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General Experimental Details

All manipulations were carried out under dry nitrogen using standard Schlenk-line and
cannula techniques, or in a conventional nitrogen-filled glovebox. Solvents were dried over
appropriate drying agents and degassed prior to use. NMR spectra were recorded using a
Bruker Avance DPX 300 MHz spectrometer at 300.1 (*H) and 75.4 (3C) MHz or a Varian
VNMRS 500 MHz spectrometer at 500.1 (*H) and 75.4 (*3C) MHz. Proton and carbon chemical
shifts were referenced internally to residual solvent resonances and all coupling are reported
in Hz. Elemental analyses were performed by S. Boyer at London Metropolitan University.

(NONA")H, %1 was prepared according to literature procedures.
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Synthesis of K,(NON”)(THF) (1)
A solution of (NONA")H, (1.00 g, 2.06 mmol) in THF was added to 2.1 equivalents of solid KH
(0.173 g, 4.33 mmol). The solution was stirred for 2 days. The solution was filtered, and the

solvent was removed in vacuo. The resultant solid 1 was washed with cold hexane to give

K,(NONA")(THF) as a colourless solid. Yield 1.12 g, 86 %.

Single crystals suitable for X—ray diffraction were grown from a saturated THF solution stored

at =30 °C overnight, and shown to correspond to the formula K;[(NONA")(THF)s] (1_{THF}5).

IH NMR (CD5CN, 600 MHz, 333 K): 6 7.06 (d, J = 7.3, 2H, C¢Hs), 7.00 (dd, J = 8.3, 6.9, 1H, CeHs),
6.97 (d,J = 7.7, 2H, C¢Hs), 6.67 (t, J = 7.7, 1H, CeH3), 3.64 (m, 4H, THF-CH,), 3.56 (sept, J = 6.8,
2H, CHMe,), 2.95 (sept, J = 6.8, 2H, CHMe,), 1.80 (m, 4H, THF-CH,), 1.20 (d, J = 6.8, 12H,
CHMe,), 1.15 (d, J = 6.9, 12H, CHMe,), 0.10 (s, 1H, SiMe,), 0.09 (s, 2H, SiMe,), 0.08 (s, 6H,
SiMe,), 0.03 (s, 3H, SiMe,).

13C{IH} NMR (CDsCN, 151 MHz, 333 K): § 145.7, 142.0, 140.3, 133.2, 133.1, 124.7, 123.8,
123.5, 118.7 (C4Hs), 68.3 (THF-CH,), 28.8, 28.3(CHMe,), 26.3 (THF-CH,), 24.0, 22.8 (CHMe,),
3.6, 0.20 (SiMe,).

Extreme sensitivity to moisture and/or oxygen, combined with variable amounts of
incorporated solvent as a result of sample preparation precluded the acquisition of accurate
elemental analysis results for 1.

Compound 1 was also crystallized from Et,0 as K;[(NONA")(Et,0),] (1_{Et,0},) and in the
presence of 18-c-6 as Ky[(NONA")(18-c-6)] (1_{18-c-6}). The X-ray diffraction data was solved

in each case and is presented in this publication for reference.

S4



Figure S1: 'H NMR spectrum (CD3CN, 600 MHz, 298 K) of K,[(NONA")(THF)] (1_{THF})
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Figure S2: 13C{*H} NMR spectrum (CDsCN, 151 MHz, 298 K) of K,[(NONA")(THF)] (1_{THF})
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Figure S3a: ORTEP of the asymmetric unit of [K,({NONAKTHF}5)1, ([1_{THF}s],) (ellipsoids 30%, hydrogen atoms omitted).
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Figure S3b: ORTEP showing the connectivity of polymeric K,[(NONA")(THF)s] (1_{THF}s) (ellipsoids 30%, hydrogen atoms omitted).
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Figure S4a: ORTEP of the asymmetric unit of K,[(NONA")(Et,0),] (1_{Et,0},) (ellipsoids 30%, hydrogen atoms omitted).
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Figure S4b: ORTEP showing the connectivity of polymeric K,[(NONA")(Et,0),] (1_Et,0) (ellipsoids 30%, hydrogen atoms omitted).
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Figure S5a: ORTEP of the asymmetric unit of K,[(NONA")(18-crown-6)] (1_18-c-6) (ellipsoids 30%, hydrogen atoms omitted).
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Figure S5b: ORTEP showing the connectivity of dimeric K,[(NONA")(18-crown-6)] (1_18-c-6) (ellipsoids 30%, hydrogen atoms omitted).
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Synthesis of K[In(NON*")Cl,] (2)
A solution of K,[(NONA')(THF)] (1_{THF}) (0.500 g, 0.79 mmol) in Et,0 was added to a
suspension of InCl; (0.174 g, 0.79 mmol) in Et,0 and stirred for 12 hours. The solution was

filtered and solvent was removed in vacuo to give K[In(NONA")Cl,] as a colourless solid. Yield

0.430 g, 77 %..

Single crystals suitable for X—ray diffraction were grown from a saturated solution toluene

solution stored at —30 °C overnight.

1H NMR (C¢Dg, 300 MHz): 6 7.05 (d, J = 7.5, 4H, C¢Hs), 6.90 (t, J = 7.5, 2H, CgHs), 4.18 (sept, J =
6.8, 4H, CHMe,), 1.34 (d, J = 6.8, 24H, CHMe,), 0.42 (s, 12H, SiMe,).

13C{1H} NMR (C¢Ds, 151 MHz): 6 148.5, 145.7, 128.4, 124.0, 123.38 (C4H,), 27.5 (CHMe,), 25.5
(CHMe,), 2.9 (SiMe,).

Elemental Analysis: CygH46Cl2InKN,0Si,. Calc: C, 47.52; H, 6.55; N, 3.96. Anal: C, 46.64; H, 6.32;
N, 4.09.

The crystal structure of 2 was also obtained as the benzene solvate (2_benzene).
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Figure S6: 'H NMR spectrum (CgDg, 300 MHz, 298 K) of K[In(NONA")Cl,] (2)
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Figure S7: 13C{*H} NMR spectrum (CgDs, 151 MHz, 298 K) of K[In(NONA")Cl;] (2)
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Figure S8a: ORTEP of the asymmetric unit of K[In(NON*")Cl,] (2) (ellipsoids 30%, hydrogen atoms omitted).
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Figure S8b: ORTEP showing the connectivity of polymeric K[In(NONA")Cl,] (2) (ellipsoids 30%, hydrogen atoms omitted).
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Figure S9: ORTEP of K[In(NONA")Cl,]-benzene (2_benzene) (ellipsoids 30%, hydrogen atoms omitted).
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Synthesis of K[In(NON*")] (3)

A solution of 2 (0.400 g, 0.56 mmol) in Et,0 was added to a Schlenk with a potassium mirror
(0.044 g, 1.13 mmol) and was stirred at room temperature of 3 days. The solvent was removed
in vacuo, and the remaining products was redissolved in hexane and filtered. Removal of

solvent in vacuo gave 3 as a yellow microcrystalline solid. Yield 0.627 g, 74 %.

Single crystals suitable for X—ray diffraction were grown from a saturated solution of 3 in

hexane stored at —30 °C overnight.

IH NMR (C4Ds, 300 MHz): 6 6.88 (d, J = 7.5, 4H, C4Hs), 6.58 (t, J = 7.5, 2H, CeHs), 4.16 (sept, J =
6.8, 4H, CHMe,), 1.26 (d, J = 6.8, 12H, CHMe,), 1.01 (d, J = 6.8, 12H, CHMe,), 0.40 (s, 12H,
SiMEz).

13C{IH} NMR (C¢Dg, 151 MHz): § 152.3, 147.6, 123.0, 119.9 (CsHs), 27.0 (CHMe,), 23.9 (CHMe,),
4.0 (SiMe,).

Extreme sensitivity to moisture and/or oxygen, combined with variable amounts of
incorporated solvent as a result of sample preparation precluded the acquisition of accurate

elemental analysis results for 3.
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Figure S10: 'H NMR spectrum (C¢Dg, 300 MHz, 298 K) of K[In(NONA")] (3)
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Figure S11: 33C{*H} NMR spectrum (CgD¢, 151 MHz, 298 K) of K[In(NONA")] (3)
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Figure S12: ORTEP of [K(In{NONA'})], ([3],) (ellipsoids 30%, hydrogen atoms and hexane solvate omitted).
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Synthesis of K[In(NON*")(N(H){2-(CPh)-6-(CHPh,)-4-tBuCsH,}] (4)

A solution of Ar*N; (Ar* = 2,6-(CHPh,),-4-tBuCgH,, 0.071 g, 0.16 mmol) in hexane was added
dropwise to a solution of 3 (0.100 g, 0.16 mmol) in hexane at—78 °C and then allowed to warm
to room temperature and stirred for 1 hour. The solution was concentrated in vacuo and

stored at —30 °C overnight to afford a colourless crystalline solid 4. Yield 0.150 g, 88 %.

Single crystals suitable for X—ray diffraction were grown from a saturated solution of 4 in

toluene and stored at —30 °C overnight.

1H NMR (C¢Dg, 600 MHz): & 7.18 (m, 4H, Ar-H), 7.13 (m, 6H, Ar-H,), 7.12 — 7.07 (m, 3H, Ar-H),
7.03 (m, 2H, Ar-H), 7.01 — 6.98 (m, 3H, Ar-H,), 6.91 (m, 2H, Ar-H), 6.83 (s, 4H, Ar-H), 6.81 —
6.72 (m, 3H, Ar-H), 6.67 (s, 2H, Ar-H), 5.56 (s (br), 1H, CHPh,), 4.18 (m (br), 4H, CHMe,), 3.24
(s, 1H, NH), 1.48 (d, J = 6.7, 6H, CHMe,), 1.38 (d, J = 6.7, 6H, CHMe,), 1.03 (s, 9H, CMe3), 0.91
(d (br), 6H, CHMe,), 0.77 (d, /= 6.7, 6H, CHMe,), 0.58 (s, 6H, SiMe,), 0.45 (s, 6H, SiMe,).

13C NMR (CeDs, 151 MHz): 6 151.3, 149.8, 146.7, 144.4, 143.6, 142.2, 137.9, 135.7, 130.0,
129.3, 128.7, 128.6, 128.6, 127.4, 127.3, 126.8, 126.7, 125.7, 124.5, 124.1, 123.6, 122.3 (Ar-
C), 54.9 (CHPh,), 53.6 (CHPh,), 34.1 (CMe;), 31.8, 31.1, (CHMe,), 27.8, 27.7, 26.5, 25.6,
(CHMe,), 21.5 (CMe;) 4.75, 3.13 (SiMes).

Extreme sensitivity to moisture and/or oxygen, combined with variable amounts of
incorporated solvent as a result of sample preparation precluded the acquisition of accurate

elemental analysis results for 4.
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Figure S13: 'H NMR spectrum (C¢Dg, 600 MHz, 298 K) of K[In(NONA")(N(H){2-(CPh,)-6-(CHPh,)-4-tBuCg¢H,}] (4)
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Figure S14: 33C{*H} NMR spectrum (CgDg, 151 MHz, 298 K) of K[In(NONA")(N(H){2-(CPh,)-6-(CHPh,)-4-tBuCgH,}] (4)
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Figure S15: HSQC spectrum (CgDg, 151 MHz, 298 K) of K[In(NONA")(N(H){2-(CPh,)-6-(CHPh,)-4-tBuCgH,}] (4)
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Figure S16: ORTEP of K[In(NON”")(N(H){2-(CPh,)-6-(CHPh,)-4-tBuCsH,}] (4) (ellipsoids 30%, hydrogen atoms except NH and toluene solvate
omitted).
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Synthesis of K[In(NON*")(NMes)] (5)

A solution of mesityl azide (0.027 g, 0.16 mmol) in hexane was added dropwise to a solution
of 3(0.100 g, 0.16 mmol) in hexane at —78 °C then allowed to warm to room temperature and
stirred for 1 hour. The solution was concentrated in vacuo and stored at —30 °C overnight to

afford a yellow orange crystalline solid 5. Yield 0.110 g, 89 %.

Single crystals suitable for X—ray diffraction were grown from a saturated solution of 5 in

hexane and stored at =30 °C overnight.

1H NMR (CsDg, 600 MHz): & 6.95 (s (br), 6H, C¢Hs), 6.46 (s, 2H, Mes-CgH,), 4.01 (m (br), 4H,
CHMe,), 2.04 (s, 3H, Mes-4-MeCgH,), 1.57 (s, 6H, Mes-2,6-Me,CsH,), 1.25 (d, J = 6.8, 12H,
CHMe,), 1.07 (s (br), 12H, CHMe,), 0.33 (s, 12H, SiMe,).

13C{*H} NMR (CgD¢, 151 MHz): 6 163.9, 146.9, 129.4, 127.5, 123.6, 123.3, 118.7 (Ar-CsH3 and
Mes-CgH,), 32.0 (Mes-4-MeCgH,), 27.8 (CHMe,), 24.2 (CHMe.), 20.8 (CHMe,), 20.4 (Mes-2,6-
M82C6H2), 2.5 (SIMeZ)

Extreme sensitivity to moisture and/or oxygen, combined with variable amounts of
incorporated solvent as a result of sample preparation precluded the acquisition of accurate

elemental analysis results for 5.

Synthesis of [K(crypt-222)][In(NONA")(NMes)] (6)

One equivalent of 222-cryptand (0.014 g, 0.038 mmol) dissolved in C¢Dg was added to a J
Young's tap NMR tube containing C¢Dg solution of 5 (0.014 g, 0.038 mmol). Addition of the
222-cryptand solution led to incipient crystallisation of 6 as red plates. Unfortunately, the salt
is highly insoluble once crystallized and we were unable to get sufficient quantities back into

solution to obtain any spectroscopic data.
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Figure S17: 'H NMR spectrum (C¢Dg, 600 MHz, 298 K) of K[In(NONA")(NMes)] (5)
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Figure S18: 3C{*H} NMR spectrum (CgDe, 151 MHz, 298 K) of K[In(NONA")(NMes)] (5)
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Figure S19: ORTEP of [K(In{NONA"{NMes})], ([5],) (ellipsoids 30%, hydrogen atoms and toluene solvate (x4) omitted).




Figure S20: ORTEP of [K(crypt-222)][In(NON”")(NMes)] (6) (ellipsoids 30%, hydrogen atoms omitted).
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Figure S21: View of In(NMes) components of (a) [5], and (b) 6 projected perpendicular to the In-N-Cj,,, plane
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Representative procedure for the preparation of K[In(NON*")(N,{Mes},-1,4] (7) and
K[In(NONA")(N ,{Mes}{SiMes}-1,4] (8)

To a yellow toluene solution of compound 5 (0.050 g, 0.06 mmol) was added one equivalent
of RN3 (R =TMS or Mes, 0.06 mmol) in toluene at room temperature. The solution was stirred
for 5 minutes after which time the solution had become colorless. The solution was
concentrated in vacuo and stored at —30°C overnight to afford a colourless crystalline solid.

Yield: compound 7, 0.052 g, 93 %; compound 8, 0.048 g, 85 %.
Compound 7:

1H NMR (CD5CN, 600 MHz): & 6.92 (d, J = 7.5, 4H, C¢Hs), 6.83 (t, J = 7.5, 2H, CgHs), 6.59 (s, 4H,
CeHy), 3.79 (sept, J = 6.7, 4H, CHMe,), 2.14 (s, 6H, Mes-4-MeCgH,), 1.75 (s (br), 12H, Mes-2,6-
Me,CeH), 1.06 (d, J = 6.7, 12H, CHMe,), 0.74 (d, J = 6.7, 12H, CHMe,), -0.08 (s, 12H, SiMe,).

13C{IH} NMR (CDsCN, 151 MHz): & 149.6, 148.3, 147.6, 134.6, 130.7, 130.4, 124.1, 122.5(Ar-
CsHs and Mes-CgH,), 32.3, 27.6, 26.8, 26.1 (Mes-2,4,6-Me;CgH,), 23.4 (CHMe,), 21.0, 20.8
(CHMe,), 3.5 (SiMe,).

Compound 8:

1H NMR (CD5CN, 600 MHz): & 6.93 (dd, J = 7.5, 1.9, 2H, C¢H), 6.88 (dd, J = 7.6, 1.8, 2H, CeHs),
6.81 (t,J= 7.5, 2H, C¢H), 6.33 (s, 2H, CeH,), 3.94 (sept, J = 6.8, 1H, CHMe,), 2.00 (s, 3H, Mes-4-
MeCgH,), 1.16 (d, J = 6.8, 6H, CHMe), 1.13 (d, J = 6.8, 6H, CHMe,), 0.90 (d, J = 6.8, 6H, CHMe),
(s, 6H, Mes-2,6-Me,C¢H,), 0.45 (d, J = 6.8, 6H, CHMe,), 0.43 (s, 9H, SiMe3), 0.04 (s, 6H, SiMe,),
0.03 (s, 6H, SiMe,).

13C NMR (CDsCN, 151 MHz): 6 149.4, 148.1, 147.4, 137.5, 132.6, 128.6, 124.3, 123.9, 122.3 (Ar-
CsHs and Mes-CgH,), 32.3, 27.6, 27.5 (Mes-2,4,6-MesCgH,), 27.4 (CHMe,), 26.8, 25.1, 20.7,
18.3 (CHMe,), 3.7 (SiMes), 3.4, 2.8 (SiMe,).

Extreme sensitivity to moisture and/or oxygen, combined with variable amounts of
incorporated solvent as a result of sample preparation precluded the acquisition of accurate

elemental analysis results for 7 and 8.
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Figure S22: 'H NMR spectrum (CD5CN, 600 MHz, 298 K) of K[In(NON”")(Ns{Mes},-1,4] (7)
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Figure S23: 13C{*H} NMR spectrum (CD3CN, 151 MHz, 298 K) of K[In(NONA")(N,{Mes},-1,4] (7)
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Figure S24a: ORTEP of the asymmetric unit of [K(In{NONA"K{N,4(Mes),-1,4})], ([7-(toluene)],) (ellipsoids 30%, hydrogen atoms and toluene
solvate omitted).
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Figure S24b: ORTEP of the core of [K(IN{NONA"H{N4(Mes),-1,4})], ([7-(toluene)],) (ellipsoids 30%, hydrogen atoms, selected carbon atoms

and toluene solvate omitted).
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Figure S25: 'H NMR spectrum (CDsCN, 600 MHz, 298 K) of K[In(NON”")(N,{Mes}{SiMe3}-1,4] (8)
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Figure S26: 3C{*H} NMR spectrum (CD3CN, 151 MHz, 298 K) of K[In(NONA")(N,{Mes}{SiMes}-1,4] (8)
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Figure S27a: ORTEP of [K(In{NONA"KN,(Mes)(SiMes)-1,4})], ([8],) (ellipsoids 20%, hydrogen atoms omitted).
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Figure S27b: ORTEP of the core of [K(In{NONA"K{N4(Mes)(SiMe3)-1,4})], ([8],) (ellipsoids 20%, hydrogen atoms and selected carbon atoms
omitted).
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Figure S28: ORTEP of [K(18-crown-6)][In(NONA")(N4{Mes},-1,4)] (7:(18-c-6)) (ellipsoids 30%, hydrogen atoms and toluene (x2) solvate omitted)
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Crystallography

Crystals were covered in inert oil and suitable single crystals were selected under a
microscope and mounted on an Agilent SuperNova diffractometer fitted with an EOS
S2 detector. Data were collected at the temperature indicated using focused
microsource Mo Ko radiation at 0.71073 A ([1_{THF}s3],, 1_{Et,0},, [7-(toluene)],) or
Cu Ko radiation at 1.54184 A (1_{18-c-6}, 2, 2_benzene, [3]5, 4, [5]5, 6, [8]>, 7-(18-c-6)).
Intensities were corrected for Lorentz and polarisation effects and for absorption using
multi-scan methods.[5?] Space groups were determined from systematic absences and
checked for higher symmetry. All structures were solved using direct methods with
SHELXS, 53] refined on F? using all data by full matrix least-squares procedures with
SHELXL-97,5%1 WinGX.[55! Non-hydrogen atoms were refined with anisotropic
displacement parameters. Hydrogen atoms were placed in calculated positions or
manually assigned from residual electron density where appropriate unless otherwise
stated. The functions minimized were Zw(F20-F2c), with w = [02(F20) + aP2 + bP]-1,
where P = [max(Fo)2 + 2F2c]/3. The isotropic displacement parameters are 1.2 or 1.5

times the isotropic equivalent of their carrier atoms.

Additional information:

[K>({NONAHTHF}3)], ([1_{THF};],): The molecule is polymeric, running parallel to the c-axis. A
methylene groups of one of the THFs is disordered and was modelled over two sites with
SIMU and DELU restraints used to obtain more satisfactory displacement ellipsoids.
Alternative solutions considering missed (pseudo) symmetry failed to give a satisfactory
model.

K>[(NON#)(Et,0),] (1_{Et;0},): The molecule is polymeric, running parallel to the b-axis.
K>[(NON")(18-crown-6)] (1_{18-c-6}): The molecule is dimeric, with the two halves related by
an inversion center.

K[In(NONA")Cl,] (2): The molecule is polymeric.

K[In(NONA")Cl,]-benzene (2_benzene): The asymmetric unit contains 1/2 a molecule of
benzene located on a two-fold rotation axis.

K(In{NON*"})], ([3],): The asymmetric unit contains 1/2 a molecule of hexane located on an

inversion center. A methyl group of one of the iPr groups and a methyl group of one of the
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SiMe, groups are disordered and were modelled over two positions with SADI / SIMU / DELU
restraints.

K[In(NONA)(N(H){2-(CPh,)-6-(CHPh,)-4-tBuCsH,}] (4): The asymmetric unit contains a
molecule of toluene solvate. The hydrogen atom on the amido-nitrogen atom was located on
the difference map and freely refined.

[K(In{NONA"}{NMes})], ([5],): The asymmetric unit contains four molecules of toluene. One of
these solvate molecules is disordered and was modelled over two positions with the carbon
atoms isotropic; the Cg-ring of the lower occupancy orientation was constrained in a regular
hexagon using the AFIX66 command. The carbon atoms of separate toluene were modelled
using SIMU and DELU restraints to obtain more satisfactory displacement ellipsoids.
[K(In{NONA"}{N,(Mes),-1,4})], ([7-(toluene)],): The molecule is dimeric, with the two halves
related by a two-fold rotation axis passing through the center of the K,N, ring. The toluene
solvate is disordered and was modelled over two positions with rigid constraints (AFIX66) on
the Cs-rings of both components.

[K(In{NONA"}{N,(Mes)(SiMes)-1,4})], ([8],): A methyl group on one of the iPr substituents is
disordered and was modelled over two positions. It was not possible to obtain satisfactory
ellipsoids and both components were refined as isotropic models.

The asymmetric unit contains two poorly defined toluene solvate molecules that have been
treated as a diffuse contribution to the overall scattering without specific atom positions by
SQUEEZE/PLATON. Details are given in the .cif file.

[K(18-crown-6)][In(NON*")(N,{Mes},-1,4)] (7-(18-c-6)): The asymmetric unit contains two
molecules of toluene. One of these is disordered and was modelled over 2 positions with all

carbon atom isotropic.
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Computational Methods

All structural optimisations were carried out with the Gaussian 09 suite of programs
(Revision D.01),1%¢1 using the density functional method (DFT) with the PBEO-D3BJ
hybrid functional®”! (including empirical corrections for dispersion interactions) and
the balanced, polarised def2-SVP basis-setl*® of double- quality. Frequency
calculations at the same level of theory were employed to ensure that the obtained
structures are minima on the potential energy surface.

All subsequent calculations for the analysis of the electronic structure were performed
at the obtained geometry with the same method (PBEO-D3BJ) but employed the large
def2-TZVP basis set of triple- quality.

The bonding was analysed using the Natural Bond Orbital (NBO) approach!® using the
NBO 3.0 program,1% and Wiberg Bond Indices (WBI) were computed.511 Additional
analysis was carried out with the Quantum Theory of Atoms in Molecules (QTAIM)
approach using the AIMAIlI programme package.

Molecular and MO/NBO graphics and were rendered with GaussView 5.0.9.1512]
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Table S1 Calculated structural parameters and charges (q) from the Natural Population
Analysis (NPA), Wiberg Bond Indices (WBI) as well as electron densities (p), values of the

Laplapcian of the electron density (V 2p) and ellipticity (g) at the InNMes-bond critical point for
compounds 5 and the anionic [In(NONA")(NMes)]~- component of compound 6 ([6]7). Note that
corresponding values for the In-NNON-A" hond are given in parentheses where appropriate.

K[In(NONA")(NMes)] (5)

[In(NON*)(NMes)]~ ([6])

r (In,NMes) 2.00 A 1.97 A

a (In,NMes C) 123° 126°

r (NMes K) 2.55A n/a

q (In) 1.94 1.88

q (NMes) -1.36 -1.20

WBI (InNMes) 0.59 0.71
(0.22/0.29) (0.25/0.25)

P 0.120 0.125
(0.090/0.101) (0.092/0.091)

Vip +0.373 +0.400

(+0.295/+0.315)

(+0.301/+0.284)

0.079
(0.104/0.098)
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Figure S29 QTAIM derived molecular graphs of K[In(NONA")(NMes)] (5). Bond paths
are indicated in solid black lines (dotted black lines for weak interactions), the
corresponding bond critical points are displayed in green. Ring and cage critical points

are not displayed.
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Figure S30 QTAIM derived molecular graphs of [In(NONA")(NMes)]~ ([6]7). Bond
paths are indicated in solid black lines (dotted black lines for weak interactions), the
corresponding bond critical points are displayed in green. Ring and cage critical points

are not displayed.
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Figure S31 Contour plot of the Laplacian of the electron density of [In(NONA")(NMes)]~
([6]7) in the N-N-In-N plane. Selected bond paths are indicated as solid black lines and
their corresponding bond critical points are displayed in green.

Enlarged area of the above plot
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Table S2 NBO Plots for [In(NONA")(NMes)]~ ([6]7) showing the orbitals that contribute
to the In-N interaction in different resonance structures. The non-Lewis (n-L)
component is given in parentheses for each resonance structure.

29 ©
(NONAYIN—Nmes

20 @ o .. / ¢
(NONAYIN=Nmes <> (NON”")In=Nmes

A s Ow 0

(NONA")In—Nmes

D
Resonance structure A Resonance structure B Resonance structure D
(n-L=1.965 %) (n-L=1.990 %) (n-L=2.094 %)
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x,y,z coordinates for K[In(NON”")(NMes)] (5)

In
K

Si

n
-

0D Q =T QO =D =D =-Z Q =& =D =T Q =T Q QO =-D O - Q =T QO O zZ zZ =Z2Z O

0.

RN ND Wb w O N RN w0y Dy bW

02674

.83832
.55028
.19205
.31649
.06960
.03156
.23776
.0le66l
.39885
.34140
.63689
.92013
. 67222
.54149
.99507
.60416
. 75641
.20292
. 73765
.22973
.21843
.96980
. 77536
.52886
.27314
.30966
.16932
.68616
.10686
.25536

.01891
.43468
.25301
.78564
.06426
.57850
.68416
.97891

0.42986

R o N BB O O = N NN W DD D = O

.81571
.83559
.11328
.49264
.26957
.12782
.63623
.11458
.17565
.69720
.12552
.03186
.64290
.43012
.31141
.96790
.87835
.52438
. 79397
.19130
.79251
.83074
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.05684
.49211
.23833
.66087
.99567
.06152
.62216
.20759
.15214
.46990
.65022
.66597
.56608
.712492
. 72589
.58083
.95353
.68318
.31204
.31686
71113
.15976
.58552
. 70894
.24899
.50792
.18893
.36821
.32125
.83089
.13110



Q o = o =m Q == O @ @&-nD =Z == Q =D = =& Q =" =& &- Q = & @=m Q &= @m @m—m Q & m

s w w RNy

1N

SO O W b

.71229
.52834
.32409
. 79699
.96066
.10306
.84028
.95951
.70596
.03581
11129
.49297
.90251
.92097
.12376
.62194
0.81333
717997
.09820
.55927
.11520
.18606
.30426
.43834
.67508
.54871
.81381
. 78967
.70085
.81161
.44209
.31741

.52341
.80998
. 71154
.69222
.35654
.01627
.13765
.07344
. 72951
.20354
.39501
.42701
. 72496
.15097
.01058
.03361
.84127
.64754
.41003
.09668
.26470
.88980
.85728
.21516
.34597
.84476
.09671
.18736
.12637
.30821
.61644
.42196
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.82341
.90978
.36004
.53045
.33671
.01426
.38871
.04429
.93218
.19105
.26622
.22301
.89381
.32174
.34136
.22558
.89285
. 95510
. 79703
.46759
.19215
.81102
.041064
.60042
.03518
.38778
.19756
.68068
. 74415
.66256
.14797
.88499



Q = = - QO Q & O Q &= o O Q@ @& =D = Q@ @&-m = =& QO =T Q &- - = Q@ @m @m = (Q m

.25359
.67841
.07693
.51617
. 73798
.12390
.20915
.90438
.88226
.227759
.44690
.68238
.37401
.19500
.44691
.48501
.17858
.54397
.91488
.48731
.82839
.04698
.27171
.99465
.67211
.39620
.46702
.88813
.37457
.52595
.01420
.30848

oD ND WD

.15554
.30482
.22579
77118
.60465
.87261
.68145
.45361
.50321
.23707
.32692
.30667
.33308
. 74595
.10176
.63303
.61821
.08363
.29634
.55268
.63360
.30231
.12139
.94981
.87990
.56529
.18670
.02399
.70183
.13648
.55811
.66683
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.98878
.08141
.09847
.03188
.03693
.88800
.88256
.79721
.02046
.81259
.04339
.89803
.48367
.39939
.66398
.37050
.22623
.72289
.60465
.30285
.56620
.43415
.12643
.52624
.36752
.12697
.28025
.66684
.38308
.20808
.30689
.64788



oD = - Q @m = I

.43238
.16027
.39923
.21437
.00782
.247764
.20814

o B O = U W U

.12882
.98104
.46592
.03537
.94763
.12570
.07122
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RN NN DO O -

.64166
.50654
.10244
.19965
.95482
.71905
.65695



x,y,z coordinates for [In(NON”")(NMes)]~ ([6]")

In -0.10012
Si -2.939%61

n
-
|
(@]

.36632
-1.85005
-2.19236
0.68497
0.61184
-3.01940
-3.34272
-4.20626
-4.45020
-4.74660
-5.42429
-4.39217
-4.78449
-3.53152
.67884
-2.23278
-1.54087
-1.93917
-0.97638
-0.83854
-3.64931
-4.48566
-3.13095
-4.07789
-3.06342
-2.68952
-1.88220
-1.08946

0D =T QO =D QO &-D =D D Q =& =ZZ == Q - O Q =&-Z Q =T QO =-Z OO o o =z =zZ =2 O
|
N

-1.44119

D MDD OO R PO O O N kPO O BFBw NDoODd oD DR

.25503
.63155
.51031
.66838
.07631
.59064
.08057
.03741
.39533
.46901
.73988
.20679
.04038
.88942
.49089
.82677
.70123
.22159
.57226
.50182
.04096
.86049
.30994
.29350
.27995
.19419
.58229
.54939
.50407
.43711
.26073
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.00440
.23812
. 71662
.95651
.02214
.71392
.23356
.25467
.58909
.82436
.85542
.177822
.98081
.52899
.35330
.80978
.76051
.36378
.30043
. 73995
.08502
.50047
.87075
.48625
.64381
.37027
.22856
.25299
.54443
.78041
.52575
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.21097
.16251
.52936
.717967
.02376
.46114
.60946
.24304
.86116
.46291
.99986
.15137
.18504
.29797
.39546
.27994
.42206
. 70827
.03876
.19125
.50641
.90304
.92695
.15374
.17067
.35096
.30103
.32767
.26553
.12719
.63288
.16415

.55627
.70714
. 74256
.41290
.06438
.47314
.59014
.89750
.47543
.51172
.47357
. 13247
.26595
.23426
.80544
.19815
. 77660
.62322
.58982
.56917
.12911
.99985
.86371
.21380
.87570
. 71618
.98971
.85062
.43883
.48449
.32274
.22068
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.57215
.27755
.36939
.26806
.03933
.35871
.04516
.87722
.13630
.33234
.34128
.96917
.36824
.02317
.65990
.51952
.07406
.33865
.14533
.97018
.90512
.15214
.97410
.54458
41477
.04271
.50913
.046061
.42562
.65710
.61911
.86896



T Q & =T— = Q O = Q o =m o o =2 @& = Q =2 @& == Q @& OO = = = Q = T&- @ O

s w b w D w o Ok O ko o o

1N

A o N PRPw DNy, R L

.26946
.15699
.67915
.05651
.65448
.35695
.34426
.94796
.11806
.15657
.13877
.32380
.03298
.08937
.22770
.22294
.07678
.23466
.91864
.82224
.12990
. 79037
.63059
. 74889
.10275
.44086
.36933
.12520
.42078
.20325
.03856
.56114
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.39884
.35461
.70195
.40733
.78081
.95085
.08847
.44816
.56077
.02370
.38329
.12089
. 73564
.93471
.48342
.02865
.19470
.06197
.41284
.85866
.33708
.87912
.36459
.91647
72179
.47155
. 74827
.51948
.99559
.19170
.86852
.91219
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. 78337
.45167
.25560
.55448
.06632
.89855
.41500
.24123
.85717
.82900
.14695
.16362
.03282
.23821
.85249
.99309
.67914
.91742
.38693
.35239
.45604
.20220
.65367
.28539
.94126
.43352
.24480
.01055
. 74904
.68563
.79661
.17456
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.07852
.62897
.53627
.02361
.22358
.60032
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.88758
.21639
.05815
.88173
.28706
.42173
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.22309
.45887
.47024
.01527
.19600
.01602



