHz, CDCl₃) of 16a

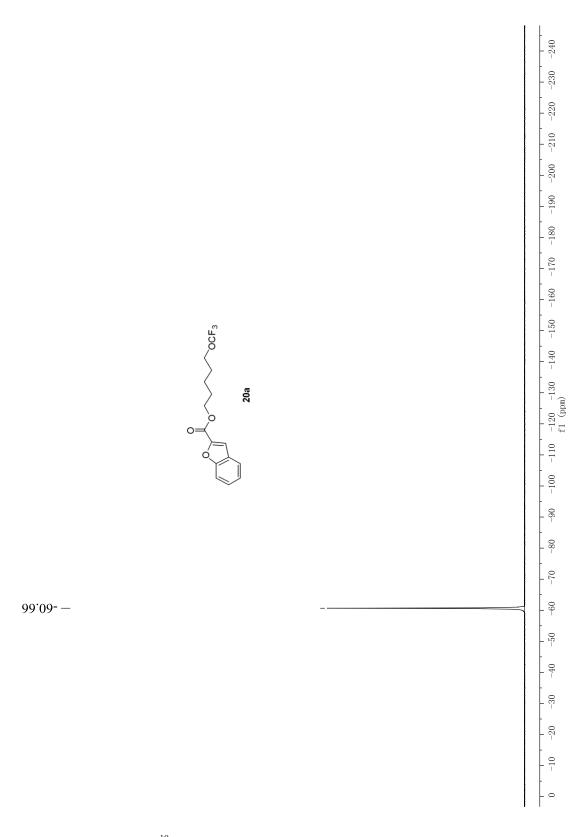

¹H NMR spectrum (400 MHz, CDCl₃) of **17a**

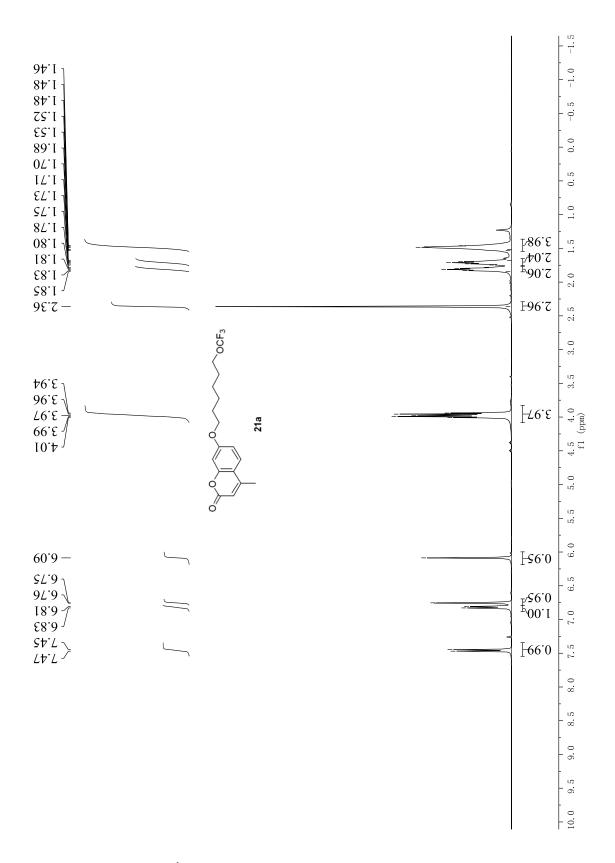

¹³C NMR spectrum (101 MHz, CDCl₃) of **17a**

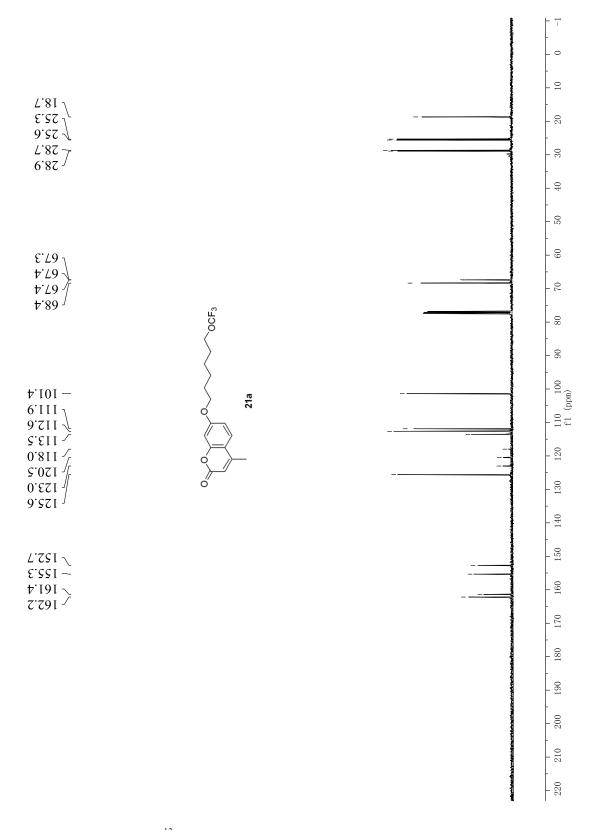

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **17a**

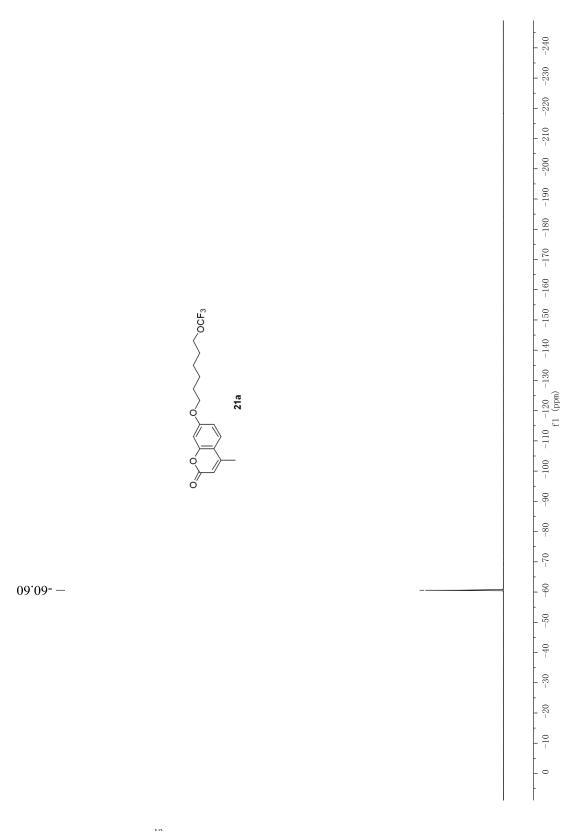

¹H NMR spectrum (400 MHz, CDCl₃) of **19a**

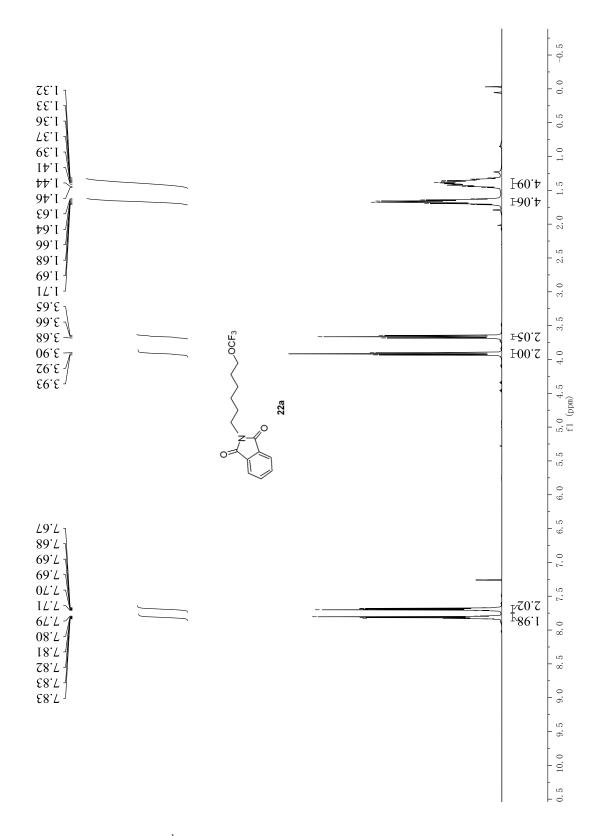

¹³C NMR spectrum (101 MHz, CDCl₃) of **19a**

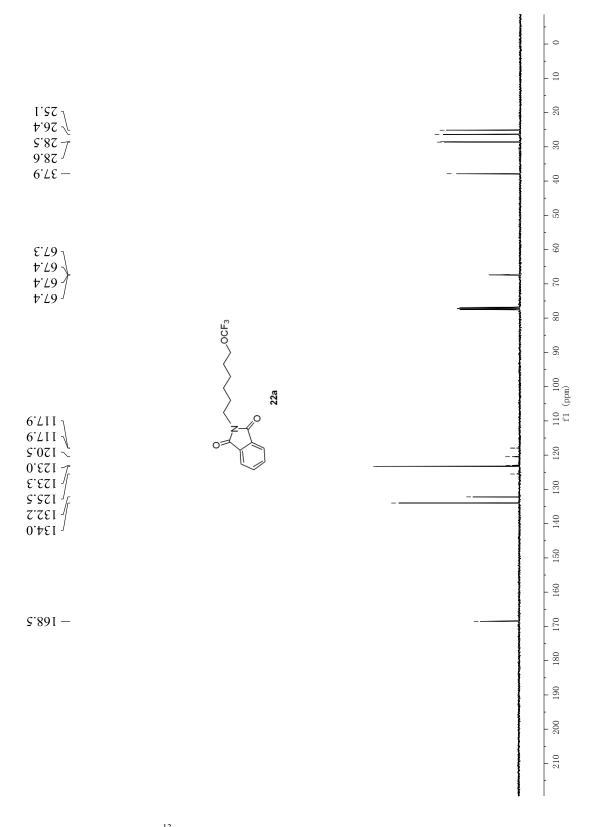

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **19a**

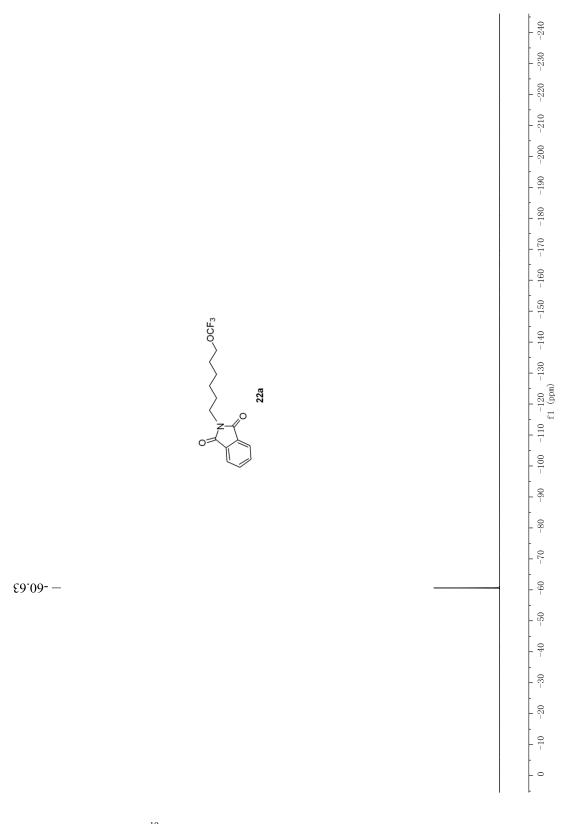

¹H NMR spectrum (400 MHz, CDCl₃) of 20a

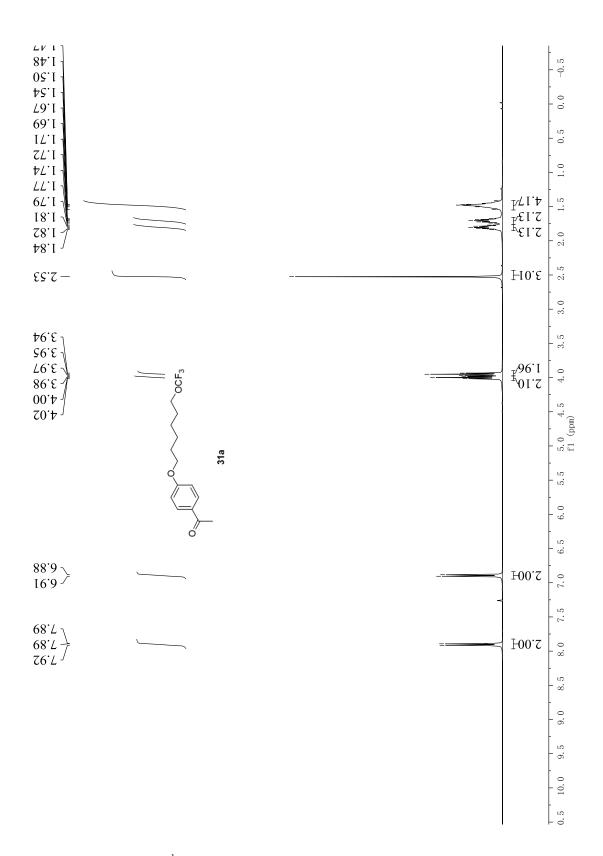

¹³C NMR spectrum (101 MHz, CDCl₃) of **20a**

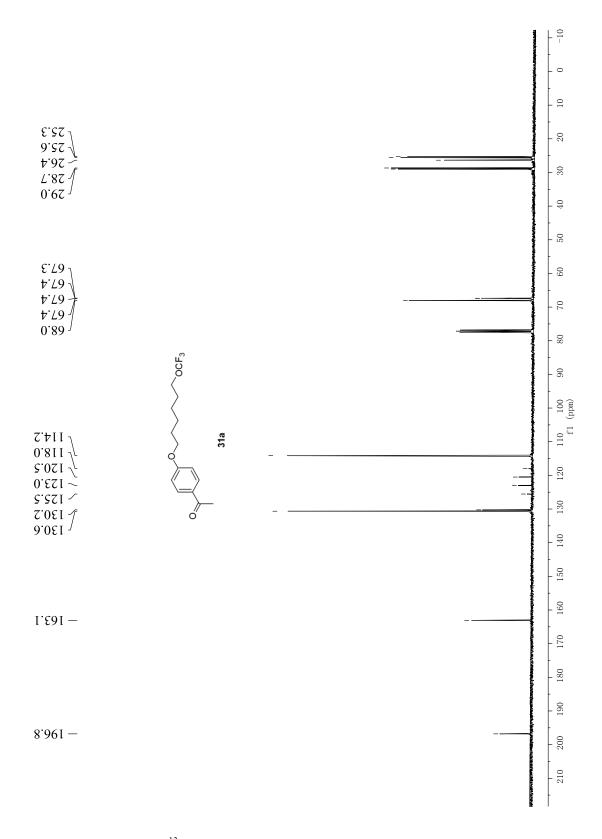

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 20a

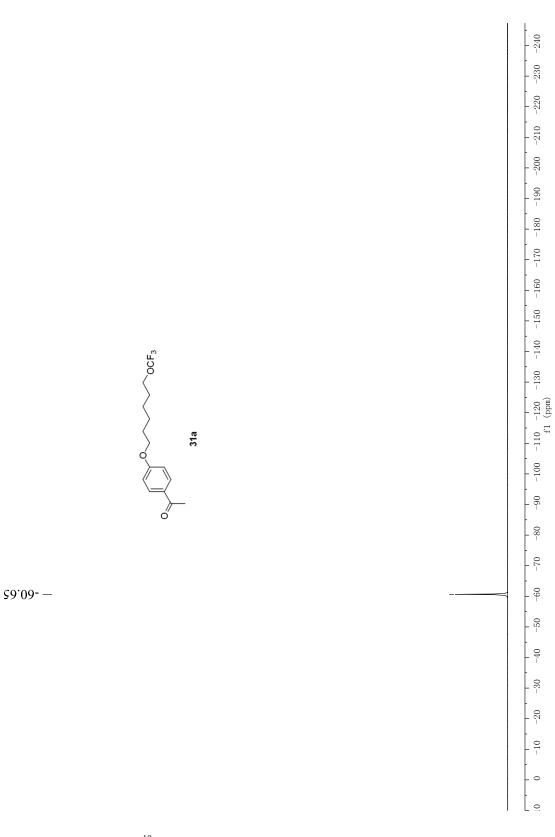

¹H NMR spectrum (400 MHz, CDCl₃) of **21a**

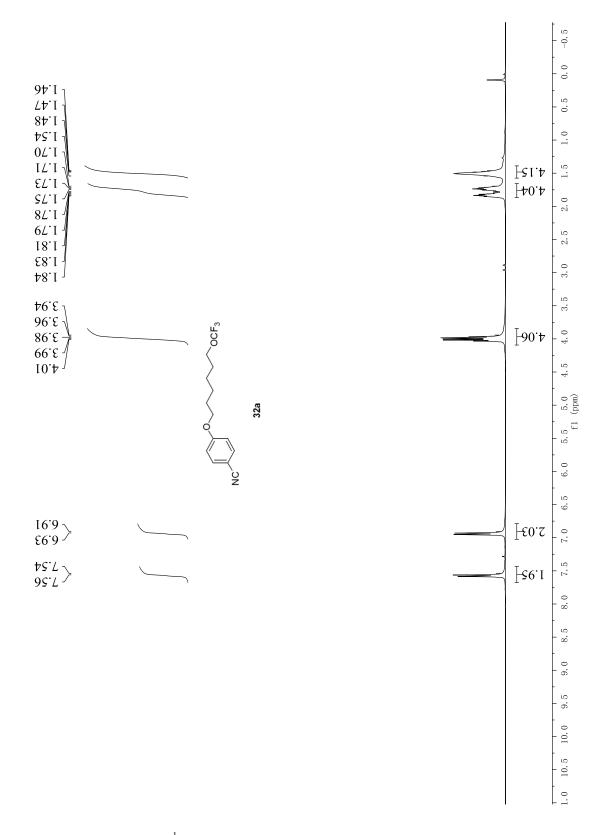

¹³C NMR spectrum (101 MHz, CDCl₃) of **21a**

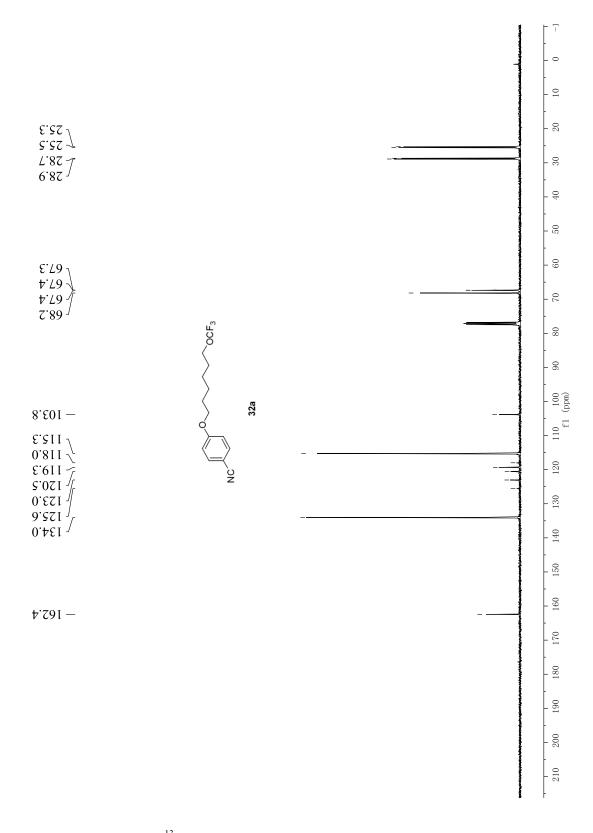

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **21a**

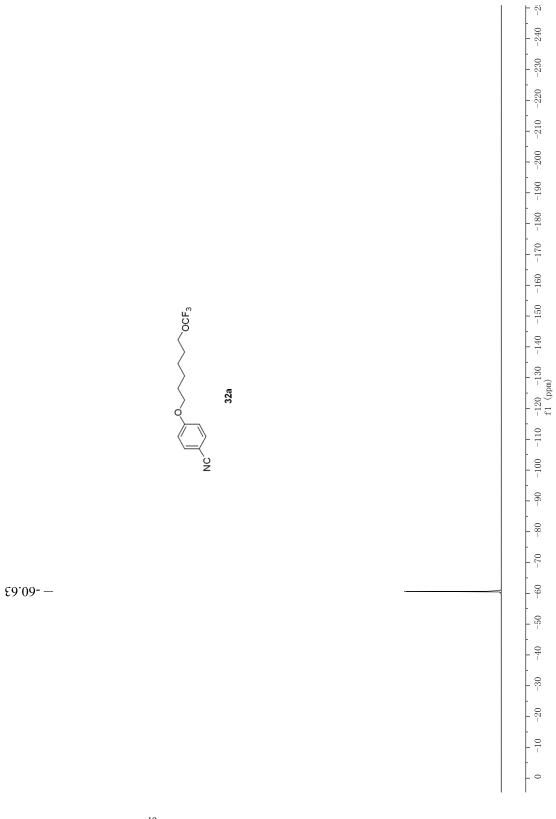

¹H NMR spectrum (400 MHz, CDCl₃) of **22a**

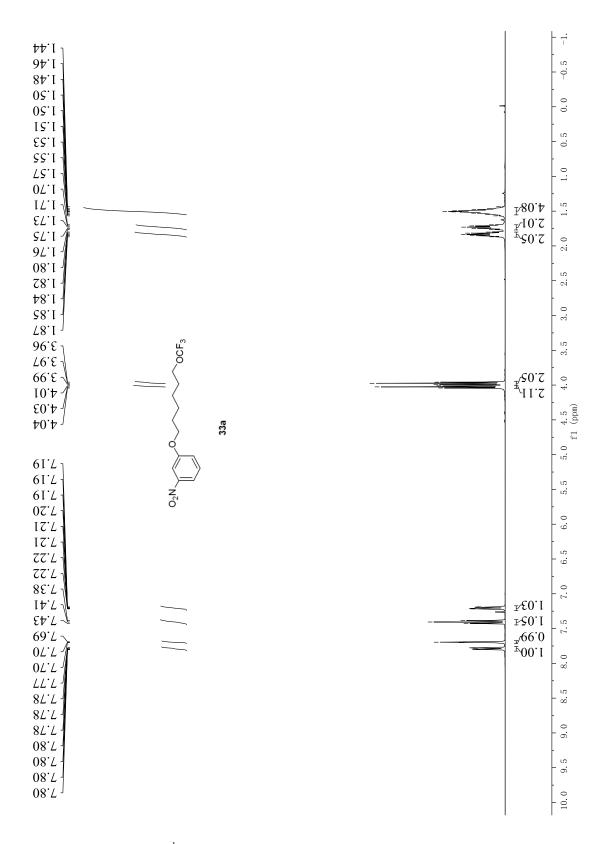

¹³C NMR spectrum (101 MHz, CDCl₃) of **22a**

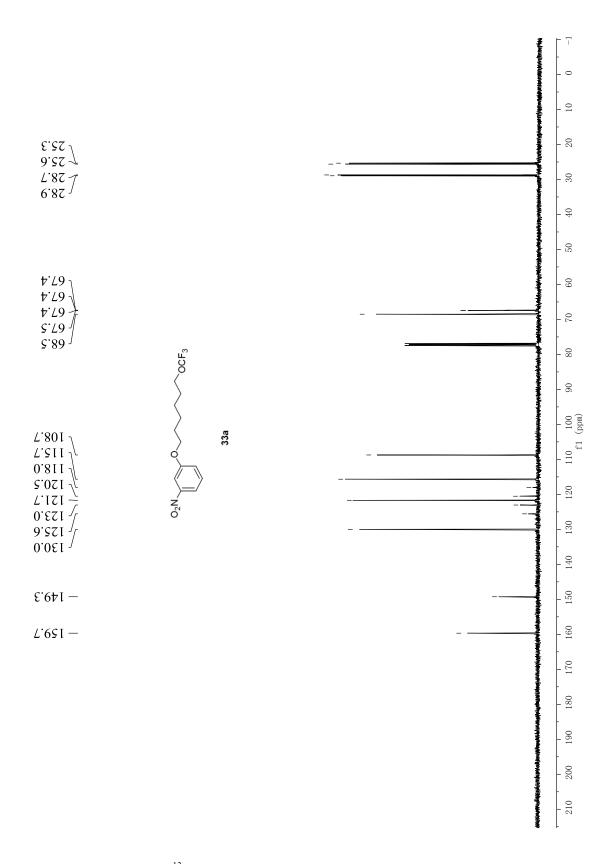

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **22a**

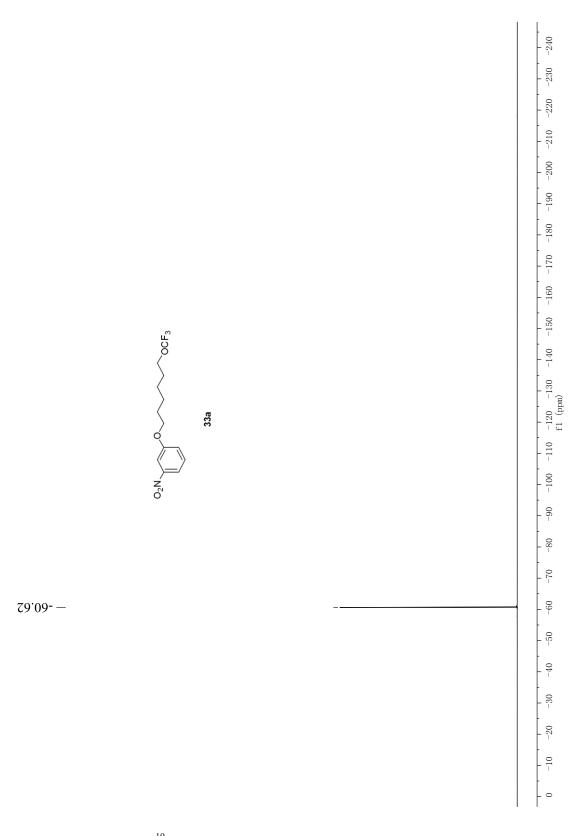

 ^1H NMR spectrum (400 MHz, CDCl₃) of **31a**

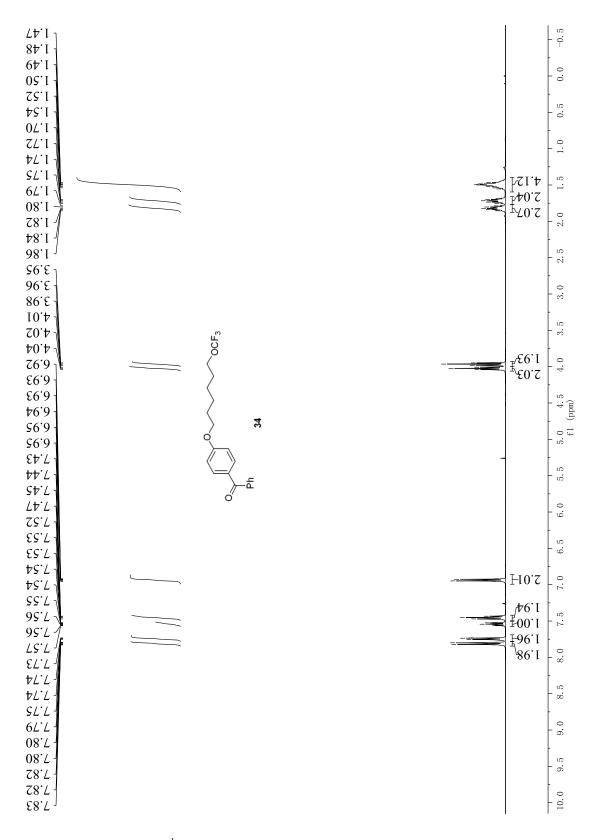

¹³C NMR spectrum (101 MHz, CDCl₃) of **31a**

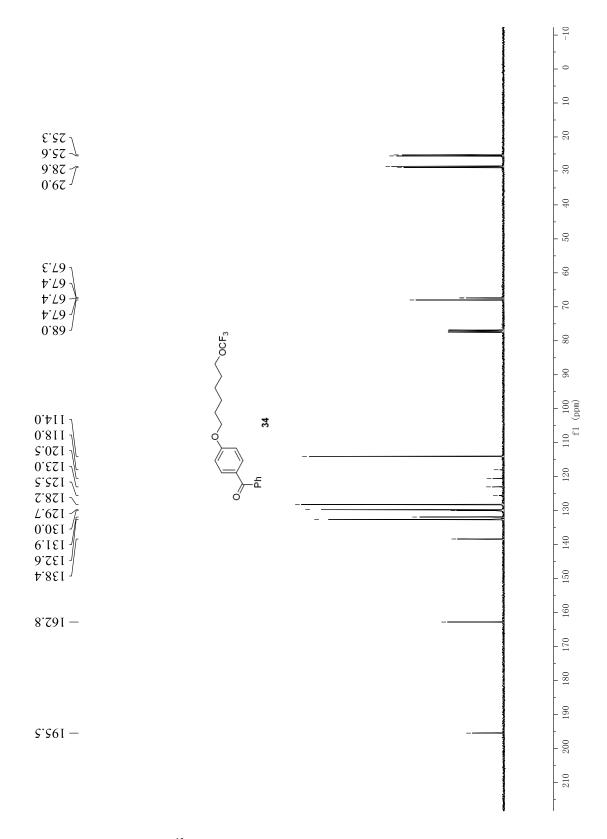

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of **31a**

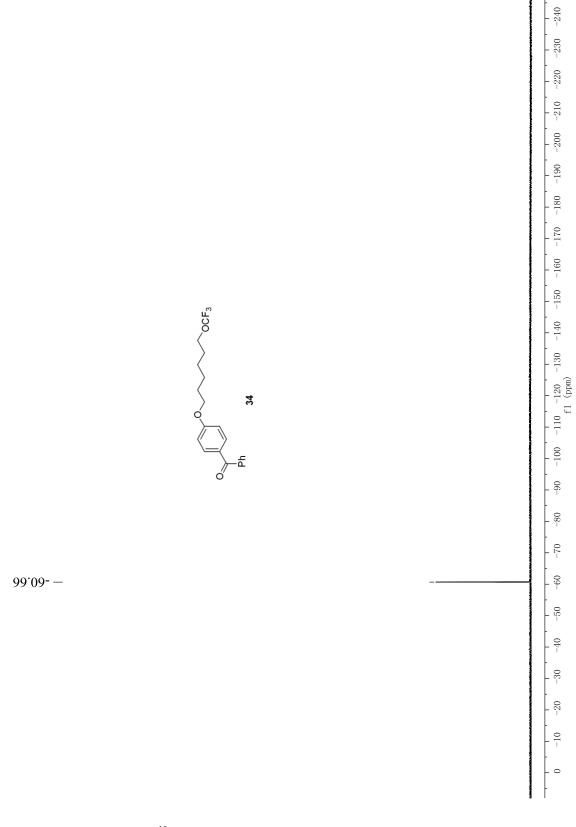

 ^1H NMR spectrum (400 MHz, CDCl₃) of **32a**

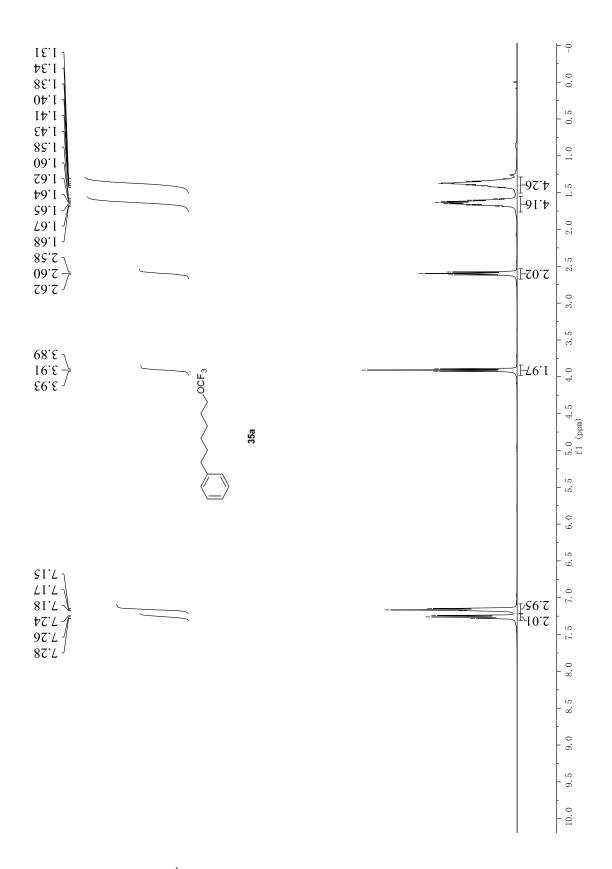

¹³C NMR spectrum (101 MHz, CDCl₃) of **32a**

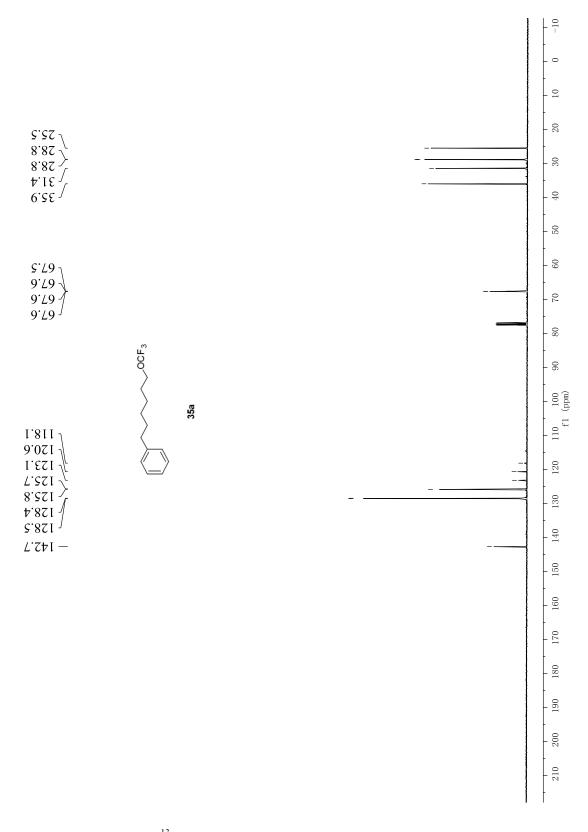

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 11

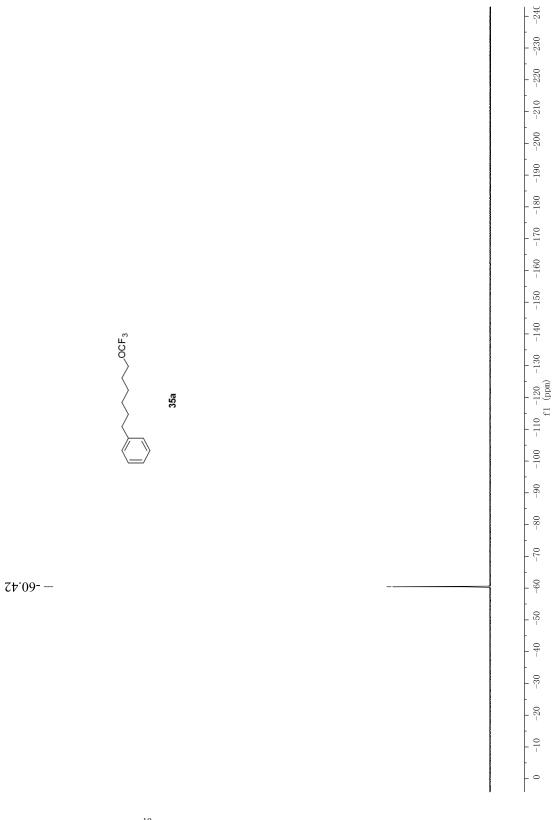

 ^1H NMR spectrum (400 MHz, CDCl₃) of 33a

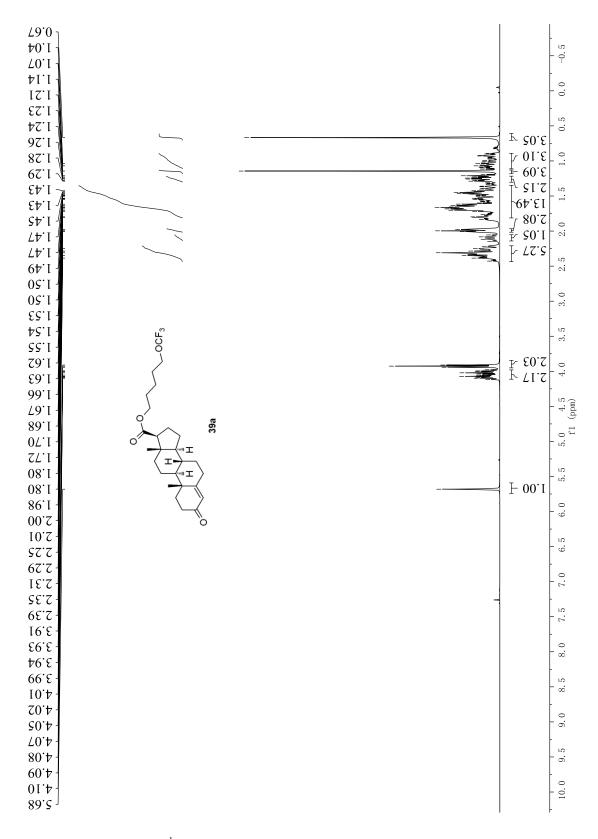

¹³C NMR spectrum (101 MHz, CDCl₃) of **33a**

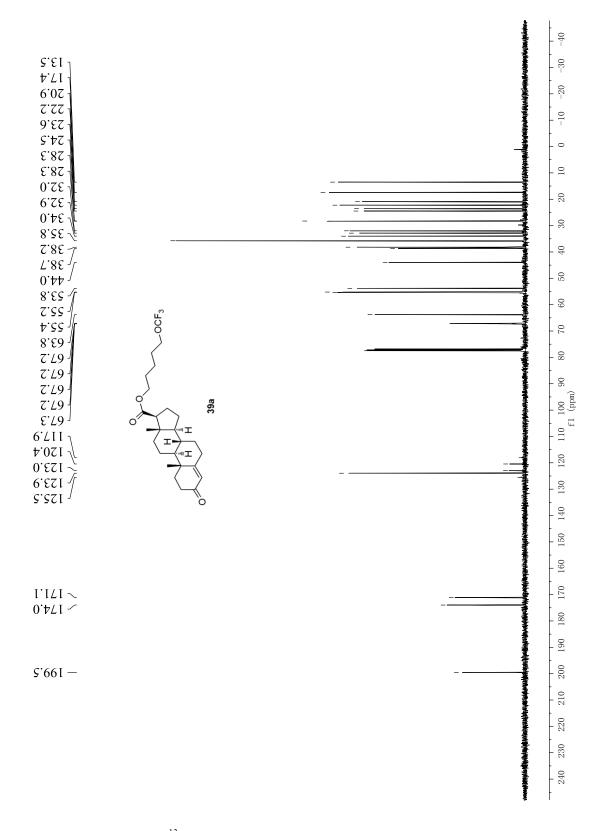

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **33a**

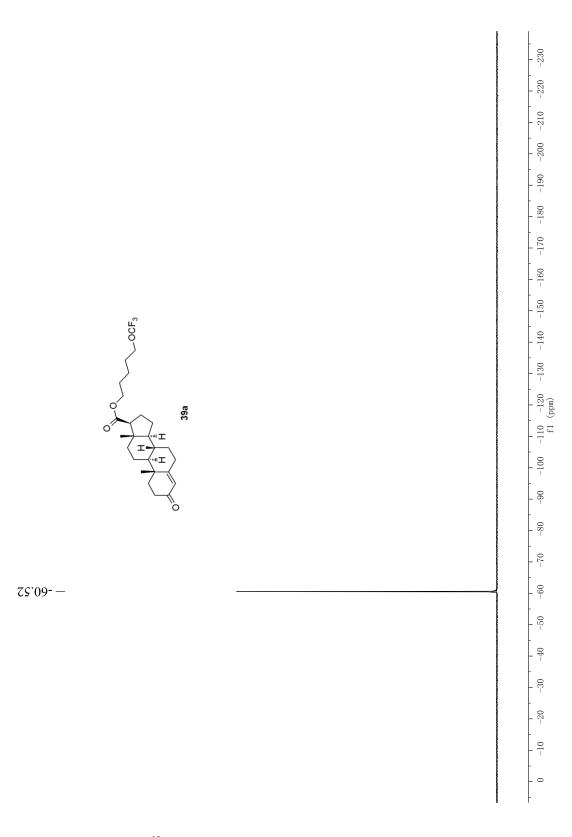

 1 H NMR spectrum (400 MHz, CDCl₃) of **34**

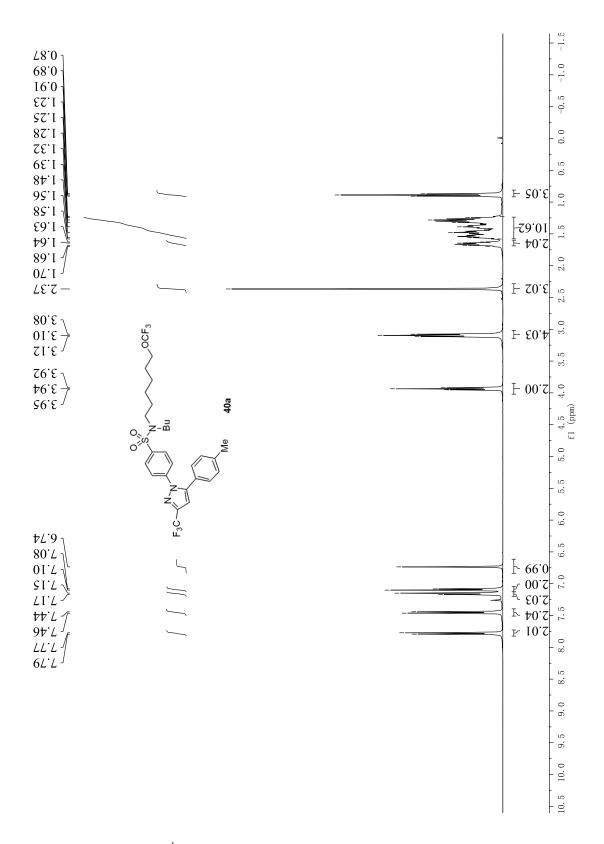

¹³C NMR spectrum (101 MHz, CDCl₃) of **34**

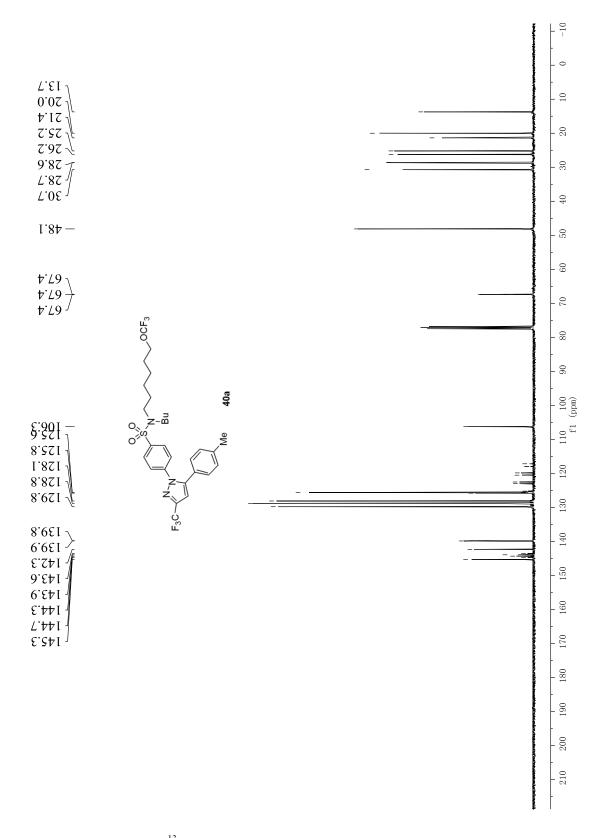

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 34

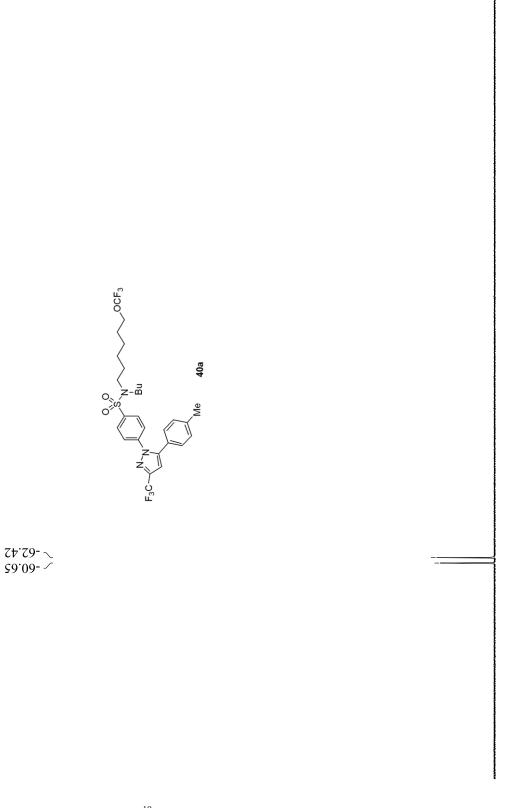

¹H NMR spectrum (400 MHz, CDCl₃) of **35a**


¹³C NMR spectrum (101 MHz, CDCl₃) of **35a**


¹⁹F NMR spectrum (376 MHz, CDCl₃) of **35a**


¹H NMR spectrum (400 MHz, CDCl₃) of 39a


¹³C NMR spectrum (101 MHz, CDCl₃) of **39a**


¹⁹F NMR spectrum (376 MHz, CDCl₃) of **39a**

 ^1H NMR spectrum (400 MHz, CDCl₃) of **40a**

¹³C NMR spectrum (101 MHz, CDCl₃) of 40a

-240

-230

-210 -220

-200

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

-90

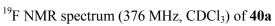
-80

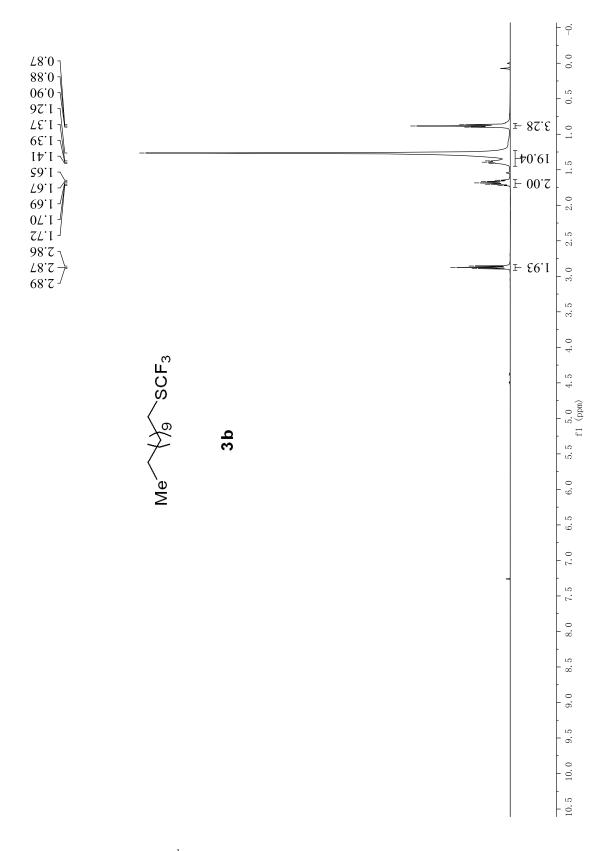
-70

-60

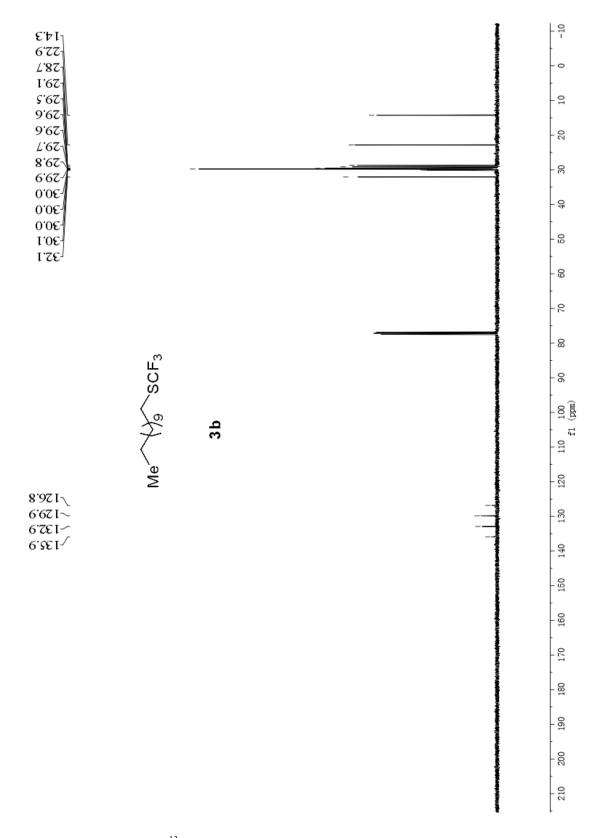
-50

 $^{-40}$

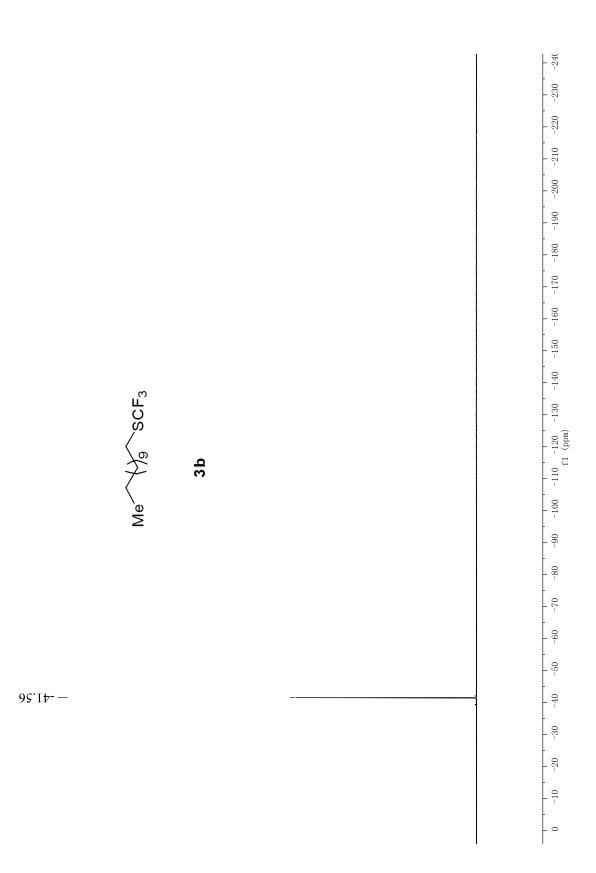

 $^{-30}$

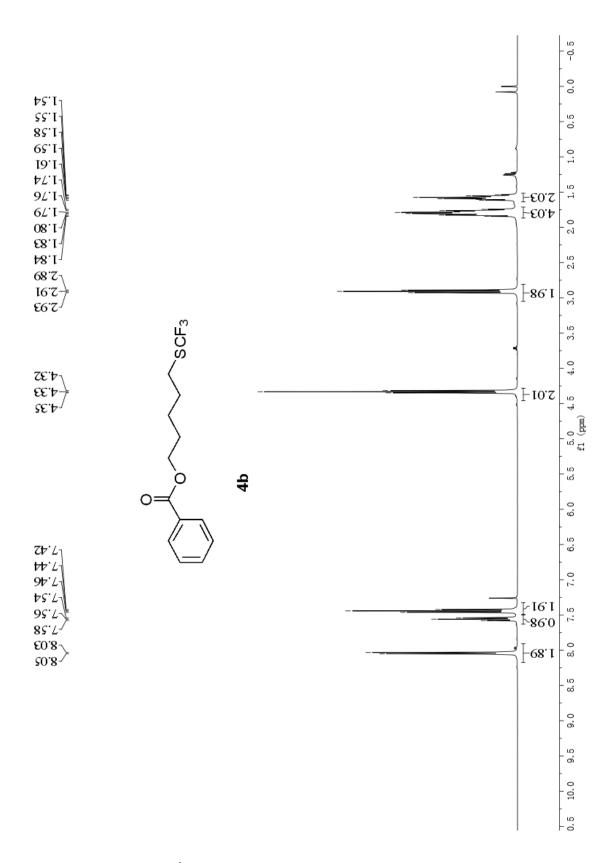

 $^{-20}$

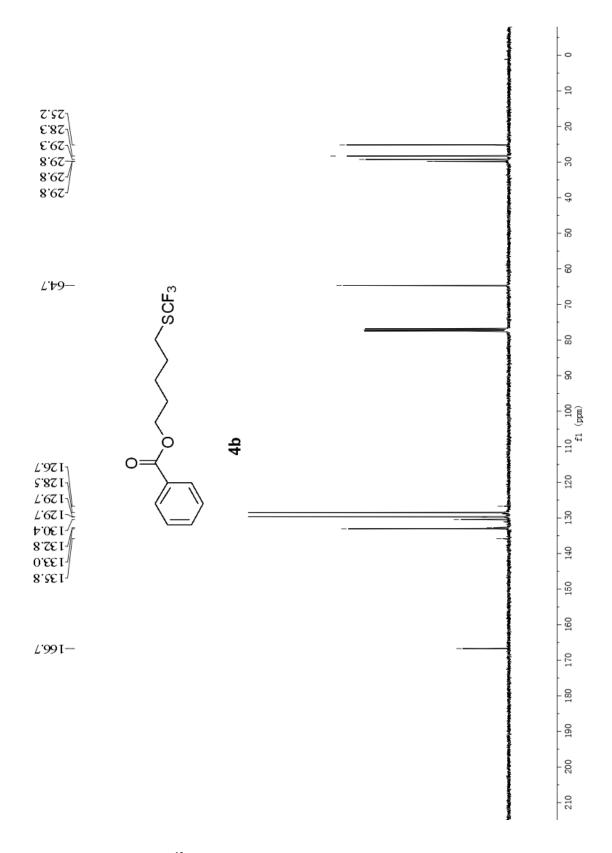
 $^{-10}$

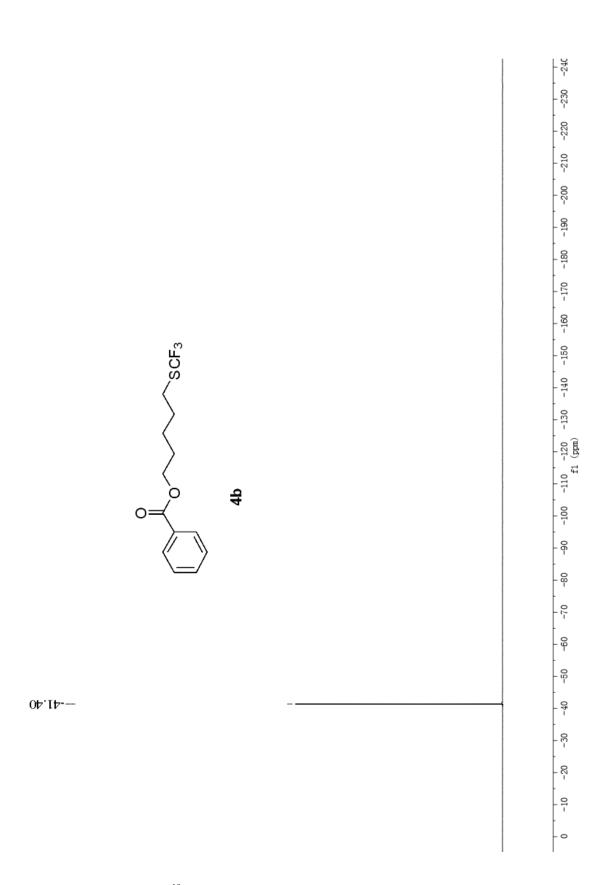

. 0

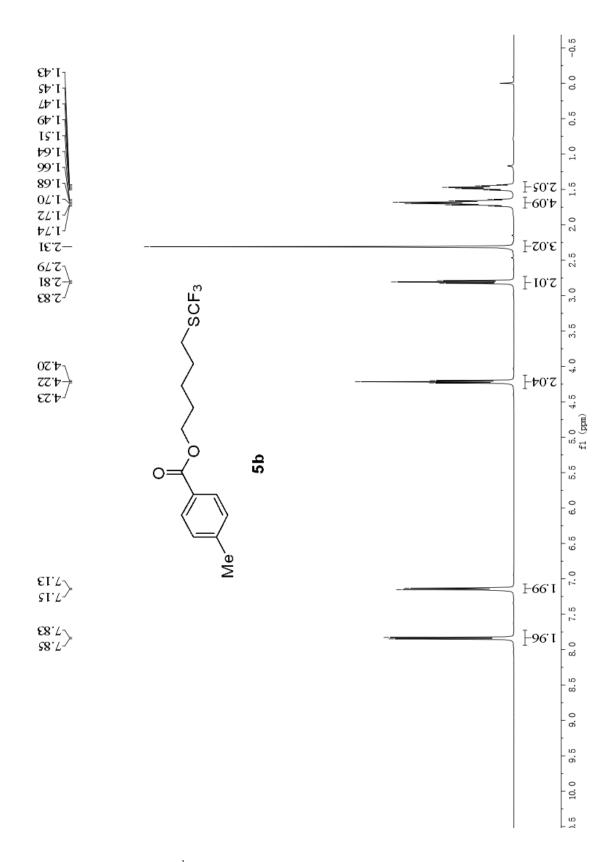
10

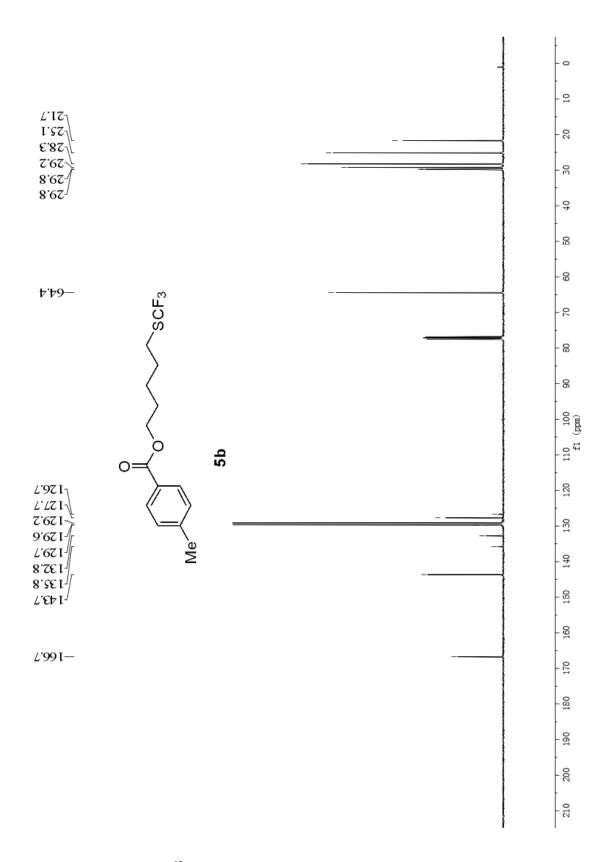


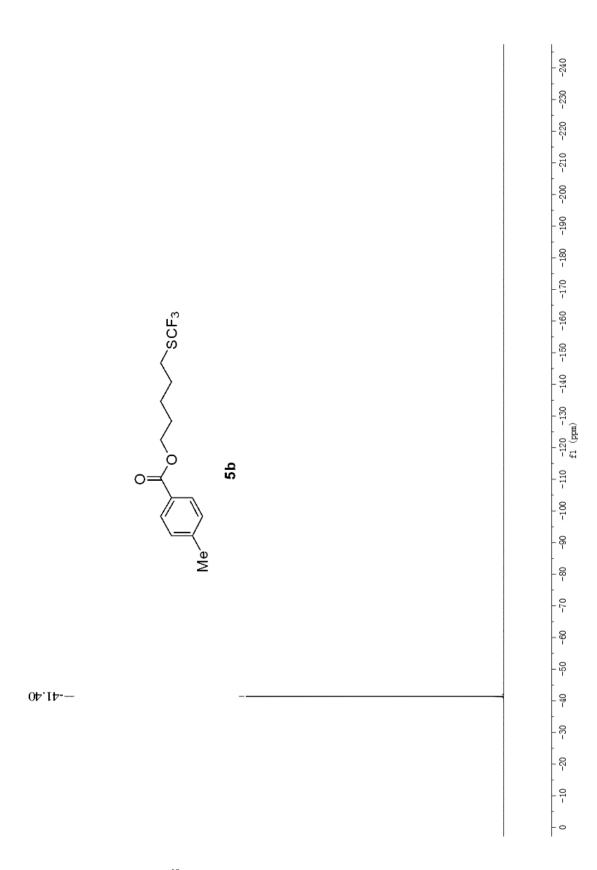

¹H NMR spectrum (400 MHz, $CDCl_3$) of **3b**


¹³C NMR spectrum (101 MHz, CDCl₃) of **3b**

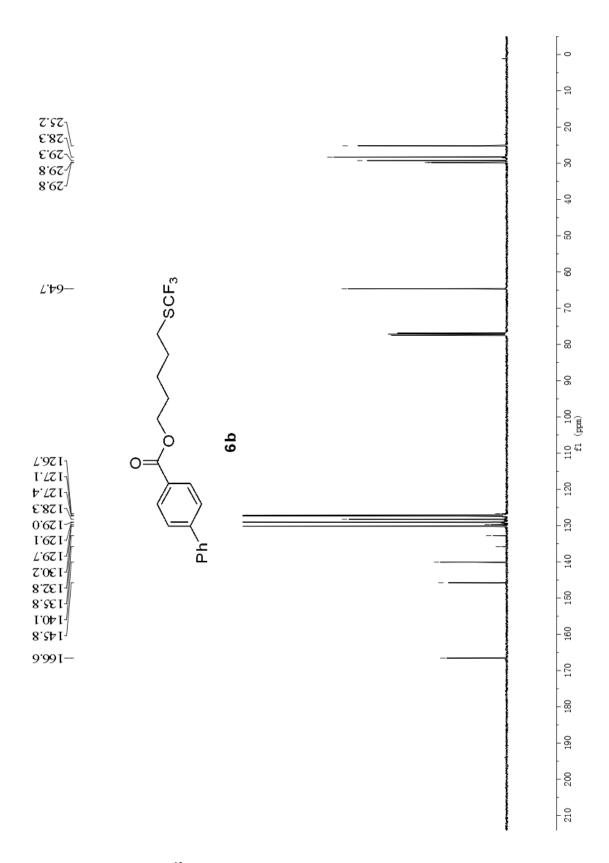

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3b

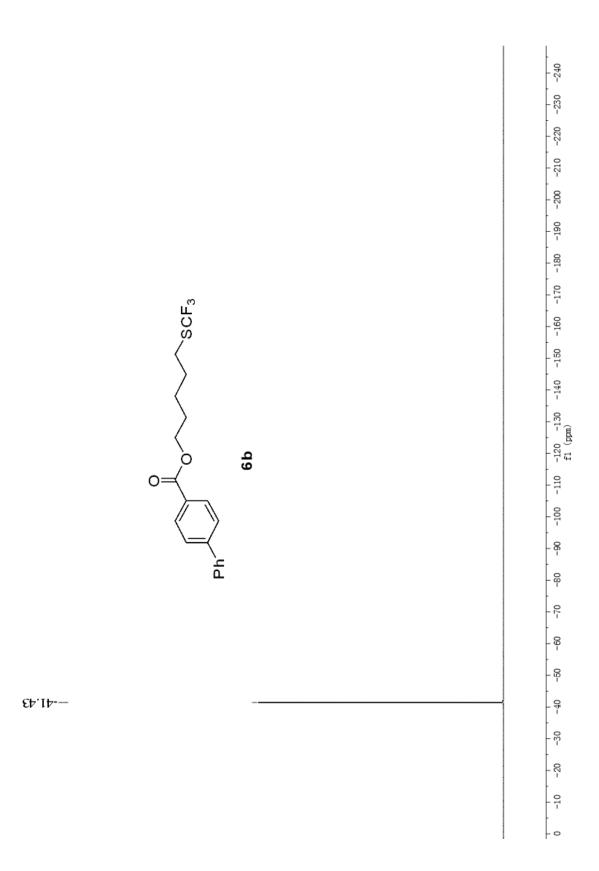

¹H NMR spectrum (400 MHz, CDCl₃) of **4b**

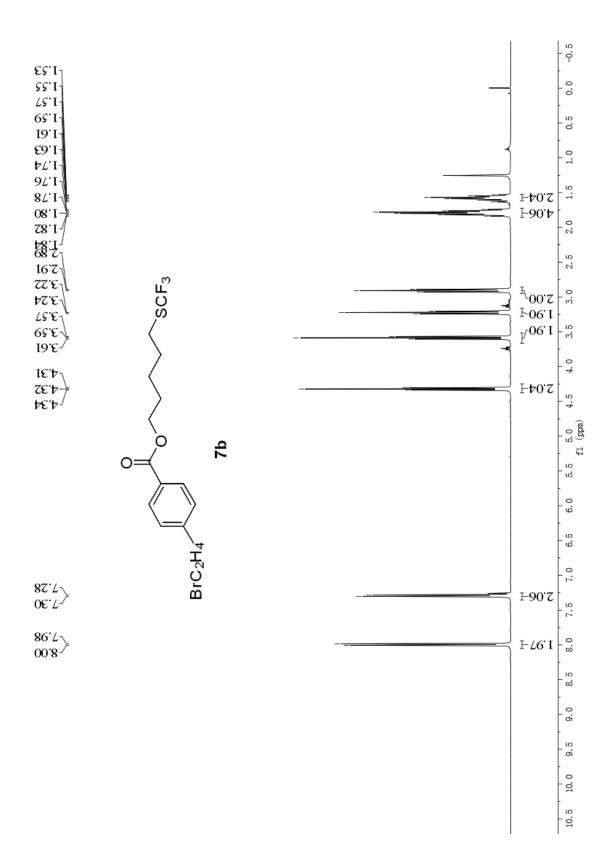

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 4b

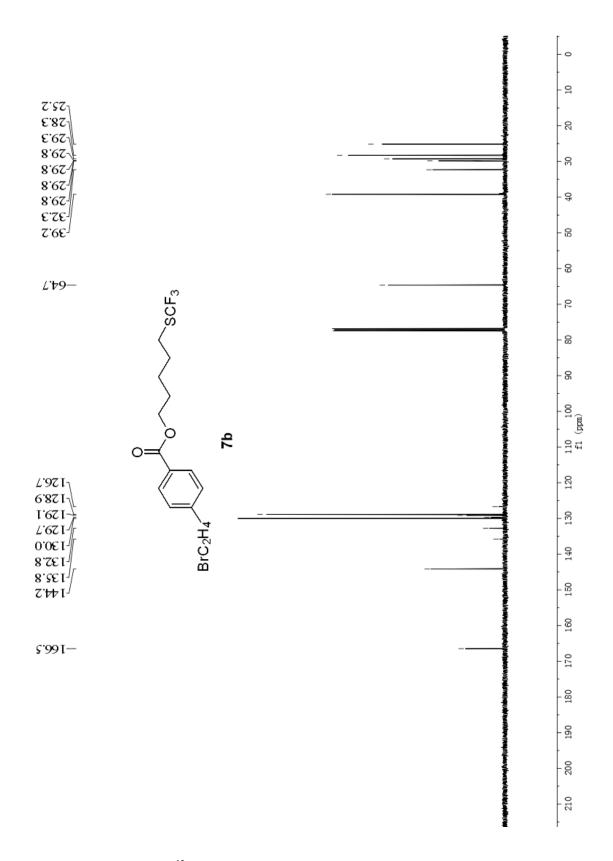

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 4b

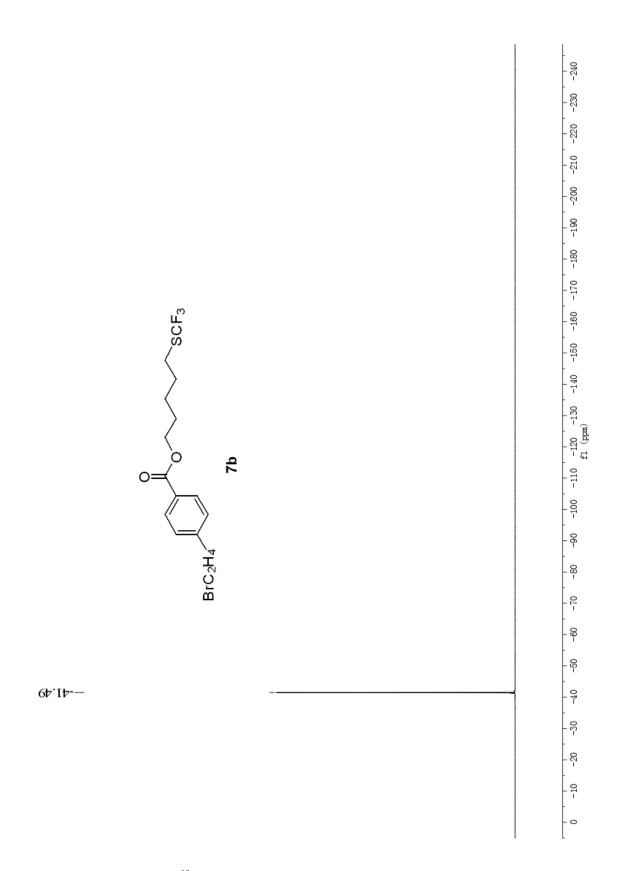

¹H NMR spectrum (400 MHz, CDCl₃) of **5b**

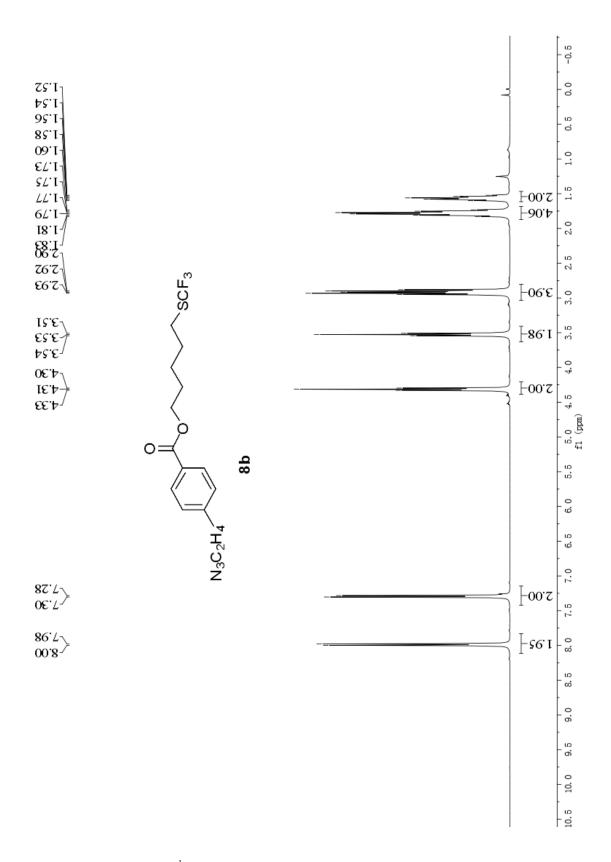

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 5b

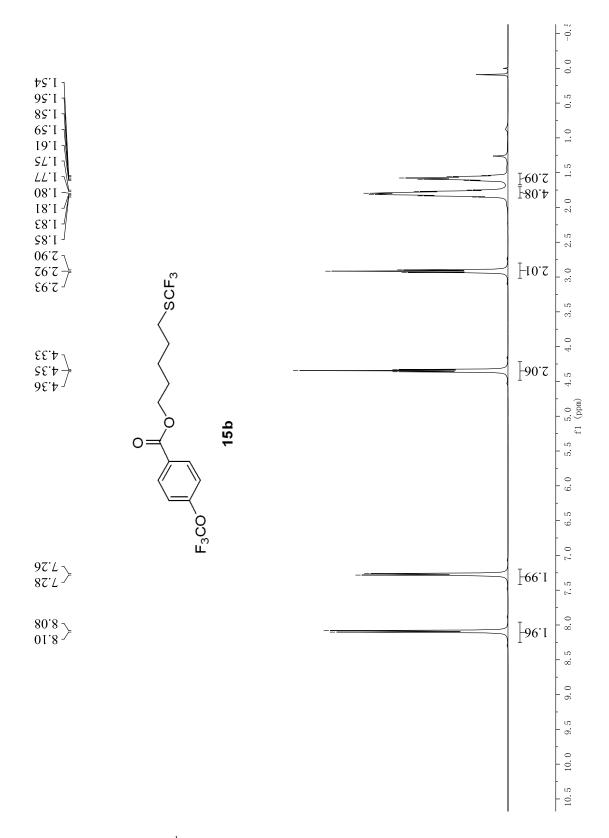

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of $\mathbf{5b}$

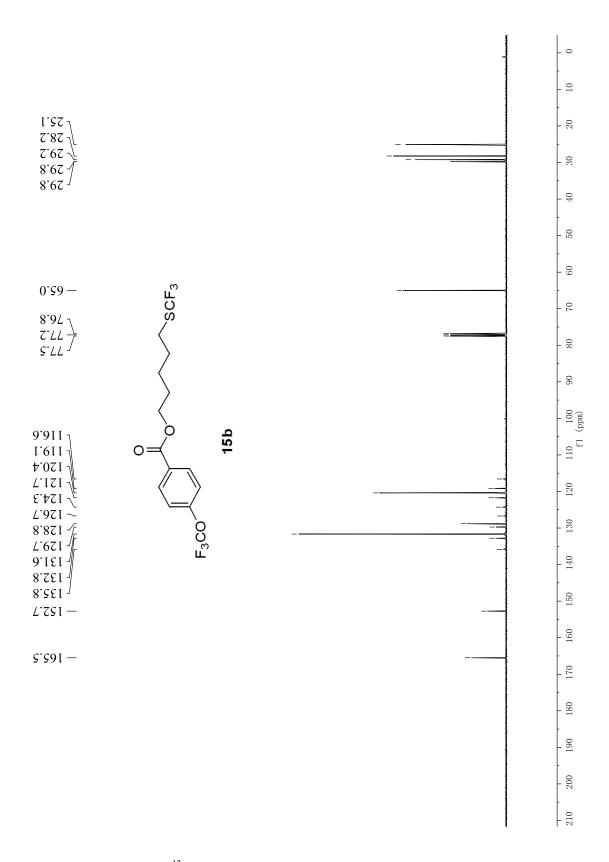

 ^1H NMR spectrum (400 MHz, CDCl₃) of 6b

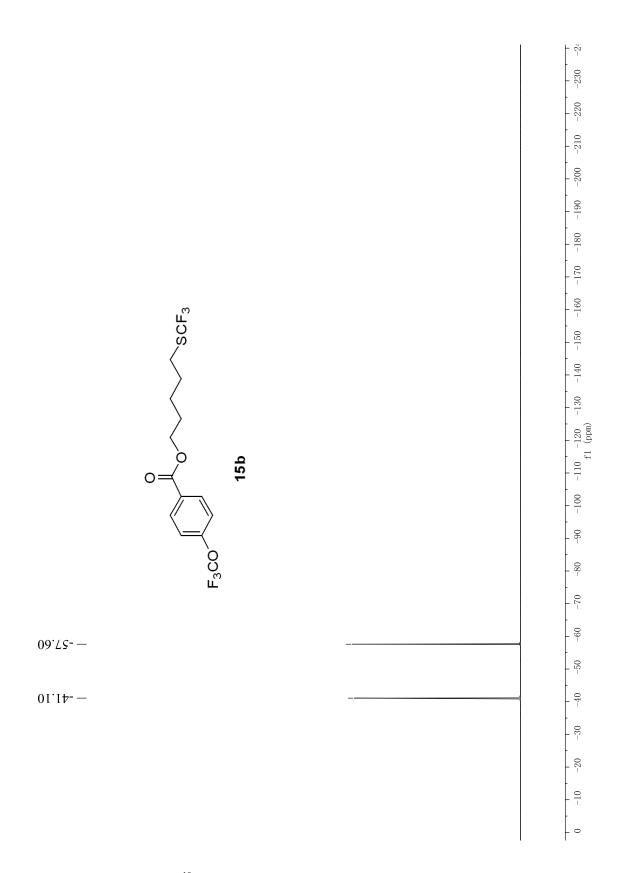

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **6b**

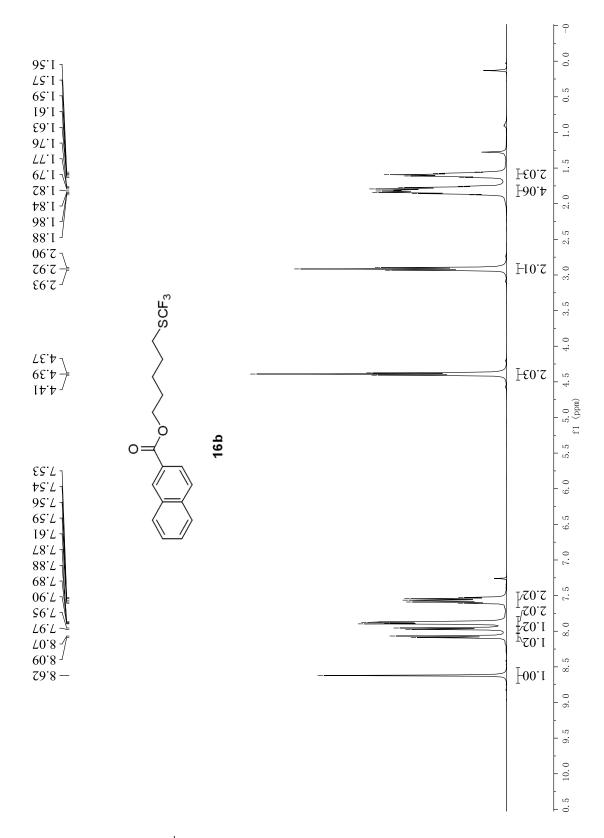

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of $\mathbf{6b}$

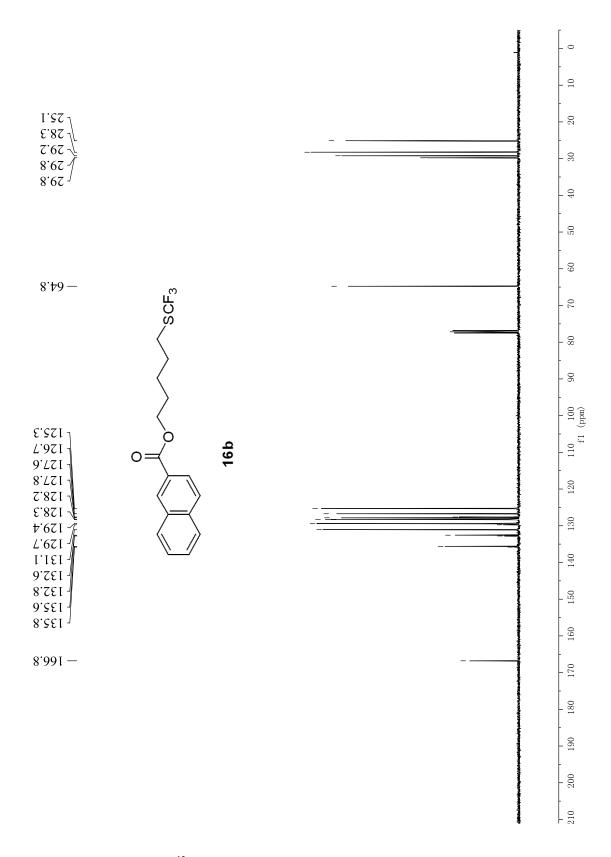

¹H NMR spectrum (400 MHz, CDCl₃) of **7b**

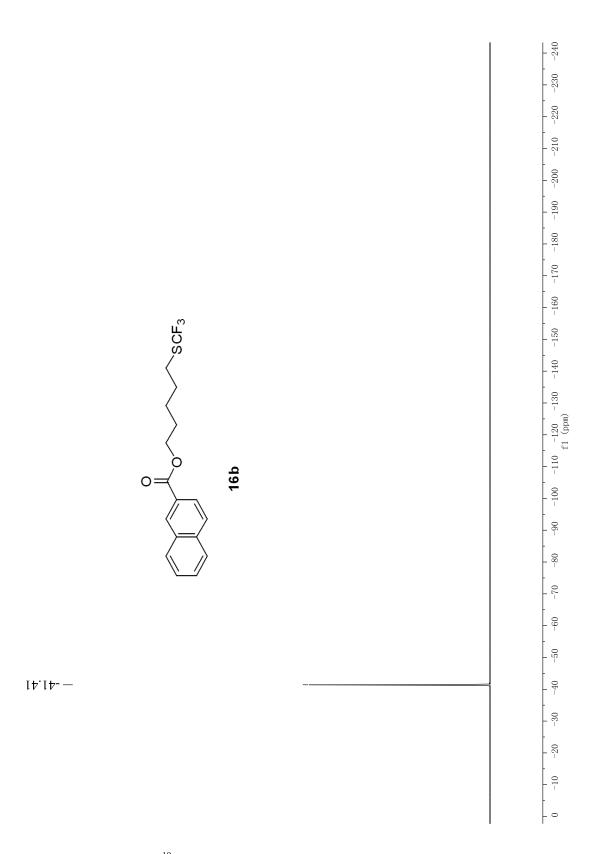

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 7b

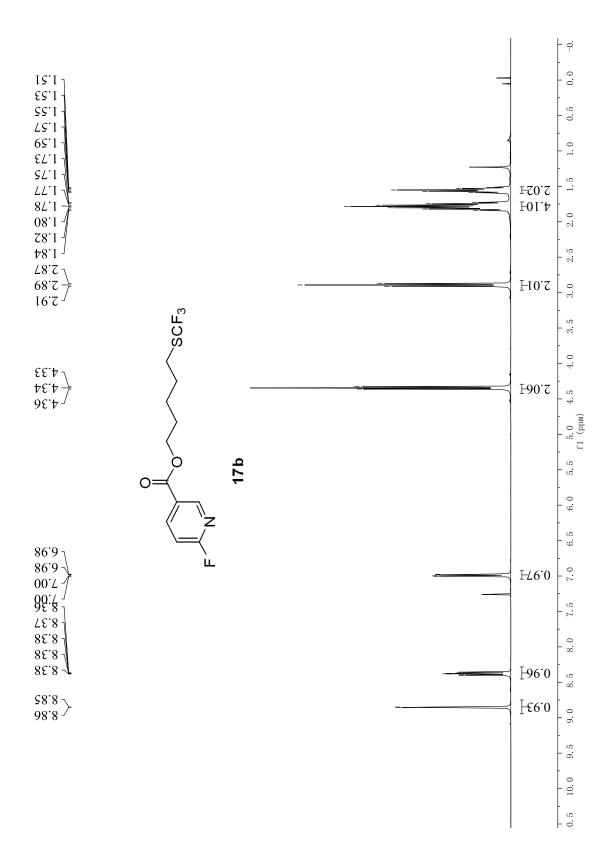

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 7b

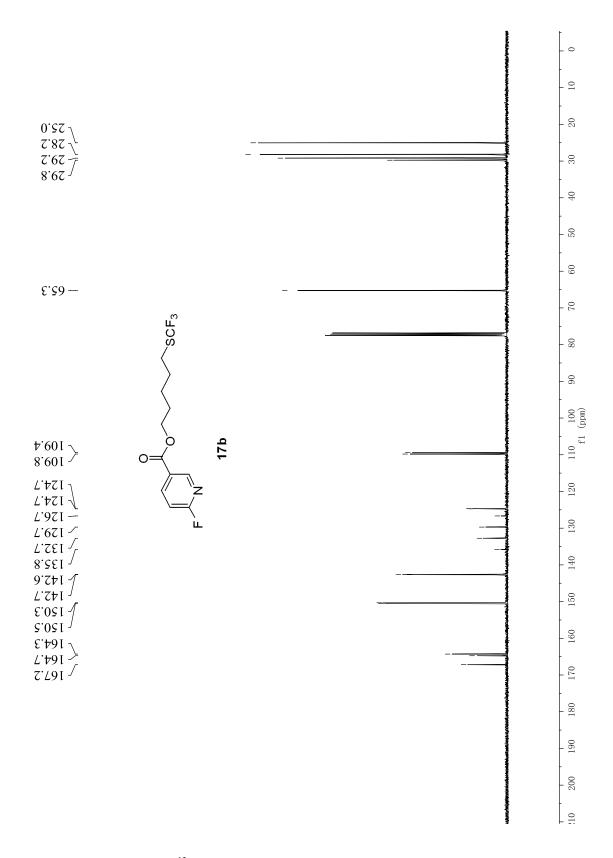

¹H NMR spectrum (400 MHz, CDCl₃) of **8b**

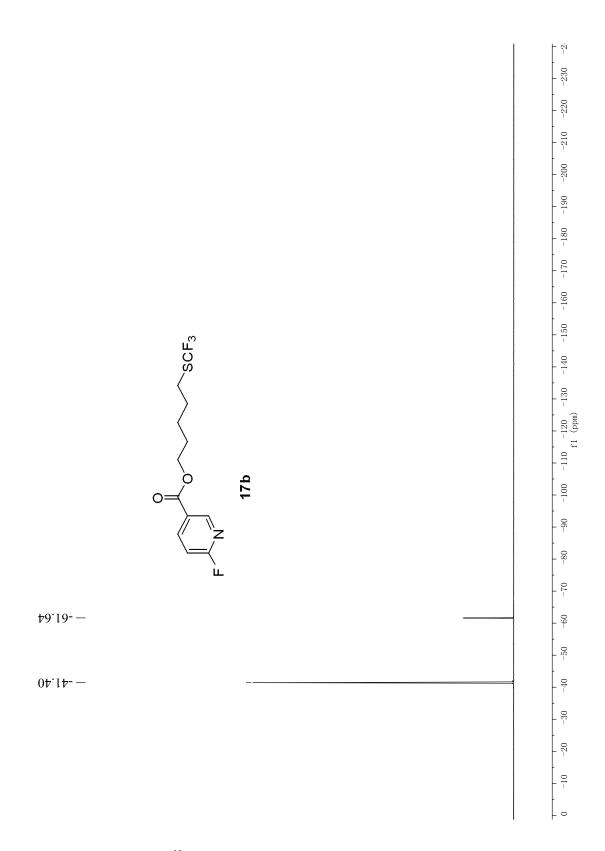

 ^1H NMR spectrum (400 MHz, CDCl₃) of 15b

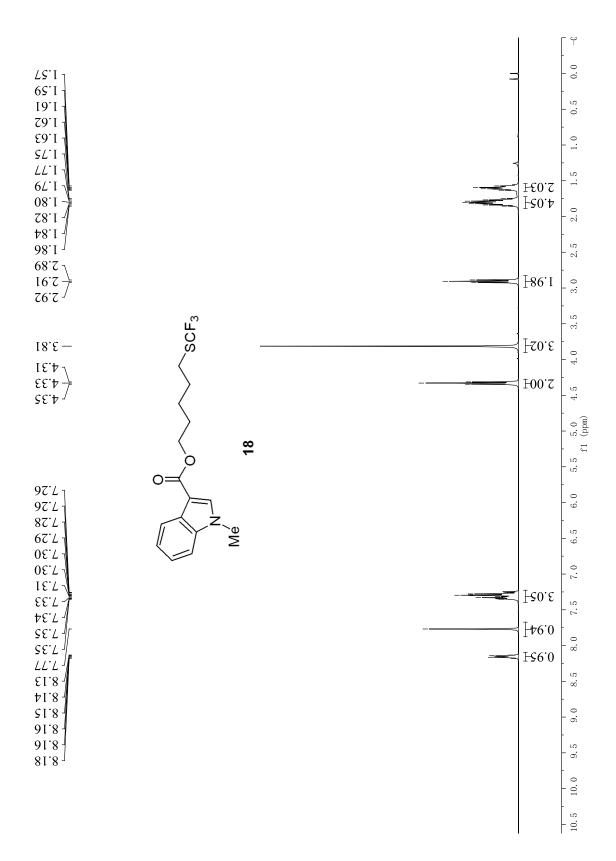

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 15b

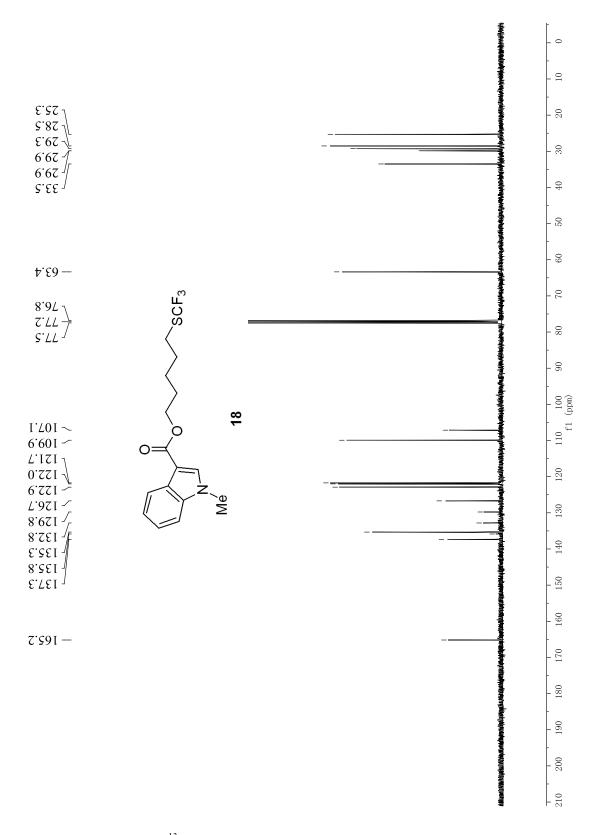

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 15b

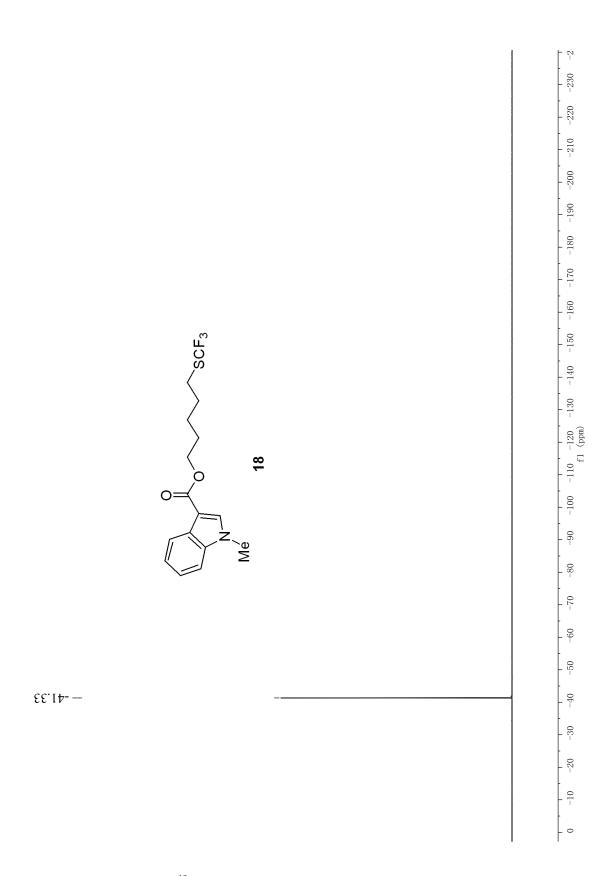

¹H NMR spectrum (400 MHz, CDCl₃) of **16b**

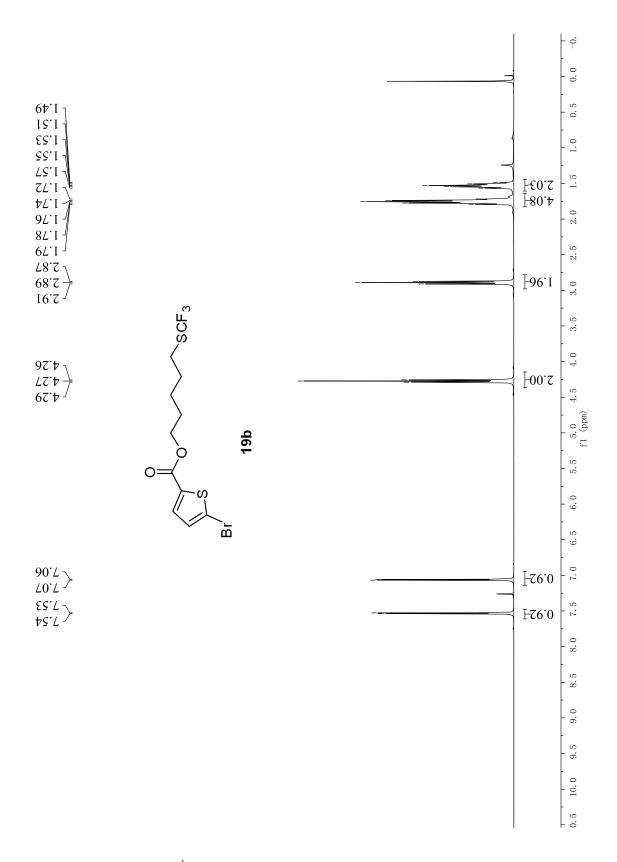

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 16b

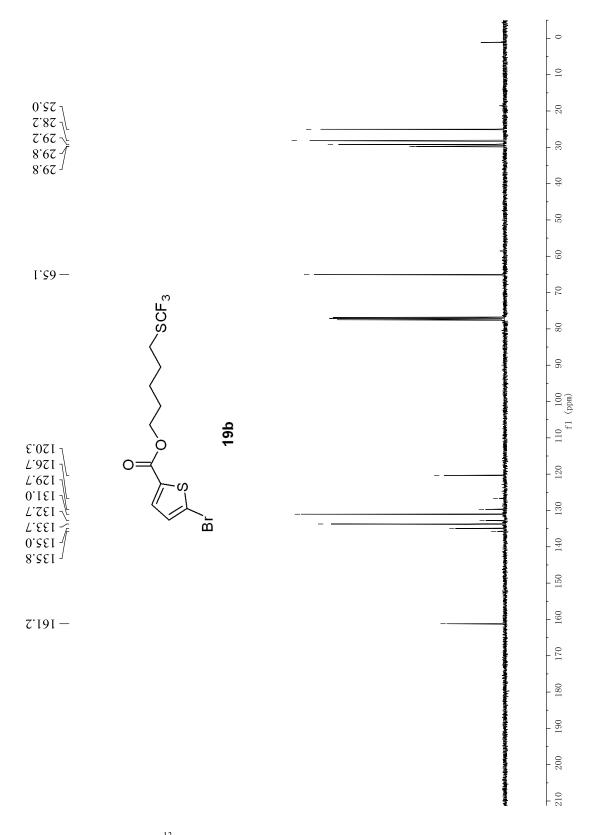

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 16b

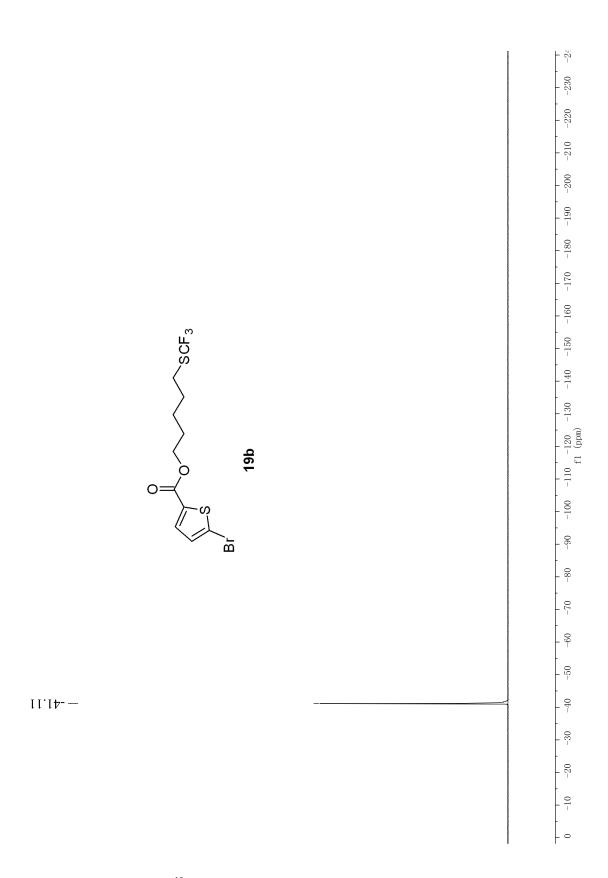

¹H NMR spectrum (400 MHz, CDCl₃) of **17b**

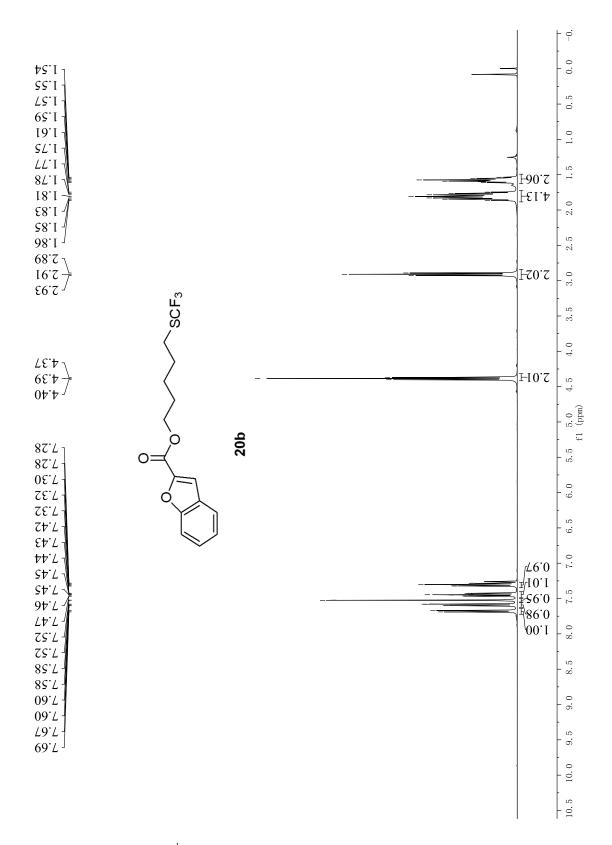

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 17b

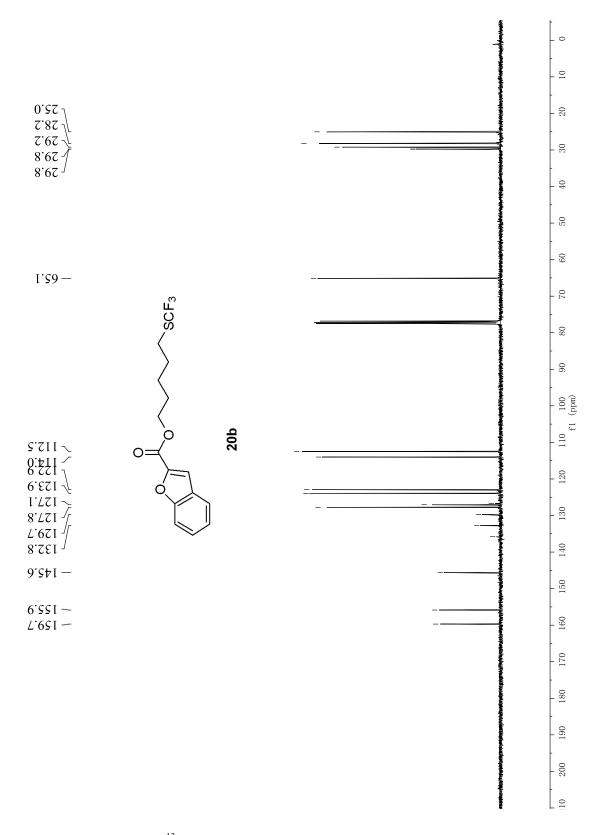

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 17b

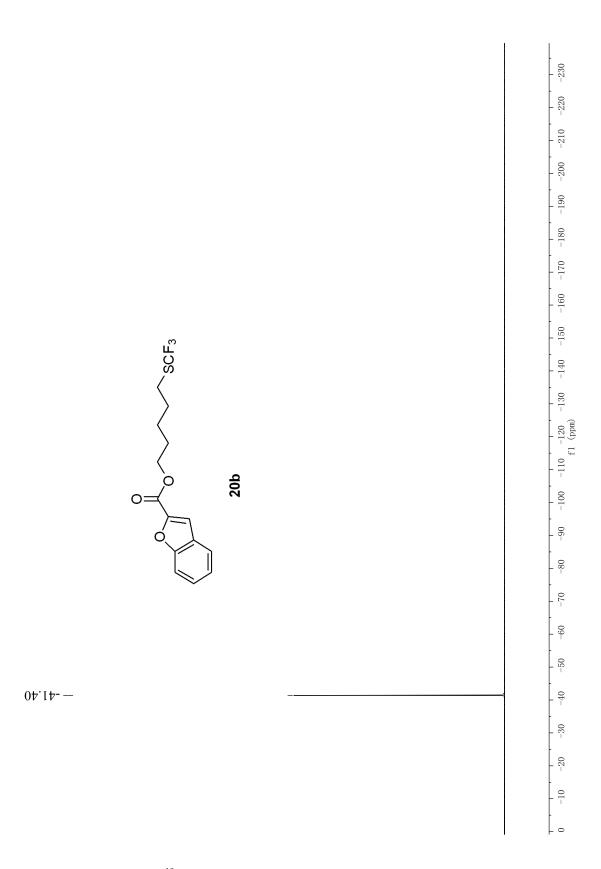

¹H NMR spectrum (400 MHz, $CDCl_3$) of **18**

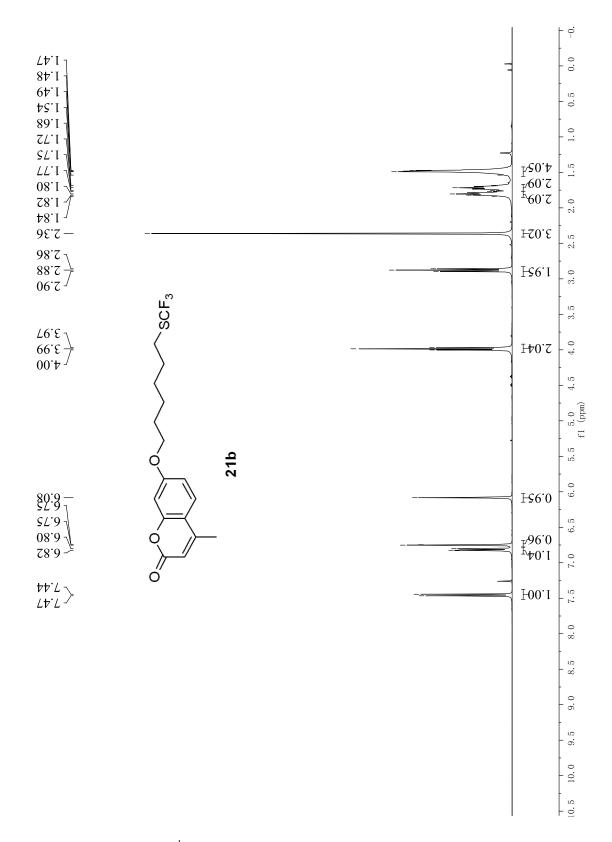

¹³C NMR spectrum (101 MHz, CDCl₃) of **18**

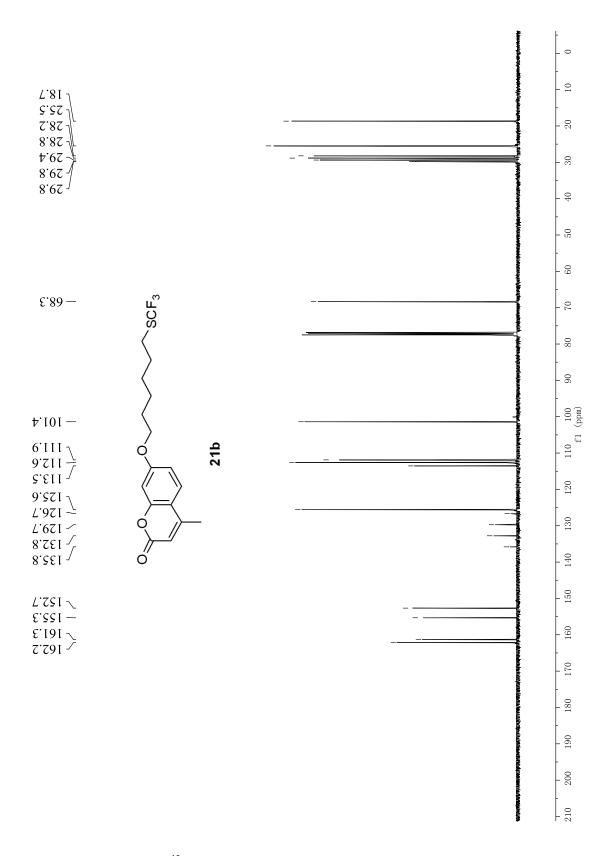

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 18

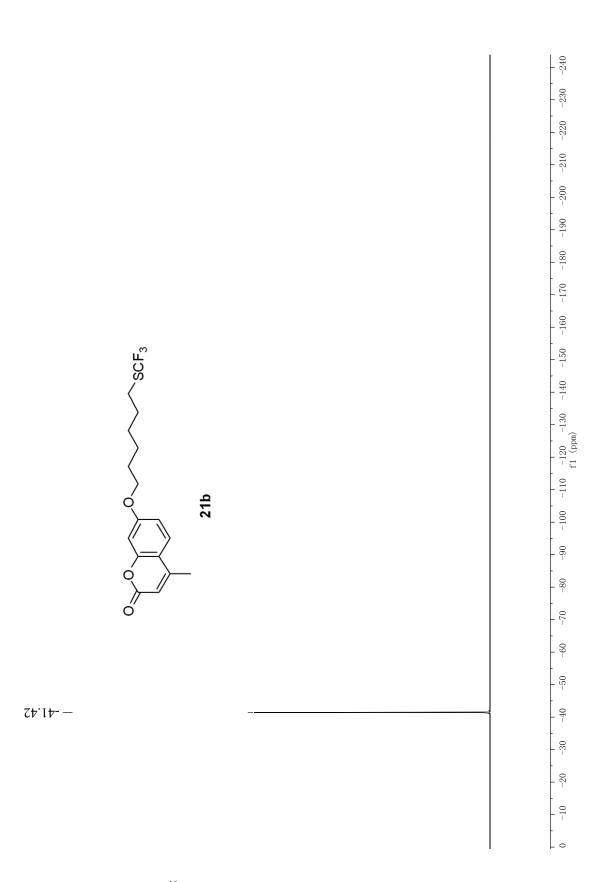

¹H NMR spectrum (400 MHz, CDCl₃) of **19b**

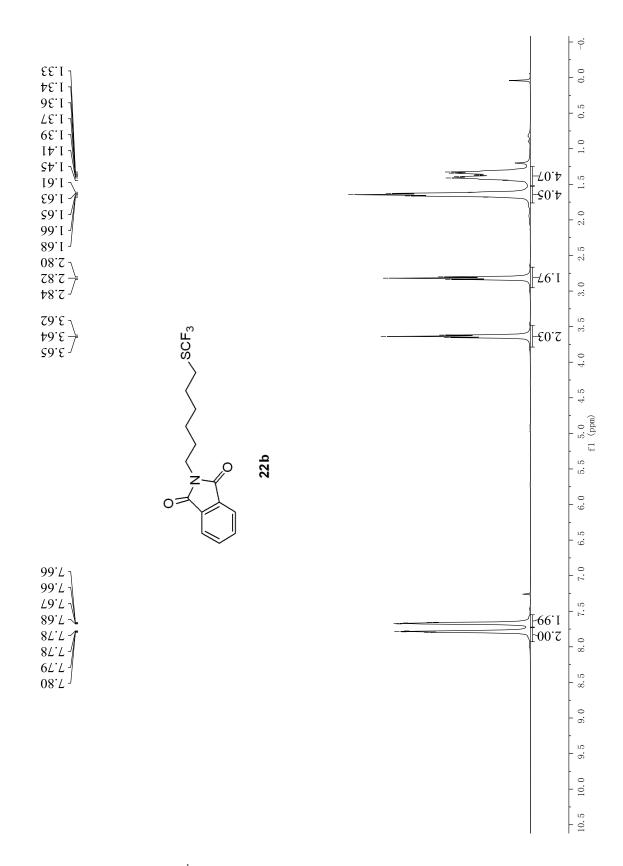

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 19b


 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 19b

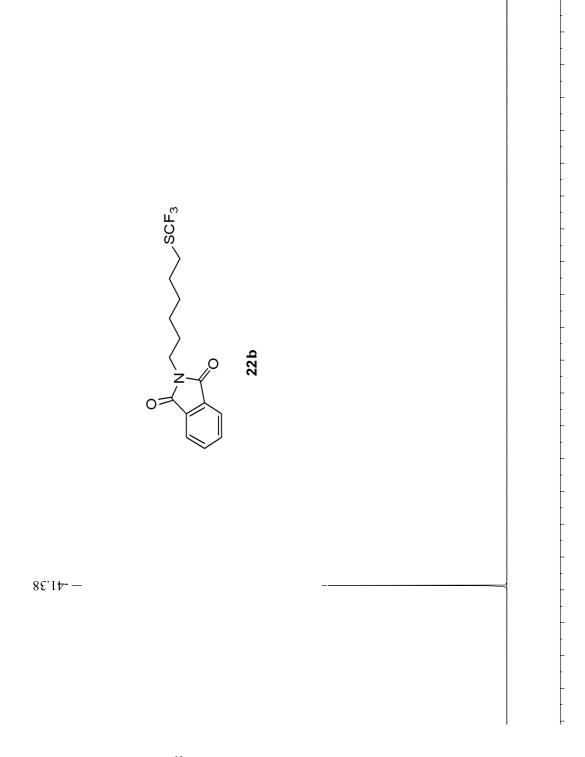

 ^1H NMR spectrum (400 MHz, CDCl₃) of 20b

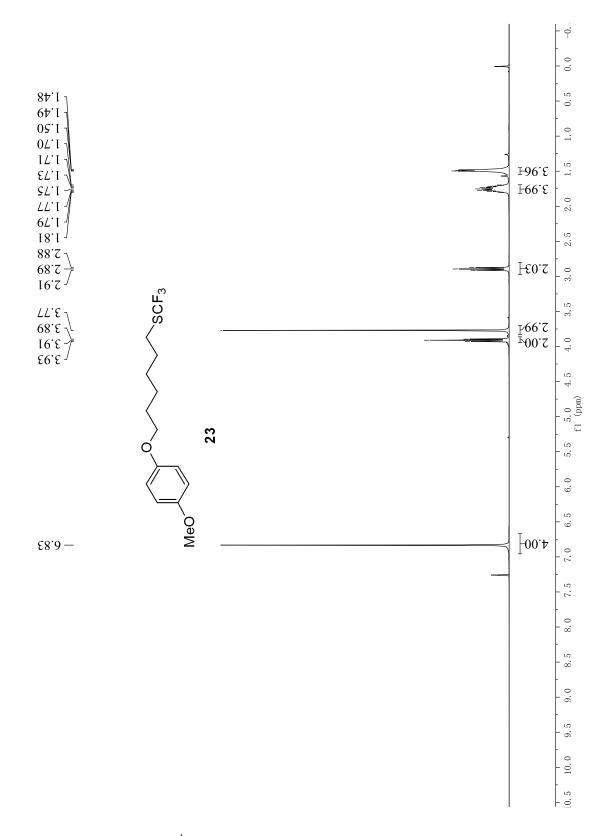

¹³C NMR spectrum (101 MHz, CDCl₃) of **20b**

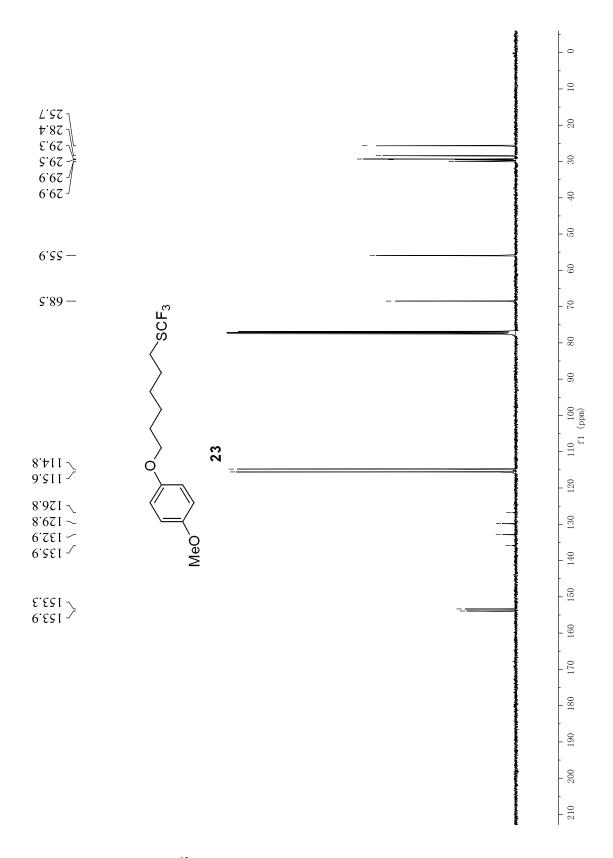

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 20b


 1 H NMR spectrum (400 MHz, CDCl₃) of **21b**

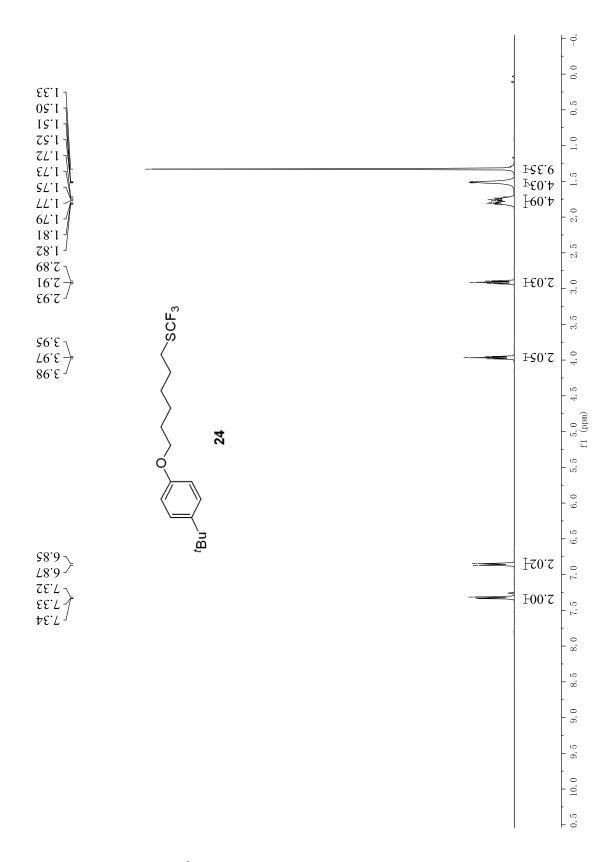
 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **21b**

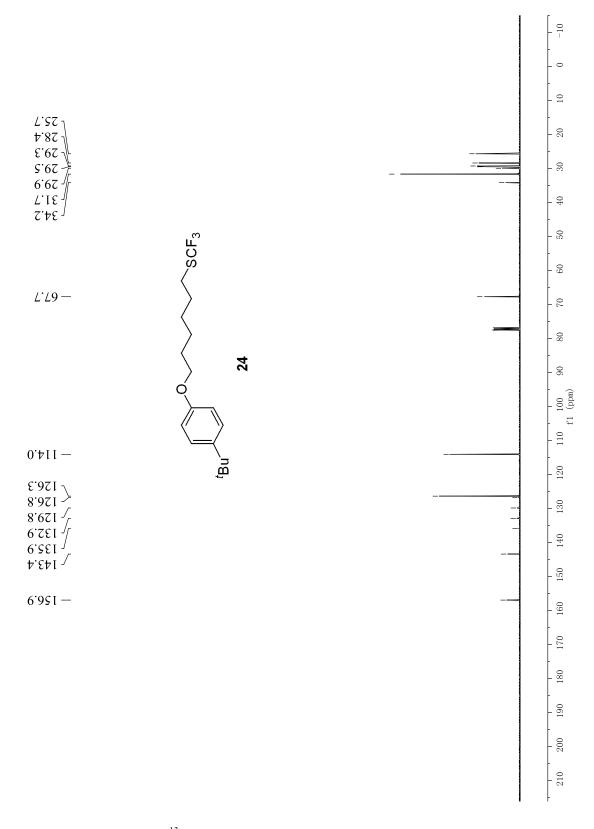

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of $\boldsymbol{21b}$

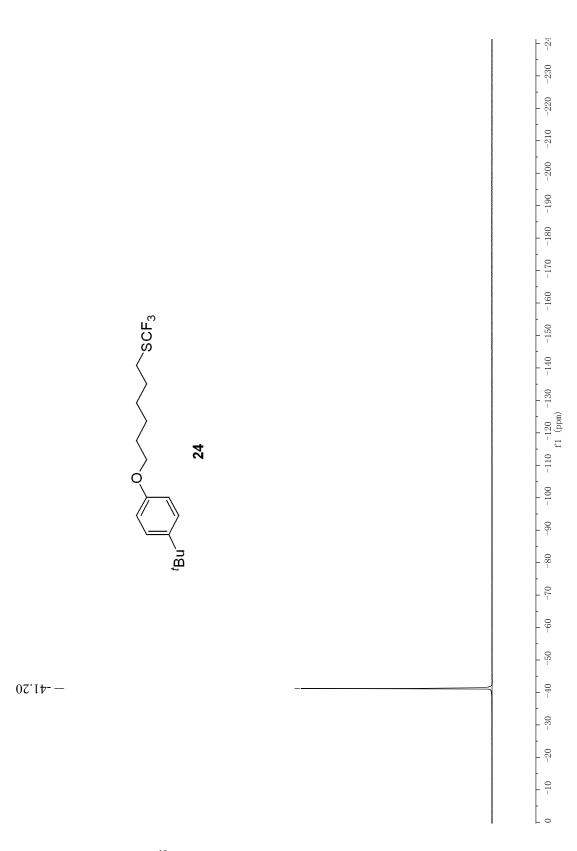

¹H NMR spectrum (400 MHz, CDCl₃) of **22b**

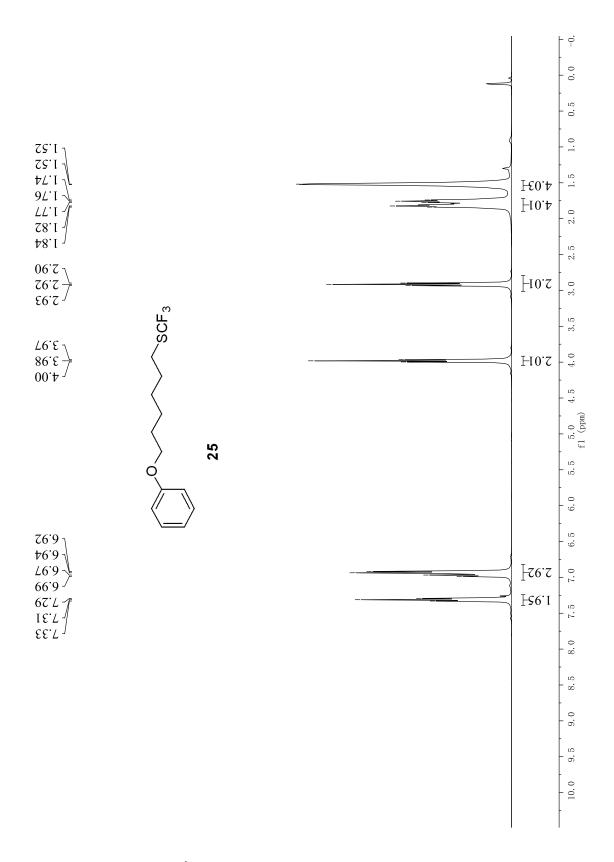

¹³C NMR spectrum (101 MHz, CDCl₃) of **22b**

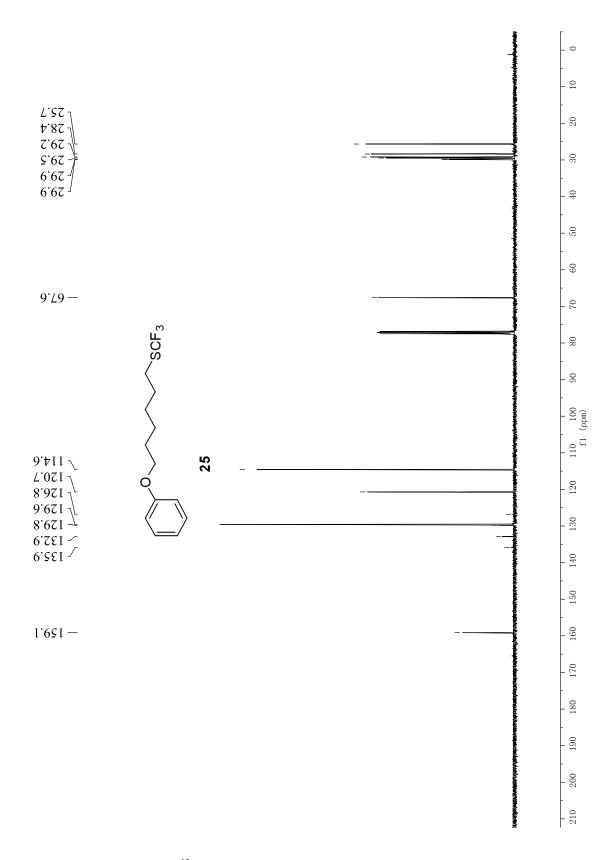
 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 22b

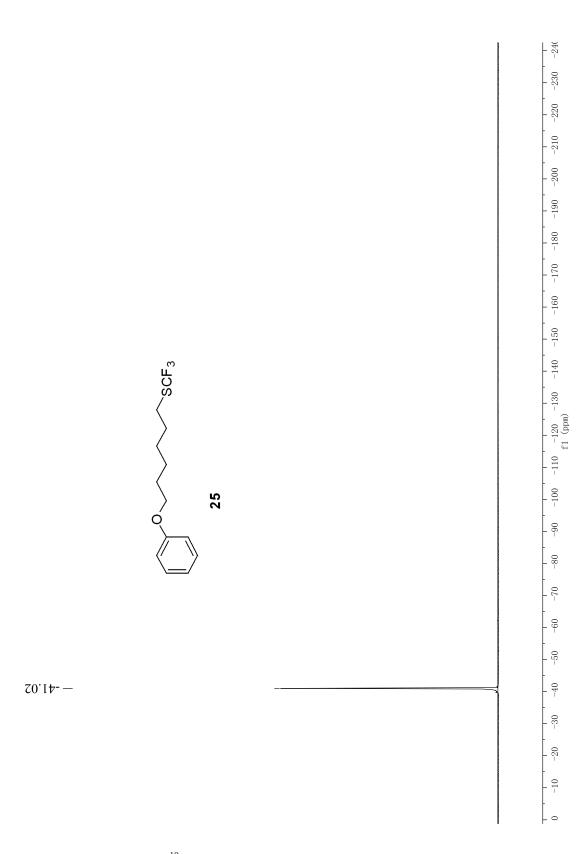

¹H NMR spectrum (400 MHz, CDCl₃) of **23**

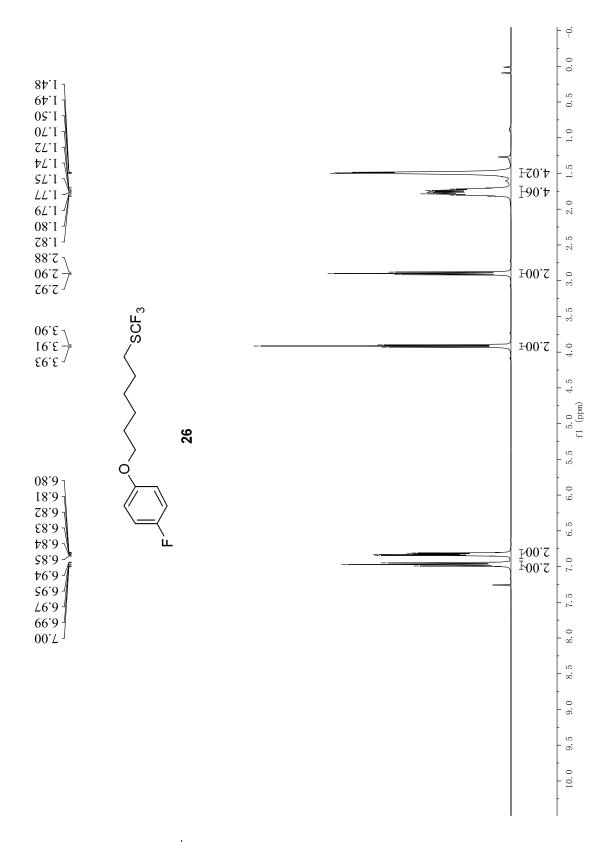

¹³C NMR spectrum (101 MHz, CDCl₃) of **23**

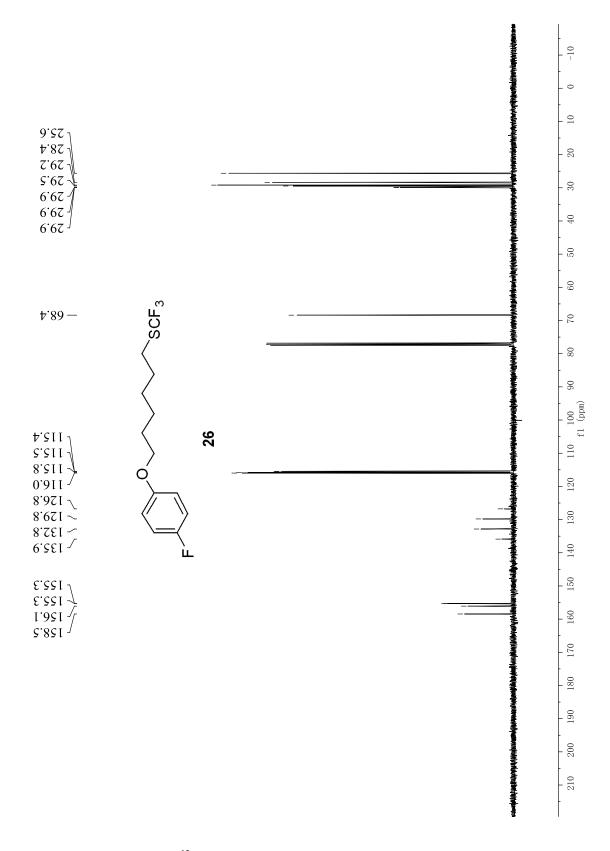

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of **23**

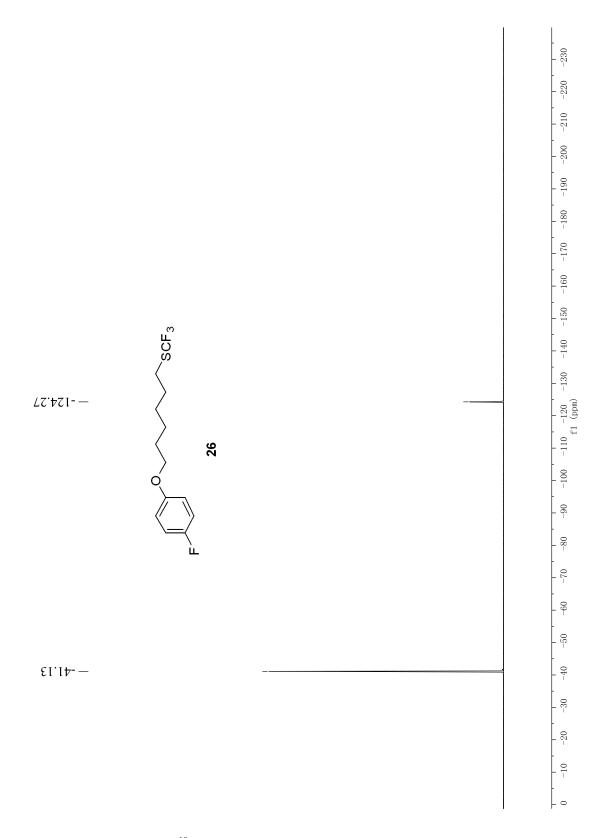

¹H NMR spectrum (400 MHz, CDCl₃) of **24**

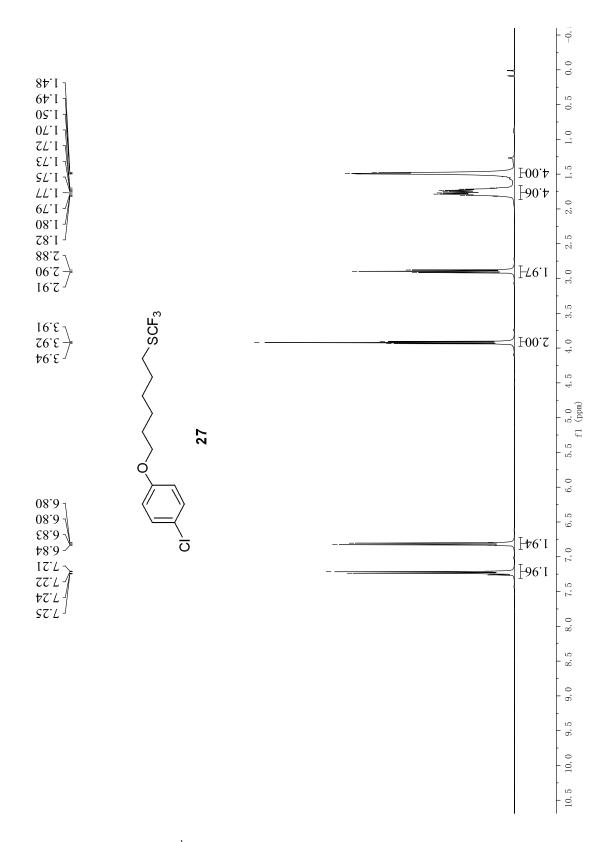

¹³C NMR spectrum (101 MHz, CDCl₃) of **24**

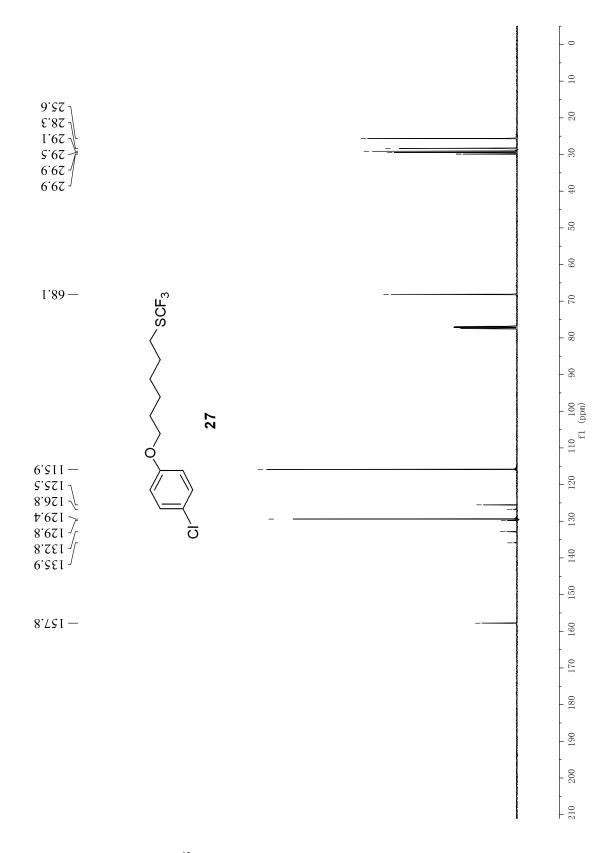

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of **24**

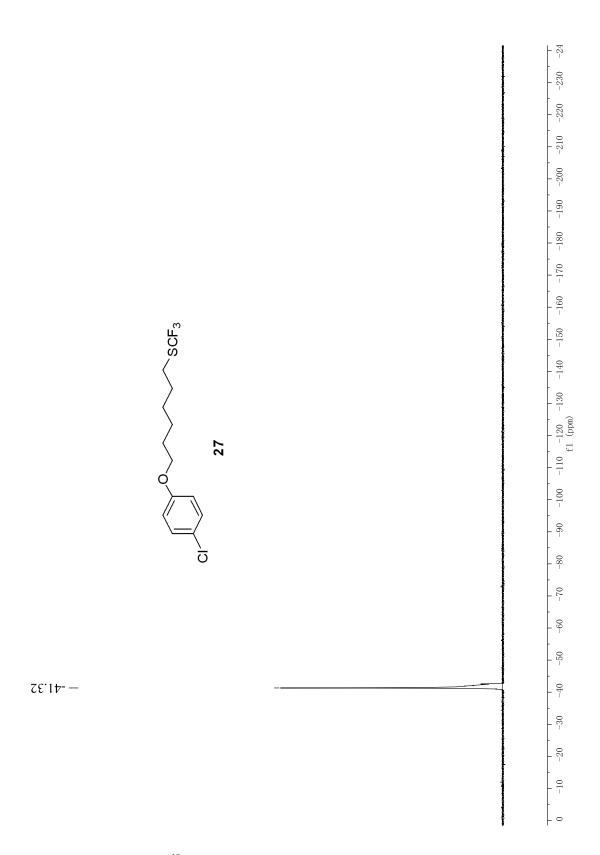

¹H NMR spectrum (400 MHz, CDCl₃) of **25**

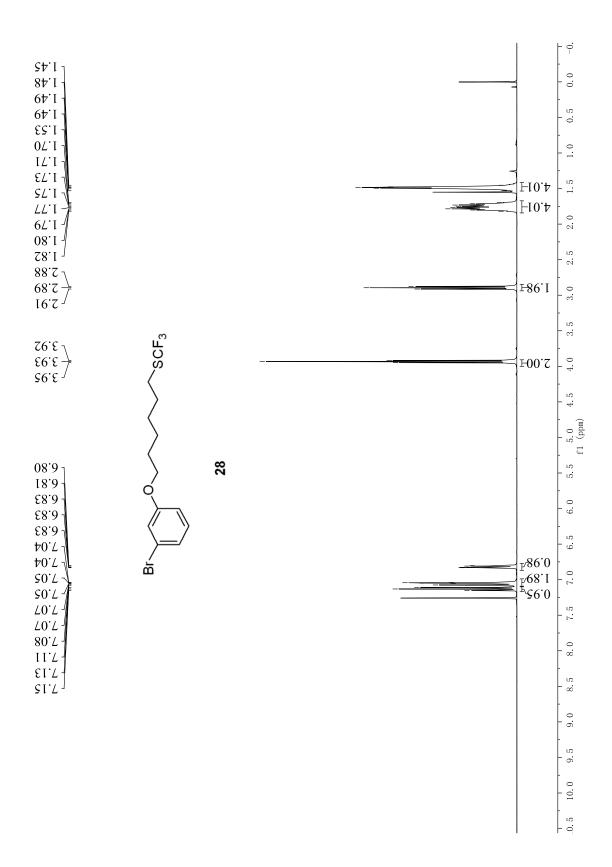

 ^{13}C NMR spectrum (101 MHz, CDCl_3) of 25

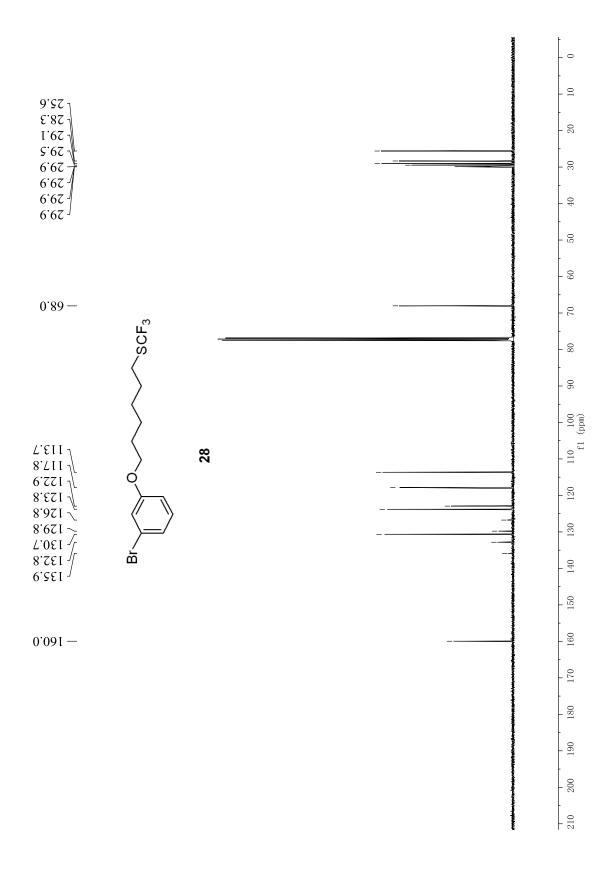

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of $\mathbf{25}$

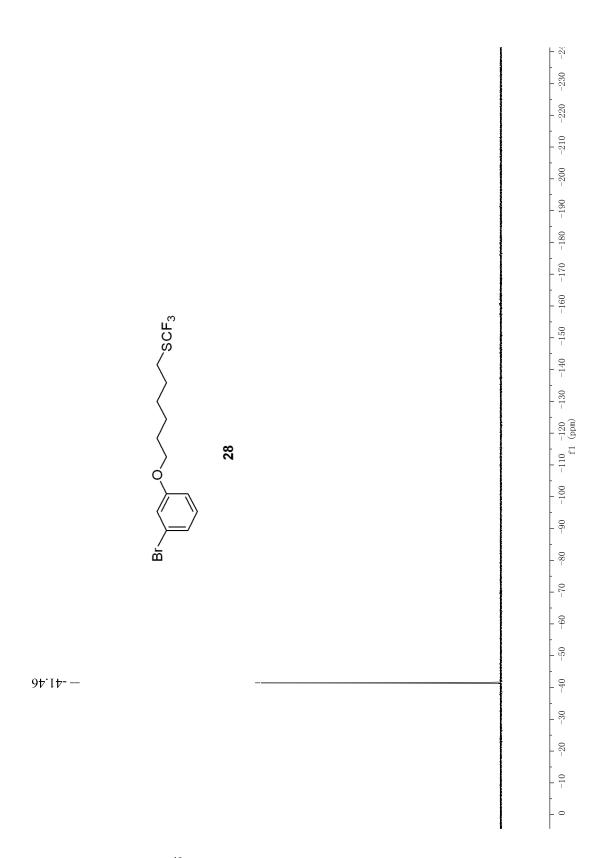

¹H NMR spectrum (400 MHz, CDCl₃) of 26

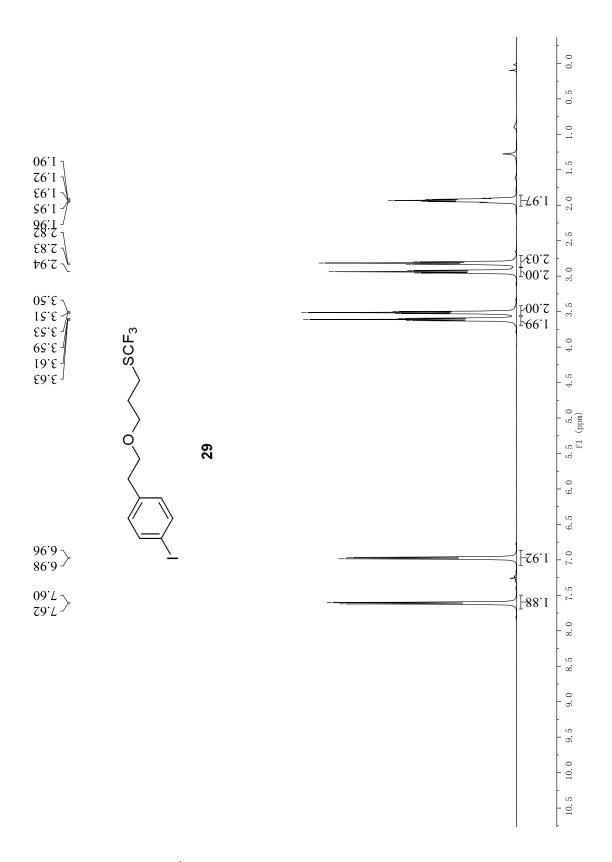

¹³C NMR spectrum (101 MHz, CDCl₃) of **26**

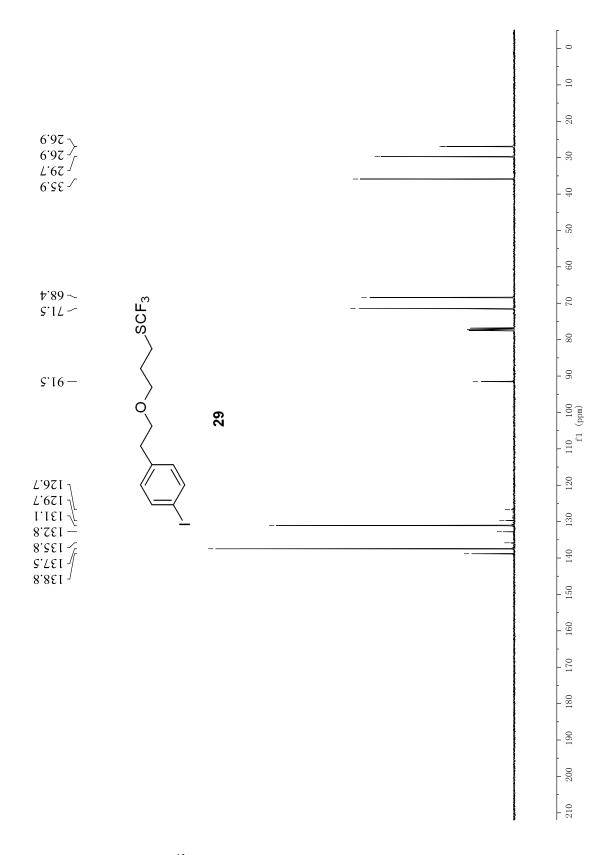

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 26

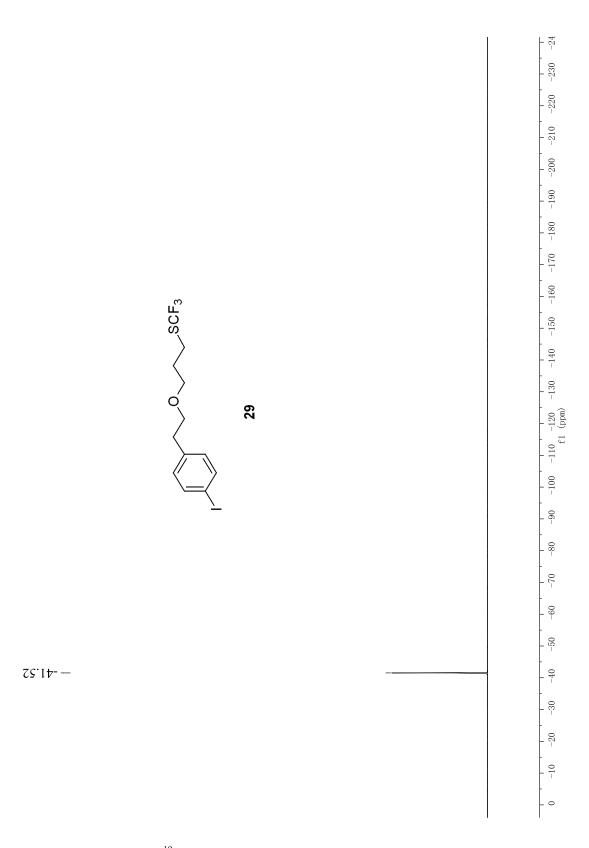

 1 H NMR spectrum (400 MHz, CDCl₃) of **27**

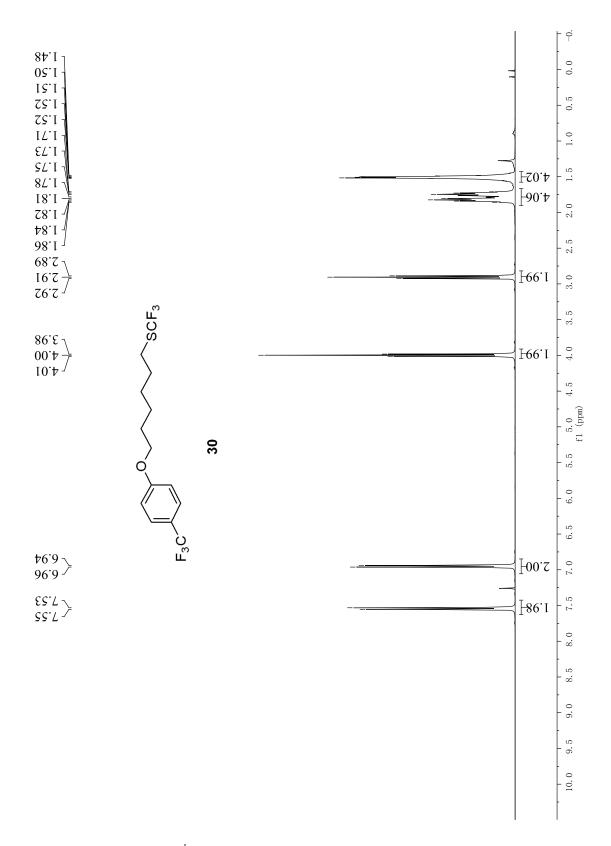

 ^{13}C NMR spectrum (101 MHz, CDCl_3) of 27

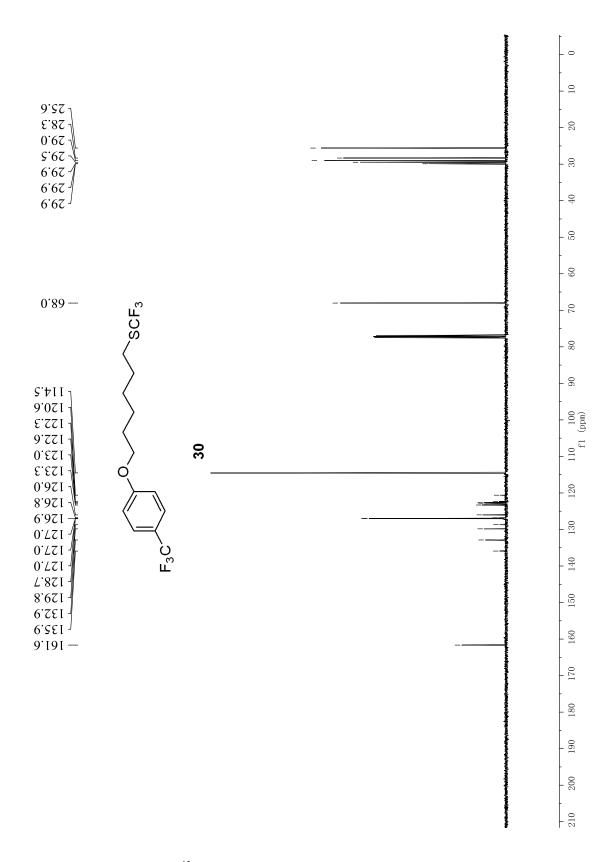

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of $\boldsymbol{27}$

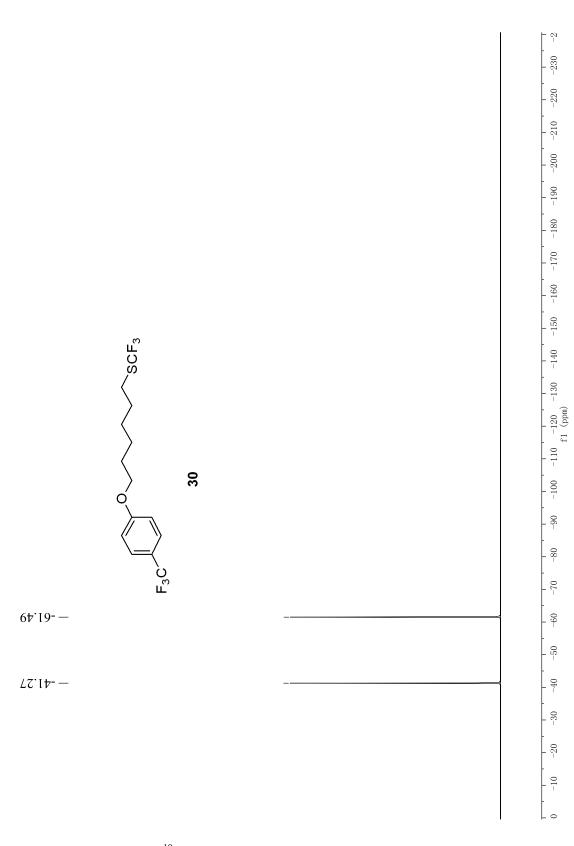

¹H NMR spectrum (400 MHz, $CDCl_3$) of **28**

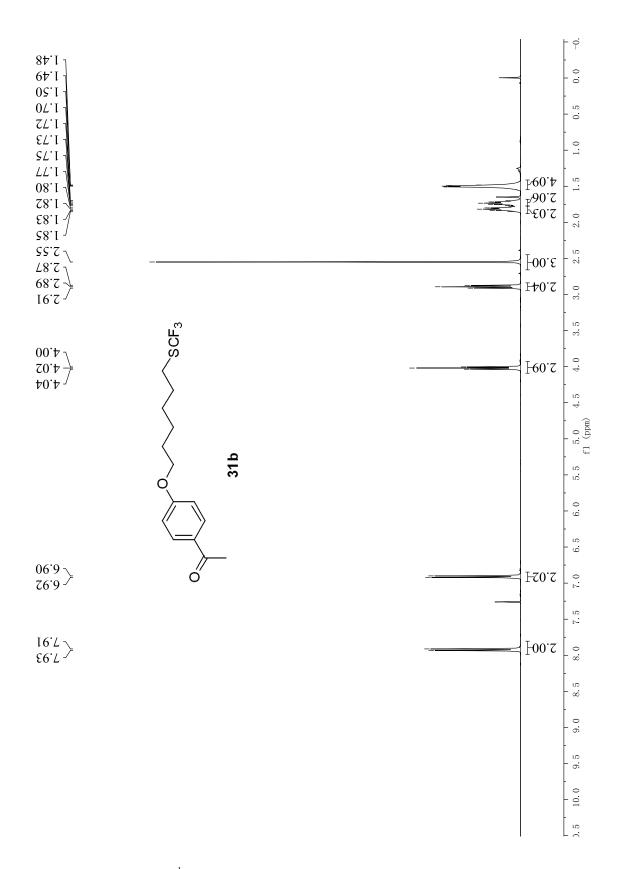

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 28

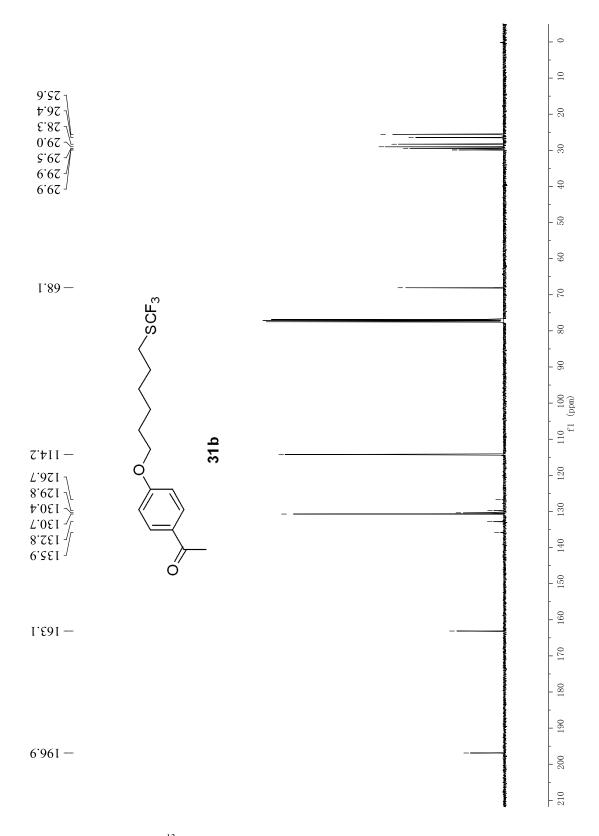

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **28**

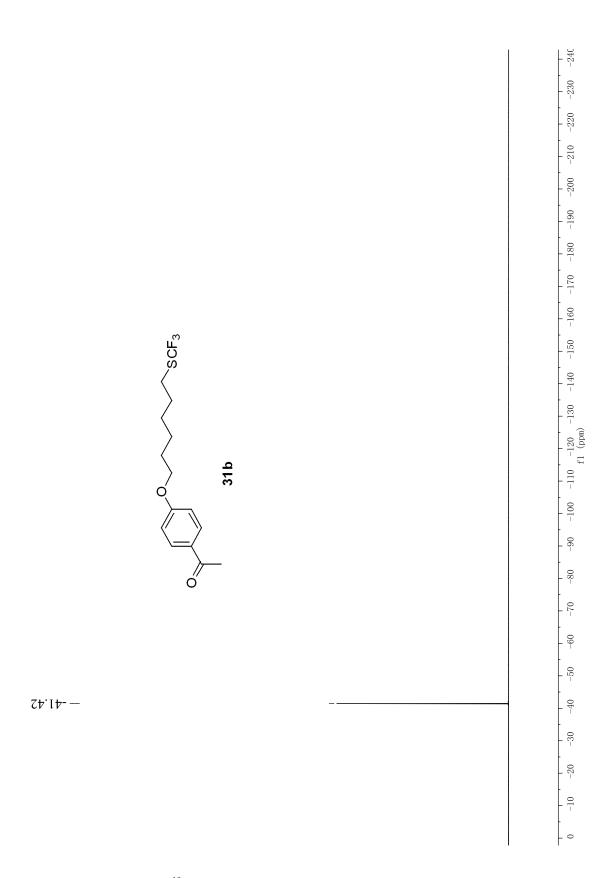

¹H NMR spectrum (400 MHz, CDCl₃) of **29**

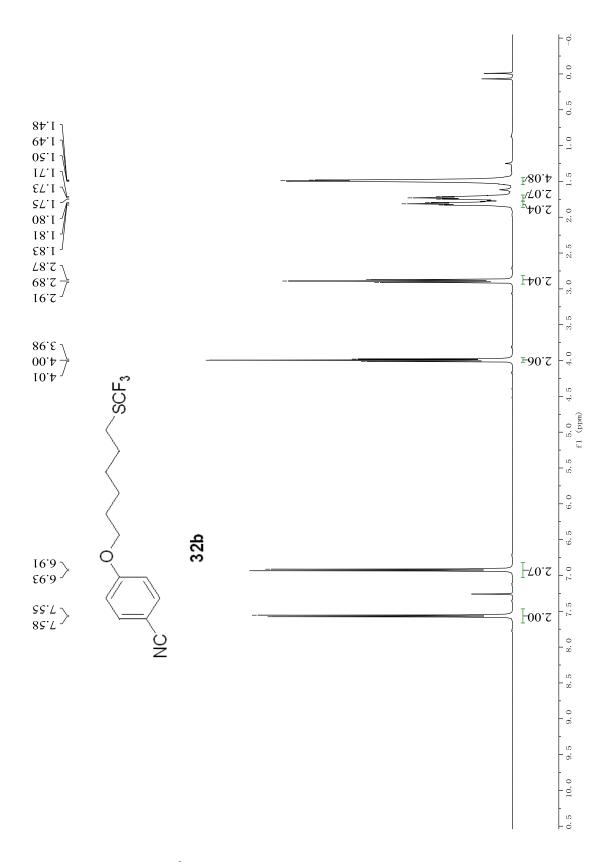

¹³C NMR spectrum (101 MHz, CDCl₃) of **29**

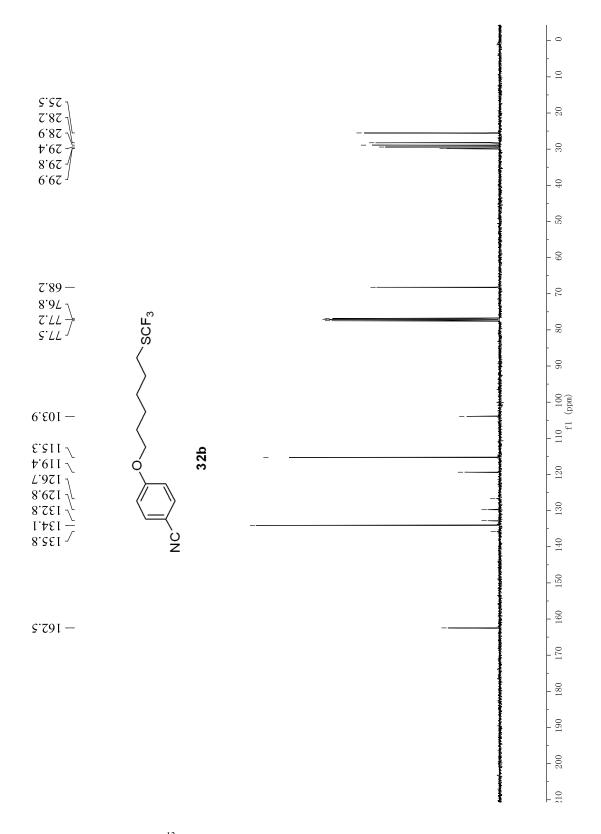

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **29**

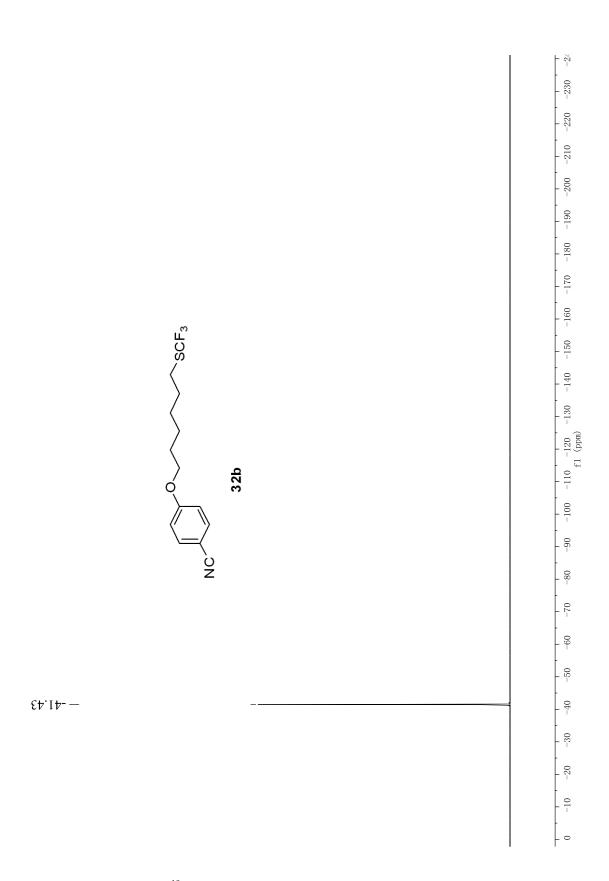

 1 H NMR spectrum (400 MHz, CDCl₃) of **30**

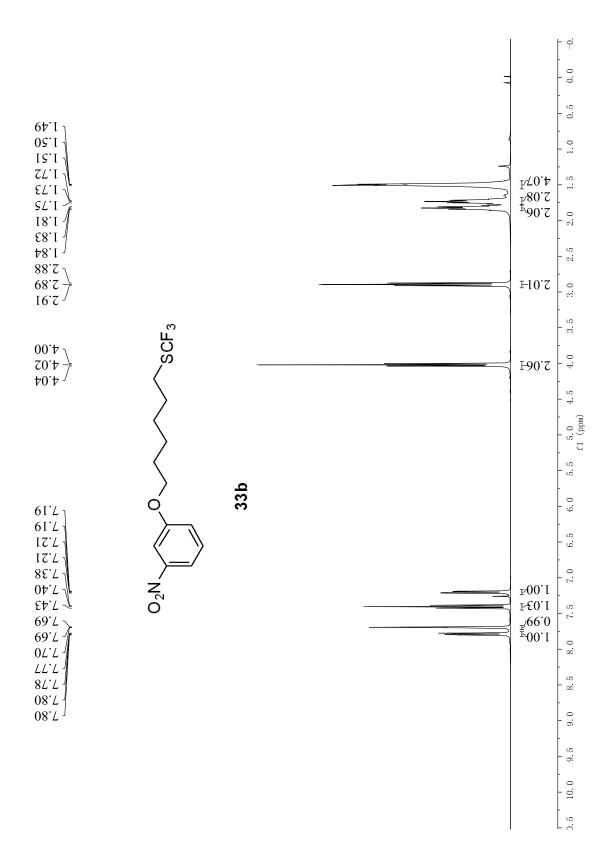

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **30**

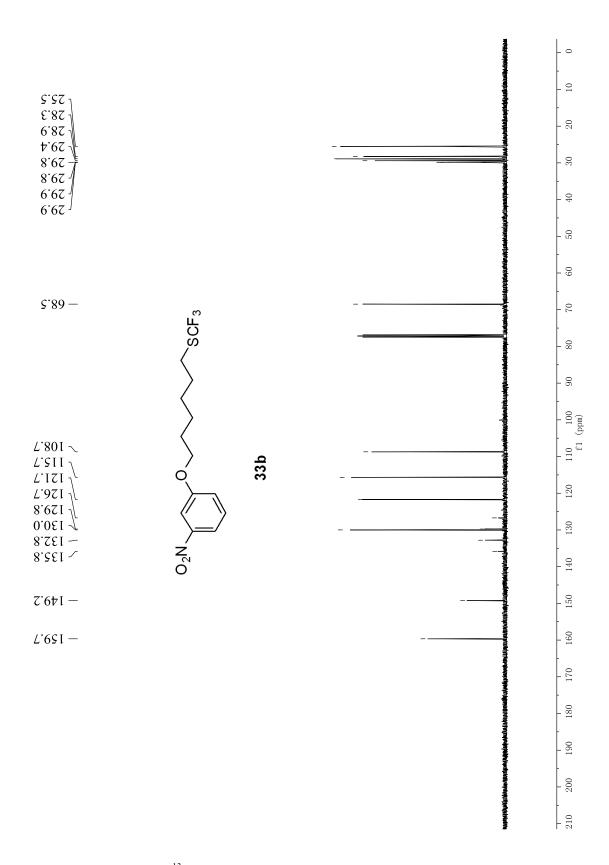

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of **30**

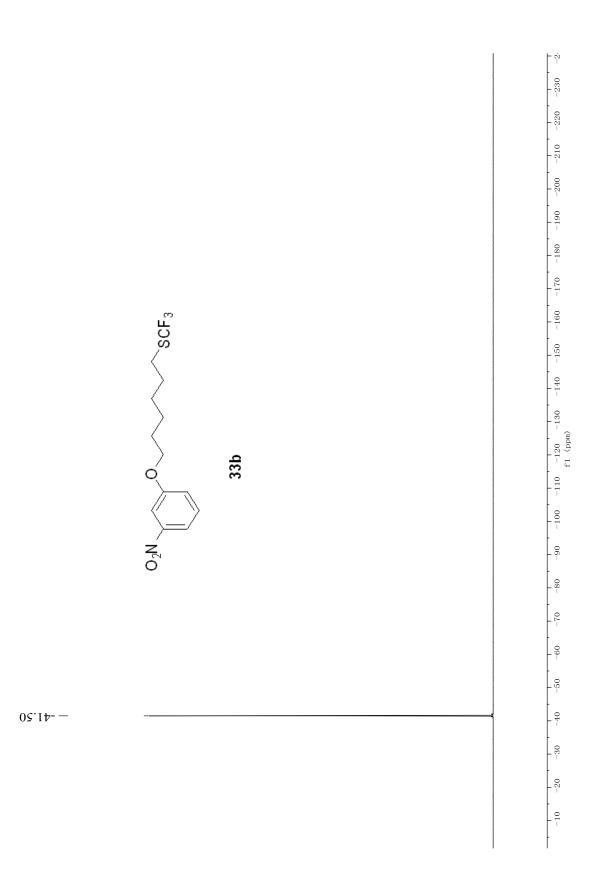

¹H NMR spectrum (400 MHz, CDCl₃) of **31b**

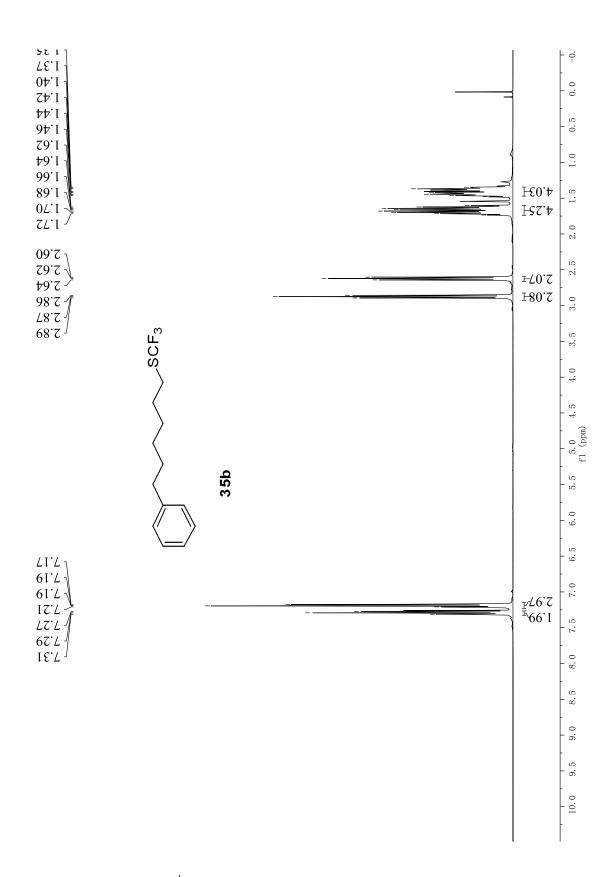

¹³C NMR spectrum (101 MHz, CDCl₃) of **31b**

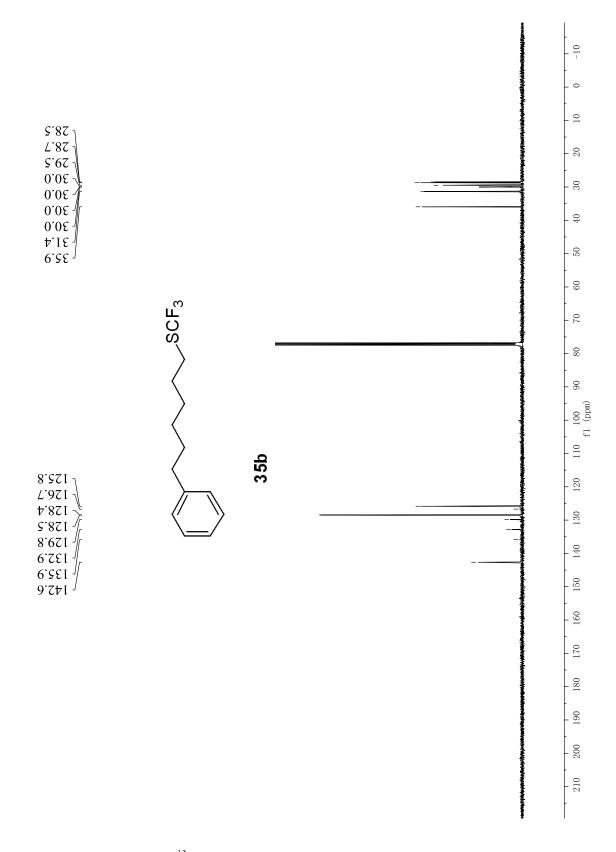

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 31b

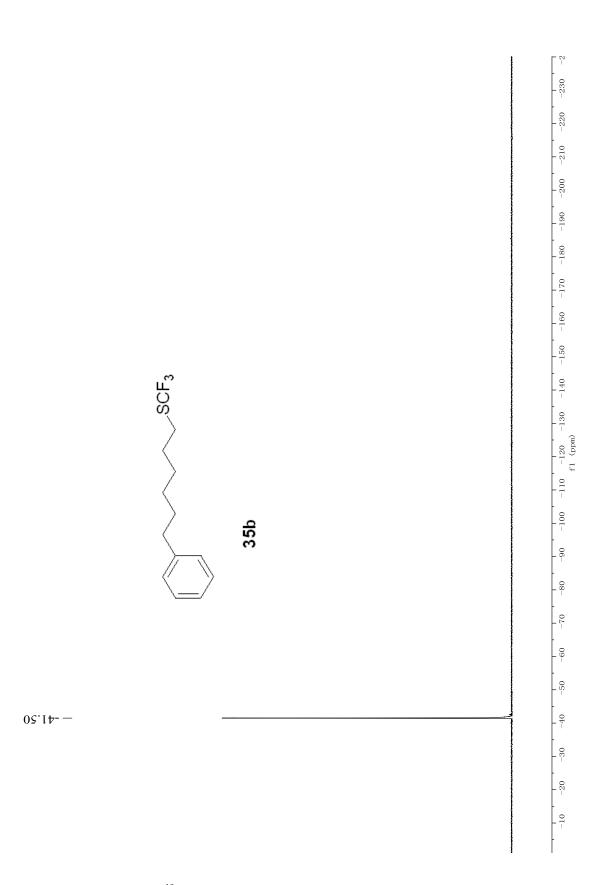

¹H NMR spectrum (400 MHz, CDCl₃) of **32b**

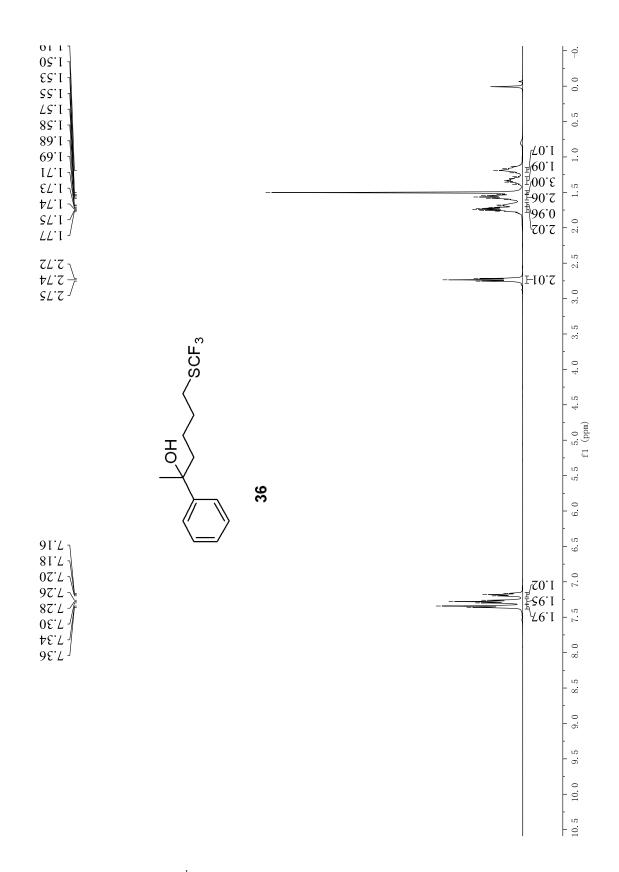

¹³C NMR spectrum (101 MHz, CDCl₃) of **32b**

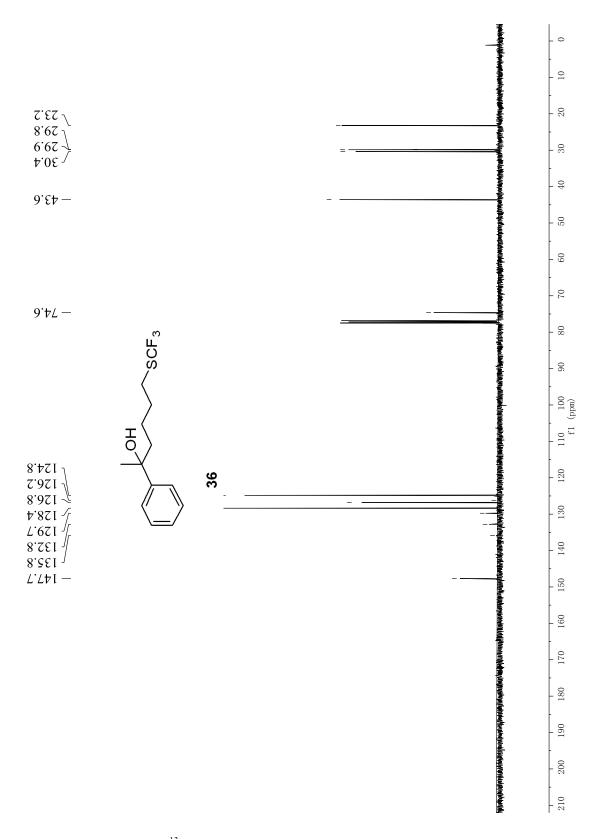

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 32b

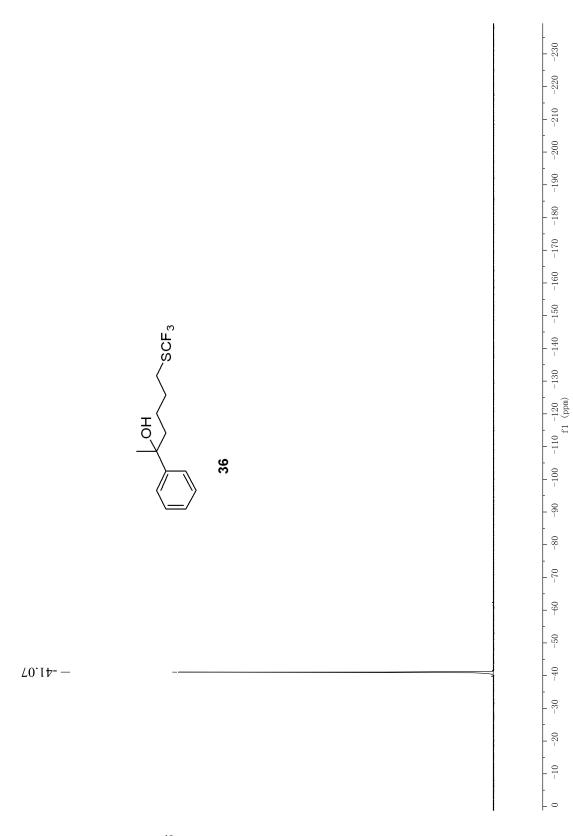

¹H NMR spectrum (400 MHz, CDCl₃) of **33b**

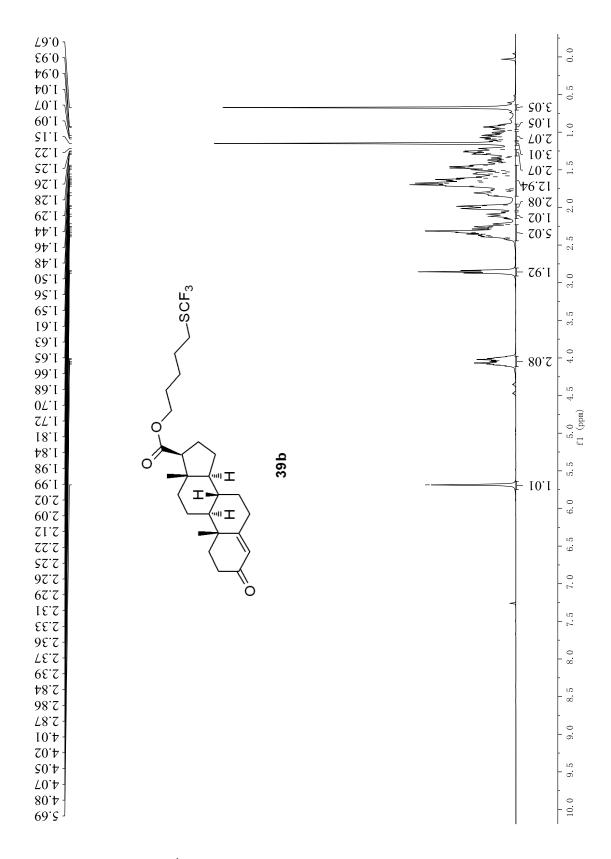

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 33b


 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 33b

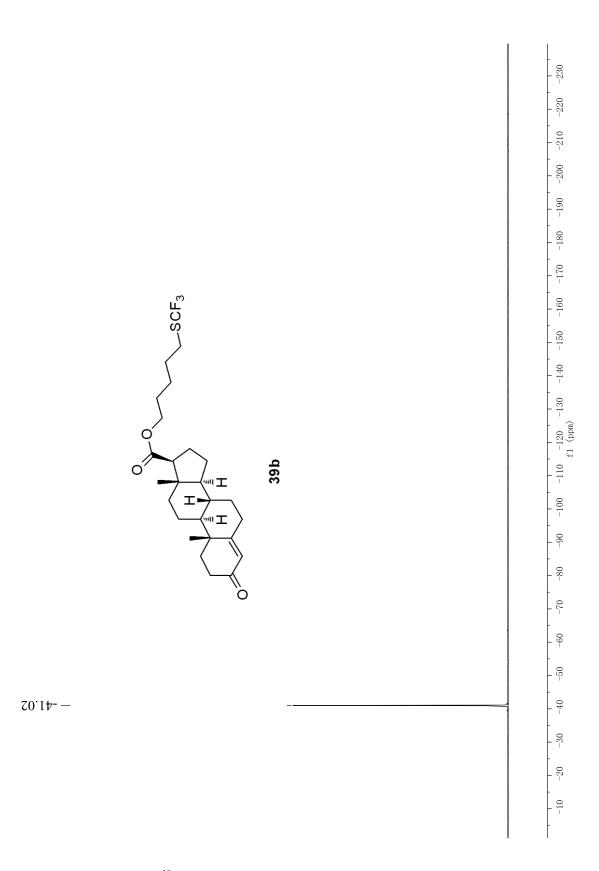

¹H NMR spectrum (400 MHz, CDCl₃) of **35b**

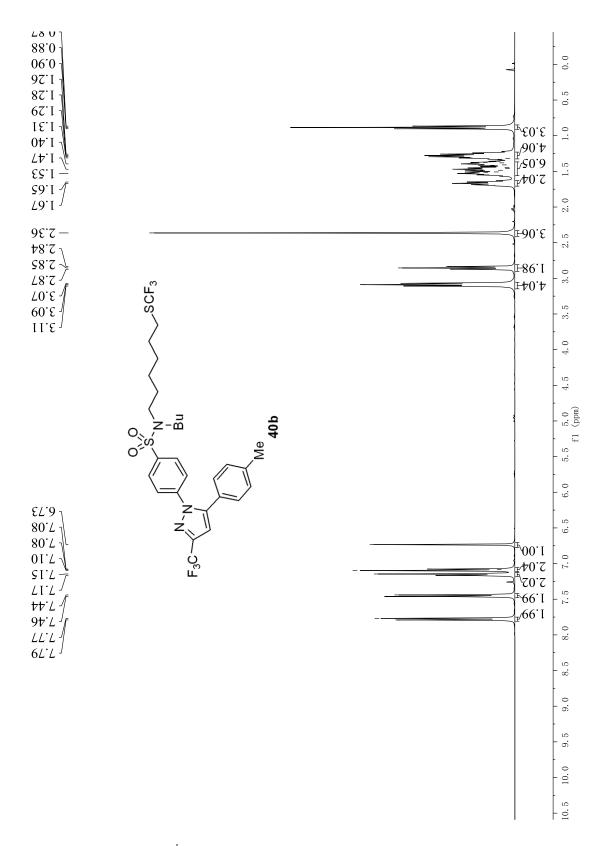

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **35b**

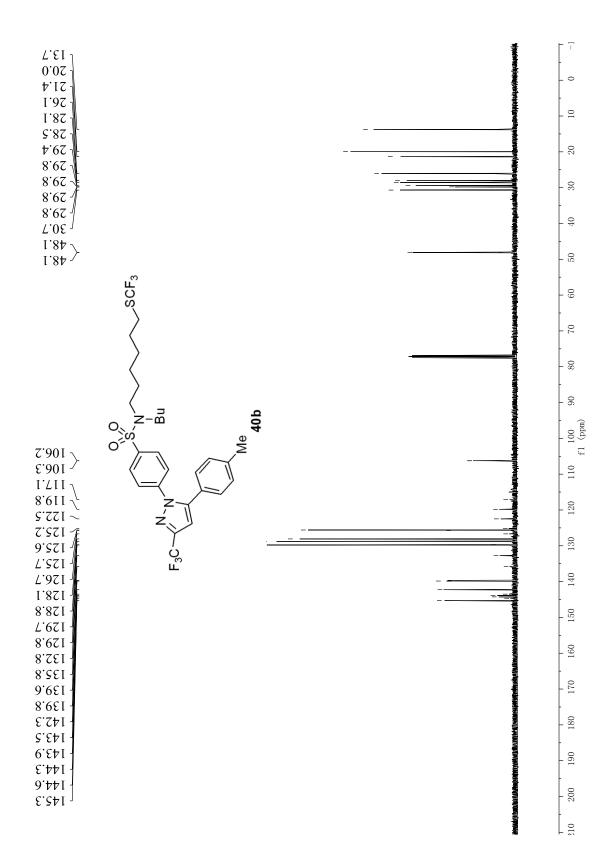

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of 35b

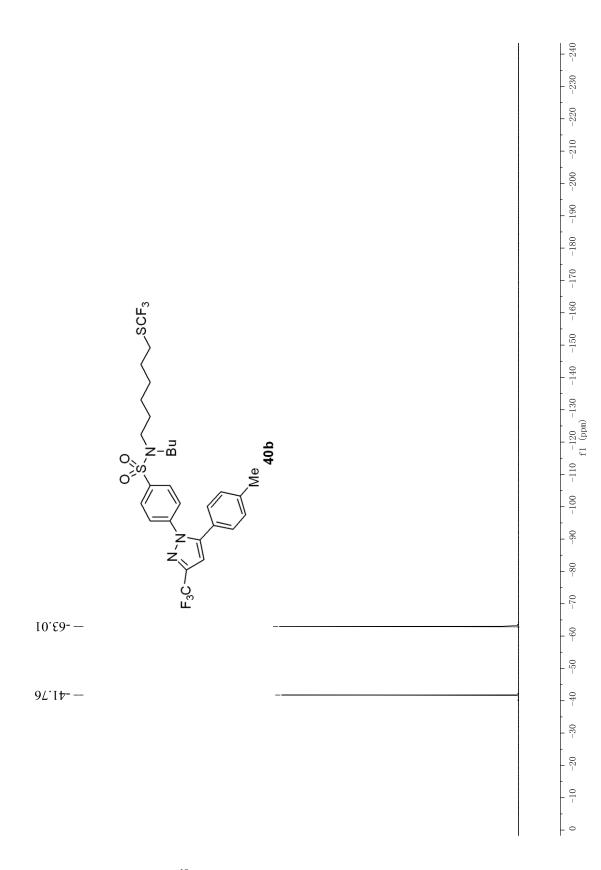

¹H NMR spectrum (400 MHz, CDCl₃) of 36

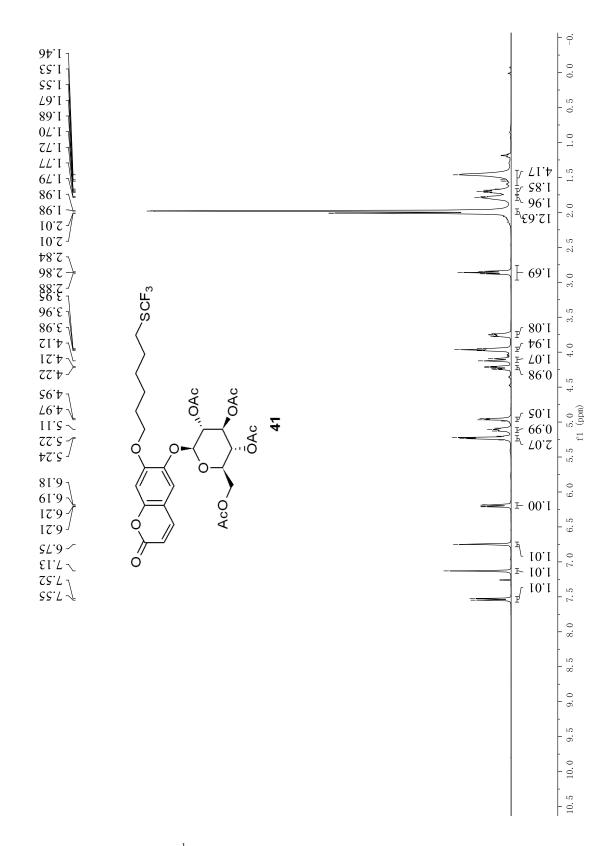

¹³C NMR spectrum (101 MHz, CDCl₃) of **36**

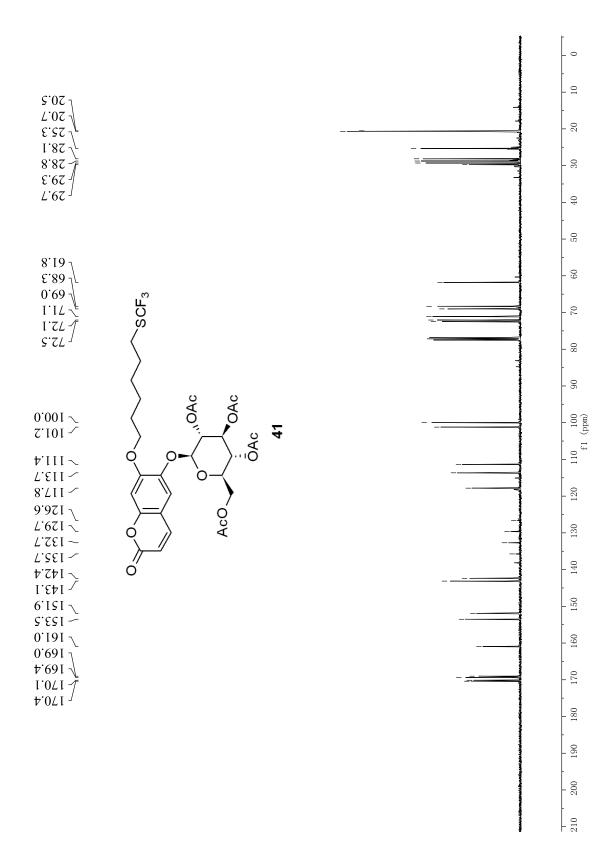

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **36**

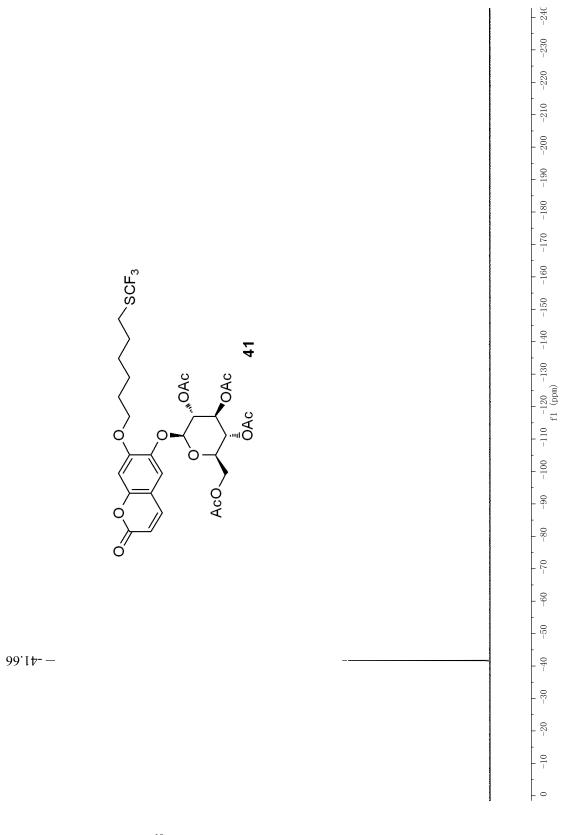

¹H NMR spectrum (400 MHz, CDCl₃) of **39b**

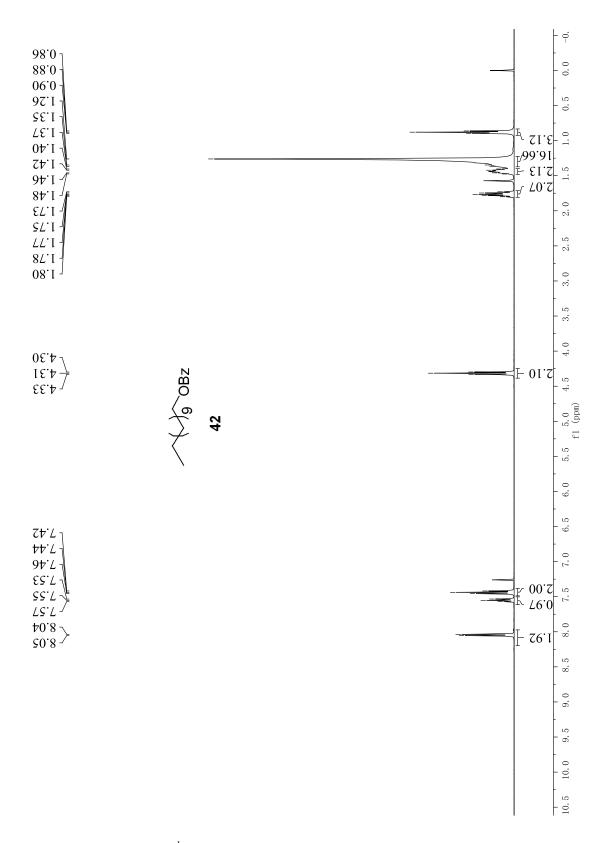

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 39b

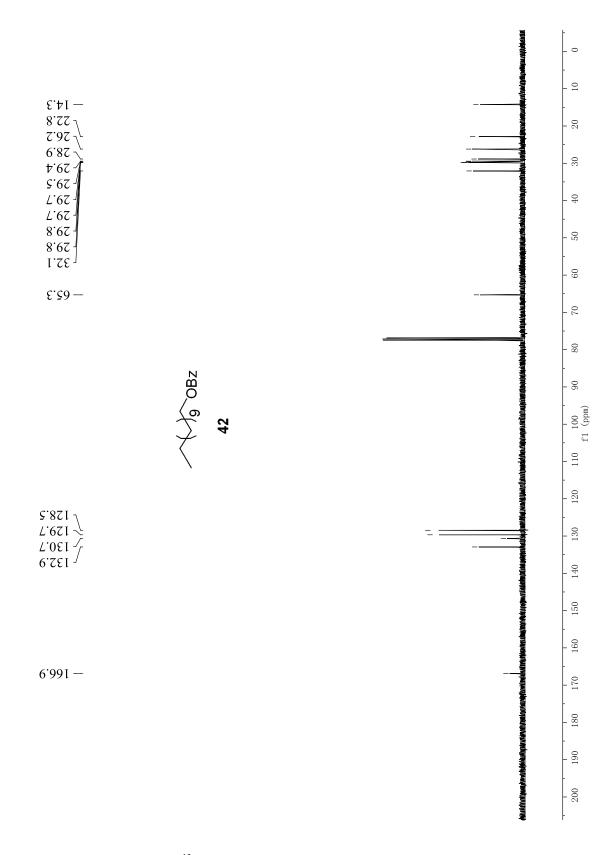

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 39b

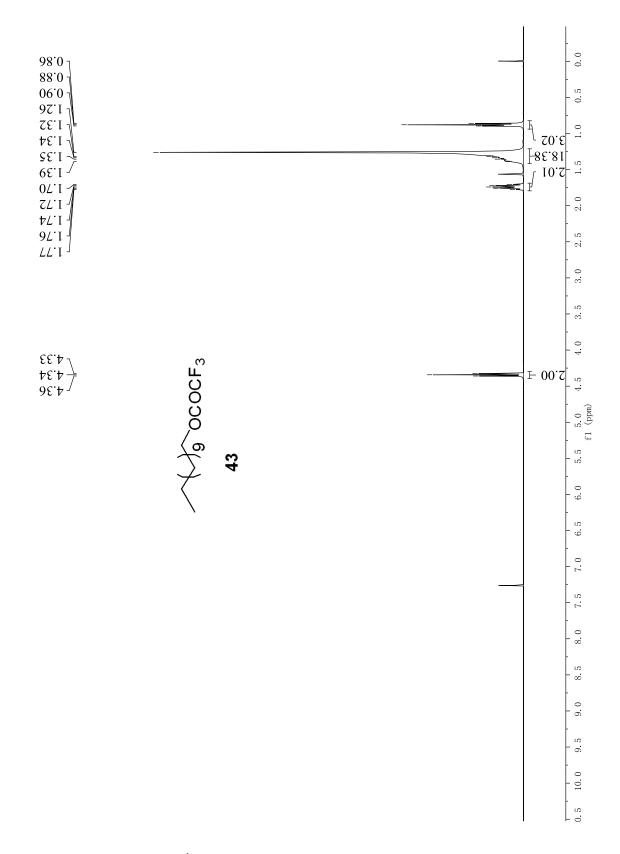

¹H NMR spectrum (400 MHz, CDCl₃) of **40b**

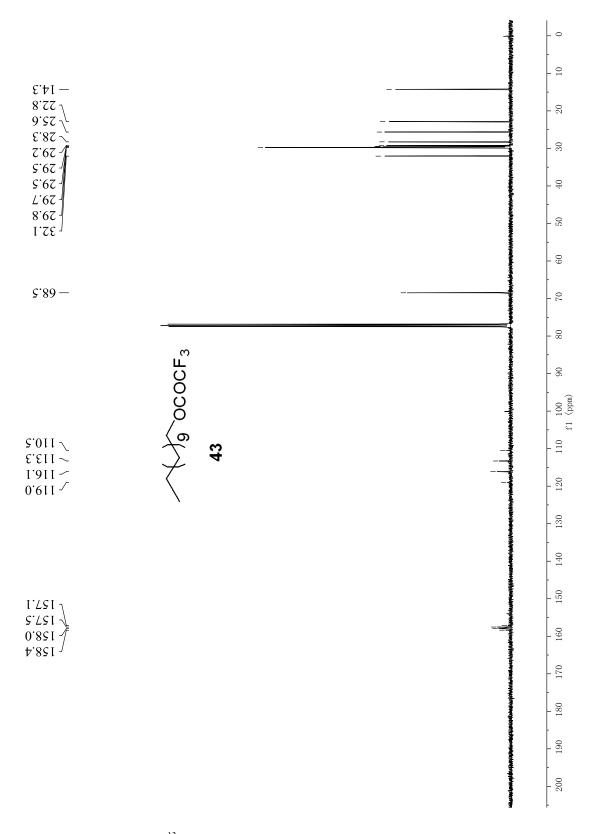

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **40b**

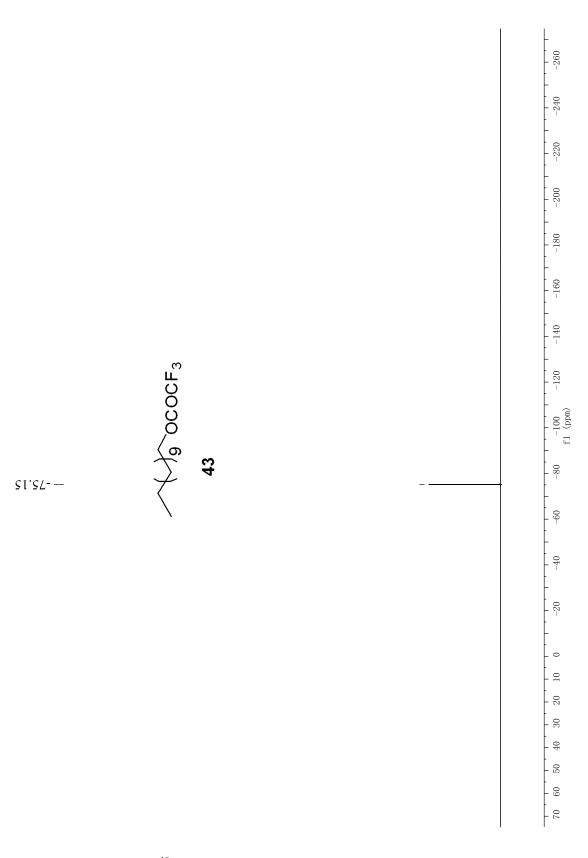

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 40b

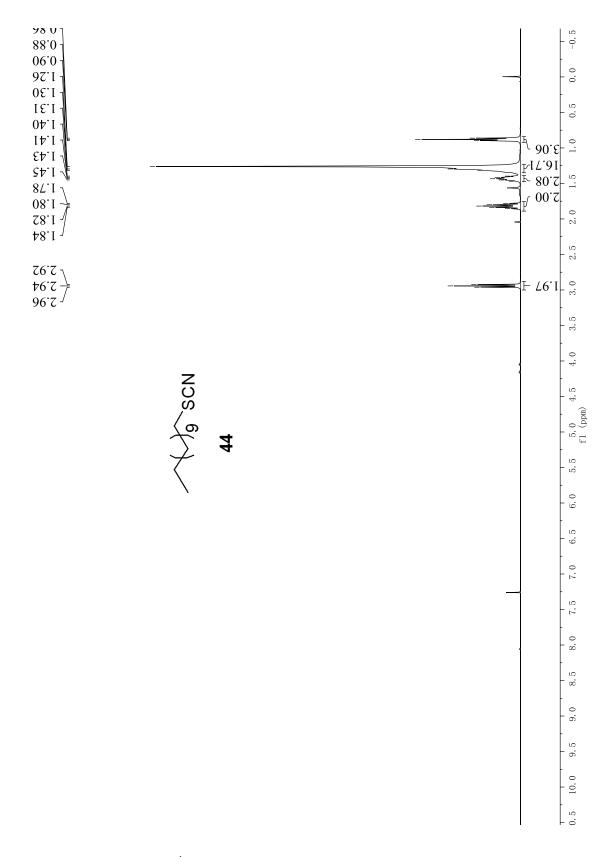

¹H NMR spectrum (400 MHz, CDCl₃) of **41**

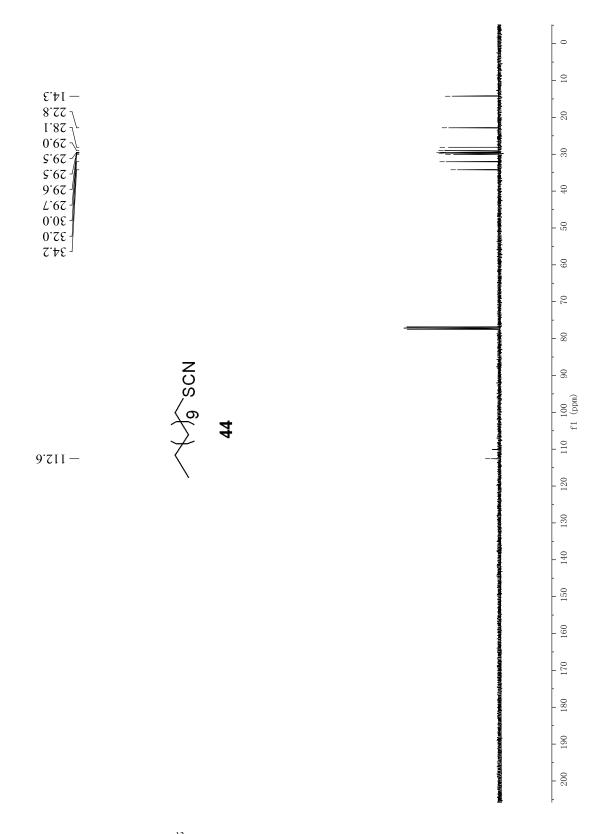

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of **41**

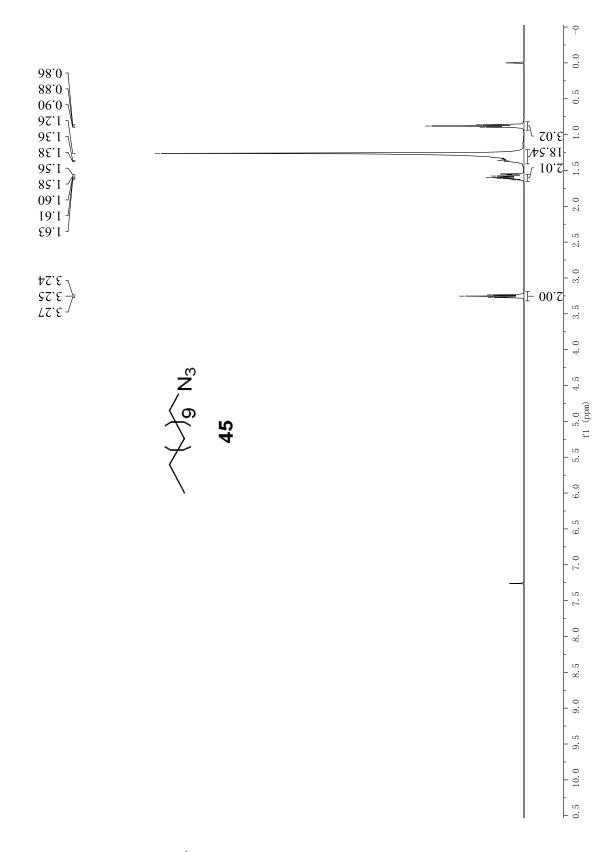

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of **41**

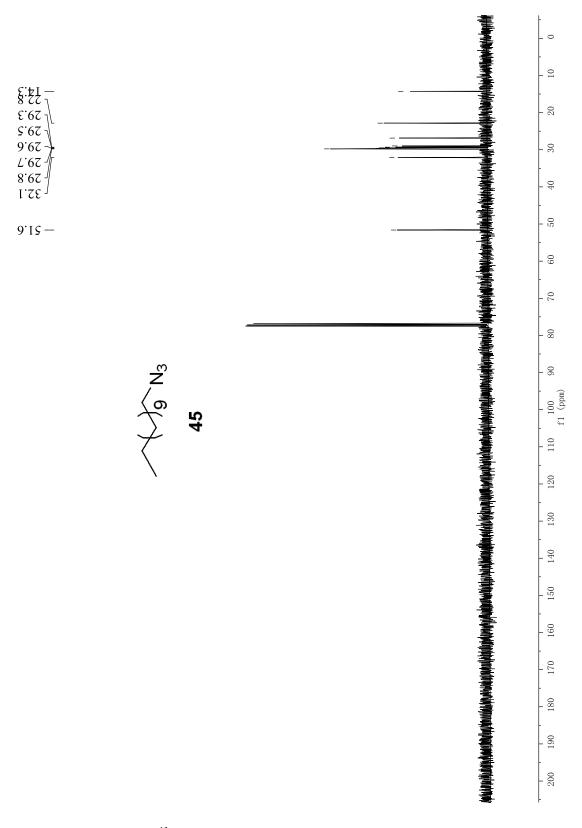

 ^1H NMR spectrum (400 MHz, CDCl₃) of **42**

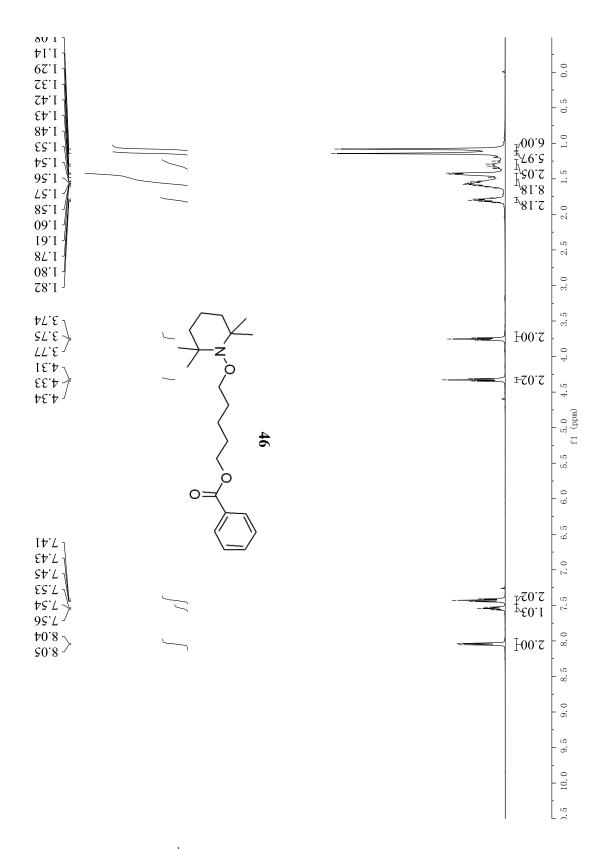

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 42

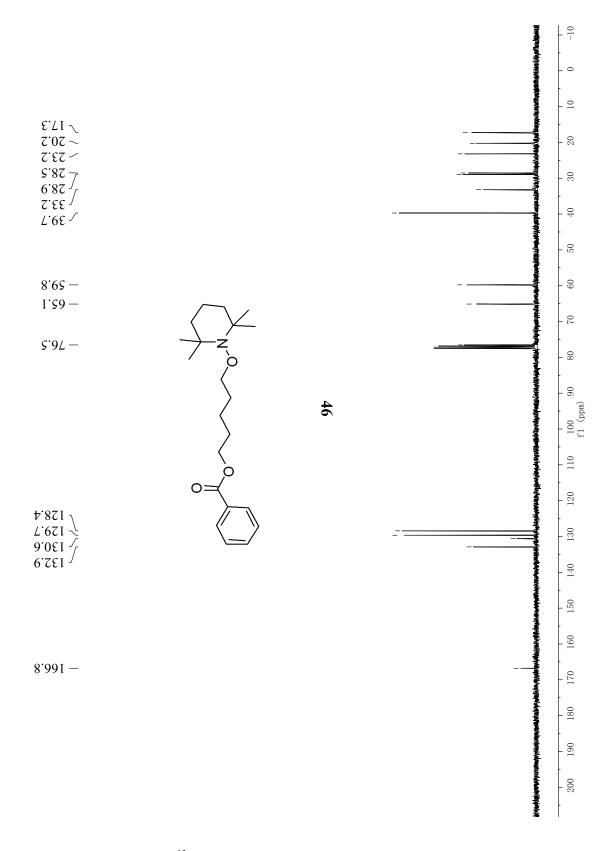

¹H NMR spectrum (400 MHz, CDCl₃) of **43**

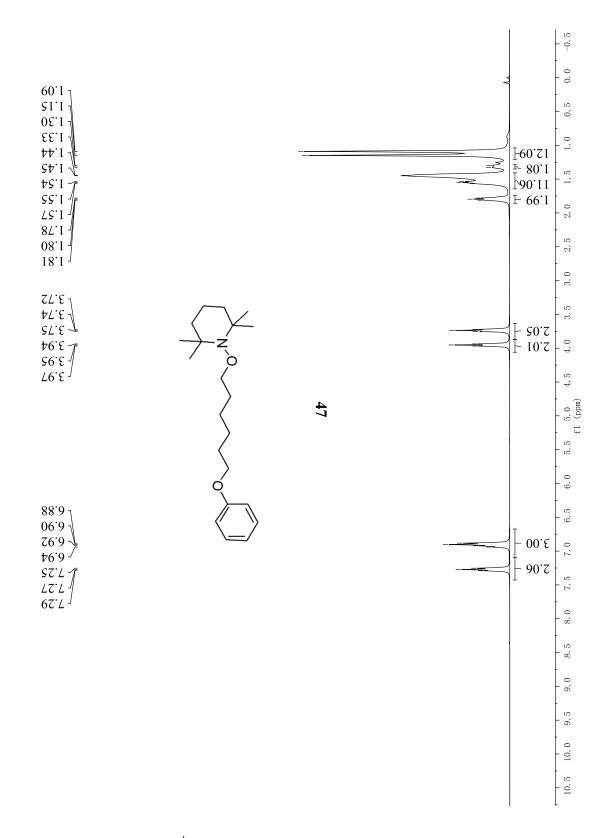

¹³C NMR spectrum (101 MHz, CDCl₃) of **43**

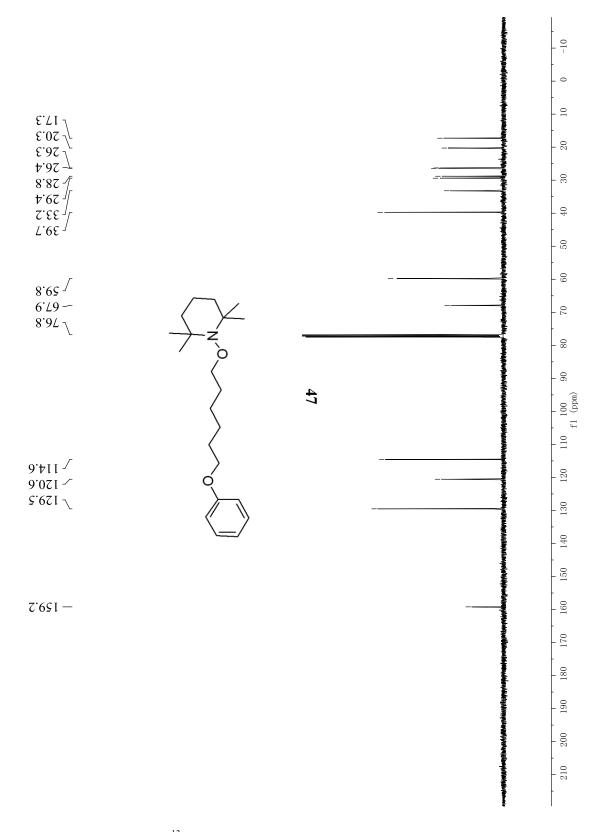

¹⁹F NMR spectrum (376 MHz, CDCl₃) of 43

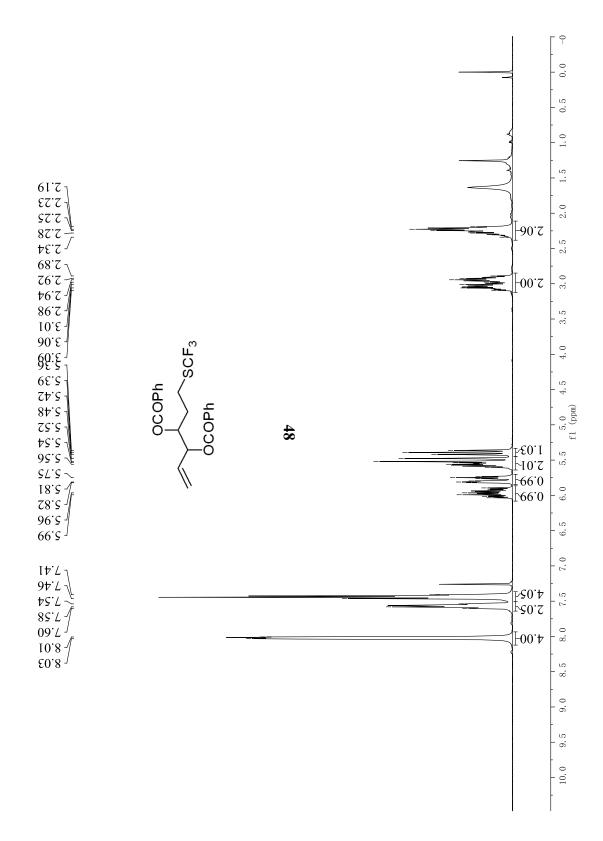

¹H NMR spectrum (400 MHz, CDCl₃) of 44

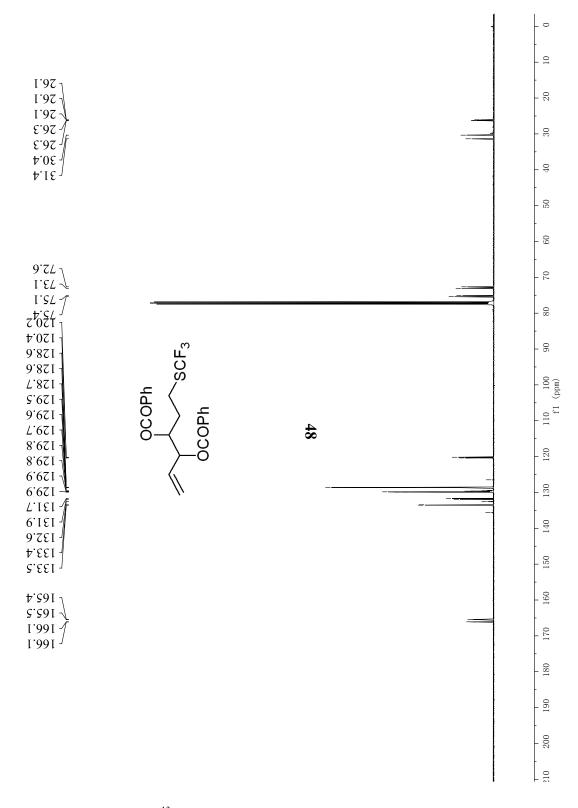

¹³C NMR spectrum (101 MHz, CDCl₃) of 44

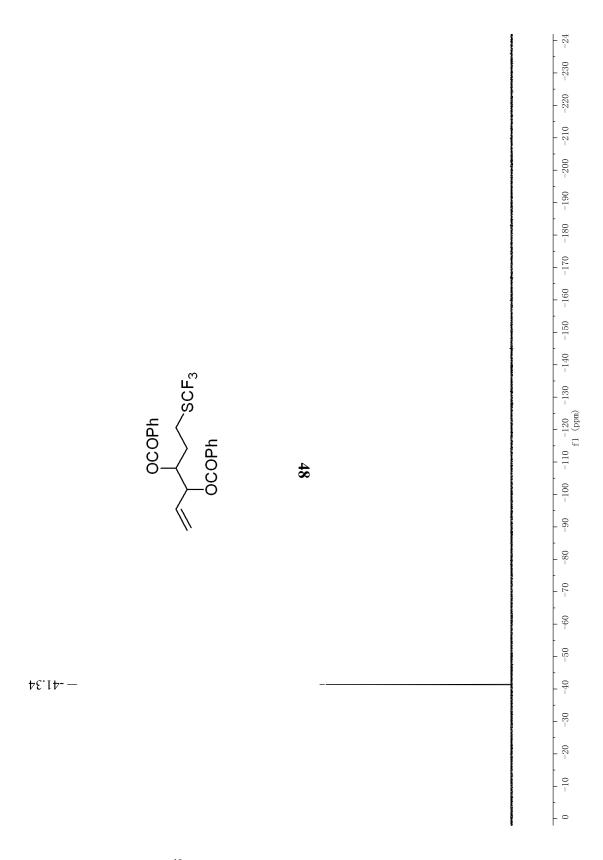

¹H NMR spectrum (400 MHz, CDCl₃) of 45

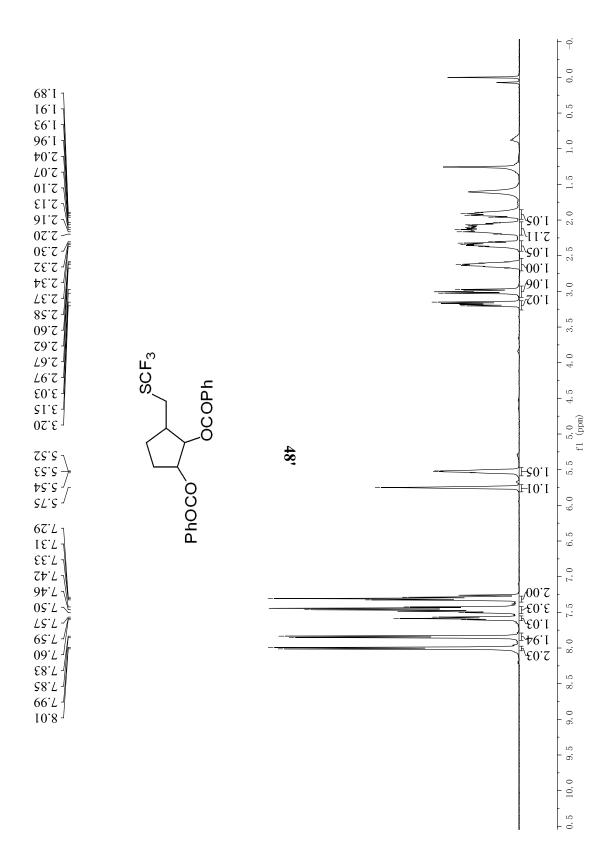

¹³C NMR spectrum (101 MHz, CDCl₃) of **45**

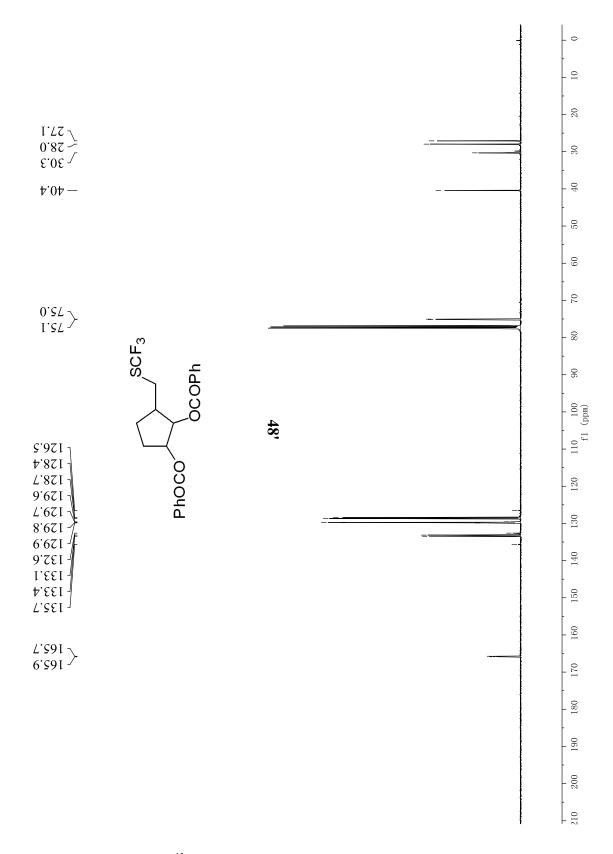

 1 H NMR spectrum (400 MHz, CDCl₃) of **46**

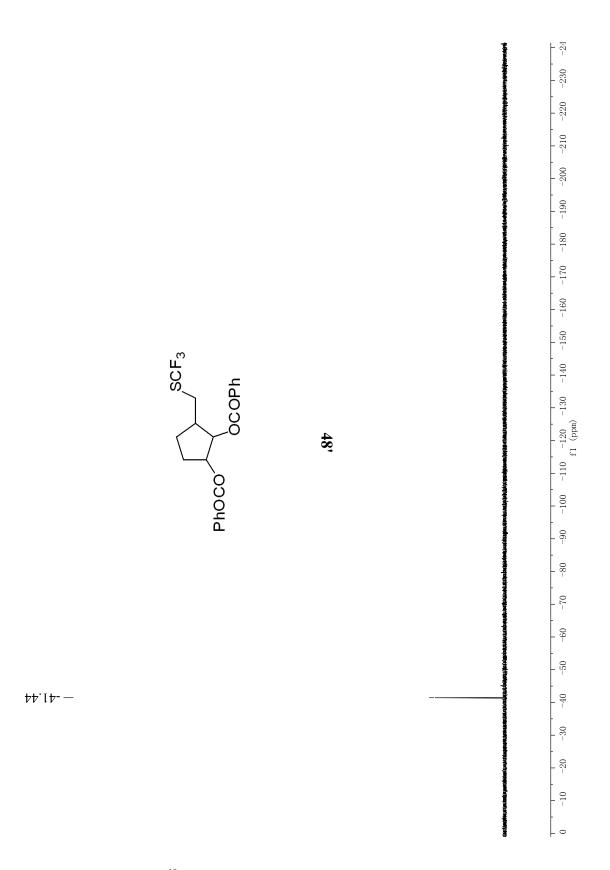

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 46


 ^1H NMR spectrum (400 MHz, CDCl₃) of **47**


¹³C NMR spectrum (101 MHz, CDCl₃) of **47**


¹H NMR spectrum (400 MHz, CDCl₃) of 48


¹³C NMR spectrum (101 MHz, CDCl₃) of **48**


¹⁹F NMR spectrum (376 MHz, CDCl₃) of 48

¹H NMR spectrum (400 MHz, CDCl₃) of **48'**

¹³C NMR spectrum (101 MHz, CDCl₃) of **48'**

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl₃) of **48'**