Supporting Information for

Crystallographic Characterization of Lu_2C_{2n} (2n = 76-90):

Cluster Selection by Cage Size

Wangqiang Shen,^a Lipiao Bao,^a Shuaifeng Hu,^a Le Yang,^b Peng Jin,^{*b} Yunpeng Xie,^{*a} Takeshi Akasaka^a and Xing Lu^{*a}

^a State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China. E-mail: <u>lux@hust.edu.cn</u>.

^b School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China. E-mail: <u>china.peng.jin@gmail.com</u>

Table of Contents

Isolation of Lu_2C_{2n} (2n = 76, 78, 80, 84, 86, 88, 90) isomers.

Figure S1. The isolation of $Lu_2(a)T_d(2)$ -C₇₆ and $Lu_2(a)D_{3h}(5)$ -C₇₈.

Figure S2. The isolation of $Lu_2(a)C_{2\nu}(5)-C_{80}$ and $Lu_2(a)C_{2\nu}(7)-C_{84}$.

Figure S3. The isolation of $Lu_2@C_s(8)$ -C₈₆ and $Lu_2@C_s(15)$ -C₈₆.

Figure S4. The isolation of $Lu_2@C_1(26)-C_{88}$, $Lu_2C_2@C_{2\nu}(9)-C_{86}$, $Lu_2C_2@C_s(32)-C_{88}$ and

 $Lu_2C_2(a)D_2(35)-C_{88}$.

Figure S5. HPLC chromatograms of $Lu_2C_{2n}(2n = 76, 78, 80, 84, 86, 88, 90)$ isomers

Figure S6. LDI-TOF mass spectra of $Lu_2C_{2n}(2n = 76, 78, 80, 84, 86, 88, 90)$ isomers.

Figure S7. Vis-NIR absorption spectra of Lu_2C_{2n} (2n = 76, 78, 80, 84, 86, 88, 90) isomers.

Table S1. The HPLC retention time and details of the Vis-NIR spectra of Lu_2C_{2n} (2n = 76, 78, 80, 84, 86, 88, 90) isomers.

Table S2. The fractional occupancies of the Lu positions in $Lu_2@T_d(2)-C_{76}$, $Lu_2@D_{3h}(5)-C_{78}$, $Lu_2@C_{2\nu}(5)-C_{80}, Lu_2@C_{2\nu}(7)-C_{84} and Lu_2@C_s(8)-C_{86}.$

Table S3. The fractional occupancies of the Lu positions in $Lu_2@C_s(15)-C_{86}$, $Lu_2@C_l(26)-C_{88}$, $Lu_2C_2(a)C_{2\nu}(9)-C_{86}, Lu_2C_2(a)C_s(32)-C_{88} \text{ and } Lu_2C_2(a)D_2(35)-C_{88}.$

Table S4. Crystallographic data of $Lu_2@T_d(2)$ -C₇₆/Ni^{II}(OEP), $Lu_2@D_{3h}(5)$ -C₇₈/Ni^{II}(OEP),

 $Lu_2(a)C_{2\nu}(5)-C_{80}/Ni^{II}(OEP), Lu_2(a)C_{2\nu}(7)-C_{84}/Ni^{II}(OEP) and Lu_2(a)C_{s}(8)-C_{86}/Ni^{II}(OEP).$

Table S5. Crystallographic data of $Lu_2@C_s(15)-C_{86}/Ni^{II}(OEP)$, $Lu_2@C_1(26)-C_{88}/Ni^{II}(OEP)$

 $Lu_2C_2@C_{2\nu}(9)-C_{86}/Ni^{II}(OEP), Lu_2C_2@C_s(32)-C_{88}/Ni^{II}(OEP) and Lu_2C_2@D_2(35)-C_{88}/Ni^{II}(OEP).$

Figure S8. Relative positions of the major Lu_2/Lu_2C_2 cluster to a partial region of the fullerene cage in Lu_2C_{2n} (2n = 76, 78, 80, 84, 86, 88, 90) isomers.

Figure S9. Cyclic voltammogram of (a) $Lu_2@T_d(2)-C_{76}$, (b) $Lu_2@C_{2\nu}(7)-C_{84}$, (c) $Lu_2@C_s(8)-C_{86}$ and (d) $Lu_2(a)C_s(15)-C_{86}$ in 0.05 M *n*-Bu₄NPF₆/*o*-DCB solution.

Figure S10. Cyclic voltammogram of (a) $Lu_2(a)C_1(26)-C_{88}$, (b) $Lu_2C_2(a)C_{2\nu}(9)-C_{86}$, (c)

Lu₂C₂@C_s(32)-C₈₈ and (d) Lu₂C₂@D₂(35)-C₈₈ in 0.05 M *n*-Bu₄NPF₆/o-DCB solution.

Table S6. Redox potentials (V vs Fc/Fc⁺) of $Lu_2@T_d(2)$ -C₇₆, $Lu_2@C_{2\nu}(7)$ -C₈₄, $Lu_2@C_s(8)$ -C₈₆, $Lu_2(a)C_s(15)-C_{86}$, $Lu_2(a)C_1(26)-C_{88},$ $Lu_2C_2(a)C_{2\nu}(9)-C_{86}, Lu_2C_2(a)C_s(32)-C_{88}$ and (d)

 $Lu_2C_2@D_2(35)$ -C₈₈ relative to those of scandium-containing EMFs.

Table S7. Interatomic distances (R_{Lu-Lu} , Å), wiberg bond orders (WBOs), electron occupancies

(Occ., *e*), NPA charges and natural electron configuration populations of the two Lu atoms of Lu_2C_{2n} (2n = 76, 78, 80, 84, 86, 88, 90) isomers.

Figure S11. Optimized structures of low-energy Lu₂C₇₆ isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis).

Figure S12. Optimized structures of low-energy Lu_2C_{78} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis).

Figure S13. Optimized structures of low-energy Lu_2C_{80} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis).

Figure S14. Optimized structures of low-energy Lu_2C_{84} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis).

Figure S15. Optimized structures of low-energy Lu_2C_{86} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis).

Figure S16. Optimized structures of low-energy Lu_2C_{88} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis).

Figure S17. Optimized structures of low-energy Lu_2C_{90} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis).

References.

Isolation of Lu₂C_{2n} (2n = 76, 78, 80, 84, 86, 88, 90) isomers. First, the toluene solution of the extract was separated by using LC-9130NEXT apparatus monitored using a UV detector at 330 nm and a Buckyprep column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the mobile phase, and fractions L-1 to L-4 were collected (Figure. S1a). Then, fraction L-1 was reinjected into a Buckyprep M column (20 mm × 250 mm, Cosmosil Nacalai Tesque) for the next separation using toluene as the eluent, and fraction L-1-1 was obtained (Figure S1b). Fraction L-1-1 was then carried out on a 5PYE column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the mobile phase, and fraction L-1-1-1 was obtained (Figure S1c). Finally, fraction L-1-1-1 was reinjected into a 5PYE column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the mobile phase, and fraction L-1-1-1 was obtained (Figure S1c). Finally, fraction L-1-1-1 was reinjected into a 5PYE column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the mobile phase, Lu₂@*T*_d(2)-C₇₆ and Lu₂@*D*_{3h}(5)-C₇₈ were finally collected (Figure S1d).

Figure S1. The isolation of $Lu_2@T_d(2)$ - C_{76} and $Lu_2@D_{3h}(5)$ - C_{78} . HPLC chromatograms of (a) the fullerene extract obtained by a Buckyprep column, (b) fraction L-1 obtained by a Buckyprep M column, (c) fraction L-1-1 obtained by a 5PYE column and (d) $Lu_2@T_d(2)$ - C_{76} and $Lu_2@D_{3h}(5)$ - C_{78} obtained by a 5PYE column. HPLC conditions: Φ = 20 mm × 250 mm, eluent = toluene, flow rate = 10 mL/min, detection wavelength = 330 nm, room temperature.

Figure S2. The isolation of $Lu_2@C_{2\nu}(5)-C_{80}$ and $Lu_2@C_{2\nu}(7)-C_{84}$. (a) HPLC chromatogram of $Lu_2@C_{2\nu}(5)-C_{80}$ obtained by a Buckyprep column with $\lambda = 330$ nm, a flow rate of 10 mL/min, and toluene as the eluent at room temperature. (b) HPLC chromatogram of fraction L-3-1 obtained by a Buckyprep M column with $\lambda = 330$ nm, a flow rate of 10 mL/min, and toluene as the eluent at room temperature. (c) HPLC chromatogram of fraction L-3-1-1 obtained by a Buckyprep M column with $\lambda = 330$ nm, a flow rate of 10 mL/min, and toluene as the eluent at room temperature. (d) HPLC chromatogram of $Lu_2@C_{2\nu}(7)-C_{84}$ obtained by a 5PBB column with $\lambda = 330$ nm, a flow rate of 10 mL/min, and chlorobenzene as the eluent at room temperature.

Moreover, fraction L-2 was reinjected into a Buckyprep column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the mobile phase, $Lu_2@C_{2\nu}(5)$ -C₈₀ was collected (Figure S2a). Fraction L-3 was reinjected into a Buckyprep M column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the mobile phase, and fraction L-3-1 was obtained (Figure S2b). Fraction L-3-1 was then carried out on a Buckyprep M column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the mobile phase, fraction L-3-1-1 was obtained (Figure S2c). Finally, fraction L-3-1-1 was reinjected into a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as the mobile phase, and $Lu_2@C_{2\nu}(7)$ -C₈₄ was collected (Figure S2d). Furthermore, fraction L-4 was reinjected into a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as the mobile phase, and $Lu_2@C_{2\nu}(7)$ -C₈₄ was collected (Figure S2d). Furthermore, fraction L-4 was reinjected into a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as the mobile phase, and $Lu_2@C_{2\nu}(7)$ -C₈₄ was collected (Figure S2d). Furthermore, fraction L-4 was reinjected into a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as the mobile phase, and $Lu_2@L_{2\nu}(7)$ -C₈₄ was collected (Figure S2d). Furthermore, fraction L-4 was reinjected into a 5PBB column (20 mm × 250 mm, were obtained (Figure S3a).

Figure S3. The isolation of $Lu_2@C_s(8)-C_{86}$ and $Lu_2@C_s(15)-C_{86}$. HPLC chromatograms of (a) fractions L-4-1 and L-4-2 obtained by a 5PBB column, (b) fraction L-4-1-1 obtained by a Buckyprep M column, (c) fraction L-4-2-1 obtained by a Buckyprep M column and (d) $Lu_2@C_s(8)-C_{86}$ and $Lu_2@C_s(15)-C_{86}$ obtained by a Buckyprep column. HPLC conditions: $\Phi = 20 \text{ mm} \times 250 \text{ mm}$, eluent = chlorobenzene, flow rate = 10 mL/min, detection wavelength = 330 nm, room temperature.

Then, fraction L-4-1 was reinjected into a Buckyprep M column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as the mobile phase, fraction L-4-1-1 was collected (Figure S3b). Similarly, fraction L-4-2 was then carried out on a Buckyprep M column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as the mobile phase, fraction L-4-2-1 was collected (Figure S3c). In the last, fraction L-4-1-1 was carried out on a Buckyprep column (20 mm × 250 mm, Cosmosil Nacalai Tesque) for the next separation using chlorobenzene as the eluent, $Lu_2@C_s(8)$ -C₈₆ and $Lu_2@C_s(15)$ -C₈₆ were collected (Figure S3d). Fraction L-4-2-1 was reinjected into a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as the mobile phase, and fractions L-4-2-1-1 and L-4-2-1-2 were obtained (Figure S4a). Then, fraction L-4-2-1-1 was reinjected into a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque) for the next separation using chlorobenzene as the eluent, $Lu_2@C_I(26)$ -C₈₈ and Lu₂C₂@C_{2ν}(9)-C₈₆ were collected (Figure S4b). Finally, fraction L-4-2-1-2 was then carried out on a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as the mobile phase, Lu₂C₂@C_s(32)-C₈₈ and Lu₂C₂@D₂(35)-C₈₈ were collected (Figure S4c).

Figure S4. The isolation of Lu₂@C₁(26)-C₈₈, Lu₂C₂@C_{2v}(9)-C₈₆, Lu₂C₂@C₃(32)-C₈₈ and Lu₂C₂@D₂(35)-C₈₈. HPLC chromatograms of (a) fractions L-4-2-1-1 and L-4-2-1-2 obtained by a Buckyprep column, (b) Lu₂@C₁(26)-C₈₈ and Lu₂C₂@C_{2v}(9)-C₈₆ obtained by a 5PBB column and (c) fraction L-1-1-1 obtained by a 5PBB column. HPLC conditions: $\Phi = 20 \text{ mm} \times 250 \text{ mm}$, eluent = chlorobenzene, flow rate = 10 mL/min, detection wavelength = 330 nm, room temperature.

Figure S5. HPLC chromatograms of Lu_2C_{2n} (2n = 76, 78, 80, 84, 86, 88, 90) isomers (HPLC conditions: eluent = toluene, flow rate = 1.0 mL min⁻¹, detection wavelength = 330 nm, room temperature.).

	1430	Lu ₂ C ₂ @D ₂ (35)-C ₈₈
	1430	Lu ₂ C ₂ @C ₅ (32)-C ₈₈
	<u>1406</u> ∧	Lu ₂ C ₂ @C ₂ (9)-C ₈₆
a.u.	1406	Lu ₂ @C ₁ (30)-C ₈₈
	1382	Lu ₂ @C _s (15)-C ₈₆
	1382	Lu ₂ @C _s (8)-C ₈₆
	1358	Lu ₂ @C _{2/} (7)-C ₈₄
=	1310	Lu ₂ @C _{2v} (5)-C ₈₀
	1286	Lu ₂ @D _{3h} (5)-C ₇₈
	1262	Lu ₂ @7 _d (2)-C ₇₆
1000	1100 1200 1300 1400 1	500 1600 1700 180
	M/z	

Figure S6. LDI-TOF mass spectra of Lu_2C_{2n} (2*n* = 76, 78, 80, 84, 86, 88, 90) isomers.

Figure S7. Vis-NIR absorption spectra of Lu_2C_{2n} (2*n* = 76, 78, 80, 84, 86, 88, 90) isomers.

EMFs	HPLC retention time (min)	Vis-NIR absorption bands	Onset (nm)	Optical bandgap (eV) ^[b]
	[2]	(nm)		
$Lu_2@T_d(2)-C_{76}$	28.75	545, 643, 726, 852, 1184, 1376	1564	0.79
Lu ₂ @D _{3h} (5)-C ₇₈	30.81	460, 561, 637, 726, 934	1098	1.13
$Lu_2@C_{2\nu}(5)-C_{80}$	34.62	412, 584, 625, 658, 1126, 1389	1488	0.83
Lu ₂ @ $C_{2\nu}(7)$ -C ₈₄	42.98	439, 590, 668, 755, 1084	1328	0.93
Lu ₂ @C _s (8)-C ₈₆	48.89	480, 664, 706,1015, 1106	1275	0.97
Lu ₂ @C _s (15)-C ₈₆	52.25	491, 711, 792, 895, 1234	1448	0.86
$Lu_2@C_1(26)-C_{88}$	54.93	479, 597, 736, 1201	1429	0.87
$Lu_2C_2@C_{2\nu}(9)-C_{86}$	58.46	433, 591, 678, 776, 932, 1078	1217	1.02
Lu ₂ C ₂ @C _s (32)-C ₈₈	60.21	425, 586, 655, 738, 846, 887	1120	1.11
Lu ₂ C ₂ @D ₂ (35)-C ₈₈	69.24	630, 707, 804, 1077	1265	0.98

Table S1. The HPLC retention time and details of the Vis-NIR absorptions of Lu_2C_{2n} (2n = 76, 78, 80, 84, 86, 88, 90) isomers.

^[a]Buckyprep column, flow rate: 1.0 mL/min, eluent: toluene, room temperature.

^[b]Optical bandgap (eV) = 1240/onset (nm).

Table S2. The fractional occupancies of the Lu positions in $Lu_2@T_d(2)-C_{76}$, $Lu_2@D_{3h}(5)-C_{78}$, $Lu_2@C_{2\nu}(5)-C_{80}$, $Lu_2@C_{2\nu}(7)-C_{84}$ and $Lu_2@C_s(8)-C_{86}$.

EMFs	Fractional occupancy of the Lu positions															
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9	Lu10	Lull					
$Lu_2@T_d(2)-C_{76}$	0.24	0.21	0.12	0.10	0.10	0.06	0.04	0.04	0.09	0.07	0.02					
	LulA	Lu2A	Lu3A	Lu4A	Lu5A	Lu6A	Lu7A	Lu8A								
	0.24	0.21	0.12	0.10	0.10	0.06	0.04	0.04								
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9							
	0.26	0.13	0.10	0.09	0.07	0.07	0.06	0.38	0.06							
$Lu_2@D_{3h}(5)-C_{78}$	LulA	Lu2A	Lu3A	Lu4A	Lu5A	Lu6A	Lu7A									
	0.26	0.13	0.10	0.09	0.07	0.07	0.06									
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9	Lu10	Lull	Lu12	Lu13	Lul4	Lu15	Lu16
	0.17	0.11	0.11	0.09	0.08	0.06	0.06	0.05	0.04	0.01	0.02	0.15	0.08	0.07	0.05	0.05
$Lu_2@C_{2\nu}(5)-C_{80}$											Lull					
	LulA	Lu2A	Lu3A	Lu4A	Lu5A	Lu6A	Lu7A	Lu8A	Lu9A	Lu10A	А					
	0.17	0.11	0.11	0.09	0.08	0.06	0.06	0.05	0.04	0.01	0.02					
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9	Lu10	Lull	Lu12	Lu13	Lu14	Lu15	
	0.15	0.15	0.14	0.11	0.08	0.08	0.06	0.06	0.03	0.03	0.02	0.07	0.06	0.04	0.01	
$Lu_2@C_{2\nu}(7)-C_{84}$											Lull					
	LulA	Lu2A	Lu3A	Lu4A	Lu5A	Lu6A	Lu7A	Lu8A	Lu9A	Lu10A	А					
	0.15	0.15	0.14	0.11	0.08	0.08	0.06	0.06	0.03	0.03	0.02					
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8								
	0.31	0.32	0.03	0.12	0.05	0.06	0.24	0.04								
Lu ₂ (<i>a</i>)C _s (8)-C ₈₆	LulA	Lu2A	Lu3A	Lu4A	Lu5A											
	0.31	0.32	0.03	0.12	0.05											

EMFs	Fractional occupancy of the Lu positions															
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9	Lu10	Lull					
	0.15	0.13	0.11	0.11	0.09	0.07	0.07	0.05	0.04	0.21	0.15					
Lu ₂ @C _s (15)-C ₈₆	LulA	Lu2A	Lu3A	Lu4A	Lu5A	Lu6A	Lu7A	Lu8A	Lu9A							
	0.15	0.13	0.11	0.11	0.09	0.07	0.07	0.05	0.04							
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9	Lu10	Lull	Lu12	Lu13	Lu14	Lu15	Lu16
	0.27	0.07	0.06	0.06	0.06	0.03	0.03	0.02	0.02	0.02	0.01	0.52	0.07	0.04	0.04	0.03
Lu ₂ @C ₁ (26)-C ₈₈	1.114	1.,24	1.,24	3A Lu4A Lu5A Lu6A Lu7A Lu8A Lu9A Lu10/	1.,104	Lull										
		LuzA			LUSA	Luon		LuoA	LU9A	LUIUA	А					
	0.27	0.07	0.06	0.06	0.06	0.03	0.03	0.02	0.02	0.02	0.01					
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9	Lu10	Lull	Lu12	Lu13			
Lu ₂ C ₂ (<i>w</i> C _{2r} (9)-C ₈₆	0.26	0.26	0.26	0.25	0.25	0.24	0.11	0.08	0.08	0.06	0.06	0.05	0.04			
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9	Lu10	Lull	Lu12	Lu13	Lu14	Lu15	Lu16
	0.57	0.49	0.22	0.14	0.11	0.10	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02
Lu ₂ C ₂ (<i>a</i>)C ₅ (32)-C ₈₈	Lu17	Lu18	Lu19	Lu20	Lu21	Lu22	Lu23	Lu24								
	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01								
	Lul	Lu2	Lu3	Lu4	Lu5	Lu6	Lu7	Lu8	Lu9							
	0.20	0.19	0.15	0.16	0.11	0.06	0.04	0.13	0.06							
Lu ₂ C ₂ @D ₂ (35)-C ₈₈	LulA	Lu2A	Lu3A	Lu4A	Lu5A	Lu6A	Lu7A									
	0.20	0.19	0.15	0.16	0.11	0.06	0.04									

Table S3. The fractional occupancies of the Lu positions in $Lu_2@C_s(15)-C_{86}$, $Lu_2@C_1(26)-C_{88}$, $Lu_2C_2@C_{2\nu}(9)-C_{86}$, $Lu_2C_2@C_s(32)-C_{88}$ and $Lu_2C_2@D_2(35)-C_{88}$.

Compounds	$\mathrm{Lu}_2@T_d(2)\mathrm{C}_{76}\bullet$	$\operatorname{Lu}_2(\widehat{a}D_{3h}(5)C_{78}\bullet$	$Lu_2@C_{2\nu}(5)C_{80}$ •	Lu ₂ @C _{2v} (7)C ₈₄ •	$Lu_2@C_s(8)C_{86}$ •	
	Ni ^{II} (OEP)∙2(C ₆ H ₆)	Ni ^{II} (OEP)∙2(C ₆ H ₆)	Ni ^{II} (OEP)•2(C ₆ H ₆)	Ni [⊓] (OEP)•(C ₆ H ₆)	1.5Ni ^{II} (OEP)•2(C ₆ H ₆)	
Т, К	100(2)	100(2)	100(2)	100(2)	173(2)	
λ, Å	0.65250	0.65250	0.65250	0.65250	0.71069	
color/habit	black / block	black / block	black / block	black / block	black / block	
cryst size, mm	0.15×0.10×0.08	0.18×0.12×0.10	0.10×0.10×0.06	0.12×0.08×0.07	0.20×0.12×0.08	
empirical formula	$C_{124}H_{56}Lu_2N_4Ni$	C ₁₂₆ H ₅₆ Lu ₂ N ₄ Ni	$C_{128}H_{56}Lu_2N_4Ni$	$C_{126}H_{50}Lu_2N_4Ni$	$C_{292}H_{144}Lu_4N_{12}Ni3$	
fw	2010.37	2034.39	2058.41	2028.35	4696.19	
cryst system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	
space group	C2/m	C2/m	C2/m	C2/m	C2/m	
a, Å	23.1698(6)	25.274(5)	25.186(5)	25.410(5)	24.454(5)	
b, Å	13.7779(4)	14.939(5)	15.099(5)	15.110(5)	18.039(5)	
c, Å	18.0308(4)	19.653(5)	19.694(5)	19.917(5)	22.303(5)	
α, deg	90	90	90	90	90	
β, deg	93.7760(10)	93.796(5)	94.158(5)	94.510(5)	101.767(5)	
γ, deg	90	90	90	90	90	
V, Å ³	5743.5(3)	7404(3)	7470(3)	7623(4)	9632(4)	
Z	4	4	4	4	2	
ρ, g/cm ³	2.325	1.825	1.830	1.767	1.619	
μ, mm ⁻¹	3.044	2.362	2.342	2.294	2.388	
R1 (all data)	0.0921	0.0928	0.1125	0.0818	0.1314	
wR2 (all data)	0.2408	0.2807	0.3111	0.2438	0.3535	

Table S4. Crystallographic data of $Lu_2@T_d(2)$ - C_{76} , $Lu_2@D_{3h}(5)$ - C_{78} , $Lu_2@C_{2\nu}(5)$ - C_{80} , $Lu_2@C_{2\nu}(7)$
 C_{84} and $Lu_2@C_s(8)$ - C_{86} .

Compounds	$Lu_2@C_s(15)C_{86}$ •	Lu ₂ @C ₁ (26)-C ₈₈ •	$Lu_2C_2@C_{2\nu}(9)-C_{86}$ •	$Lu_2C_2@C_s(32)-C_{88}$ •	Lu ₂ C ₂ @D ₂ (35)-C ₈₈ •
	Ni ^{II} (OEP)•2(C ₆ H ₆)	Ni ^{II} (OEP)•2(C ₆ H ₆)	Ni ^{II} (OEP)•(C ₆ H ₆)	Ni ^{II} (OEP)•1.6(C ₆ H ₆) •0.4(CS ₂)	1.5Ni ¹¹ (OEP)•2(C ₆ H ₆)
Т, К	173(2)	100(2)	173(2)	100(2)	100(2)
λ, Å	0.71069	0.65250	0.71069	0.65250	0.65250
color/habit	black / block	black / block	black / block	black / block	black / block
cryst size, mm	0.18×0.12×0.10	0.12×0.08×0.05	0.18×0.15×0.10	0.15×0.10×0.08	0.12×0.10×0.06
empirical formula	C ₁₃₄ H ₅₆ Lu ₂ N ₄ Ni	$C_{136}H_{56}Lu_2N_4Ni$	C ₁₃₀ H ₅₀ Lu ₂ N ₄ Ni	$C_{136}H_{53.6}Lu_2N_4NiS_{0.8}\\$	$C_{300}H_{144}Lu_4N_{12}Ni_3$
fw	2130.47	2154.50	2076.39	2177.69	4792.27
cryst system	monoclinic	monoclinic	triclinic	triclinic	monoclinic
space group	C2/m	C2/m	P-1	P-1	C2/m
a, Å	24.149(5)	24.121(5)	14.604(5)	14.749(5)	24.634(5)
b, Å	18.020(5)	18.190(5)	15.012(5)	15.029(5)	17.744(5)
c, Å	18.486(5)	18.497(5)	19.852(5)	19.899(5)	23.328(5)
α, deg	90	90	85.556(5)	84.624(5)	90
β, deg	90.220(5)	90.466(5)	88.966(5)	88.620(5)	103.220(5)
γ, deg	90	90	62.445(5)	62.644(5)	90
V, Å ³	8044(4)	8115(4)	3846(2)	3899(2)	9927(4)
Z	4	4	2	2	2
ρ, g/cm³	1.759	1.763	1.793	1.854	1.603
μ, mm ⁻¹	2.736	2.160	2.859	2.264	1.845
R1 (all data)	0.0787	0.0586	0.1047	0.0916	0.0957
wR2 (all data)	0.2363	0.1530	0.2816	0.2637	0.2911

 Table S5. Crystallographic data of $Lu_2@C_s(15)-C_{86}$, $Lu_2@C_1(26)-C_{88}$, $Lu_2C_2@C_{2\nu}(9)-C_{86}$, $Lu_2C_2@C_s(32)-C_{88}$ and $Lu_2C_2@D_2(35)-C_{88}$.

Figure S8. Relative positions of the major Lu_2/Lu_2C_2 cluster to a partial region of the fullerene cage in (a)

 $Lu_{2}@T_{d}(2)-C_{76}, (b) Lu_{2}@D_{3h}(5)-C_{78}, (c) Lu_{2}@C_{2\nu}(5)-C_{80}, (d) Lu_{2}@C_{2\nu}(7)-C_{84}, (e) Lu_{2}@C_{s}(8)-C_{86}, (f) Lu_{2}@C_{s}(15)-C_{86}, (g) Lu_{2}@C_{1}(26)-C_{88}, (h) Lu_{2}C_{2}@C_{2\nu}(9)-C_{86}, (i) Lu_{2}C_{2}@C_{s}(32)-C_{88} and (h) Lu_{2}C_{2}@D_{2}(35)-C_{88}.$

Figure S9. Cyclic voltammogram of (a) $Lu_2@T_d(2)-C_{76}$, (b) $Lu_2@C_{2\nu}(7)-C_{84}$, (c) $Lu_2@C_s(8)-C_{86}$ and (d) $Lu_2@C_s(15)-C_{86}$ in 0.05 M *n*-Bu₄NPF₆/*o*-DCB solution.

Figure S10. Cyclic voltammogram of (a) $Lu_2@C_1(26)-C_{88}$, (b) $Lu_2C_2@C_{2\nu}(9)-C_{86}$, (c) $Lu_2C_2@C_s(32)-C_{88}$ and (d) $Lu_2C_2@D_2(35)-C_{88}$ in 0.05 M *n*-Bu₄NPF₆/*o*-DCB solution.

Table S6. Redox potentials^[a] (V vs Fc/Fc⁺) of Lu₂@ T_d (2)-C₇₆, Lu₂@C_s(6)-C₈₂,^[S1] Lu₂@ $C_{2\nu}$ (7)-C₈₄, Lu₂@ C_s (8)-C₈₆, Lu₂@ C_s (15)-C₈₆, Lu₂@ $C_{2\nu}$ (9)-C₈₆,^[S1] Lu₂@ C_1 (26)-C₈₈, Lu₂C₂@ $C_{2\nu}$ (9)-C₈₆, Lu₂C₂@ C_s (32)-C₈₈ and (d) Lu₂C₂@ D_2 (35)-C₈₈.

Compounds	^{ox} E ₂	^{ox} E ₁	^{red} E ₁	$^{red}E_2$	redE3	$^{red}E_4$	$\Delta E_{gap}^{[c]}$
Lu ₂ @T _d (2)-C ₇₆		0.16	-1.02	-1.42 ^[b]	-1.98 ^[b]	-2.37 ^[b]	1.18
$Lu_2@C_s(6)-C_{82}^{[S1]}$	0.59	0.34	-1.02	-1.35	1.69 ^[b]	-2.05 ^[b]	1.36
$Lu_2@C_{2v}(7)-C_{84}$	0.50	0.13	-1.18 ^[b]	-1.48 ^[b]	-1.70 ^[b]	-1.95 ^[b]	1.31
$Lu_2@C_s(8)-C_{86}$		0.27	-0.96 ^[b]	-1.29 ^[b]	-1.65 ^[b]	-1.89 ^[b]	1.23
Lu ₂ @C _s (15)-C ₈₆		0.26	-0.93	-1.25	-1.87	-2.04 ^[b]	1.19
$Lu_2@C_{2v}(9)-C_{86}^{[S1]}$		0.31	-1.01	-1.34 ^[b]	-1.61 ^[b]	-2.23 ^[b]	1.32
$Lu_2@C_1(26)-C_{88}$		0.23	-1.06	-1.46	-1.95 ^[b]	-2.12 ^[b]	1.29
$Lu_2C_2@C_{2v}(9)-C_{86}$		0.41	-0.98	-1.22 ^[b]	-1.73 ^[b]	-2.17 ^[b]	1.39

$Lu_2C_2@C_s(32)-C_{88}$	0.67	0.35	-0.89	-1.15	-1.70	-2.07	1.24
$Lu_2C_2@D_2(35)-C_{88}$	0.72	0.35	-0.86	-1.09	-2.17	-2.47	1.21

 $\label{eq:alpha} \ensuremath{^{[a]}}\ensuremath{\text{Half-wave potentials unless otherwise noted.}} \ensuremath{^{[b]}}\ensuremath{\text{Peak potentials.}} \ensuremath{^{[c]}}\ensuremath{\Delta E_{gap}}\ensuremath{^{=ox}}\ensuremath{^{=c}$

Table S7. Interatomic distances (R_{Lu-Lu} , Å), Wiberg bond orders (WBOs), electron occupancies (Occ., *e*), natural population analysis charges and natural electron configuration populations of the two Lu atoms of Lu₂C_{2n} isomers. The Lu atoms are numbered from left to right in Figure 3.

Species	R _{Lu-Lu}	WBO	Occ.	Atom	Charge	Population	hybrid composition
$Lu_2(a)T_d(2)-C_{76}$	3.44	0.97	1.97	Lul	0.97	$6s^{0.53}5d^{0.21}6p^{0.65}6d^{0.67}7p^{0.01}$	s(46%)p(37%)d(17%)
				Lu2	0.97	$6s^{0.53}5d^{0.21}6p^{0.65}6d^{0.67}7p^{0.01}$	s(46%)p(37%)d(17%)
$Lu_2(a)D_{3h}(5)-C_{78}$	3.41	0.98	1.98	Lu1	1.03	$6s^{0.56}5d^{0.38}6p^{0.63}6d^{0.43}7p^{0.01}$	s(49%)p(36%)d(15%)
				Lu2	1.03	$6s^{0.56}5d^{0.38}6p^{0.63}6d^{0.43}7p^{0.01}$	s(49%)p(36%)d(15%)
$Lu_2@C_{2\nu}(5)-C_{80}$	3.72	0.94	1.97	Lu1	0.99	$6s^{0.57}5d^{0.19}6p^{0.61}6d^{0.65}7p^{0.01}$	s(51%)p(32%)d(17%)
				Lu2	1.08	$6s^{0.56}5d^{0.20}6p^{0.59}6d^{0.59}7p^{0.01}$	s(51%)p(33%)d(16%)
$Lu_2@C_{2\nu}(7)-C_{84}$	3.46	0.98	1.98	Lu1	1.06	$6s^{0.57}5d^{0.49}6p^{0.62}6d^{0.29}7p^{0.01}$	s(50%)p(35%)d(15%)
				Lu2	1.06	$6s^{0.57}5d^{0.49}6p^{0.62}6d^{0.29}7p^{0.01}$	s(50%)p(35%)d(15%)
Lu ₂ @C _s (8)-C ₈₆	3.53	0.96	1.98	Lul	1.07	$6s^{0.54}5d^{0.20}6p^{0.60}6d^{0.60}7p^{0.01}$	s(48%)p(35%)d(17%)
				Lu2	1.10	$6s^{0.63}5d^{0.19}6p^{0.55}6d^{0.56}7p^{0.01}$	s(55%)p(31%)d(14%)
Lu ₂ @C _s (15)-C ₈₆	3.67	0.95	1.97	Lu1	1.11	$6s^{0.68}5d^{0.18}6p^{0.52}6d^{0.53}7p^{0.01}$	s(59%)p(28%)d(13%)

S17

				Lu2	1.10	$6s^{0.52}5d^{0.20}6p^{0.60}6d^{0.60}7p^{0.01}$	s(55%)p(30%)d(15%)
$Lu_2@C_1(26)-C_{88}$	3.65	0.95	1.98	Lu1	1.07	$6s^{0.63}5d^{0.19}6p^{0.54}6d^{0.58}7p^{0.01}$	s(59%)p(28%)d(13%)
				Lu2	1.10	$6s^{0.57}5d^{0.20}6p^{0.57}6d^{0.58}7p^{0.01}$	s(51%)p(33%)d(16%)
$Lu_2C_2@C_{2\nu}(9)-C_{86}$	4.37	0.17	-	Lu1	1.33	$6s^{0.18}5d^{0.29}6p^{0.49}6d^{0.70}7p^{0.01}$	-
				Lu2	1.33	$6s^{0.18}5d^{0.29}6p^{0.49}6d^{0.70}7p^{0.01}$	-
$Lu_2C_2@C_s(32)-C_{88}$	4.64	0.15	-	Lu1	1.32	$6s^{0.18}5d^{0.42}6p^{0.51}6d^{0.56}7p^{0.01}$	-
				Lu2	1.34	$6s^{0.18}5d^{0.42}6p^{0.49}6d^{0.56}7p^{0.01}$	-
Lu ₂ C ₂ @D ₂ (35)-C ₈₈	4.64	0.16	-	Lu1	1.33	$6s^{0.19}5d^{0.42}6p^{0.49}6d^{0.56}7p^{0.01}$	-
				Lu2	1.33	$6s^{0.19}5d^{0.42}6p^{0.49}6d^{0.56}7p^{0.01}$	-

Figure S11. Optimized structures of low-energy Lu_2C_{76} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis). The isomer marked with a red box is experimentally obtained.

Figure S12. Optimized structures of low-energy Lu_2C_{78} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis). The isomer marked with a red box is experimentally obtained.

Figure S13. Optimized structures of low-energy Lu_2C_{80} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis, α/β for the open-shell ones). The isomer marked with a red box is experimentally obtained.

Figure S14. Optimized structures of low-energy Lu_2C_{84} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis). The isomers marked with red boxes are experimentally obtained.

Figure S15. Optimized structures of low-energy Lu_2C_{86} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis). The isomers marked with red boxes are experimentally obtained.

Figure S16. Optimized structures of low-energy Lu_2C_{88} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis). The isomers marked with red boxes are experimentally obtained.

Figure S17. Optimized structures of low-energy Lu_2C_{90} isomers with relative energies (kcal/mol) and HOMO-LUMO gap energies (eV, in parenthesis). The isomers marked with red boxes are experimentally obtained.

References:

[S1]. W. Shen, L. Bao, Y. Wu, C. Pan, S. Zhao, H. Fang, Y. Xie, P. Jin, P. Peng, F.-F. Li and X. Lu, *J. Am. Chem. Soc.*, 2017, **139**, 9979–9984