
Supporting Information for Learning Continuous

and Data-Driven Molecular Descriptors by

Translating Equivalent Chemical Representations

Robin Winter,∗,†,‡ Floriane Montanari,† Frank Noé,‡ and Djork-Arné Clevert∗,†

†Department of Bioinformatics, Bayer AG, 13353 Berlin, Germany

‡Department of Mathematics and Computer Science, Freie Universität Berlin, 14195

Berlin, Germany

E-mail: robin.winter@bayer.com; djork-arne.clevert@bayer.com

Common neural network architectures

In the following we introduce the basic concepts of the different neural network architectures

used in our translation model

Fully-connected Neural Network

The most basic form of a Deep Neural Network is the Fully-connected Neural Network

(FNN). In an FNN, each neuron in a layer of the network is connected to each neuron in

the previous layer (see Figure 1 a). Thus, the output of a neuron in a fully-connected layer

is a linear combination of all outputs of the previous layer, usually followed by a non-linear

function.

1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2018



Convolutional Neural Network

A convolutional neural network (CNN) builds up on multiple small kernels which are con-

volved with the outputs of the previous layer. In contrast to a neuron in a fully-connected

layer, each output of a convolutional-layer is only a linear combination of neighboring out-

puts in the previous layer (see Figure 1 b). The number of considered neighbors is defined

by the size of the kernel. Since the same kernels are applied along all outputs of the previous

layer, a convolutional architecture is especially well suited for recognition of patterns in the

input, independently of their exact position. Hence, CNNs are popular in image analysis

tasks but were also successfully applied on sequence-based data.1,2

1 c c c c c c 1 

FNN 

1 c c c c c c 1 

CNN 

1 c c c c c c 1 

RNN 

a) b) c) 

Figure 1: Three different 2-layer neural network architectures with SMILES representation
of benzene as input. a) Fully-connected Neural Network (FNN): Each neuron is connected
with each neuron/input of the previous layer. b) Convolutional Neural Network (CNN): The
Input to a certain layer is convolved with a kernel of size 3. c) Recurrent Neural Network
(RNN): Illustration of a RNN with an unrolled graph. Note that a 2-layer of RNN has two
separate cell states (blue boxes)

Recurrent Neural Network

A more tailored architecture for sequence-based data is the Recurrent Neural Network (RN-

N). In contrast to FNN and CNN where all information flows in one direction, from the input

layer through the hidden layers to the output layer (feed-forward neural networks), an RNN

2



has an additional feedback loop (recurrence) through an internal memory state. An RNN

processes a sequence step by step while updating its memory state concurrently. Hence, the

activation of a neuron at step t is not only dependent on the input at t but also on the state

at position t− 1. By including a memory cell, an RNN is in theory able to model long-term

dependencies in sequential data, such as keeping track of opening and closing brackets in the

SMILES syntax. The concept of a neural network with a feedback loop can be simplified by

unrolling the RNN network over the whole input sequence (see Figure 1 c). Unrolling the

graph emphasizes that an RNN which takes long sequences as input becomes a very deep

neural network suffering from problems such as vanishing or exploding gradients3. To avoid

this problem, Hochreiter et al. proposed the Long short-term memory (LSTM) network,

which extends the RNN architecture by an input gate, an output gate and a forget gate.4 In

this work we use a modified version of the LSTM: the gated recurrent unit (GRU).5

Baseline Molecular Descriptors

In this section we will introduce the basic concepts of the different molecular descriptors we

used as baseline.

Circular fingerprints like the extended-connectivity fingerprints (ECFPs) were introduced

for the purpose of building machine learning models for quantitative structure-activity rela-

tionships (QSAR) models. This class of fingerprints iterates over the non hydrogen atoms of

a molecular graph and encodes the neighbourhood up to a given radius using a linear hash

function. The resulting set of neighbourhood hash codes for a dataset can then be handled

as a sparse matrix or folded to a much smaller size (1024 or 2048 are typical folding size

choices). Folding such a potentially large bit space (232) to a much smaller space produces

collisions in the final fingerprint vector, where two different neighbourhood codes could end

up at the same position in the folded vector, resulting in a loss of information. Additionally,

once folded, it is impossible to trace back important bits to actual compound substructures,

3



and therefore the model interpretability is lost.

In the ligand-based virtual screening experiments we followed the benchmarking protocol pro-

posed by Riniker et al.6 In this protocol we benchmarked our proposed descriptor against

the 14 fingerprints available in the pipeline. Accordingly Rinker et al., these fingerprints

can be divided into four different classes: dictionary-based (e.g. Molecular ACCess System

MACCS), topological or path-based (e.g. atom pair (AP) fingerprints or topological torsions

(TT) ), circular fingerprints (e.g. ECFP) and pharmacophores (eg. FCFP). For a more com-

prehensive description of the different baseline fingerprints we refer to the work of Rinker et

al..

QSAR modelling

We used the Python library RDKit (v.2017.09.2.0) to calculated Morgan fingerprints with

radius 1, 2 and 3 (equivalent to ecfc2, ecfc4, ecfc6) each folded to 512, 1024 and 2048 bits,

resulting in nine different baseline molecular descriptors.

Three different machine learning algorithms were used to model the QSAR tasks: Random

Forest (RF), Support Vector Machine (SVM) and Gradient Boosting (GB). We utilized

the Python library sklearn (v.0.19.1) to build, train and cross-validate the models. The

hyperparameter optimization was performed for each QSAR task, model and fingerprint

triplet individually. The hyperparameter grid for the different models was defined as follows:

• Random Forest:

– Number of estimators (trees): 20, 100 and 200

• Support Vector Machine:

– Penalty parameter C of the error term: 0.1, 0.5, 1 , 3 5, 10, 30 and 50

– Coefficient gamma for the RBF-kernel: 1/(Nf + b), where Nf is the number of

features and b is picked from −300, −150, −50, −15, 0, 15, 50, 150 and 300

4



• Gradient Boosting:

– Number of estimators: 20, 100 and 200

– Learning rate: 0.5, 0.1 and 0.01

In addition to the classical machine learning methods trained on circular fingerprints we

also trained graph-convolution models on the different QSAR tasks. Briefly, the architecture

consists of two successive graph convolution layers, an input atom vector of size 75 and

rectified linear units (ReLU) were used as non linearity. For each task a individual graph-

convolution model were trained and optimized with respect to following hyperparameters:

• batch size: 64, 128 and 256

• learning rate: 0.0001, 0.0005, 0.001 and 0.005

• convolutional filters: 64, 128 and 256

• dimension of the dense layer: 128, 256, 512, 1024, and 2048

• number of epochs: 40, 60 and 100

Translation Model Architecture

As final translation model we selected the model with the best performance on the validation

QSAR tasks (see Figure 2). For the encoding part we stacked 3 GRU cells with 512, 1024

and 2048 units respectively. The state of each GRU cell is concatenated and fed into a fully-

connected layer with 512 neurons and hyperbolic tangent activation function. The output

of this layer (values between -1 and 1) is the latent space which can be used as molecular

descriptor in the inference time. The decoding part takes this latent space as input and

feeds it into a fully-connected layer with 512 + 1024 + 2048 = 3584 neurons. This output

is split into 3 parts and used to initialize 3 stacked GRU cells with 512, 1024 and 2048

units respectively. The output of the GRU cells is mapped to predicted probabilities for the

5



different tokens via a fully-connected layer.

The classifier network consists of a stack of three fully-connected layers with 512, 128 and 9

neurons respectively, mapping the latent space to the molecular property vector. The model

was trained on translating between SMILES and canonical SMILES representations. Both

sequences were tokenized as described in the method section and fed into the network.

In order to make the model more robust to unseen data, input dropout was applied on a

character level (15%) and noise sampled from a zero-centered normal distribution with a

standard derivation of 0.05. We used an Adam optimizer7 with a learning rate of 5 ∗ 10−4

which was decreased by a factor of 0.9 every 50000 steps. The batch size was set to 64.

To handle input sequences of different length we used a so-called bucketing approach. This

means that we sort the sequences by their length in different buckets (in our case 10) and

only feed sequences from the same bucket in each step. All sequences were padded to longest

sequence in each bucket. We used the framework TensorFlow 1.4.18 to build and execute

our proposed model.

Figure 2: Final model architecture.

6



QSAR results

Tables 1, 2, 3 and 4 show the detailed results for the hyperparameter optimized models.

For the baseline fingerprint models, only the result for the best performing fingerprint is

shown. For each task we show the performance of an SVM on our descriptor (ours), the

performance of a graph-convolution model (GC) and the best performing model-fingerprint

combination (RF, SVM or GB). For the classification tasks we measure the area under the

Receiver Operating Characteristic curve (roc-auc), the area under the precision-recall curve

(pr-auc) accuracy (acc), F1-measure (f1). For the regression tasks we measure the coefficient

of determination (r2), Spearman’s rank correlation coefficient (r), mean squared error (mse)

and mean absolute error (mae).

Table 1: Averaged results for the four classification QSAR task in random-split cross-
validation after hyperparameter optimization.

Task roc-auc pr-auc acc f1 Descriptor Model

ames
0.89 0.91 0.81 0.83 ecfc2 1024 RF
0.88 0.90 0.81 0.83 - GC
0.89 0.91 0.82 0.83 ours SVM

herg
0.85 0.94 0.82 0.89 ecfc4 1024 RF
0.86 0.94 0.83 0.89 - GC
0.86 0.94 0.82 0.88 ours SVM

bbbp
0.93 0.97 0.90 0.94 ecfc2 512 RF
0.92 0.97 0.88 0.92 - GC
0.93 0.97 0.90 0.94 ours SVM

bace
0.91 0.89 0.84 0.82 ecfc2 512 RF
0.91 0.88 0.82 0.81 - GC
0.90 0.86 0.84 0.83 ours SVM

beetox
0.91 0.88 0.89 0.69 ecfc6 2048 RF
0.89 0.79 0.88 0.69 - GC
0.92 0.83 0.92 0.80 ours SVM

VS Results

Tables 5 and 6 show the detailed results for the virtual screening experiments performed

on the DUD and MUV databases. Our descriptor (ours) is compared to different baseline

7



Table 2: Averaged results for the four regression QSAR task in random-split cross-validation
after hyperparameter optimization.

Task r2 r mse mae Descriptor Model

lipo
0.69 0.83 0.42 0.46 ecfc2 1024 SVM
0.73 0.84 0.36 0.44 - GC
0.72 0.83 0.38 0.46 ours SVM

egfr
0.70 0.84 0.62 0.57 ecfc4 2048 RF
0.67 0.83 0.68 0.60 - GC
0.70 0.85 0.62 0.57 ours SVM

plasmo
0.23 0.45 0.25 0.38 ecfc2 2048 SVM
0.18 0.41 0.27 0.40 - GC
0.23 0.45 0.25 0.38 ours SVM

esol
0.58 0.82 1.38 0.91 ecfc6 1024 SVM
0.86 0.92 0.58 0.56 - GC
0.92 0.96 0.34 0.42 ours SVM

melt
0.38 0.62 1700 33 ecfc2 2048 SVM
0.39 0.67 1700 34 - GC
0.42 0.64 1600 32 ours SVM

Table 3: Averaged results for the four classification QSAR task in cluster-split cross-
validation after hyperparameter optimization.

Task roc-auc pr-auc acc f1 Descriptor Model

ames
0.79 0.81 0.74 0.70 ecfc4 2048 SVM
0.80 0.80 0.74 0.74 - GC
0.80 0.82 0.74 0.71 ours SVM

herg
0.73 0.89 0.76 0.85 ecfc4 2048 RF
0.72 0.89 0.77 0.86 - GC
0.75 0.90 0.76 0.84 ours SVM

bbbp
0.72 0.88 0.79 0.84 ecfc4 2048 RF
0.75 0.90 0.77 0.83 - GC
0.74 0.88 0.81 0.86 ours SVM

bace
0.76 0.70 0.67 0.59 ecfc2 2048 GB
0.70 0.67 0.55 0.52 - GC
0.74 0.67 0.65 0.55 ours SVM

beetox
0.62 0.39 0.75 0.00 ecfc6 512 GB
0.67 0.48 0.72 0.20 - GC
0.69 0.45 0.78 0.21 ours SVM

8



Table 4: Averaged results for the four regression QSAR task in cluster-split cross-validation
after hyperparameter optimization.

Task r2 r mse mae Descriptor Model

lipo
0.38 0.70 0.84 0.68 ecfc4 2048 RF
0.49 0.69 0.68 0.64 - GC
0.47 0.69 0.71 0.65 ours SVM

egfr
0.34 0.58 1.01 0.77 ecfc6 1024 RF
0.26 0.51 1.16 0.86 - GC
0.30 0.55 1.09 0.81 ours SVM

plasmo
-0.02 0.21 0.33 0.44 ecfc6 1024 RF
0.02 0.20 0.32 0.44 - GC
0.05 0.24 0.31 0.43 ours SVM

esol
0.58 0.82 1.38 0.91 ecfc6 2048 SVM
0.55 0.76 1.62 0.96 - GC
0.70 0.89 1.01 0.75 ours SVM

melt
0.22 0.51 1800 34 ecfc2 1024 SVM
0.21 0.48 1930 34 - GC
0.28 0.55 1700 32 ours SVM

descriptors by the are under the Receiver Operating Characteristic curve (ROC-AUC), the

Enrichment Factor (EF) for the top 5% ranked compounds 5%, the Robust Initial Enhance-

ment (RIE) with parameter α = 20 and the Boltzmann-Enhanced Discrimination of ROC

(BEDROC) with parameter α = 20. For detailed description of the baseline descriptors and

evaluation metrics, we refer the reader to the work of Riniker et al.6

9



Table 5: Results of the ligand-based virtual screen of the DUD database.

Descriptor ROC-AUC BEDROC RIE EF5
ours 0.949 0.792 12.485 15.294
laval 0.899 0.746 11.750 14.216
tt 0.890 0.744 11.718 14.257
lecfp4 0.887 0.771 12.138 14.813
lecfp6 0.886 0.767 12.072 14.691
ecfp4 0.884 0.764 12.024 14.623
rdk5 0.884 0.747 11.761 14.291
avalon 0.881 0.733 11.537 13.922
ecfp6 0.881 0.755 11.879 14.429
fcfp4 0.874 0.754 11.868 14.472
ap 0.868 0.717 11.298 13.676
ecfc4 0.867 0.749 11.782 14.354
maccs 0.863 0.667 10.511 12.730
fcfc4 0.852 0.728 11.459 13.891
ecfc0 0.805 0.570 8.969 10.634

Table 6: Results of the ligand-based virtual screen of the MUV database.

Descriptor ROC-AUC BEDROC20 RIE20 EF5
ours 0.679 0.195 3.826 4.258
ap 0.677 0.176 3.440 3.737
tt 0.670 0.191 3.746 4.066
avalon 0.644 0.174 3.403 3.661
laval 0.643 0.172 3.375 3.659
ecfc4 0.637 0.181 3.540 3.895
rdk5 0.627 0.177 3.473 3.747
ecfc0 0.626 0.130 2.541 2.816
fcfc4 0.615 0.163 3.184 3.471
fcfp4 0.605 0.175 3.420 3.706
lecfp4 0.601 0.178 3.480 3.774
lecfp6 0.599 0.178 3.481 3.768
ecfp4 0.599 0.176 3.447 3.753
ecfp6 0.591 0.175 3.433 3.776
maccs 0.578 0.127 2.482 2.705

10



Timing

Another point to consider, when comparing our proposed method with the baseline, is the

time needed to extract the molecular descriptors and train the machine learning algorithm.

Calculating Morgan fingerprints with RDKit takes on a single CPU only a few seconds

for a dataset of 10.000 compounds. If ran on a modern GPU, our proposed model takes

approximately the same time. On a single CPU core, however, this computational time

increases approximately by a factor of 100. Training an RF for this size of dataset on our

descriptors is in the order of seconds. An SVM, that scales with number of input features,

takes, in the order of minutes for the best baseline fingerprints (ecfpc4 2048), and in the order

of seconds for our descriptors (512 dimensional). The best performing graph-convolution

model, on the other side, takes approximately 30 minutes to train on a modern GPU (on a

single CPU this method would not be computational feasible). Thus, with a GPU at hand,

running a QSAR experiment with our proposed descriptors is on the same timescale as with

state-of-the-art molecular fingerprints, while being significantly faster than training a graph-

convolution model. One way to make our encoder faster would be to replace the GRU cells

by one-dimensional convolutional layers. In our experiments however these do not perform

as well in the downstream QSAR validation sets.

Generated compounds

Figure 3 and 4 depicts examples of compounds generated for the experiment in section 3.4 in

the main article. The compounds shown are randomly picked and had a (ecfp4-) tanimoto

distance greater than 0.5 to the starting compound.

11



Figure 3: Examples of generated compounds.

12



Figure 4: Examples of generated compounds.

13



Figure 5: Examples of generated compounds.

14



Figure 6: Examples of generated compounds.

15



References

(1) Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with deep convo-

lutional neural networks. Advances in neural information processing systems. 2012; pp

1097–1105.

(2) Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y. N. Convolutional sequence

to sequence learning. arXiv preprint arXiv:1705.03122 2017,

(3) Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient flow in recurrent nets:

the difficulty of learning long-term dependencies. 2001.

(4) Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation 1997, 9,

1735–1780.

(5) Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 2014,

(6) Riniker, S.; Landrum, G. A. Open-source platform to benchmark fingerprints for ligand-

based virtual screening. J. Cheminf. 2013, 5, 26.

(7) Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 2014,

(8) Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

2015; https://www.tensorflow.org/, Software available from tensorflow.org.

16


