## **Supporting Information**

# Construction of Supramolecular Nanotubes from Protein Crystals

Tien Khanh Nguyen, Hashiru Negishi, Satoshi Abe, and Takafumi Ueno\*

School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan.

Email: tueno@bio.titech.ac.jp

#### **General Information**

#### **Materials and Methods**

**Materials.** All chemicals and enzymes were purchased with analytical grade from Sigma – Aldrich, Wako, TCI, Nacalai Tesque, Nanoprobes and used without further purification. The *E. coli* competent cells, including The One Shot® TOP10 for plasmid construction and BL21(DE3) for protein expression were from InvitrogenTM (Life Technologies) and Novagen (EMD Chemicals Inc.), respectively. Primers for site – directed were obtained from Gene Design Inc. PCR was implemented using QuikChange® Site–Directed Mutagenesis Kit (Stratagene).

**Construction of recombinant plasmid.** Mutant plasmid of RubisCO variant (I419C) constructed in *E. coli* for gene expression was performed by PCR with pET21b (+) plasmid (10 pg/ $\mu$ L in 10 mM Tris-HCl pH 8.0 containing 1 mM EDTA, Novagen) harboring the native gene of *Thermococcus kodakaraensis* KOD1 RubisCO as a template. The primers for the mutant was described through Table S1. Presence of mutation was confirmed by DNA sequencing analysis and then transformed into *E. coli* BL21(DE3) for protein expression.

**Protein expression and purification.** Expression and purification of protein were performed as previously described with any modifications.<sup>1</sup> The *E. coli* BL21(DE3) cells were grown in *Luria broth* (LB) medium containing 50 mg/mL ampicillin at 37°C. The protein expression was induced for 4 h until optical density (OD) reached of 0.5 at 660 nm by addition of 0.1 mM isopropyl-D-thiogalactopyranoside (IPTG) and then the cells were harvested by centrifugation (7500 rpm, 5 min, 4°C). The protein was extracted by resuspending the harvested cells in 20 mM Tris-HCl (pH 8.0), 10 mM MgCl<sub>2</sub> and sonication (on ice), followed by centrifugation (17500 rpm, 30 min, 4°C). The supernatant was heated for 30 min at 85°C and the precipitates were eliminated by centrifugation (17500 rpm, 30 min, 4°C). The heat-treated samples were purified with HiTrap Q HP 5 x 1 mL column (GE Healthcare, Little Chalfont, UK) eluting with NaCl gradient (0 – 1.0 M) in 20 mM Tris-HCl (pH 8.0), 10 mM MgCl<sub>2</sub>, following by further purification with AKTA Sephadex G200 column (GE Healthcare, Little Chalfont, UK) equilibrating with 50 mM Sodium Phosphate (pH 7.0) and 0.15 M NaCl. Prior to crystallization, the purified RubisCO was subjected

to Resource Q column 1 mL (GE Healthcare, Little Chalfont, UK) for further purification and dialyzed against 100 mM Bicine-KOH (pH 8.3), 10 mM MgCl<sub>2</sub> for 12 hours at room temperature.

**Protein crystallization.** Crystals were grown using hanging-drop vapor diffusion method at 20°C.<sup>2</sup> Crystals of I419CRubisCO were observed within 3 days from a protein solution of 30 mg/mL protein solution, 1.4 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 10 mM MgCl<sub>2</sub> in 100 mM CHES-NaOH (pH 9.0).

**Confirmation of crystal lattices by TEM.** Crystals of I419CRubisCO were cross-linked with 1% glutaraldehyde for 24 h at 20°C. Subsequently, crystals were washed with appropriate buffer (similarly to mother solution of crystallization with ammonium sulfate in CHES-NaOH buffer (pH 9.0)) and cracked into small pieces. Small pieces of crystals were subjected into the grids and stained similarly to procedure of preparation for TEM described below.

#### Construction of Protein Nanaotubes from the mutant I419CRubisCO crystals.

*Reaction of I419CRubisCO crystals with*  $H_2O_2$ . Crystals of I419CRubisCO was added to a solution of 1 mM  $H_2O_2$  in CHES-NaOH buffer (pH 9.0), 1.4 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. All the cross-linked crystals were harvested and transferred into the buffer solution of 100 mM Glycine-NaOH (pH 9.0) for 12 h at 20°C for dissolution without exogenous disruption. Control experiments were carried out in protein solution of 5 mg/mL I419CRubisCO, 1 mM  $H_2O_2$  in 100 mM CHES-NaOH (pH 9.0) for 24 h, 20°C.

*Co-oxidation of I419CRubisCO with cross-linkers.* Crystals of I419CRubiCO were added to the solution containing 25 mM cross-linker (Dithiothreitol DTT or 1,2-Ethanedithiol ED) for 8 h, and then incubated in 1 mM  $H_2O_2$  for 16 h at 20°C. Finally, all the cross-linked crystals were harvested and transferred into the buffer solution of 100 mM Glycine-NaOH (pH 9.0) for 12 h at 20°C for dissolution without exogenous disruption. Control experiments were carried out in protein solution of 5 mg/mL I419CRubisCO with the same procedure for 25 mM cross-linker in 8 h and then 1 mM  $H_2O_2$  in 16 h.

Accumulation of dye molecules in the tubular assemblies. Crystals of I419CRubisCO were soaked with 1 mM Rhodamine B in CHES-NaOH buffer (pH 9.0), 1.4 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> for 3 days at

20°C. Subsequently, all crystals were washed three times with the same buffer to eliminate unbound dyes, cross-linked, dissolved, and recorded with fluorescence spectra. For cross-linking, crystals were soaked in the solution of 25 mM ED ( $20^{\circ}$ C, 8 h) and 1 mM H<sub>2</sub>O<sub>2</sub> ( $20^{\circ}$ C, 16 h). All the cross-linked crystals were harvested and transferred into the buffer solution of 100 mM Glycine-NaOH (pH 9.0) for 12 h at 20°C for dissolution without exogenous disruption. Luminescence Spectroscopy of protein nanotubes with the immobilized functional dyes was recorded on a F-7000 fluorescence spectroscopy with the emission wavelength of 553 nm.

**Transmission Electron Microscopy (TEM).** The images were implemented using a 120 kV JEOL 1400-Plus (JEOL, Tokyo). The RubisCO samples used were either the non-oxidized form or oxidized forms (Wild-type, I419CRubisCO, and nanotubes). Prior to visualization, all samples were prepared with dilution up to final concentration of 3.5 mg/mL protein. 5  $\mu$ L of sample was loaded to a carbon-coated copper grid for 1 minute; then the excess liquid on grid was discarded and the grid was washed with 5  $\mu$ L of distilled water. The sample was negatively stained twice for 1 minute with 5  $\mu$ L, 1 % Methylamine Tungstate (Nanoprobes, CAS No. 55979-60-7). Samples were imaged on JEOL1400-Plus electron microscopes at 80 kV.

**Evaluation of enzymatic activity of RubisCO.** The carboxylase activity of RubisCO was determined as described previously.<sup>3</sup> The 10  $\mu$ L, 0.2 mg/mL of I419CRubisCO or RubisCO nanotube were activated in 100 mM Bicine-NaOH (pH 8.3), 10 mM MgCl<sub>2</sub>, 1 M NaHCO<sub>3</sub> for 16 h at 25°C prior to the enzymatic assay. 10  $\mu$ L of 2 mM NADH (CAS No. 104809-32-7), 50  $\mu$ L of 10 mM ATP (CAS No. 34369-07-8) and 10 mM reduced glutathione (CAS No. 70-18-8), 10  $\mu$ L of coupling enzymes were added to 20  $\mu$ L of activated RubisCO at 25°C. The mixture of coupling enzymes contains 563 units/mL 3-phosphoglycerate kinase, 125 units/mL glyceraldehyde-3-phosphate dehydrogenase, 260 units/mL triose phosphate isomerase and 22.5 units/mL glycerol-3-phosphate dehydrogenase. The enzymatic reaction was initiated by addition of 10  $\mu$ L, 100 mM Ribulose-1,5-bisphosphate (RuBP, CAS No. 24218-00-6) to 100  $\mu$ L reaction solution at 25°C. The enzyme activity was calculated from the slope of the UV absorbance change at 340 nm. The experiments were conducted three times.

**Determination of Free Thiol for calculation of cross-linking yield.** The free thiol cysteine concentration, corresponding to the non-oxidized cysteine group was determined by Ellman's Assay using L-Cysteine as standard.<sup>4</sup> 5  $\mu$ L of sample was added to 190  $\mu$ L solution of Ellman's Reagent (5,5'-Dithio-bis-(2-nitrobenzoic acid) (CAS No. 69-78-3), and 5  $\mu$ L of distilled water. Subsequently, the reaction was placed for 5 min at 20°C. The free thiol concentration was calculated from measuring absorbance at 412 nm and using Cysteine standard curve. The yield (%) of covalent cross-linking was defined as below: % Yield = (Free Thiol/ Total Thiol) x 100

**Statistical Data Analysis.** Statistical data analyses were carried out using a Student's t-test method. Values of P < 0.05 were considered statistically significant.

### **Figure and Table**

| Mutant | Template<br>Plasmid   | Sequence                                 |
|--------|-----------------------|------------------------------------------|
| I410C  | pET/rbc <sub>TK</sub> | 5'- CATAATGCAGGGATGCCCGCTCGACGAGTACG -3' |
| 14190  |                       | 5'- CGTACTCGTCGAGCGGGCATCCCTGCATTATG -3' |

Table S1. Primers used for site-directed mutagenesis

**Table S2.** Enzymatic activity of RubisCO

| Mutant           | Specific activity (µmole/min.mg) |
|------------------|----------------------------------|
| I419CRubisCO     | $0.143 \pm 0.015$                |
| RubisCO nanotube | $0.127 \pm 0.007$                |



**Fig. S1** TEM images of lattice structure of I419CRubisCO crystal confirmed by TEM after random cross-linking with 1% glutaraldehyde. Crystals were randomly cross-linked with 1% glutaraldehyde (24 h, 20°C), washed with mother solution of crystallization, then cracked into small pieces, and loaded into grids for observation by TEM.



**Fig. S2** TEM figures of experiments using variant I419CRubisCO for construction of nanotubes. (a) Tube formation with employment of I419CRubisCO crystals exposed into a solution of 25 mM ED and 1 mM H<sub>2</sub>O<sub>2</sub>. (b) Tube formation with employment of I419CRubisCO crystals exposed into a solution of 25 mM DTT and 1 mM H<sub>2</sub>O<sub>2</sub>. (c) Oxidation of I419CRubisCO solution triggered by 1 mM H<sub>2</sub>O<sub>2</sub> showed a low stacking number of 4 and random aggregation. (d) 25 mM ED and 1 mM H<sub>2</sub>O<sub>2</sub> triggered the formation of disulfide bonds into short tubes with 9 stacking numbers and random aggregation when I419CRubisCO solution was accommodated. (e) A short tube with 3 stacking numbers and random cross-linking were observed when I419CRubisCO solution was cross-linked with 25 mM DTT and 1 mM H<sub>2</sub>O<sub>2</sub>. Scale bar: 100 nm.



**Fig. S3** Examples of construction of supramolecular protein assemblies via cross-linking of protein crystal. Crystallization of hen egg-white lysozyme (HEWL) into orthorhombic morphology with the space group of  $P2_12_12_1$  (pdb id: 1bgi).<sup>5</sup> The crystal lattice indicates the assembly structures of tube, and sheet.



**Fig. S4** Fluorescent spectra of protein assembly after immobilization of functional dye Rhodamine B into protein nanotubes. This spectrum shows the potential of RubisCO nanotubes as a template for immobilization of functional materials, indicated by the strong intensity near the emission wavelength of 572 nm of free Rhodamine B with a slight shift to 575 nm. Excitation wavelength: 553 nm.

#### References

(1) Ezaki, S.; Maeda, N.; Kishimoto, T.; Atomi, H.; Imanaka, T. J. Biol. Chem. 1999, 274, 5078.

- (2) Maeda, N.; Kanai, T.; Atomi, H.; Imanaka, T. J. Biol. Chem. 2002, 277, 31656.
- (3) Fujihashi, M.; Nishitani, Y.; Kiriyama, T.; Aono, R.; Sato, T.; Takai, T.; Tagashira, K.; Fukuda, W.; Atomi, H.; Imanaka, T. *Proteins: Struct. Funct. Bioinform.* **2016**, *84*, 1339.
- (4) Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70.
- (5) Oki, H.; Matsuura, Y.; Komatsu, H.; Chernov, A. A. Acta Crystallogr. D 1999, 55, 114.