Supporting Information

Bisulfite-free, single-base resolution analysis of 5hydroxymethylcytosine in genomic DNA by chemical-mediated

mismatch

Yafen Wang^{‡,†}, Xiong Zhang^{‡,†}, Fan Wu[†], Zonggui Chen[#] & Xiang Zhou^{*,†}

[†]College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China

[#]College of Life Science, Wuhan University, Wuhan, Hubei, 430072, P. R. China

*Corresponding Author, E-mail: xzhou@whu.edu.cn; Fax: +86-27-68756663; Tel: +86-27-68756663

[‡]These authors contributed equally.

List of Contents:

1	Materials and methods	
2	Sanger sequencing analysis of multiple 5hmC sites	Figure S1
	in model DNA	
3	Agarose gel electrophoresis analysis of genomic	Figure S2
	DNA PCR product	
4	Sanger sequencing analysis of 5hmC in genomic	Figure S3
	DNA of mESCs	
5	Calibration line of qPCR for enrichment analysis	Figure S4
6	Ct value of different DNA polymerase and different	Figure S5-S7
	labeling compounds	
7	Different modification level of 5hmC in model	Figure S8
	sequences for NGS	
8	The oxidation efficiency and degradation of KRuO ₄	Figure S9-S11
9	The sequences used for this study	Table S1
10	The templates used for synthesis of dsDNA	Table S2
11	The sequences of primers used for synthesis of	Table S3
	dsDNA	
12	PCR primers that were used for the CAM-Seq of	Table S4
	genomic DNA of mouse ES cells	

1. Materials and methods

Materials and chemicals. All chemicals were purchased from Beijing Innochem Sci. & Tech. Co. Ltd. (Beijing, China) unless mentioned otherwise. The shorter oligonucleotides containing 5formylcytosine (ODN-5fC), dNTP (N = A, T, C, G), Hot Start Taq polymerase and MightyAmp DNA polymerase were bought from Takara Biotechnology Co., Ltd. (Dalian, China). 2× HieffTM PCR SYBR® Green Master Mix were ordered from YEASEN (Shanghai, China). Dream Taq polymerase was obtained from ThermoFisher Scientific (USA). dhmCTP and dfCTP were purchased from TriLink Biotechnologies (USA). DNA Clean & ConcentratorTM-5 kit and Degradase Plus were bought from Zymo Research (USA). Micro Bio-Spin[™] P-6 Gel Columns were purchased from Bio-Rad (USA). pClone007 Simple Vector Kit was ordered from TSINGKE Biological Technology (Beijing, China). The mESCs culture medium was bought from Cyagen Biosciences (China). The nucleic acid stains Super GelRed (NO.: S-2001) was bought from US Everbright Inc. (Suzhou, China). All of the unmodified oligonucleotides were synthesized and purified by GeneCreate Co., Ltd. (Wuhan, China). VAHTS DNA Clean Beads were purchased from Vazyme (Nanjing, China). NEBNext® UltraTM II DNA Library Prep Kit for Illumina was brought from New England BioLabs (USA). Qubit[™] dsDNA HS Assay Kit was purchase from ThermoFisher Scientific (USA). The NGS data were obtained from Whbioacme Co. Ltd and GENEWIZ.

General oxidation of synthetic DNA. The mixture of DNA samples of 80bp ds-X (X= hmC and fC) after being ligated with adapter were subjected to oxidation. Generally, 1.25 μ L freshly prepared NaOH (1 M) was added into the mixture for the final volume was 24 μ L. The mixture was denatured at 37°C for 0.5 h. After denaturing, 1 μ L KRuO₄ solution (15 mM in 0.05 M NaOH) was added and the reaction was processed on ice for 1 hour, with occasional vortexing. Then the reaction was purified by Micro Bio-SpinTM P-6 Gel Columns in SSC Buffer pre-washed with ddH₂O (3 × 500 μ L) for removing NaOH and KRuO₄.

General oxidation of genomic DNA. As for oxidation of genomic DNA, genomic DNA (1 μ g or less) was first denatured by heating at 95°C for 5 min and then chilling on ice for 2 min. After that, NaOH (final concentration was 50 mM) was added into the genomic DNA for 30 min at 37°C for secondary denaturing. Then 1 μ L KRuO₄ solution (15 mM in 0.05 M NaOH) was added and the reaction was processed on ice for 1 hour, with occasional vortexing. Then the reaction was purified by Micro Bio-SpinTM P-6 Gel Columns in SSC Buffer pre-washed with ddH₂O (3 × 500 μ L) for removing NaOH and KRuO₄.

Chemical labeling reaction. For the reaction between ODNs and azi-BP, 1 μ L ODN (100 μ M) was added into the mixture of 5 μ L HEPES buffer (1 M, pH 7.4) and 19 μ L ddH₂O and 25 μ L azi-BP (100 mM, dissolved in DMSO). After vortexing and centrifugation, the mixture was incubated in a thermos-shaker (Ningbo Biocotek Scientific Instrument Co., Ltd., China, 1500 r.p.m.) at 56°C for 18 h. The product was purified by DNA Clean & ConcentratorTM-5 kit. The purified product was incubated with 10 μ L DBCO-PEG4-biotin (10 mM) or DBCO-S-S-PEG3-biotin (20 mM) at 37°C for 2 h.

Adapter ligation of DNA. 80 bp ds-X (X = C, 5mC, 5hmC and 5fC, E-DNA-C, E-DNA-hmC, E-

DNA-fC each 10 ng) and calf thymus DNA (10 μ g) were mixed and subjected to adapter ligation using the standard protocol according to the NEBNext[®] UltraTM II DNA Library Prep Kit for Illumina (New England Biolabs), except the use of the modified adapter solution (2.5 μ L) instead of the adapter in the kit. Then the mixture was purified by VAHTS DNA Clean Beads for removing the excess adapter.

Enrichment and qPCR analysis of 5hmC in the mixture. The adapter ligated DNA sample was oxidized according to the protocol described above (see General oxidation of synthetic DNA). Then the oxidized system was labeled with azi-BP and DBCO-S-S-PEG3-biotin for enrichment.

VAHTS DNA Clean Beads for purification. The beads should warm to room temperature for at least 0.5 h before use. Add 0.9X (volume) of resuspended beads to the reaction and mix thorough by pipetting up and down. Then the mixture was incubated at room temperature for 10 minutes. Following that, the tube was placed on magnetic stand to removing the supernatant. The beads were washed by 80% freshly prepared ethanol ($2 \times 200 \ \mu$ L) and then the beads were dried in air. Lastly, the targeted DNA was eluted by 0.1 × TE.

Illumina sequencing for the model DNA of 80 bp ds-5hmC. 80 bp ds-5hmC was ligated with the adapter as described above. Then the DNA was oxidized using the above protocol. After that, the DNA was incubated with azi-BP and DBCO-S-S-PEG3-biotin. The purified DNA was subjected to NEB Illumina library preparation using NEBNext[®] UltraTM II DNA Library Prep Kit (NEB, USA) and the library was used for next-generation sequencing.

The protocol of qPCR analysis of 5fC. qPCR was performed using a CFX-96 Real-Time System (Bio-Rad, USA). The mixture contained 1 μ L template of the labeled DNA or unlabeled DAN, 1 μ L forward primer (10 μ M), 1 μ L reverse primer (10 μ M), 10 μ L 2 × HieffTM PCR SYBR[®] Green Master Mix and 7 μ L ddH₂O to give a final volume of 20 μ L. The mixture was subject to qPCR according to the following thermal cycle: 95 °C for 5 min, 40 cycles of (95 °C for 10 s, 60 °C for 30 s, 72 °C for 20 s).

Chemical labeling-mediated qPCR assay. Labeled DNA was used as template for qPCR assay. The DNA without treatment were as control samples. The Ct values corresponding to labeled DNA and unlabeled DNA are named as Ct_1 and Ct_0 , respectively. $\Delta Ct = Ct_1 - Ct_0$.

DNA enrichment protocol. The enrichment procedure was performed according to the manufacturer's instructions with minor modifications to the use of DynabeadsTM MyOneTM Streptavidin C1 (ThermoFisher Scientific). Briefly, 1× binding and washing (B&W) buffer (pH 7.5) was added with 0.05% Tween-20. Beads (20 μ L) were washed with 500 μ L 1 × B&W buffer for three times and then resuspended in 20 μ L 2 × B&W buffer. Input DNA (the mixture of E-DNA-C, E-DNA-hmC and E-DNA-fC) and calf thymus (10 μ g, sonicated into 200-400 bp) were mixed and added ddH₂O to a final volume of 20 μ L and then mixed with magnetic beads. Then pipette the entire system up and down gently. The mixture was incubated at room temperature for 30 minutes on a nutator. After that, the tube was placed on a magnet for 5 minutes before discarding the supernatant, and beads were washed with 500 μ L 1 × B&W buffer for five times.

Finally, the biotinylated DNA was released by DTT (50 mM) cleaving disulfide linkage and purified with DNA Clean & ConcentratorTM-5 kit.

qPCR analysis for chemical enrichment studies. qPCR was performed using a CFX-96 Real-Time System (Bio-Rad, USA). The system was composed of $2 \times \text{Hieff}^{\text{TM}}$ PCR SYBR[®] Green Master Mix (10 µL), forward primer (1 µL, 10 µM), reverse primer (1 µL, 10 µM), template and ddH₂O. The mixture was performed to qPCR according to the following thermal cycle: initial denaturation at 95°C for 5 min, 40 cycles of (95 °C for 10 s, 60 °C for 30 s, 72 °C for 20 s). The concentration of DNA was quantified by calculation with calibration lines of known concentration of input ODNs.

Mouse embryonic stem cells culture and DNA extraction. Mouse embryonic stem cells (mESCs) were cultured in Mouse Embryonic Stem Cell (mESC) Basal Medium with 15% mESCqualified fetal bovine serum (FBS), penicillin/streptomycin, glutamine, nonessential amino acid, LIF and 2-mercaptoethanol were plated in culture dishes pretreated with 0.1% gelatin and mouse embryonic fibroblast then incubated in humidified 37°C incubator supplied with 5% CO₂. Genomic DNA was extracted from the harvested cells using a DNeasy[®] Blood & Tissue Kit (Qiagen, Germany) following the manufacturer's instructions.

2. Sanger sequencing analysis of multiple 5hmC sites in model DNA.

Figure S1. Model ODN (seq-2 ds-ODN-5hmC) to verify the feasibility of the method CAMseq. (a) The Sanger sequence results of original sequence. (b) The Sanger sequence result of model ODN by CAM-seq. (c) The Sanger sequence results of bisulfite. (d) The Sanger sequence results of oxidation and bisulfite.

3. Agarose gel electrophoresis analysis of genomic DNA PCR product

Figure S2. Agarose gel electrophoresis analysis of genomic DNA PCR product from mouse ES cells. "-" represent the genomic DNA without treatment, "+" represent the genomic DNA was oxidized by KRuO₄ and then treated with azi-BP.

4. Sanger sequencing analysis of 5hmC in genomic DNA of mESCs

Figure S3. Sanger sequencing analysis 5hmC by CAM-seq in mESCs. The base positions originally from 5fC is surrounded by blue dotted lines.

5. Calibration line of qPCR for enrichment analysis

Figure S4. Example calibration line of E-DNA-C, E-DNA-hmC and E-DNA-fC for enrichment analysis.

6. Ct value of different DNA polymerase and different labeling compounds

We tested the Ct values for different DNA polymerase utilizing a double strand DNA containing eight 5hmC sites. Apart from HieffTM DNA Polymerase (YEASEN), SYBR® Premix Ex TaqTM (Tli RNaseH Plus) (Takara), MightyAmp DNA Polymerase (Takara), Taq DNA Polymerase (recombinant) (Thermo Fisher), Dream Taq DNA Polymerase and NEBNext Ultra II Q5 Master Mix were also used for the Ct value test of the labelled ODN containing 5hmC. As shown in Figure S5a and Figure S5b, the results indicated that when 5fC was labelled with azi-BP and further labelled with DBCO-PEG4-biotin, the added group could hamper the reactivity of DNA polymerase (SYBR® Premix Ex TaqTM and MightyAmp DNA Polymerase). However, when using the Taq DNA Polymerase (recombinant), Dream Taq DNA Polymerase and NEBNext Ultra II Q5 Master Mix, no fluorescence was found in qPCR (Figure S5c). We speculated that the presence of SYBR Green I might inhibit the activity of certain enzymes under certain circumstances. To further verify the conjecture, we tested the product of polymerase chain reaction (PCR) in the presence and absence of SYBR Green I by 3% agarose gel electrophoresis analysis (Figure S6). We found the product of 80 bp dsDNA in the absence of SYBR Green I, however, no dsDNA was found in the presence of SYBR Green I. Therefore, SYBR Green I selectively inhibit the activity of certain enzymes, such as Taq DNA Polymerase (recombinant), Dream Taq DNA Polymerase and NEBNext Ultra II Q5 Master Mix. 5fC represents the oxidized 5hmC (5fC) and 5fC + D-PEG-P represents oxidized 5hmC (5fC) was labelled with azi-BP and further incubated with DBCO-PEG4-biotin.

Figure S5. The Ct values for different DNA polymerase. (a) SYBR[®] Premix Ex TaqTM (Takara), (b) MightyAmp DNA Polymerase (Takara), (c) NEBNext Ultra II Q5 Master Mix.

Figure S6. Agarose gel electrophoresis analysis of the product of polymerase chain reaction (PCR) in the presence and absence of SYBR Green I. Lane 1: 20bp DNA Ladder, Lane 2: in the absence of SYBR Green I. Lane 3: in the presence of SYBR Green I.

The Ct values of different labeling compounds were tested. Similarly, a double strand DNA containing eight 5hmC sites was also chosen for the experiment. The results showed (Figure S7) that when 5fC was labeled with azi-BP or further labeled with DBCO-PEG4-biotin, DBCO-S-S-PEG3-biotin, as well as subsequently treated with DTT, all the added group could hamper the reactivity of DNA polymerase under the treatment of MightyAmp DNA Polymerase. **5f**C represents the oxidized 5hmC (5fC), **5f**C + **azi-BP** represents oxidized 5hmC (5fC) was incubated with azi-BP, **5f**C + **D-S-S-P** represents oxidized 5hmC (5fC) was labelled with azi-BP and further incubated with DBCO-S-S-PEG3-biotin, **5f**C + **D-S-S-P** + **DTT** represents **5f**C + **D-S-S-P** was treated with DTT, **5f**C + **D-PEG-P** represents oxidized 5hmC (5fC) was labelled with azi-BP and further incubated with DBCO-PEG4-biotin.

Figure S7. The Ct values of different labeling compounds under the same condition in the presence of MightyAmp DNA Polymerase.

7. Different modification level of 5hmC in model sequences for NGS

5hmC model sequences containing different modification level was tested by NGS. The procedure was as follows. (a) Single specific site of 5hmC in DNA (Ratio-seq-C, Ratio-seq-5hmC) with different modification ratio (0, 25, 50, 75, 100% 5hmC level at a specific site) was ligated to the modified NGS adapter and then oxidized by KRuO₄ and purified with Micro Bio-SpinTM P-6 Gel Columns (Bio-Rad). (2) Oxidized 5hmC was labeled with azi-BP and purified with DNA Clean & ConcentratorTM-5 kit (Zymo Research). (3) The purified DNA annealed in PCR system for library preparation and NEBNext Ultra II Q5 Master Mix was placed with MightyAmp polymerase. The results indicated that with the increase of modification level of 5hmC, the C-to-T conversion ratio increased. However, without enrichment, the C-to-T conversion ratio for 5hmC is only ~ 33% (Figure S8e), the low conversion ratio may be caused by the incompletely label of 5hmC. So to improve the C-to-T conversion ratio, the step of enrichment is important.

Figure S8. Oxidized-chemical-labeling-induced C-to-T conversion of 5hmC in a double-stranded 5hmC-containing different modification level. (a)-(e) respresent 0, 25, 50, 75, 100% 5hmC level at

a specific site respectively. Top: Sequence logo, bottom: Mismatch ratio of CAM-Seq.

8. The oxidation efficiency and degradation of KRuO₄

It is reported that KRuO₄ oxidation causes significant DNA degradation¹. A 15 mer ODN containing 5hmC (Phos-GACTCAA5hmCAGCCGTA-phos, named ODN-5hmC-phos) was chosen to test the oxidation efficiency. ODN-5hmC was oxidized by KRuO₄ as the protocol reported previously^{1, 2}. Initial measurements of overall DNA yield by HPLC and PAGE (Figure S9) indicated that almost no DNA degradation was found during oxidation. Then the oxidized ODN-5hmC-phos was digested for HPLC-MS analysis. After oxidation, the peak of 5hmC was not found and an obvious peak of 5fC appeared (Figure S10), indicating the high oxidation efficiency up to about 100%. Subsequently, we chose another 15 mer ODN containing 5hmC without phosphate group protection (5'-GACTCAA5hmCAGCCGTA-3', named ODN-5hmC) to be oxidized by KRuO₄ in the same way. Instead, we observed about 80% DNA was degraded by combining HPLC with PAGE analysis (Figure S11). We speculated that the 3- and 5-termial with phosphate groups could improve the stability of DNA and protect DNA from degradation to some extent.

Figure S9. The strategy for testing ODN-5hmC degradation efficiency oxidized by $KRuO_4$. (a) RP-HPLC traces of ODN-5hmC before (red) and after (black) oxidation by $KRuO_4$. (b) Denaturing PAGE analysis of ODN-5hmC before and after oxidation by $KRuO_4$ with the same quantity.

Figure S10. HPLC-MS extracted $[M+H]^+$ ion count for C, A, G, T, 5-hmC and 5-fC deoxynucleosides after digestion of a) ODN-5hmC, b) ODN-5hmC after treatment with KRuO4.

Figure S11. The strategy for testing 5hmC-ODN degradation efficiency oxidized by $KRuO_4$. (a) RP-HPLC traces of 5hmC-ODN before (blue) and after (black) oxidation by $KRuO_4$. (b) Denaturing PAGE analysis of 5hmC-ODN before and after oxidation by $KRuO_4$.

9. The sequences used in this study

Table S1. The sequences of the oligodeoxynucleotides used in this study.

Note: ^{*a*} The corresponding templates were used listed in Table S2. ^{*b*} The corresponding primers were used listed shown in Table S3, F is short for forward, R is short for reverse.

ODNs	Sequence			
ODN-5fC	AGAT5fCGTAT			
ODN-5hmC-	Phos-GACTCAA5hmCAGCCGTA-phos			
Phos				
ODN-5hmC	GACTCAA5hmCAGCCGTA			
E-DNA-C	5'-			
(Template 1) ^a	GGGTTTTATTATTTAATTAATATTATATTATGTGTATAACGTG			
F 1, R 1) ^b	TATTGTGTGTTATAATATTGAGGGAGAAGTGGTGAG-3'			
	Complementary sequence 3'-			
	CCCAAAATAATAAAATTAATTATAATATAATACACATATTGCA			
	CATAACACACAATATTATAACTCCCTCTTCACCACTC-5'			
E-DNA-hmC	5'-			

(Template 2) ^a	TCCTCCTACATCATTCCTCTCTAACCCCTTATATGTA5hmCTTAG			
F 2, R 2) ^b	AAT5hmCAATTGAGTGATTGAAGGTAGTTAGTGGTGGTAGA-3'			
	Complementary sequence 3'-			
	AGGAGGATGTAGTAAGGAGAGAGATTGGGGAATATA5hmCATGAA			
	T5hmCTTAGTTAACTCACTAACTTCCATCAATCACCACCATCT-5'			
E-DNA-fC	5'-			
(Template 3) ^a	TTCCTTCACCATCTCAACCAATATTATATATAAATTATAAT5fCTG			
F 3, R 3) ^b	TATT5fCTGTTTTATAATATTGAGGGAGAAGAATGGTGGA-3'			
	Complementary sequence 3'-			
	AAGGAAGTGGTAGAGTTGGTTATAATATAATTTAATATTAGA5f			
	CATAAGA5fCAAAATATTATAACTCCCTCTTCTTACCACCT-5'			
seq-1 ds-	5'-			
ODN-5hmC	TTCTTCTACATCATCTCCCTCTAACCTCCTATATGTA5hmCTTAG			
(Template 4) ^a	AATTAATTAGGTAGATTAGAGAGTAGTAGTGGTGAGGA-3'			
F 4, R 4) ^b	Complementary sequence 3'-			
	AAGAAGATGTAGTAGAGGGAGATTGGAGGATATACATGAATC			
	TTAATTAATCCATCTAATCTCTCATCATCACCACTCCT-5'			
seq-2 ds-	5'-			
ODN-5hmC	TTCTTCTACATCATCTCCCTCTAACCTCCTATATGTA5hmCTTA			
(Template 5) ^a	5hmCAATTAATTAGGTAGATTAGAGAGTAGTAGTGGTGAGGA-			
F 4, R 4) ^b	3'			
	Complementary sequence 3'-			
	AAGAAGATGTAGTAGAGGGAGATTGGAGGATATACATGAATG			
	TTAATTAATCCATCTAATCTCTCATCATCACCACTCCT-5'			
seq-1 ds-	5'-			
ODN-C	TTCTTCTACATCATCTCCCTCTAACCTCCTATATGTACTTAGAAT			
(Template 4) ^a	TAATTAGGTAGATTAGAGAGTAGTAGTGGTGAGGA-3'			
F 4, R 4) ^b	Complementary sequence 3'-			
	AAGAAGATGTAGTAGAGGGAGATTGGAGGATATACATGAATC			
	TTAATTAATCCATCTAATCTCTCATCATCACCACTCCT-5'			
DNA-fC	5'-			
(Template 2) ^a	TCCTCCTACATCATTCCTCTCTAACCCCTTATATGTA5fCTTAGA			
F 2, R 2) ^b	AT5fCAATTGAGTGATTGAAGGTAGTTAGTGGTGGTAGA-3'			
	Complementary sequence 3'-			
	AGGAGGATGTAGTAAGGAGAGATTGGGGAATATA5fCATGAAT			
	5fCTTAGTTAACTCACTAACTTCCATCAATCACCACCATCT-5'			
dsODN-hmC-	5'-			
8	TTCTTCTACATCATCTCCCTCTAACCTCCTAT5hmCGTA5hmCGT			
	TA5hmCGATA5hmCGTTAGGTAGATTAGAGAGTAGTAGTGGTGA			
	GGA -3'			
	Complementary sequence 3'-			
	AAGAAGATGTAGTAGAGGGAGAGATTGGAGGATAG5hmCATG5hm			
	CAATG5hmCTATG5hmCAATCCATCTAATCTCTCATCATCACCAC			
	TCCT -5'			

Ratio-seq-C	5'-			
(Template 6) ^a	СТАААТСТАСТАААТССТСТАААТСТАТТСТАТАААТТААТСТТ			
F 5, R 5) ^b	AATTAAAGGTAGTAGTAGTAGATATAAGATGATAGG-3'			
	Complementary sequence 3'-			
	GATTTAGATGATTTAGGAGATTTAGATAAGATATTTAATTAGA			
	ATTAATTTCCATCATCATCATCTATATTCTACTATCC-5'			
Ratio-seq-	5'-			
5hmC	CTAAATCTACTAAATCCTCTAAATCTATTCTATAAATTAAT5hm			
(Template 6) ^a	CTTAATTAAAGGTAGTAGTAGTAGATATAAGATGATAGG-3'			
F 5, R 5) ^b	Complementary sequence 3'-			
	GATTTAGATGATTTAGGAGATTTAGATAAGATATTTAATTAGA			
	ATTAATTTCCATCATCATCATCTATATTCTACTATCC-5'			

10. The templates used for synthesis of dsDNA

Table S2. The sequences of the templates used in this study.

ODNs	Sequence (5'-3')
Template 1	GGGTTTTATTATTTAATTAATATTATATTATGTGTATAACGTGT
	ATTGTGTGTTATAATATTGAGGGAGAAGTGGTGAG
Template 2	TCCTCCTACATCATTCCTCTCTAACCCCCTTATATGTACTTAGAAT
	CAATTGAGTGATTGAAGGTAGTTAGTGGTGGTAGA
Template 3	TTCCTTCACCATCTCAACCAATATTATATATAAATTATAATCTGTA
	TTCTGTTTTATAATATTGAGGGAGAAGAATGGTGGA
Template 4	TTCTTCTACATCATCTCCCTCTAACCTCCTATATGTACTTAGAATT
	AATTAGGTAGATTAGAGAGTAGTAGTGGTGAGGA
Template 5	TTCTTCTACATCATCTCCCTCTAACCTCCTATATGTACTTACAATT
	AATTAGGTAGATTAGAGAGTAGTAGTGGTGAGGA
Template 6	СТАААТСТАСТАААТССТСТАААТСТАТТСТАТАААТТААТСТТА
	ATTAAAGGTAGTAGTAGATAGATAAGATGATAGG

11. The sequences of primers used for synthesis of dsDNA

Table S3. The sequences of the primers used in this study.

ODNs	Sequence (5'-3')			
Forward primer 1	GGGTTTTATTATTTAATTAATATTATATT			
Reverse primer 1	CTCACCACTTCTCCCTCAAT			
Forward primer 2	TCCTCCTACATCATTCCTCTCTAACCCCT			
Reverse primer 2	TCTACCACCACTAACTACCTTCAATCACTC			
Forward primer 3	TTCCTTCACCATCTCAACCAATAT			
Reverse primer 3	TCCACCATTCTTCTCCCTCAATA			
Forward primer 4	TTCTTCTACATCATCTCCCTCTAACCTCCT			
Reverse primer 4	TCCTCACCACTACTACTCTCTAATCTACCT			
Forward primer 5	СТАААТСТАСТАААТССТСТАААТСТАТТС			
Reverse primer 5	CCTATCATCTTATATCTACTACTACTACCT			
BS-Forward primer	GGGTTTTTTATATTATTTTTTTTTTTTTTTTTTTTTTTT			

No.	Gene/ Amplified region	5hmC	Strand	Sequence
		Position		
1	CDS_Nanog/	122713406	F	ACCGCTCAGTCCTGGAA
	chr6: 122713337-122713453	(+)	R	CTCCAAATCACTGGCAGA
			BS-F	GGGATTGTTTAGTTTTGGAATGG
			BS-R	GGCTCCAAATCACTAAC
2	INTRON_Sox5/	144129871	F	GATCGACGGAGACTGGAA
(Sox-1)	chr6: 144129826-144129934	(-)	R	CAGGATCTCCCTGCTTCA
3	INTRON_Sox5/	144130059	F	ATCGCTCTCGCTGGGGGCCA
(Sox-2)	chr6: 144129990-144130109	(-)	R	CTTGATCCCCTGCACAGACC
4	UTR-5_Sox6/	115867883	F	CTGAAACCCAGTGGCATC
(Sox-3)	chr7: 115867834-115867943	(-)	R	CGCACAAAGCTGTGATTG
5	INTRON_Pax5_2/	44694568	F	TGGCATGCGTCAGCCCAGGG
	chr4: 44694526-44694635	(-)	R	ACGTGTCAGTCAAACGGAAG
			BS-F	ATGTGTTAGTTAAATGGAAG
			BS-R	ТААСАТАСАТСААСССААААСТС
				СС
6	INTRON_Pax5_3/	44694791,	F	TCATCTCAGCAAAACAGCCG
	chr4: 44694727-44694846	44694778	R	COTOTICACTOCCAACOTAA
		(-)		
7	CDS_Dlk1/	109459859	F	GATTCGTCGACAAGACCTG
(CDS-1)	chr12: 109459804-109459914	(+)	R	TGCACAGACACTCGAAGC
			BS-F	GGGGATTTGTTGATAAGATTTG
			BS-R	GGGTACACAAACACTCAAAACTC
				AC
8	INTRON_Gli3/	15571038	F	CCAGTTGCCTCAAACTCC
(Gli3-1)	chr13: 15570989-15571093	(+)	R	ATACTGCGCCCGTAATGT
9	INTRON_Gli3/	15714381	F	TAAATGGACTTGTGTCTTCA
(Gli3-3)	chr13: 15714315-15714434	(+)	R	GATCGAGGAGACAGAACAAC
			BS-F	GGGTAAATGGATTTGTGTTTTTA
			BS-R	GGGAATCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
10	INTRON_Alk/	14975255	F	TGTTTGGACCTCCTCCTG
(Alk-1)	chr17: 14975202-14975311	(+)	R	GCGACATCTTCGACTCCA
11	INTRON_Ntrk2/	58856146	F	AGCACCGTAGCTTTTGGAAG
(Ntrk-2)	chr13: 58856077- 58856186	(+)	R	GCCAAGGCGGGATAAACCAC

12. PCR primers that were used for the CAM-Seq of genomic DNA of mouse ES cells.

Reference

- 1. M. J. Booth, M. R. Branco, G. Ficz, D. Oxley, F. Krueger, W. Reik and S. Balasubramanian, *Science*, 2012, **336**, 934.
- 2. F. Kawasaki, S. Martínez Cuesta, D. Beraldi, A. Mahtey, R. E. Hardisty, M. Carrington and S.

Balasubramanian, Angew. Chem. Int. Ed., 2018, 130, 9842-9844.