Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Johnston et al.

014 17

The Inverted Ketene Synthon: A Double Umpolung Approach to Enantioselective β^{2,3}-Amino Amide Synthesis

Mahesh Vishe and Jeffrey N. Johnston*

Department of Chemistry & Vanderbilt Institute of Chemical Biology Vanderbilt University 2301 Vanderbilt Place, Nashville, TN 37235-1822

SI SI	11-X
Experimental Section	4
Catalyst synthesis	4
(115,125)-N11,N12-bis(4-Chloro-7-methoxyquinolin-2-yl)-9,10-dihydro-9,10-ethanoanthracene-11,12-diam (S1).	ine
(S,S)-7(MeO)AnthPBAM (11S,12S)-N11,N12-bis(7-methoxy-4-(pyrrolidin-1-yl)quinolin-2-yl)-9,10-dihydro-	-
9,10-ethanoanthracene-11,12-diamine (3).	5
(S,S)- ⁷ (MeO)AnthPBAM•HNTf ₂ (3•HNTf ₂).	5
General Procedure for the Addition of Nitroalkanes to Nitroalkenes (Racemate Assay Development)	5
General Procedure for the Enantioselective Addition of Nitroalkanes to Nitroalkenes	6
((2 <i>R</i> ,3 <i>R</i>)-1,3-Dinitrobutan-2-yl)benzene (6a)	6
1-((2R,3R)-1,3-Dinitrobutan-2-yl)-2-methoxybenzene (6b)	6
1-((2R,3R)-1,3-Dinitrobutan-2-yl)-3-methoxybenzene (6c)	6
1-((2R,3R)-1,3-Dinitrobutan-2-yl)-4-methoxybenzene (6d)	7
4-((2R,3R)-1,3-Dinitrobutan-2-yl)-1,2-dimethoxybenzene (6e)	7
1-((2R,3R)-1,3-Dinitrobutan-2-yl)-4-methylbenzene (6f)	7
1-((2R,3R)-1,3-Dinitrobutan-2-yl)-2-fluorobenzene (6g)	7
1-((2R,3R)-1,3-Dinitrobutan-2-yl)-4-fluorobenzene (6h).	8
1-Chloro-2-((2 <i>R</i> ,3 <i>R</i>)-1,3-dinitrobutan-2-yl)benzene (6i)	8
1-Chloro-3-((2R,3R)-1,3-dinitrobutan-2-yl)benzene (6j)	8
1-Chloro-4-((2R,3R)-1,3-dinitrobutan-2-yl)benzene (6k)	8
1-Bromo-3-((2 <i>R</i> ,3 <i>R</i>)-1,3-dinitrobutan-2-yl)benzene (6l)	9
1-((2R,3R)-1,3-Dinitrobutan-2-yl)-4-(trifluoromethoxy)benzene (6m)	9
1-((2R,3R)-1,3-Dinitrobutan-2-yl)naphthalene (6n)	9
2-((2R,3R)-1,3-Dinitrobutan-2-yl)naphthalene (60)	9
2-((2 <i>R</i> ,3 <i>R</i>)-1,3-Dinitrobutan-2-yl)furan (6p)	10
((3R,4R)-4-Nitro-3-(nitromethyl)pentyl)benzene (6q)	10
(3R,4R)-2-Methyl-4-nitro-3-(nitromethyl)pentane (6r)	10
Optimization of the Enantioselective Addition of Phenylnitroalkanes to Nitroalkenes	11
General Procedure for the Enantioselective Addition of Phenylnitroalkanes to Nitroalkenes	12
((1 <i>S</i> ,2 <i>R</i>)-1,3-Dinitropropane-1,2-diyl)dibenzene (8a).	12
1-((1 <i>S</i> ,2 <i>R</i>)-1,3-Dinitro-2-phenylpropyl)-4-fluorobenzene (8b).	12
1-Chloro-4-((1 <i>S</i> ,2 <i>R</i>)-1,3-dinitro-2-phenylpropyl)benzene (8c)	13
1-((1 <i>S</i> ,2 <i>R</i>)-1,3-Dinitro-2-phenylpropyl)-4-methylbenzene (8d)	13
1-((1 <i>S</i> ,2 <i>R</i>)-1,3-Dinitro-2-phenylpropyl)-4-nitrobenzene (8e).	13
General Procedure for the Amidation of 1,3-Dinitroalkanes using UmAS	14
(<i>S</i> , <i>E</i>)-3-(Hydroxyimino)-2-phenyl- <i>N</i> -propylbutanamide (10a).	14
(S,E)-N-Butyl-3-(Hydroxyimino)-2-phenylbutanamide (10b).	14
(S,E)-N-Allyl-3-(Hydroxyimino)-2-phenylbutanamide (10c).	15
(S,E)-N-Cyclohexyl-3-(Hydroxyimino)-2-phenylbutanamide (10d).	15
SI1-1	

Johnston et al. Su	pporting Information
(S,E)-N,N-Diethyl-3-(Hydroxyimino)-2-phenylbutanamide (10e)	
(S,E)-3-(Hydroxyimino)-2-phenyl-1-(piperidin-1-yl)butan-1-one (10f).	
(<i>S</i> , <i>E</i>)-3-(Hydroxyimino)-1-morpholino-2-phenylbutan-1-one (10g)	
(S,E)-3-(Hydroxyimino)-2-phenyl-N-((S)-1-phenylethyl)butanamide (10h).	
(S,E)-3-(Hydroxyimino)-2-phenethyl-N-propylbutanamide (11).	
(S,E)-3-(Hydroxyimino)-2-(4-methoxyphenyl)-N-propylbutanamide (12)	
(S,E)-2-(3-Chlorophenyl)-3-(hydroxyimino)-N-propylbutanamide (13)	
General Procedure for the Amidation of Phenyl Nitromethane Adducts using UmAS	
(S,Z)-3-(Hydroxyimino)-2,3-diphenyl- <i>N</i> -propylpropanamide (14)	
(S,Z)-3-(4-Chlorophenyl)-3-(hydroxyimino)-2-phenyl-N-propylpropanamide (15)	
(S,Z)-3-(Hydroxyimino)-2-phenyl- <i>N</i> -propyl-3-(p-tolyl)propanamide (16)	
General Procedure for the Reduction of Oximes	
(2S,3S)-3-Amino-2-phenyl- <i>N</i> -propylbutanamide (17)	
(2S.3S)-3-Amino-2-(4-methoxyphenyl)- <i>N</i> -propylbutanamide (18)	
(2S.3S)-3-Amino-1-morpholino-2-phenylbutan-1-one (19)	
(2S.3R)-3-Amino-2.3-diphenyl- <i>N</i> -propylpropanamide (20)	
(2S,3R)-3-Amino-2-phenyl- <i>N</i> -propyl-3-(<i>p</i> -tolyl)propanamide (21)	
General Procedure for the Functionalization of Amines	
(2S.3S)-3-Acetamido-2-phenyl- <i>N</i> -propylbutanamide (22)	
(2S,3S)-3-Acetamido-2-(4-methoxyphenyl)-N-propylbutanamide (23)	
$N-((2S_3S)-4$ -Morpholino-4-0xo-3-phenylbutan-2-yl)acetamide (24)	23
Benzyl ((2S 3S)-4-0x0-3-phenyl-4-(propylamino)butan-2-yl)carbamate (25)	25 24
(9H-Fluoren-9-vl)methyl ((2,S,3,S)-4-oxo-3-phenyl-4-(propylamino)butan-2-vl)carbamate (2)	26) 24
(2S 3R)-3-Acetamido-2 3-diphenyl- <i>N</i> -propylpropanamide (27)	24
(2S 3R)-3-Acetamido-2-phenyl-N-propyl-3- $(n-tolyl)$ propanamide (28)	25
Determination of relative stereochemistry	
(5S 6S)-6-Methyl-5-phenyl-3-propyldihydropyrimidine-2 4(1H 3H)-dione (29)	26 26
Measurement of 1D NOE for 29	27
HPLC trace of 6a	28
HPLC trace of 6b	29
HPLC trace of 6c	30
HPLC trace of 6d	31
HPLC trace of 6e	32
HPLC trace of 6f	33
HPLC trace of 6g	34
HPLC trace of 6h	35
HPLC trace of 6i	36
HPLC trace of 6i	
HPLC trace of 6k	
HPLC trace of 61	39
HPLC trace of 6m	40
HPLC trace of 6n	41
HPLC trace of 60	42
HPLC trace of 6p	42 43
HPLC trace of 6q	
HPLC trace of 6r	
HPLC data for 8a	
HPLC data for 8b	40 Δ7
HPLC data for 8c	48
HPLC data for 8d	49

Johnston et al.	Supporting Information
HPLC data for 8e	
HPLC trace of 10a	
HPLC trace of 10b	
HPLC trace of 10c	
HPLC trace of 10d	
HPLC trace of 10e	
HPLC trace of 10f	
HPLC trace of 10g	
HPLC trace of 11	
HPLC trace of 12	
HPLC trace of 13	
HPLC trace of 14	
HPLC trace of 15	
HPLC trace of 16	
HPLC trace of 22	
HPLC trace of 23	
HPLC trace of 24	
HPLC trace of 25	
HPLC trace of 26	
HPLC trace of 27	
HPLC trace of 28	
HPLC trace of 29	

Johnston et al. Experimental Section

All reagents and solvents were commercial grade and purified prior to use when necessary. Toluene and tetrahydrofuran were dried by passage through a column of activated alumina as described by Grubbs.¹ Thin layer chromatography (TLC) was performed using glass-backed silica gel (250 µm) plates and flash chromatography utilized 230–400 mesh silica gel from Sorbent Technologies. UV light, and/or the use of PMA and potassium permanganate solutions were used to visualize products.

Nuclear magnetic resonance spectra (NMR) were acquired on a Bruker DRX-500 (500 MHz), Bruker AV-400 (400 MHz) or Bruker AV II-600 (600 MHz) instrument. Chemical shifts are measured relative to residual solvent peaks as an internal standard set to δ 7.26 and δ 77.0 (CDCl₃). IR spectra were recorded on a Thermo Nicolet IR100 spectrophotometer and are reported in wavenumbers (cm⁻¹). Compounds were analyzed as neat films on a NaCl plate (transmission). Mass spectra were recorded on a Waters LCT spectrometer by use of the ionization method noted. Melting points were obtained using an OptiMelt automated melting point system (Stanford Research Systems). Optical rotations were measured on a JASCO-P-2000 polarimeter.

Catalyst synthesis

(11S,12S)-N11,N12-bis(4-Chloro-7-methoxyguinolin-2-yl)-9,10-dihydro-9,10-ethanoanthracene-11,12diamine (S1). A 50-mL round-bottomed flask equipped with a stir bar was charged with (115,125)-9,10-dihydro-9,10-ethanoanthracene-11,12-diamine (330 mg, 1.40 mmol),² Pd(dba)₂ (10.5 mg, 18.0 μmol), rac-BINAP (22.7 mg, 36.0 µmol), sodium tert-butoxide (336 mg, 2.50 mmol), and 2,4-dichloro-7-methoxyquinoline (638 mg, 2.80 mmol). The reaction vessel was placed under an argon atmosphere, toluene (7 mL) was dispensed into the flask, and the resulting solution was placed into an oil bath heated to 80 °C with stirring. The reaction was monitored by TLC, and after 3 h, nearly complete conversion was observed. The reaction was stirred for an additional 1 h, cooled to 25 °C, diluted with CH₂Cl₂, and filtered through a plug of silica gel using 50% EtOAc/hexanes. The organic mixture was concentrated and the crude solid was recrystallized using a CH₂Cl₂/hexanes (25/75) mixture. The solid was filtered and dried under vacuum to give a light yellow crystalline solid (695 mg, 80%). Mp 168-170 °C; $R_f = 0.61$ (50% EtOAc/hexanes); $[\alpha]_D^{20}$ -217 (c 1.0, CHCl₃); IR (film) 3407, 2952, 1607, 1519, 1401, 1360, 1216, 1178, 1124, 1030, 907 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.9 Hz, 2H), 7.47 (d, J = 6.7 Hz, 2H), 7.36 (d, J = 6.4 Hz, 2H), 7.27-7.19 (m, 4H), 6.84 (dd, J = 11.5, 9.0 Hz, 2H), 6.74 (d, J = 2.3 Hz, 2H), 6.46 (s, 2H), 4.63-4.61 (m, 4H), 4.24 (br d, J = 8.1 Hz, 2H), 3.78 (s, 6H); ¹³C NMR (100 MHz, (CDCl₃) ppm 161.6, 156.1, 150.4, 142.4, 141.6, 139.3, 127.0, 126.8, 126.1, 125.1, 124.9, 116.4, 115.1, 109.1, 105.7, 59.9, 55.4, 49.4; HRMS (ESI): Exact mass calcd for C₃₆H₂₉Cl₂N₄O₂ [M+H] 619.1667, found 619.1686.

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, 15, 1518-1520.

² (a) Coffinier, R.; Assal, M. E.; Peixoto, P. A.; Bosset, C.; Miqueu, K.; Sotiropoulos, J.-M.; Pouységu, L.; Quideau, S. *Org. Lett.* **2016**, *18*, 1120 (b) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. **1992**, *114*, 9327.

(*S*,*S*)-⁷(MeO)AnthPBAM (11*S*,12*S*)-*N*11,*N*12-bis(7-methoxy-4-(pyrrolidin-1-yl)quinolin-2-yl)-9,10-dihydro-9,10-ethanoanthracene-11,12-diamine (3).

A 2-5 mL microwave vial equipped with a stir bar was charged with (11S,12S)-N11,N12-bis(4-chloro-7-methoxyquinolin-2-yl)-9,10-dihydro-9,10-ethanoanthracene-11,12-diamine (800 mg, 1.29 mmol), pyrrolidine (425 µL, 5.16 mmol), and trifluoromethylbenzene (8 mL). The vial was sealed, and this suspension was heated with stirring at 160 °C in the microwave for 85 min and then for an additional 10 min at 180 °C. The reaction mixture was cooled, diluted with dichloromethane, and concentrated in vacuo. The resulting solid was dissolved in dichloromethane and transferred to a 250 mL separatory funnel, washed with 5 M NaOH (50 mL) and water (3 x 50mL). The resulting organic layer was dried (MgSO4) and concentrated to provide a light brown powder. This solid was precipitated from CH₂Cl₂/Et₂O and hexanes (1:1:5 ratio) to provide an off-white solid (780 mg, 87%). Mp 192-194 °C; $R_f = 0.12$ (10% MeOH/CH₂Cl₂); $[\alpha]_D^{20} +62$ (*c* 1.0, CHCl₃); IR (film) 3400, 2954, 1584, 1521, 1434, 1278, 1216 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 9.2 Hz, 2H), 7.40 (dd, *J* = 5.4, 1.8 Hz, 4H), 7.23-7.20 (m, 4H), 6.84 (d, *J* = 2.6 Hz, 2H), 6.64 (dd, *J* = 9.2, 2.7 Hz, 2H), 5.50 (s, 2H), 4.47-4.43 (m, 4H), 3.95 (br d, *J* = 6.3 Hz, 2H), 3.81 (s, 6H), 3.29-3.24 (m, 4H), 3.16-3.11 (m, 4H), 1.63-1.59 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) ppm 160.1, 157.2, 153.9, 151.8. 141.6, 139.3, 126.9, 126.8, 126.3, 126.2, 124.6, 112.5, 111.2, 105.5, 88.4, 60.6, 55.2, 51.8, 50.1, 25.6; HRMS (ESI): Exact mass calcd for C₄₄H₄₅N₆O₂ [M+H] 689.3604, found 689.3620

(*S*,*S*)-⁷(MeO)AnthPBAM•HNTf₂ (3•HNTf₂). A flame-dried vial equipped with a stir bar was charged with bis(trifluoromethanesulfon)imide (141 mg, 500 μ mol) and dichloromethane (5 mL), cooled to 0 °C, and treated with (*S*,*S*)-⁷(MeO)AnthPBAM (344 mg, 500 μ mol). The solution was stirred for 30 minutes before the solvent was removed *in vacuo* to give the catalyst as a beige solid that was used without further purification.

General Procedure for the Addition of Nitroalkanes to Nitroalkenes (Racemate Assay Development)

Racemic material for the Michael additions of nitroalkanes to nitroalkenes were synthesized using 1 M aq NaHCO₃ solution. It was possible to isolate the major diastereomer in all cases except two (6k and 6q), and the major diastereomer was used to develop the HPLC assay.

General Procedure for the Enantioselective Addition of Nitroalkanes to Nitroalkenes

To a flame-dried microwave vial equipped with a stir bar was added (*S*,*S*)-⁷(MeO)AnthPBAM•HNTf₂ (5 mol%), nitroethane (20 equiv, 6.00 mmol), and toluene (0.2 M), and the reaction mixture was cooled to -20 °C. Nitro styrene (1 equiv) was added to the reaction mixture after 15 min, and the solution was stirred for 45 h. The crude reaction mixture was passed (cold) through a pad of silica gel using 50% EtOAc/hexanes solution, and then concentrated under vacuum. The residue was purified by flash column chromatography to give the addition product.

((2*R*,3*R*)-1,3-Dinitrobutan-2-yl)benzene (6a). Prepared according to the general procedure using (*E*)-(2-nitrovinyl)benzene (45.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a white solid (57.0 mg, 85%). The product was determined to be >20:1 dr by ¹H NMR. Major diastereomer (*syn*) 94% ee by chiral HPLC analysis

(Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 14.9 \text{ min}, t_r(e_2, \text{major}) = 23.2 \text{ min})^3$; $[\alpha]_D^{20} + 14 (c 1.0, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl_3) δ 7.36-7.34 (m, 3H), 7.16-7.14 (m, 2H), 4.98-4.91 (m, 2H), 4.82 (dd, J = 13.6, 8.2 Hz, 1H), 4.02 (ddd, J = 8.0, 6.3, 6.2 Hz, 1H), 1.59 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl_3) ppm 133.5, 129.4, 129.2, 128.0, 84.1, 76.2, 47.4, 16.8; ¹H NMR data is identical to that reported in literature.³

1-((2*R*,3*R*)-1,3-Dinitrobutan-2-yl)-2-methoxybenzene (6b). Prepared according to the general procedure using (*E*)-1-methoxy-2-(2-nitrovinyl)benzene (54.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a white solid (72.0 mg, 95%). The product was determined to be 20:1 dr by ¹H NMR. Major diastereomer (*syn*) 92% ee

by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 11.8 \text{ min}, t_r(e_2, \text{ major}) = 17.7 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (ddd, J = 9.1, 7.6, 1.7 Hz, 1H), 7.05 (dd, J = 7.8, 1.7 Hz, 1H), 6.92-6.89 (series of m, 2H), 5.17 (dq, J = 6.8, 6.8 Hz, 1H), 4.87 (d, J = 6.9 Hz, 2H), 4.31 (ddd, J = 7.1, 7.1, 7.1 Hz, 1H), 3.86 (s, 3H), 1.59 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 157.2, 130.3, 130.0, 122.0, 121.3, 111.4, 83.1, 75.2, 55.6, 43.9, 17.1; ¹H NMR data is identical to that reported in literature. ⁴

1-((2*R*,3*R*)-1,3-Dinitrobutan-2-yl)-3-methoxybenzene (6c). Prepared according to the general procedure using (*E*)-1-methoxy-3-(2-nitrovinyl)benzene (54.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a white solid (65.0 mg, 85%). The product was determined to be >20:1 dr by ¹H NMR. Major diastereomer (*syn*) 93% ee by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, *t*_r(*e*₁, minor)

= 18.5 min, $t_r(e_2, major) = 27.1$ min); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (dd, J = 8.0, 8.0 Hz, 1H), 6.86 (ddd, J = 8.3, 2.5, 0.7 Hz, 1H), 6.73 (br d, J = 7.6 Hz, 1H), 6.67 (dd, J = 2.1, 2.1 Hz, 1H), 4.94 (dq, J = 6.7, 6.7 Hz, 1H), 4.91 (dd, J = 13.7, 6.3 Hz, 1H) 4.80 (dd, J = 13.6, 8.2 Hz, 1H), 4.00 (ddd, J = 8.0, 6.3, 6.3 Hz, 1H), 3.78 (s, 3H), 1.59 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 160.1, 135.1, 130.5, 120.0, 114.4, 114.1, 84.1, 76.1, 55.3, 47.3, 16.8; ¹H NMR data is identical to that reported in literature.³

³ Lu, S.-F.; Du, D.-M.; Xu, J.; Zhang, S.-W. J. Am. Chem. Soc. 2006, 128, 7418.

⁴ Dong, X.-Q.; Teng, H.-L.; Wang, C.-J. Org. Lett. **2009**, 11, 1265.

1-((2*R***,3***R***)-1,3-Dinitrobutan-2-yl)-4-methoxybenzene (6d)**. Prepared according to the general procedure using (*E*)-1-methoxy-4-(2-nitrovinyl)benzene (54.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a white solid (62.5 mg, 81%). The product was determined to be >20:1 dr by ¹H NMR. Major diastereomer (*syn*) 95%

ee by chiral HPLC analysis (Chiralpak IC, 10% *i*PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 21.7 \text{ min}$, $t_r(e_2, \text{ major}) = 29.5 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.92 (dq, J = 6.6, 6.6 Hz, 1H), 4.90 (dd, J = 13.7, 6.3 Hz, 1H), 4.78 (dd, J = 13.4, 8.3 Hz, 1H), 3.95 (ddd, J = 8.2, 6.3, 6.3 Hz, 1H), 3.78 (s, 3H), 1.57 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 160.1, 129.2, 125.2, 114.8, 84.2, 76.5, 55.4, 46.9, 16.8; ¹H NMR data is identical to that reported in literature.³

4-((*2R*,*3R*)-**1**,*3*-**Dinitrobutan-2-yl**)-**1**,*2*-**dimethoxybenzene** (**6e**). Prepared according to the general procedure using (*E*)-1,2-dimethoxy-4-(2-nitrovinyl)benzene (62.7 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-40% EtOAc/hexanes) yielded the product as a white solid (71.0 mg, 83%). The product was determined to be 20:1 dr by ¹H NMR. Major

diastereomer (*syn*) 93% ee by chiral HPLC analysis (Chiralpak IC, 20% EtOH/hexanes, 1 mL/min, $t_r(e_1, \text{ minor}) = 11.8 \text{ min}, t_r(e_2, \text{ major}) = 13.7 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, J = 8.2 Hz, 1H), 6.70 (dd, J = 8.2, 2.0 Hz, 1H), 6.61 (d, J = 2.1 Hz, 1H), 4.92 (dq, J = 6.7, 6.7 Hz, 1H), 4.90 (dd, J = 13.7, 6.5 Hz, 1H), 4.79 (dd, J = 13.5, 8.2 Hz, 1H), 3.94 (ddd, J = 8.0, 6.3, 6.3 Hz, 1H), 3.85 (s, 6H), 1.58 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 149.6, 149.4, 125.7, 120.2, 111.6, 111.2, 84.2, 76.4, 56.0, 55.9, 47.2, 16.8; ¹H NMR data is identical to that reported in literature.²

1-((2*R*,3*R*)-1,3-Dinitrobutan-2-yl)-4-methylbenzene (6f). Prepared according to the general procedure using (*E*)-1-methyl-4-(2-nitrovinyl)benzene (49.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-40% EtOAc/hexanes) yielded the product as a white solid (63.0 mg, 88%). The product was determined to be >20:1 dr by ¹H NMR. Major diastereomer (*syn*) 95%

ee by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 13.9 \text{ min}$, $t_r(e_2, \text{ major}) = 21.7 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 4.96-4.88 (m, 2H), 4.88 (dd, J = 13.5, 8.2 Hz, 1H), 3.97 (ddd, J = 8.0, 6.2, 6.2 Hz, 1H), 2.32 (s, 3H), 1.57 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 139.1, 130.4, 130.1, 127.9, 84.1, 76.3, 47.2, 21.2, 16.8; ¹H NMR data is identical to that reported in literature.³

1-((2*R*,3*R*)-1,3-Dinitrobutan-2-yl)-2-fluorobenzene (6g). Prepared according to the general procedure using (*E*)-1-fluoro-2-(2-nitrovinyl)benzene (50.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a viscous colorless liquid (62.0 mg, 85%). The product was determined to be 20:1 dr by ¹H NMR. Major diastereomer (*syn*) 94% ee by chiral HPLC analysis (Chiralpak OD-H, 30% ^{*i*}PrOH/hexanes, 1 mL/min, *t*_r(*e*₁,

major) = 10.1 min, $t_r(e_2, \text{ minor}) = 14.9 \text{ min}$; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.31 (m, 1H), 7.15-7.08 (m, 3H), 5.06 (dq, J = 6.8, 6.8 Hz, 1H), 4.92 (dd, J = 13.7, 6.1 Hz, 1H), 4.84 (dd, J = 13.7, 6.8 Hz, 1H), 4.32 (ddd, J = 7.0, 7.0, 7.0 Hz, 1H), 1.62 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 160.9 (d, J = 246.9 Hz), 131.1 (d, J = 8.6 Hz), 129.7 (d, J = 3.3 Hz), 125.1 (d, J = 3.3 Hz),120.0 (d, J = 13.6 Hz), 116.4 (d, J = 22.2 Hz), 83.3, 75.2 (d, J = 2.1 Hz), 42.2, 17.1; ¹H NMR data is identical to that reported in literature.²

1-((2*R***,3***R***)-1,3-Dinitrobutan-2-yl)-4-fluorobenzene (6h).** Prepared according to the general procedure using (*E*)-1-fluoro-4-(2-nitrovinyl)benzene (50.0 mg, 300 µmol) and nitroethane (430 µL, 6.00 mmol). Flash column chromatography (SiO₂, 10-40% EtOAc/hexanes) yielded the product as a white solid (64.0 mg, 88%). The product was determined to be >20:1 dr by ¹H NMR. Major diastereomer (*syn*) 95% ee by

chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 13.4 \text{ min}, t_r(e_2, \text{major}) = 19.3 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.14 (dd, J = 8.5, 5.3 Hz, 2H), 7.05 (dd, J = 8.5, 8.5 Hz, 2H), 4.97-4.88 (m, 2H), 4.78 (dd, J = 13.5, 8.4 Hz, 1H), 4.0 (ddd, J = 8.6, 6.4, 6.4 Hz, 1H), 1.59 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 163.0 (d, J = 249.1 Hz), 129.9 (d, J = 8.4 Hz), 129.3 (d, J = 3.3 Hz), 116.5 (d, J = 21.9 Hz), 84.1, 76.3, 46.9, 16.9; ¹H NMR data is identical to that reported in literature.³

1-Chloro-2-((*2R*,*3R*)-1,3-dinitrobutan-2-yl)benzene (6i). Prepared according to the general procedure using (*E*)-1-chloro-2-(2-nitrovinyl)benzene (49.0 mg, 300 µmol) and nitroethane (430 µL, 6.00 mmol). Flash column chromatography (SiO₂, 10-40% EtOAc/hexanes) yielded the product as a white solid (63.0 mg, 88%). The product was determined to be >20:1 dr by ¹H NMR. Major diastereomer (*syn*) 95% ee by

chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 11.6 \text{min}, t_r(e_2, \text{major}) = 21.9 \text{min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 6.8, 2.1 Hz, 1H), 7.29-7.22 (m, 2H), 7.11 (dd, J = 7.0, 1.9 Hz, 1H), 5.14 (dq, J = 6.7, 6.7 Hz, 1H), 4.91 (dd, J = 13.8, 6.1 Hz, 1H), 4.85 (dd, J = 13.8, 7.3 Hz, 1H), 4.68 (ddd, J = 6.6, 6.6, 6.6 Hz, 1H), 1.60 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 134.5, 131.5, 130.7, 130.2, 128.2, 127.8, 83.0, 75.0, 43.1, 16.4; ¹H NMR data is identical to that reported in literature.³

1-Chloro-3-((*2R*,*3R*)-**1**,*3*-**dinitrobutan-2-yl**)**benzene** (**6j**). Prepared according to the general procedure using (*E*)-1-chloro-3-(2-nitrovinyl)benzene (55.0 mg, 300 µmol) and nitroethane (430 µL, 6.00 mmol). Flash column chromatography (SiO₂, 5-20% EtOAc/hexanes) yielded the product as a white solid (62.0 mg, 80%). The product was determined to be 18:1 dr by ¹H NMR. Major diastereomer (*syn*) 97% ee by chiral

HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 12.5 \text{ min}$, $t_r(e_2, \text{major}) = 20.5 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (ddd, J = 8.0, 1.5, 1.5 Hz, 1H), 7.29 (dd, J = 7.9, 7.9 Hz, 1H), 7.17 (dd, J = 1.8, 1.8 Hz, 1H), 7.04 (ddd, J = 7.2, 1.6, 1.6 Hz, 1H), 4.93 (dq, J = 6.8, 6.8 Hz, 1H), 4.89 (dd, J = 13.7, 6.0 Hz, 1H), 4.79 (dd, J = 13.7, 8.2 Hz, 1H), 4.00 (ddd, J = 8.1, 6.3, 6.3 Hz, 1H), 1.60 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 135.6, 135.3, 130.7, 129.5, 128.5, 126.1, 83.9, 76.9, 47.0, 16.9; ¹H NMR data is identical to that reported in literature.³

1-Chloro-4-((2R,3R)-**1**,3-dinitrobutan-2-yl)benzene (6k). Prepared according to the general procedure using (*E*)-1-chloro-4-(2-nitrovinyl)benzene (55.0 mg, 300 µmol) and nitroethane (430 µL, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a white solid (62.0 mg, 80%). The product was determined to be 20:1 dr by ¹H NMR. Major diastereomer (*syn*) 96% ee

by chiral HPLC analysis (Chiralpak ODH, 20% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, major) = 18.6 min$, $t_r(e_2, minor) = 34.0 min$); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 4.93 (dq, J = 6.7, 6.7 Hz, 1H), 4.90 (dd, J = 13.7, 6.0 Hz, 1H), 4.78 (dd, J = 13.7, 8.5 Hz, 1H), 3.99 (ddd, J = 8.4, 6.3, 6.2 Hz, 1H), 1.59 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 135.4, 132.0, 129.7, 129.4, 84.0, 76.1, 46.9, 16.9; ¹H NMR data is identical to that reported in literature.⁵

⁵ Deng, Y.-Q.; Zhang, Z.-W.; Feng, Y.-H.; Chan, A. S. C.; Lu, G. *Tetrahedron: Asymmetry* **2012**, *23*, 1647.

1-Bromo-3-((2R,3R)-1,3-dinitrobutan-2-yl)benzene (6l). Prepared according to the general procedure using (*E*)-1-bromo-3-(2-nitrovinyl)benzene (68.4 mg, 300 µmol) and nitroethane (430 µL, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% ethyl acetate in hexanes) yielded the product as a white solid (71.0 mg, 78%). The product was determined to be 15:1 dr by ¹H NMR. Major diastereomer (*syn*) 97% ee

by chiral HPLC analysis (Chiralpak IC, 20% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 16.7 \text{ min}, t_r(e_2, \text{major}) = 26.9 \text{ min}$); mp 93-95 °C; $R_f = 0.4$ (30% EtOAc/hexanes); $[\alpha]_D^{20} + 6.6$ (*c* 1.0, CHCl₃); IR (film) 2920, 2347, 1549, 1366, 1075 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (br d, J = 8.0 Hz, 1H), 7.30 (dd, J = 1.7, 1.7 Hz, 1H), 7.23 (dd, J = 7.9, 7.9 Hz, 1H), 7.09 (br d, J = 7.7 Hz, 1H), 4.97-4.87 (m, 2H), 4.79 (dd, J = 13.7, 8.3 Hz, 1H), 4.0 (ddd, J = 8.2, 6.3, 6.3 Hz, 1H), 1.60 (d, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 135.9, 132.5, 131.4, 131.0, 126.5, 123.4, 83.9, 75.9, 47.0, 16.9; HRMS (ESI): Exact mass calcd for C₁₀H₁₂BrN₂O₄ [M+H]⁺ 301.9897, found 301.9908.

1-((2*R*,3*R*)-1,3-Dinitrobutan-2-yl)-4-(trifluoromethoxy)benzene (6m). Prepared according to the general procedure using (*E*)-1-(2-nitrovinyl)-4- (trifluoromethoxy)benzene (70.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a viscous colorless liquid (75.0 mg, 81%). The product was determined

to be 20:1 dr by ¹H NMR. Major diastereomer (*syn*) 94% ee by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 9.3 \text{ min}, t_r(e_2, \text{major}) = 13.6 \text{ min}$); $R_f = 0.4$ (30% EtOAc/hexanes); $[\alpha]_D^{20} +7.6$ (*c* 1.0, CHCl₃); IR (film) 2922, 2360, 1553, 1513, 1375, 1259, 1217, 1164, 915 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.20 (br s, 4H), 4.95 (dq, J = 6.7, 6.7 Hz, 1H), 4.91 (dd, J = 13.7, 6.0 Hz, 1H), 4.80 (dd, J = 13.7, 8.4 Hz, 1H), 4.04 (ddd, J = 8.3, 6.2, 6.2 Hz, 1H), 1.60 (d, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 149.8, 132.1, 129.7, 121.7, 120.5 (q, J = 283 Hz), 83.9, 76.1, 46.8, 16.9; ¹⁹F NMR (282 MHz, CDCl₃) ppm -57.8; HRMS (ESI): Exact mass calcd for C₁₁H₁₂F₃N₂O₅ [M+H]⁺ 309.0693, found 309.0679.

1-((2*R***,3***R***)-1,3-Dinitrobutan-2-yl)naphthalene (6n).** Prepared according to the general procedure using (*E*)-1-(2-nitrovinyl)naphthalene (60.0 mg, 300 µmol) and nitroethane (430 µL, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a yellow solid (77.0 mg, 93%). The product was determined to be >20:1 dr by ¹H NMR. Major diastereomer (*syn*) 95% ee by chiral HPLC analysis (Chiralpak IC, 20% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, minor) =$

11.2 min, $t_r(e_2, major) = 21.1$ min); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.65 (ddd, J = 8.2, 8.2, 1.2 Hz, 1H), 7.56 (ddd, J = 7.9, 7.9, 0.8 Hz, 1H), 7.45 (dd, J = 7.4, 7.4 Hz, 1H), 7.33 (d, J = 6.6 Hz, 1H), 5.21-5.12 (m, 2H), 5.00 (d, J = 7.1 Hz, 2H), 1.59 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 134.3, 131.2, 130.1, 129.7, 129.5, 127.5, 126.4, 125.2, 123.9, 121.9, 83.8, 75.1, 40.8, 15.8; ¹H NMR data is identical to that reported in literature.³

2-((2*R***,3***R***)-1,3-Dinitrobutan-2-yl)naphthalene (60). Prepared according to the general procedure using (***E***)-2-(2-nitrovinyl)naphthalene (60.0 mg, 300 \mumol) and nitroethane (430 \muL, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a yellow solid (72.0 mg, 88%). The product was determined to be >20:1 dr by ¹H NMR. Major diastereomer (***syn***) 95% ee by**

chiral HPLC analysis (Chiralpak IC, 20% ⁱPrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 10.8 \text{ min}$, $t_r(e_2, \text{major}) = 14.7 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.4 Hz, 1H), 7.82-7.79 (m, 2H), 7.63 (br s, 1H), 7.53-7.49 (m, 2H), 7.24 (dd, J = 8.4, 1.8 Hz, 1H), 5.05 (dq, J = 6.6, 6.6 Hz, 1H), 5.00 (dd, J = 13.6, 6.3 Hz, 1H), 4.92 (dd, J = 8.4 Hz, 1H), 5.00 (dd, J = 13.6, 6.3 Hz, 1H), 4.92 (dd, J = 13.6 \text{ Hz}, 1H), 4.92 (dd, J = 13.6 \text{ Hz}), 4.92 (dd, J = 13.6 \text{ Hz}), 4.93 (dd, J = 13.6 \text{ Hz}), 4.93 (dd, J = 13.6 \text{ Hz}), 4.94 (dd, J = 13.6 \text{ Hz}), 4.94

Johnston et al.

Supporting Information

13.6, 8.2 Hz, 1H), 4.20 (ddd, J = 8.0, 6.3, 6.3 Hz, 1H), 1.63 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 133.4, 133.3, 130.9, 129.5, 128.1, 127.8, 127.0, 126.9, 125.0, 84.1, 76.2, 47.6, 16.9; ¹H NMR data is identical to that reported in literature.²

2-((2*R***,3***R***)-1,3-Dinitrobutan-2-yl)furan (6p)**. Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)furan (42.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the product as a brown solid (53.0 mg, 82%). The product was determined to be 9:1 dr by ¹H NMR. Major diastereomer (*syn*) 85% ee by chiral HPLC analysis

(Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 14.9 \text{ min}$, $t_r(e_2, \text{major}) = 23.9 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 1.8, 0.7 Hz, 1H), 6.33 (dd, J = 3.2, 1.8 Hz, 1H), 6.26 (br d, J = 3.2, 1.8 Hz, 1H), 4.93 (qd, J = 6.8, 5.3 Hz, 1H), 4.90 (dd, J = 13.6, 6.2 Hz, 1H), 4.83 (dd, J = 13.6, 8.4 Hz, 1H), 4.20 (ddd, J = 8.0, 5.6, 5.6 Hz, 1H), 1.61 (d, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 147.0, 143.6, 110.9, 109.7, 82.5, 74.2, 41.2, 16.4; ¹H NMR data is identical to that reported in literature.²

((3*R*,4*R*)-4-Nitro-3-(nitromethyl)pentyl)benzene (6q). Prepared according to the general procedure using (*E*)-(4-nitrobut-3-en-1-yl)benzene (54.0 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 mmol). Flash column chromatography (SiO₂, 5-15% EtOAc/hexanes) yielded the product as a viscous colorless liquid (61.0 mg, 80%). The product was determined to be 10:1 dr by ¹H NMR. Major diastereomer (*syn*) 90%

ee by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 12.1 \text{ min}, t_r(e_2, \text{ major}) = 15.0 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 7.0, 7.0 Hz, 2H), 7.23 (tt, J = 7.3, 1.5 Hz, 1H), 7.14 (d, J = 8.6, 2H), 4.74 (qd, J = 6.8, 5.3 Hz, 1H), 4.67 (dd, J = 13.6, 6.6 Hz, 1H), 4.47 (dd, J = 13.6, 5.3 Hz, 1H), 2.82-2.59 (m, 3H), 1.83 (dddd, J = 14.3, 9.3, 7.1, 4.5 Hz, 1H), 1.69-1.59 (m, 1H), 1.55 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 139.7, 128.9, 128.3, 126.8, 83.4, 75.0, 40.5, 32.9, 29.3, 16.2; ¹H NMR data is identical to that reported in literature.²

(3*R*,4*R*)-2-Methyl-4-nitro-3-(nitromethyl)pentane (6r). Prepared according to the general procedure using (*E*)-3-methyl-1-nitrobut-1-ene (34.5 mg, 300 μ mol) and nitroethane (430 μ L, 6.00 μ mol). Flash column chromatography (SiO₂, 5-10% EtOAc/hexanes) yielded the product as a viscous colorless liquid (14.5 mg, 25%). The product was determined to be 11:1 dr by ¹H NMR. Major diastereomer (*syn*) 91%

ee by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(minor) = 9.59 \text{ min}$, $t_r(major) = 11.8 \text{ min}$); ¹H NMR (400 MHz, CDCl₃) δ 4.77 (dq, J = 6.7, 6.7 Hz, 1H), 4.48 (d, J = 6.3 Hz, 1H), 4.43 (d, J = 6.0 Hz, 1H), 2.86 (dddd, J = 6.5, 6.5, 4.9, 4.9 Hz, 1H), 1.86 (qqd, J = 6.8, 6.8, 4.8 Hz, 1H), 1.56 (d, J = 6.8 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) ppm 83.1, 73.2, 46.2, 28.1, 20.8, 17.8 16.5; ¹H NMR data is identical to that reported in literature.³

Johnston et al. Sa **Optimization of the Enantioselective Addition of Phenylnitroalkanes to Nitroalkenes**

Entry ^a	7a (equiv.)	Conc. (M)	dr	ee ^b	Yield (%)°
1	20	0.2	10:1	84	99
2	8	0.2	14:1	90	98
3	5	0.2	16:1	89	97
4	2	0.4	18:1	88	96
5	2	0.1	15:1	90	95
6	2	0.05	15:1	92	95
7	2	0.033	17:1	93	96
8	2	0.025	18:1	93	95
9	1	0.05	15:1	92	95

[a] All reactions were performed on a 0.1 mmol scale. [b] Enantiomeric ratios were measured using HPLC with a chiral stationary phase. [c] Yield determined by ¹H NMR analysis relative to an internal standard (CH₂Br₂).

General Procedure for the Enantioselective Addition of Phenylnitroalkanes to Nitroalkenes

To a flame-dried microwave vial equipped with a stir bar was added (*S*,*S*)-⁷(MeO)AnthPBAM•NHTf₂ (5 mol%), phenylnitro methane derivative (1 equiv), and toluene (0.05 M), and then the reaction mixture was cooled to -20 °C. β -Nitro styrene (1 equiv) was added to the reaction mixture after 15 min, and the solution was stirred for 24 h. The crude reaction mixture was passed (cold) through a pad of silica gel using 50% EtOAc/hexanes solution, and then concentrated under vacuum. The residue was purified by flash column chromatography to give the addition product.

((1*S*,2*R*)-1,3-Dinitropropane-1,2-diyl)dibenzene (8a). Prepared according to the general procedure using (*E*)-(2-nitrovinyl)benzene (14.9 mg, 100 µmol) and (nitromethyl)benzene (13.7 mg, 100 µmol). Flash column chromatography (SiO₂, 5-30% ethyl acetate in hexanes) yielded the product as a white solid (27.0 mg, 95%); the product was determined to be 15:1 dr by ¹H NMR. Major diastereomer, *syn*: 92% ee by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, t_r (e_1 , minor) =

11.7 min, $t_r(e_2, \text{ major}) = 13.6$ min). Mp 140-142 °C; $R_f = 0.50$ (20% EtOAc/hexanes); $[\alpha]_D^{20} + 2$ (*c* 1.0, CHCl₃); IR (film) 2923, 1548, 1366, 1233, 709 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 2H), 7.53-7.47 (m, 3H), 7.40-7.29 (m, 5H), 5.91 (d, J = 11.6 Hz, 1H), 4.60 (ddd, J = 13.0, 9.1, 4.4 Hz, 1H), 4.46 (dd, J = 12.9, 9.1 Hz, 1H), 4.32 (dd, J = 12.9, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) ppm 134.3, 131.4, 131.2, 129.9, 129.5, 129.2, 128.2, 127.9, 92.9, 77.0, 47.6; HRMS (ESI): Exact mass calcd for C₁₅H₁₄NO₂ [M-NO₂] 240.1019, found 240.1017.

1-((1S,2R)-1,3-Dinitro-2-phenylpropyl)-4-fluorobenzene (8b). Prepared according to the general procedure using (*E*)-(2-nitrovinyl)benzene (14.9 mg, 100 µmol) and 1-fluoro-4-(nitromethyl)benzene (15.5 mg, 100 µmol). Flash column chromatography (SiO₂, 5-30% ethyl acetate in hexanes) yielded the product as a white solid (28.0 mg, 98%). The product was determined to be 9.5:1 dr (crude reaction mixture, ¹H NMR) but changed to 8:1 dr after purification. Major diastereomer, *syn*: 92% ee by chiral

HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 9.6 \text{ min}$, $t_r(e_2, \text{ major}) = 12.1 \text{ min}$). Mp 138-140 °C; $R_f = 0.65$ (20% EtOAc/hexanes); $[\alpha]_D^{20}$ -10 (*c* 1.0, CHCl₃); IR (film) 2921, 1555, 1510, 1372, 1233, 770 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 8:1 mixture of diastereomers) Major diastereomer: δ 7.67 (dd, J = 8.7, 5.0 Hz, 2H), 7.41-7.30 (m, 2H), 7.19 (dd, J = 8.4, 8.4 Hz, 2H) 5.93 (d, J = 11.5 Hz, 1H), 4.55 (ddd, J = 13.0, 8.5, 4.4 Hz, 1H), 4.45 (dd, J = 12.8, 8.6 Hz, 1H), 4.33 (dd, J = 12.8, 4.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) pm Major dia: 164.3 (d, J = 252.0 Hz) 134.0, 130.4, 130.3, 129.6, 129.3, 127.8, 117.0 (d, J = 22.0 Hz), 92.0, 76.9, 47.7. Minor dia *: 163.6, (d, J = 251.6 Hz), 133.1, 130.2, 130.1, 129.4, 128.9, 128.2, 127.4, 127.3, 116.3 (d, J = 22.1 Hz), 91.5, 77.2, 47.7; HRMS (ESI): Exact mass calcd for C₁₅H₁₃FNO₂ [M-NO₂] 258.0925, found 258.0930.

1-Chloro-4-((**1***S***,2***R***)-1,3-dinitro-2-phenylpropyl)benzene** (**8**c). Prepared according to the general procedure using (*E*)-(2-nitrovinyl)benzene (14.9 mg, 100 µmol) and 1-chloro-4-(nitromethyl)benzene (17.1 mg, 100 µmol). Flash column chromatography (SiO₂, 5-30% EtOAc/hexanes) yielded the product as a white solid (31.0 mg, 96%). The product was determined to be 12:1 dr (crude reaction mixture, ¹H NMR) which changed to 7:1 dr after purification by flash chromatography. Major diastereomer: *syn*, 91% ee

by chiral HPLC analysis (Chiralpak IC, 10% [']PrOH/hexanes, 1 mL/min, $t_r(e_1, \text{minor}) = 8.8 \text{ min}$, $t_r(e_2, \text{ major}) = 10.7 \text{ min}$). Mp 135-137 °C; $R_f = 0.70$ (20% EtOAc/hexanes); $[\alpha]_D^{20}$ -18 (*c* 1.0, CHCl₃); IR (film) 2923, 1556, 1494, 1370, 1093, 765 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 7:1 mixture of diastereomers) Major diastereomer: δ 7.61 (d, J = 8.0, 2H), 7.48 (d, J = 8.0, 2H), 7.38-7.34 (m, 2H), 5.93 (d, J = 11.4 Hz, 1H; 4.53 (ddd, J = 11.7, 7.8, 4.4 Hz, 1H), 4.45 (dd, J = 12.6, 8.9 Hz, 1H), 4.34 (dd, J = 12.7, 3.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) ppm Major dia: 137.6, 133.9, 130.2, 129.8, 129.6, 129.4, 127.8, 92.1, 76.9, 47.6. Minor dia*: 136.5, 133.0, 129.5, 129.4, 129.4, 129.0, 128.2, 91.5, 77.2, 47.6; HRMS (ESI): Exact mass calcd for C₁₅H₁₃CINO₂ [M-NO₂] 274.0629, found 274.0624.

1-((1*S*,2*R*)-1,3-Dinitro-2-phenylpropyl)-4-methylbenzene (8d). Prepared according to the general procedure using (*E*)-(2-nitrovinyl)benzene (14.9 mg, 100 µmol) and 1-methyl-4-(nitromethyl)benzene (15.1 mg, 100 µmol). Flash column chromatography (SiO₂, 10-30% ethyl acetate in hexanes) yielded the product as a white solid (29.5 mg, 98%). The product was determined to be 16:1 dr by ¹H NMR. Major diastereomer: *syn*, 93% ee by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1 mL/min, $t_r(e_1,minor) = 8.9 min$, $t_r(e_2,major) = 9.8 min$). Mp 153-155 °C; $R_f = 0.42$ (20%

EtOAc/hexanes); $[\alpha]_D^{20}$ -9 (*c* 1.0, CHCl₃); IR (film) 2922, 1552, 1372, 1216, 756, 699 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.54 (br d, *J* = 8.0 Hz, 2H), 7.39-7.32 (m, 5H), 7.29 (br d, *J* = 7.9 Hz, 2H), 5.86 (d, *J* = 11.7 Hz, 1H); 4.59 (ddd, *J* = 12.0, 9.2, 4.4 Hz, 1H), 4.45 (dd, *J* = 12.9, 9.2 Hz, 1H), 4.32 (dd, *J* = 12.9, 4.3 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 141.6, 134.4, 130.5, 129.5, 129.2, 128.5, 128.0, 127.9, 92.7, 77.1, 47.7, 21.4.; HRMS (ESI): Exact mass calcd for C₁₆H₁₆NO₂ [M-NO₂] 254.1176, found 254.1180.

1-((1*S***,2***R***)-1,3-Dinitro-2-phenylpropyl)-4-nitrobenzene (8e).** Prepared according to the general procedure using (*E*)-(2-nitrovinyl)benzene (14.9 mg, 100 μ mol) and 1-nitro-4-(nitromethyl)benzene (18.2 mg, 100 μ mol). Flash column chromatography (SiO₂, 5-30% ethyl acetate in hexanes) yielded the product as a white solid (32.0 mg, 97%). The product was determined to be 6:1 dr (crude reaction mixture, ¹H NMR) which changed to 3:1 dr after purification. Major diastereomer: *syn*, 75% ee and minor diastereomer: *anti*: 70% ee by chiral HPLC analysis (Chiralpak IC, 20% ^{*i*}PrOH/hexanes, 1 mL/min,

 $t_r(d_{1e_1}, \text{minor}) = 9.4 \text{ min}, t_r(d_{1e_2}, \text{major}) = 10.1 \text{ min}, t_r(d_{2e_1}, \text{major}) = 16.0 \text{ min}, t_r(d_{2e_2}, \text{minor}) = 16.19 \text{ min}).$ Mp 102-104 °C; $R_f = 0.55$ (20% EtOAc/hexanes); $[\alpha]_D^{20}$ -15 (*c* 1.0, CHCl₃); IR (film) 2932, 1556, 1527, 1350, 1216, 771 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 3:1 mixture of diastereomers) Major diastereomer: δ 8.35 (d, *J* = 8.7 Hz, 2H), 7.88 (d, *J* = 8.7 Hz, 2H), 7.41-7.32 (m, 5H), 6.12 (d, *J* = 11.3 Hz, 1H), 4.60-4.52 (m, 1H, 4.46 (dd, *J* = 12.9), 7.6 Hz, 1H), 4.38 (dd, *J* = 12.9, 4.8 Hz, 1H). ¹³C NMR (100 MHz, (CDCl₃) ppm Major dia: 149.6, 137.6, 133.4, 129.8, 129.6, 127.8, 124.9, 91.7, 76.7, 47.7. Minor dia*: 148.9, 138.0, 132.4, 129.4, 129.3, 128.2, 124.2, 91.1, 77.0, 47.7; HRMS (ESI): Exact mass calcd for C₁₅H₁₃N₂O₄ [M-NO₂] 285.0870, found 285.0862. * See image of NMR spectra for additional details

Johnston et al. General Procedure for the Amidation of 1,3-Dinitroalkanes using UmAS

To a (2-5 mL) microwave vial equipped with a stir bar was added dinitroalkane (1 equiv) in dry 1:1 (v/v) THF/toluene (0.1 M), and this was followed by the sequential addition of K_2CO_3 (2 equiv), I_2 (1.2 equiv) and amine (2 equiv) was added after 5 min. The vial was equipped with an O₂ balloon and stirred at 25 °C for 24 h. The crude reaction mixture was passed through a pad of 15% Na₂S₂O₃/silica (w/w) using 50% CH₂Cl₂/EtOAc solution, and then concentrated under vacuum. The residue was purified by flash column chromatography to give the desired product.

(*S*,*E*)-3-(Hydroxyimino)-2-phenyl-*N*-propylbutanamide (10a). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (44.8 mg, 200 μmol) and *n*-propylamine (32.8 μL, 400 μmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as a white solid (33.0 mg, 70%); The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak IC, 10% ^{*i*}PrOH/hexanes, 1.0 mL/min, $t_r(e_1, major) = 21.7 \text{ min}, t_r(e_2, minor) = 33.3 \text{ min}; Mp 126-128 °C; R_f = 0.34 (50% EtOAc/hexanes, visualized using PMA); [α] <math>_D^{20}$ +19 (*c* 1.0, CHCl₃); IR (film) 3288, 2945, 1648, 1541, 1451, 1002 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (br s, 1H), 7.37-7.28 (m, 5H), 6.02 (br s, 1H), 4.41 (s, 1H), 3.19 (dt, *J* = 6.8, 6.8 Hz, 2H), 1.90 (s, 3H), 1.46 (tq, 7.2, 7.2 Hz, 2H), 0.84 (t, *J* =7.2 Hz, 3H); ¹³C NMR (100 MHz, (CDCl₃) ppm 169.7, 157.4, 136.1, 129.1, 128.8, 128.0, 59.1, 41.5, 22.7, 13.7, 11.4; HRMS (ESI): Exact mass calcd for C₁₃H₁₉N₂O₂ [M+H]⁺ 235.1447, found 235.1458.

(*S*,*E*)-*N*-Butyl-3-(Hydroxyimino)-2-phenylbutanamide (10b). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (44.8 mg, 200 μmol) and *n*-butylamine (40.0 μL, 400 μmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as a white solid (35.0 mg, 70%). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak IC, 15% ^{*i*}PrOH/hexanes, 1.0 mL/min, *t*_r(*e*₁, major) = 10.9 min, *t*_r(*e*₂, minor) = 15.9 min). Mp 127-129 °C; $R_f = 0.2$ (30% EtOAc/hexanes, visualized using PMA); $[\alpha]_D^{20}$ +20 (*c* 1.0, CHCl₃); IR (film) 3300, 2932, 1650, 1541, 701 cm⁻¹; ¹H NMR (400 MHz, (CDCl₃) δ 8.00 (br s, 1H), 7.40-7.28 (m, 5H), 5.99 (br s, 1H), 4.40 (s, 1H), 3.22 (dt, *J* = 7.0, 7.0 Hz, 2H), 1.89 (s, 3H), 1.42 (tt, 6.7, 6.7 Hz, 2H), 1.26 (tq, 7.2, 7.2 Hz, 2H), 0.87 (t, 7.3 Hz, 3H); ¹³C NMR (100 MHz, (CDCl₃) ppm 169.7, 157.4, 136.1, 129.1, 128.8, 128.0, 59.1, 39.6, 31.5, 20.1, 13.8, 13.7; HRMS (ESI): Exact mass calcd for C₁₄H₂₁N₂O₂ [M+H]⁺ 249.1603, found 249.1612.

(*S*,*E*)-*N*-Allyl-3-(Hydroxyimino)-2-phenylbutanamide (10c). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (44.8 mg, 200 μmol) and allylamine (30.0 μL, 400 μmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as a white solid (33 mg, 72%). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak IC, 20% ^{*i*}PrOH/hexanes, 1.0 mL/min, *t*_r(*e*₁, major) = 7.9 min, *t*_r(*e*₂, minor) = 10.2 min; Mp 132-134.°C; $R_f = 0.2$ (30% EtOAc/hexanes, visualized using PMA); $[\alpha]_D^{20}$ +24. (*c* 1.0, CHCl₃); IR (film) 3330, 2923, 1643, 1534, 1202 cm¹; ¹H NMR (400 MHz, (CDCl₃) δ 7.82 (br s, 1H), 7.38-7.30 (m, 5H), 6.13 (br s, 1H), 5.78 (ddt, *J* = 16.9, 12.6, 5.5 Hz, 1H), 5.11-5.05 (m, 2H), 4.44 (s, 1H), 3.86 (dddd, 5.6, 5.6, 1.8, 1.8 Hz, 2H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 169.6, 157.2, 135.9, 134.0, 129.1, 128.8, 128.1, 116.4, 59.1, 42.1, 13.7; HRMS (ESI): Exact mass calcd for C₁₃H₁₆N₂O₂Na [M+Na]⁺ 255.1109, found 255.1112.

(*S*,*E*)-*N*-Cyclohexyl-3-(Hydroxyimino)-2-phenylbutanamide (10d). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (44.8 mg, 200 μmol) and cyclohexylamine (46.0 μL, 400 μmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as a white solid (40 mg, 74%). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak IC, 20% ⁱPrOH/hexanes, 1.0 mL/min, $t_r(e_1, \text{ major}) = 7.1 \text{ min}$, $t_r(e_2, \text{ minor}) = 9.7 \text{ min}$). Mp 172-174 °C; $R_f = 0.25$ (30% EtOAc/hexanes, visualized using PMA); $[\alpha]_D^{20}$ -106 (*c* 1.0, CHCl₃); IR (film) 3285, 2925, 1640, 1551, 709 cm⁻¹; ¹H NMR (400 MHz, (CDCl₃) δ 7.54 (br s, 1H), 7.37-7.28 (m, 5H), 5.99 (br d, *J* = 7.0 Hz, 1H), 4.37 (s, 1H), 3.82-3.73 (m, 1H), 1.90 (s, 3H), 1.90-1.82 (m, 2H), 1.65-1.55 (m, 4H), 1.38-1.28 (m, 2H), 1.17-1.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) ppm 168.7, 157.8, 136.2, 129.0, 128.8, 127.9, 59.1, 48.5, 32.9, 32.9, 31.5, 25.6, 24.8, 13.5; HRMS (ESI): Exact mass calcd for C₁₆H₂₃N₂O₂ [M+H]⁺ 275.1760, found 275.1772.

(*S*,*E*)-*N*,*N*-Diethyl-3-(Hydroxyimino)-2-phenylbutanamide (10e). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (44.8 mg, 200 µmol) and diethylamine (42.0 µL, 400 µmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as an off-white solid (40.0 mg, 80%). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak IC, 15% ⁱPrOH/hexanes, 1.0 mL/min, $t_r(e_1, \text{minor}) = 13.0 \text{ min}, t_r(e_2, \text{major}) = 14.5 \text{ min}.$ Mp 100-102 °C; $R_f = 0.2$ (30% EtOAc/hexanes, visualized using PMA); $[\alpha]_D^{20}$ -133 (*c* 1.0, CHCl₃); IR (film) 3315, 2964, 1632, 1449, 1006 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ

Johnston et al.

Supporting Information

8.18 (br s, 1H), 7.35-7.25 (m, 5H), 4.70 (s, 1H), 3.53 (dq, J = 14.0, 7.0 Hz, 1H), 3.33-3.18 (m, 2H), 3.12 (dq, J = 14.7, 7.2 Hz, 1H), 1.89 (s, 3H), 1.13 (t, J = 7.0 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 169.3, 158.5, 135.9, 128.9, 128.7, 127.7, 54.6, 42.2, 40.4, 14.3, 13.2, 12.9; HRMS (ESI): Exact mass calcd for C₁₄H₂₁N₂O₂ [M+H]⁺ 249.1603, found 249.1609.

(*S*,*E*)-3-(Hydroxyimino)-2-phenyl-1-(piperidin-1-yl)butan-1-one (10f). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (44.8 mg, 200 μmol) and piperidine (40.0 μL, 400 μmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as a foamy off-white solid (43.0 mg, 83%). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak IC, 20% ⁱPrOH/hexanes, 1.0 mL/min, $t_r(e_1, major) = 14.6 min$, $t_r(e_2, minor) = 16.4 min$); $R_f = 0.25$ (30% EtOAc/hexanes, visualized using PMA); $[\alpha]_D^{20}$ -121 (*c* 1.0, CHCl₃); IR (film) 3312, 2935, 2860, 1631, 1445, 1015, 712 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (br s, 1H), 7.35 -7.25 (m, 5H), 4.73 (s, 1H), 3.70-3.65 (m, 1H), 3.50-3.46 (m, 1H), 3.25-3.21 (m, 2H), 1.87 (s, 3H), 1.55-1.53 (m, 4H), 1.41-1.37 (m, 1H), 1.18-1.12 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) ppm 168.5, 158.3, 135.7, 128.9, 128.8, 127.6, 55.1, 47.0, 43.0, 26.0, 25.5, 24.5, 13.3; HRMS (ESI): Exact mass calcd for C₁₅H₂₁N₂O₂ [M+H]⁺ 261.1598, found 261.1599.

(*S*,*E*)-**3**-(Hydroxyimino)-1-morpholino-2-phenylbutan-1-one (10g). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (44.8 mg, 200 μmol) and morpholine (35.0 μL, 400 μmol). Flash column chromatography (SiO₂, 20-30-100% EtOAc/hexanes) yielded the amide as a off-white solid (43.0 mg, 82%). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak AD-H, 20% ^{*i*}PrOH/hexanes, 1.0 mL/min, $t_r(e_1, \text{minor}) = 15.1 \text{ min}, t_r(e_2, \text{major}) = 17.5 \text{ min}.$ Mp 127-129 °C; $R_f = 0.1$ (40% EtOAc/hexanes, visualized using PMA); $[\alpha]_D^{20}$ -113 (*c* 1.0, CHCl₃); IR (film) 3323, 2858, 1637, 1438, 1112 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (br s, 1H), 7.36-7.24 (m, 5H), 4.69 (s, 1H), 3.73-3.66 (m, 2H), 3.61-3.48 (m, 3H), 3.35-3.20 (m, 3H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 169.0, 157.6, 135.2, 129.0, 128.8, 127.9, 66.8, 66.3, 55.0, 46.4, 42.3, 13.3; HRMS (ESI): Exact mass calcd for C₁₄H₁₉N₂O₃ [M+H]⁺ 263.1390, found 263.1393.

(*S*,*E*)-3-(Hydroxyimino)-2-phenyl-*N*-((S)-1-phenylethyl)butanamide (10h). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (44.8 mg, 200 μmol) and (*S*)-1-phenylethan-1-amine (52.0 μL,

Johnston et al.

Supporting Information

400 µmol). Flash column chromatography (SiO₂, 10-30% EtOAc/hexanes) yielded the amide as a foamy white solid (40 mg, 67%). $R_f = 0.55$ (50% EtOAc/hexanes, visualized using PMA); $[\alpha]_D^{20}$ -22 (*c* 1.0, CHCl₃); IR (film) 3289, 3062, 1647, 1537, 1495, 1267 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (br s, 1H), 7.34-7.15 (m, 10H), 6.33 (d, *J* = 7.7 Hz, 1H), 5.08 (dq, *J* = 7.0, 7.0 Hz, 1H), 4.41 (s, 1H), 1.86 (s, 3H), 1.40 (d, 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 169.0, 157.2, 143.1, 136.0, 129.1, 128.8, 128.7, 128.0, 127.3, 126.1, 58.9, 49.1, 21.8, 13.6; HRMS (ESI): Exact mass calcd for C₁₈H₂₁N₂O₂ [M+H]⁺ 297.1598, found 297.1601.

(*S*,*E*)-**3**-(Hydroxyimino)-2-phenethyl-N-propylbutanamide (11). Prepared according to the general procedure using ((*3R*,4*R*)-4-nitro-3-(nitromethyl)pentyl)benzene (25.2 mg, 100 µmol) and *n*-propylamine (16.5 µL, 200 µmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as a white solid (21 mg, 80%). The product was determined to be 91% ee by chiral HPLC analysis (Chiralpak AD-H, 10% ^{*i*}PrOH/hexanes, 1.0 mL/min, $t_r(e_1, \text{minor}) = 16.8 \text{ min}, t_r(e_2, \text{major}) = 18.2 \text{ min}. Mp 86-88 °C; R_f = 0.35 (40% EtOAc/hexanes, visualized using PMA); [α]_D²⁰ +55.4 ($ *c*1.0, CHCl₃); IR (film) 3292, 2932, 1647, 1544, 1450, 1369 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (br s, 1H), 7.29-7.22 (m, 2H), 7.19-7.16 (m, 3H), 5.72 (br s, 1H), 3.19 (dt,*J*= 6.7, 6.7 Hz, 2H), 3.04 (dd,*J*= 7.5, 7.5 Hz, 1H), 2.66-2.53 (m, 2H), 2.24 (ddt,*J*= 15.8, 8.6, 7.1 Hz, 1H), 2.05-1.94 (m, 1H), 1.89 (s, 3H), 1.49 (tq, 7.3, 7.3 Hz, 2H), 0.89 (t, 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 170.5, 158.3, 141.3, 128.6, 128.5, 126.1, 52.3, 41.4, 33.4, 30.5, 22.9, 11.4, 11.4; HRMS (ESI): Exact mass calcd C₁₅H₂₂N₂O₂Na [M+Na]⁺ 285.1573, found 285.1575.

(*S*,*E*)-3-(Hydroxyimino)-2-(4-methoxyphenyl)-*N*-propylbutanamide (12). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (25.4 mg, 100 µmol) and *n*-propylamine (16.5 µL, 200 µmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as a white solid (20 mg, 75%). The product was determined to be 93% ee by chiral HPLC analysis (Chiralpak IC, 30% ⁱPrOH/hexanes, 1.0 mL/min, $t_r(e_1, \text{ major}) = 7.0 \text{ min}$, $t_r(e_2, \text{ minor}) = 8.8 \text{ min}$). Mp 105-107 °C; R_f = 0.17 (40% EtOAc/hexanes, visualized using PMA); [α] $_D^{20}$ +10 (*c* 1.0, CHCl₃); IR (film) 3295, 2928, 1648, 1512, 1456, 1251 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (br s, 1H), 7.24 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 6.0 (br s, 1H), 4.36 (s, 1H), 3.79 (s, 3H), 3.20-3.14 (m, 2H), 1.88 (s, 3H), 1.45 (tq, 7.3, 7.3 Hz, 2H), 0.83 (t, 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 170.1, 159.3, 157.5, 130.0, 128.0, 114.5, 58.3, 55.4, 41.5, 22.7, 13.6, 11.4; HRMS (ESI): Exact mass calcd for C₁₄H₂₀N₂O₃Na [M+Na]⁺ 287.1372, found 287.1367.

(*S*,*E*)-2-(3-Chlorophenyl)-3-(hydroxyimino)-*N*-propylbutanamide (13). Prepared according to the general procedure using (1,3-dinitrobutan-2-yl)benzene (25.8 mg, 100 µmol) and *n*-propylamine (16.5 µL, 200 µmol). Flash column chromatography (SiO₂, 20-50% EtOAc/hexanes) yielded the amide as a white solid (20 mg, 75%). The product was determined to be 95% ee by chiral HPLC analysis (Chiralpak IC, 15% ⁱPrOH/hexanes, 1.0 mL/min, $t_r(e_1, \text{ major}) = 7.9 \text{ min}, t_r(e_2, \text{ minor}) = 9.7 \text{ min}.$ Mp 134-136 °C; R_{*f*} = 0.17 (40% EtOAc/hexanes, visualized using PMA); [α] $_D^{20}$ +12 (*c* 1.0, CHCl₃); IR (film) 3291, 2961, 1648, 1555, 1200 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (br s, 1H), 7.33-7.21 (m, 4H), 6.21 (br s, 1H), 4.36 (s, 1H), 3.18 (dt, *J* = 6.9, 6.9 Hz, 2H), 1.89 (s, 3H), 1.47 (tq, 7.2, 7.2 Hz, 2H), 0.85 (t, 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 169.1, 156.9, 138.1, 134.8, 130.2, 129.0, 128.2, 127.1, 58.5, 41.6, 22.7, 13.6, 11.4; HRMS (ESI): Exact mass calcd for C₁₃H₁₇ClN₂O₂Na [M+Na]⁺ 291.0876, found 291.0876.

General Procedure for the Amidation of Phenyl Nitromethane Adducts using UmAS

To a (2-5 mL) microwave vial equipped with a stir bar was added dinitroalkane (1 equiv.) in dry 1:1 (v/v) THF/toluene (0.1 M) at 0 °C. To this was added K₂CO₃ (2 equiv.), amine (2 equiv.) sequentially and I₂ (1.2 equiv.) was added after 10 min. The vial was equipped with an O₂ balloon and stirred at 0 °C for 2.5 d. The crude reaction mixture was passed through a pad of 15% Na₂S₂O₃/silica (w/w) using 50% CH₂Cl₂/EtOAc solution, and then concentrated under vacuum. The residue was purified by flash column chromatography to give the desired product.

(**S**,**Z**)-**3**-(**Hydroxyimino**)-**2**,**3**-diphenyl-*N*-propylpropanamide (14). Prepared according to the general procedure using ((1*S*,2*R*)-1,3-dinitropropane-1,2-diyl)dibenzene (28.6 mg, 100 µmol) and *n*-propyl amine (16.5 µL, 200 µmol). Flash column chromatography (SiO₂, 20-60% ethyl acetate in hexanes) yielded the amide as a white solid (22.0 mg, 75%). The product was determined to be 90% ee by chiral HPLC analysis (Chiralpak IC, 20% ^{*i*}PrOH/hexanes, 1.0 mL/min, $t_r(e_1, major) = 11.0$ min, $t_r(e_2, minor) = 14.5$ min). Mp 112-114 °C; R_{*f*} = 0.4 (40% EtOAc/hexanes, visualized using PMA); [α] ²⁰_D +13 (*c* 1.0, MeOH); IR (film) 3294, 2931, 1649, 1547, 1450, 1244, 986 cm⁻¹; ¹H NMR (600 MHz, (CD₃)₂CO) δ 10.06 (br s, 1H), 7.44-7.42 (m, 4H), 7.36-7.30 (m, 4H merged with NH), 7.29-7.23 (m, 3H), 4.89 (s, 1H), 3.13 (dtd, *J* =13.0, 6.9, 6.9 Hz, 2H), 1.43 (tq, *J* = 7.3, 7.3 Hz, 2H), 0.81 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, (CD₃)₂CO) ppm 170.6, 156.9, 138.8, 136.0, 131.2, 130.0, 129.7, 129.5, 129.1, 128.4, 60.4, 42.5, 24.1, 12.3; HRMS (ESI): Exact mass calcd for C₁₈H₂₁N₂O₂ [M+H]⁺ 297.1598, found 297.1602.

(S,Z)-3-(4-Chlorophenyl)-3-(hydroxyimino)-2-phenyl-N-propylpropanamide (15). Prepared according to the general procedure using 1-chloro-4-((1*S*,2*R*)-1,3-dinitro-2-phenylpropyl)benzene (32.0 mg, 100 µmol) and *n*-propyl amine (16.5 µL, 200 µmol). Flash column chromatography (SiO₂, 20-60% ethyl acetate in hexanes) yielded the amide as a white solid (26.0 mg, 78%). The product was determined to be 89% ee by chiral HPLC analysis (Chiralpak AD-H, 10% ^{*i*}PrOH/hexanes, 1.0 mL/min, $t_r(e_1, major) = 25.0 min$, $t_r(e_2, minor) = 28.7 min$). Mp 136-138 °C; $R_f = 0.50$ (50% EtOAc/hexanes, visualized using PMA); $[\alpha]_D^{20}$ +10 (*c* 1.0, MeOH); IR (film) 3298, 2928, 1641, 1554, 1269, cm⁻¹; ¹H NMR (600 MHz, (CD₃)₂CO) δ 10.18 (br s, 1H), 7.43-7.37 (m, 6H), 7.31-7.23 (m, 4H, merged with NH), 4.90 (s, 1H), 3.13 (dtd, *J* =13.1, 6.2, 6.2 Hz, 2H), 1.43 (tq, *J* = 7.3, 7.3 Hz, 2H), 0.81 (t, *J* =7.4

Johnston et al.

Hz, 3H); ¹³C NMR (150 MHz, (CD₃)₂CO) ppm 170.6, 156.2, 138.5, 135.0, 134.5, 131.9, 131.2, 129.5, 129.2, 128.6, 60.1, 42.5, 24.1, 12.3; HRMS (ESI): Exact mass calcd for $C_{18}H_{20}ClN_2O_2$ [M+H]⁺ 331.1208, found 331.1212.

(S,Z)-3-(Hydroxyimino)-2-phenyl-*N*-propyl-3-(p-tolyl)propanamide (16). Prepared according to the general procedure using 1-((1*S*,2*R*)-1,3-dinitro-2-phenylpropyl)-4-methylbenzene (30.0 mg, 100 μmol) and *n*-propyl amine (16.5 μL, 200 μmol). Flash column chromatography (SiO₂, 20-60% ethyl acetate in hexanes) yielded the amide as a white solid (24.0 mg, 77%). The product was determined to be 92% ee by chiral HPLC analysis (Chiralpak IC, 20% ^{*i*}PrOH/hexanes, 1.0 mL/min, $t_r(e_1, major) = 11.3 min$, $t_r(e_2, minor) = 13.2 min$. Mp 132-134 °C; $R_f = 0.39$ (50% ethyl acetate in hexanes, visualized using PMA); $[\alpha]_D^{20}$ +19 (*c* 1.0, MeOH); IR (film) 3291, 2940, 1652, 1567, 1268 cm⁻¹; ¹H NMR (600 MHz, (CD₃)₂CO) δ 10.04 (br s, 1H), 7.43 (d, *J* =7.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.30-7.22 (m, 4H, merged with NH), 7.15 (d, *J* =7.9 Hz, 2H), 4.88 (s, 1H), 3.13 (dtd, *J* =13.1, 6.7, 6.7 Hz, 2H), 2.32 (s, 3H), 1.43 (tq, *J* =7.2, 7.2 Hz, 2H), 0.82 (t, *J* =7.3 Hz, 3H); ¹³C NMR (150 MHz, (CD₃)₂CO) ppm 170.7, 156.8, 139.4, 138.9, 132.9, 131.1, 130.0, 129.7, 129.4, 128.4, 60.4, 42.5, 24.1, 21.9, 12.3; HRMS (ESI): HRMS (ESI): Exact mass calcd for C₁₉H₂₂N₂O₂Na [M+Na] 333.1573, found 333.1577.

General Procedure for the Reduction of Oximes

To a flame-dried vial (5 mL) equipped with a magnetic stir bar was added oxime (100 μ mol) and MoO₃ (150 μ mol) followed by dry MeOH (500 μ L). To this solution was added NaBH₄ (19.0 mg, 500 μ mol) and the resulting mixture was stirred at 25 °C for 5 hours. After completion of the reaction, 5% aqueous NaHCO₃ was added dropwise (200 μ L) and the mixture was extracted with CH₂Cl₂. The extracts were combined and dried (MgSO₄). The solvent was removed under reduced pressure and the crude reaction mixture was purified using a silica pad in a pipette to obtain the desired amino amide.

(2*S*,3*S*)-3-Amino-2-phenyl-*N*-propylbutanamide (17). Prepared according to the general procedure using oxime (23.4 mg, 100 µmol) and MoO₃ (21.6 mg, 150 µmol) in dry MeOH (500 µL) and NaBH₄ (19.0 mg, 500 µmol). The crude reaction mixture was passed through a short pad of silica in a pipette, using ethyl acetate followed by 20% methanol in dichloromethane to afford the pure amino amide (10.0 mg, 45%) as a viscous liquid (dr = 10:1, ¹H NMR). R_f = 0.15 (5% MeOH/CH₂Cl₂); $[\alpha]_{D}^{20}$ -45.2 (*c* 1.00,

CHCl₃); IR (film) 3290, 2952, 1649, 1551, 1366 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 5H), 6.33 (br s, 1H), 3.60 (dq, J = 6.4, 6.4 Hz, 1H), 3.27-3.10 (m, 2H), 3.19 (d, J = 6.8 Hz, 1H, overlapping with m), 2.03 (br s, 2H), 1.48 (ddq, J = 7.3, 7.3, 7.3 Hz, 2H), 1.14 (d, J = 6.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 172.6, 136.9, 129.1, 128.8, 127.7, 60.7, 49.0, 41.2, 22.9, 22.1, 11.4; HRMS (ESI): Exact mass calcd for C₁₃H₂₁N₂O [M+H]⁺ 221.1648, found 221.1647.

(2*S*,3*S*)-3-Amino-2-(4-methoxyphenyl)-*N*-propylbutanamide (18). Prepared according to the general procedure using oxime (26.4 mg, 100 µmol) and MoO₃ (21.6 mg, 150 µmol) in dry MeOH (500 µL) and NaBH₄ (19.0 mg, 500 µmol). The crude reaction mixture was passed through a short pad of silica in a pipette, using ethyl acetate followed by 20% methanol in dichloromethane to afford the pure amino amide (12.0 mg, 48%) as a viscous liquid (dr = 9:1, ¹H NMR). R_f = 0.15 (5% MeOH/CH₂Cl₂); [α]²⁰_D -28.2 (*c* 1.00, CHCl₃); IR (film) 3276, 2944, 1643, 1526, 1249

cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 8.3 Hz, 2H), 6. 29 (br s, 1H), 3.78 (s, 3H) 3.57 (dq, *J* = 6.5, 6.5 Hz, 1H), 3.25-3.09 (m, 3H), 2.91 (br s, 2H), 1.46 (ddq, *J* = 7.3, 7.3, 7.3 Hz, 2H), 1.15 (d, *J* = 5.6 Hz, 3H), 0.86 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 172.8, 159.2, 130.2, 128.7, 114.2, 59.2, 55.4, 49.2, 41.2, 22.9, 21.4, 11.4; HRMS (ESI): Exact mass calcd for C₁₄H₂₃N₂O₂ [M+H]⁺ 251.1754, found 251.1763.

(2*S*,3*S*)-3-Amino-1-morpholino-2-phenylbutan-1-one (19). Prepared according to the general procedure using oxime (26.2 mg, 100 µmol) and MoO₃ (21.6 mg, 150 µmol) in dry MeOH (500 µL) and NaBH₄ (19.0 mg, 500 µmol). The crude reaction mixture was passed through a short pad of silica in a pipette, using ethyl acetate followed by 20% methanol in dichloromethane to afford the pure amino amide (13.0 mg, 52%) as a viscous liquid (dr = 20:1, ¹H NMR). $R_f = 0.15$ (5% MeOH/CH₂Cl₂); $[\alpha]_{D}^{20}$ -24.6 (*c* 1.00,

CHCl₃); IR (film) 3364, 2921, 2858, 1632, 1446, 1228 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 3.75-3.60 (m, 4H), 3.52-3.41 (m, 4H), 3.32-3.27 (m, 1H), 3.20 (s, 2H), 3.10-3.05 (m, 1H), 1.21 (d, *J* = 5.5 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃) ppm 170.9, 136.0, 129.2, 128.9, 127.9, 66.8, 66.4, 55.2, 49.9, 46.3, 42.3, 20.9; HRMS (ESI): Exact mass calcd for C₁₄H₂₁N₂O₂ [M+H]⁺ 249.1548, found 249.1592.

Johnston et al.

Supporting Information

(2*S*,3*R*)-3-Amino-2,3-diphenyl-*N*-propylpropanamide (20). Prepared according to the general procedure, but at higher dilution,⁶ using oxime (14.8 mg, 50 µmol) and MoO₃ (10.7 mg, 75 µmol) in dry MeOH (500 µL) and NaBH₄ (10.0 mg, 250 µmol). The crude reaction mixture was passed through a short pad of silica in a pipette, using 30% ethyl acetate in hexanes followed by 100% ethyl acetate and 5% methanol in dichloromethane to afford the pure amino amide (7.0 mg, 52%) as a viscous liquid (dr = 20:1, ¹H NMR). $R_f = 0.2$ (100% EtOAc); $[\alpha]_D^{20}$ -51.2 (*c* 1.00, CHCl₃); IR (film) 3302, 3067, 2932, 1648,

1552, 1367 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 6H), 7.24-7.19 (m, 4H), 6.11 (t, *J* = 5.4 Hz, 1H), 4.58 (d, *J* = 7.7 Hz, 1H), 3.54 (d, *J* = 7.8 Hz, 1H), 3.02 (dtd, *J* = 13.3, 6.8, 6.8 Hz, 1H), 3.02 (dtd, *J* = 13.0, 6.9, 6.9 Hz, 1H), 2.69 (br s, 2H), 1.21-1.16 (m, 2H), 0.64 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 171.6, 142.3, 136.2, 129.2, 128.7, 128.5, 127.9, 127.8, 127.2, 61.2, 58.0, 41.1, 22.6, 11.2; HRMS (ESI): Exact mass calcd for C₁₈H₂₃N₂O [M+H]⁺ 283.1805, found 283.1798.

(2*S*,3*R*)-3-Amino-2-phenyl-*N*-propyl-3-(*p*-tolyl)propanamide (21). Prepared according to the general procedure, but at higher dilution,⁶ using oxime (15.0 mg, 48 μ mol) and MoO₃ (10.5 mg, 72 μ mol) in dry MeOH (480 μ L) and NaBH₄ (9.1 mg, 240 μ mol). The crude reaction mixture was passed through a short pad of silica in a pipette, using 30% ethyl acetate in hexanes followed by 100% ethyl acetate and 5% methanol in dichloromethane to afford the pure amino amide (7.0 mg, 49%) as a viscous liquid

 $(dr = 20:1, {}^{1}H NMR)$. $R_{f} = 0.1 (100\% EtOAc); [\alpha]_{D}^{20} -52.4 (c 1.00, CHCl_{3}); IR (film)$

3310, 3069, 2930, 1647, 1552, 1368 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 5H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.15 (t, *J* = 5.4 Hz, 1H), 4.54 (d, *J* = 7.8 Hz, 1H), 3.62 (d, *J* = 7.7 Hz, 1H) 3.45 (br s, 2H), 1H), 3.03 (dtd, *J* = 13.4, 6.7, 6.7 Hz, 1H), 2.90 (dtd, *J* = 12.9, 6.7, 6.7 Hz, 1H), 2.30 (s, 3H),1.23-1.19 (m, 2H), 0.66 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 177.6, 138.4, 137.6, 136.1, 129.3, 129.2, 128.8, 128.0, 127.2, 60.4, 57.9, 41.1, 22.5, 21.2, 11.2; HRMS (ESI): Exact mass calcd for C₁₉H₂₅N₂O [M+H]⁺ 297.1961, found 297.1954.

⁶ This reaction required 3 h at higher dilution than other substrates since the starting material is insoluble in the standard reaction medium.

Johnston et al. **General Procedure for the Functionalization of Amines**

To a flame-dried vial (5 mL) equipped with a magnetic stir bar was added the amine (1 equiv) in CH_2Cl_2 (0.1 M) and it was cooled to 0 °C, after 10 min corresponding reagent (1.5 equiv) and Et_3N (2 equiv) was added and the reaction was allowed to stir for 1 h. After completion of the reaction, H_2O (500 µL) was added dropwise and the mixture was extracted with CH_2Cl_2 . The extracts were combined and dried (MgSO₄). The solvent was removed under reduced pressure. The residue was purified by flash column chromatography to give the desired product.

(2*S*,3*S*)-3-Acetamido-2-phenyl-*N*-propylbutanamide (22). Prepared according to the general procedure using (2*S*)-3-amino-2-phenyl-*N*-propylbutanamide (17) (7.0 mg, 31 µmol), CH₃COCl (4.0 µL, 47 µmol) and Et₃N (8.6 µL, 62 µmol) in dry CH₂Cl₂ (310 µL). Flash column chromatography (SiO₂, 100% ethyl acetate then 20% methanol in dichloromethane) yielded amide product (7.0 mg, 86%) as a white solid (dr = 10:1, ¹H NMR). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak IC, 15% ^{*i*}PrOH/hexanes, 1.0 mL/min, *t*_r(*e*₁, major) = 11.1 min, *t*_r(*e*₂, minor) = 17.8 min).

Mp 220-222 °C; $R_f = 0.15$ (50% EtOAc/hexanes); $[\alpha]_D^{20}$ -12 (*c* 0.50, CHCl₃); IR (film) 3299, 2934, 1641, 1544, 1371 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.28 (m, 5H), 6.21 (d, *J* = 8.3 Hz, 1H), 5.69 (br s, 1H), 4.35 (ddq, *J* = 13.5, 6.7, 6.7 Hz, 1H), 3.81 (d, *J* = 5.7 Hz, 1H), 3.18 (dtd, *J* = 13.5, 6.8, 6.8 Hz, 2H), 1.90 (s, 3H), 1.46 (ddq, *J* = 7.3, 7.3, 7.3 Hz, 2H), 1.25 (d, *J* = 6.7 Hz, 3H), 0.86 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 171.8, 169.3, 137.1, 128.9, 128.7, 127.5, 56.3, 48.0, 41.1, 23.4, 22.6, 17.0, 11.2; HRMS (ESI): Exact mass calcd for C₁₅H₂₃N₂O₂ [M+H]⁺ 263.1754, found 263.1764.

(2*S*,3*S*)-3-Acetamido-2-(4-methoxyphenyl)-*N*-propylbutanamide (23). Prepared according to the general procedure using ((2*S*,3*S*)-3-amino-2-(4-methoxyphenyl)-*N*-propylbutanamide (18) (11.0 mg, 44 µmol), CH₃COCl (5.0 µL, 66 µmol) and Et₃N (12.2 µL, 88 µmol) in dry CH₂Cl₂ (430 µL). Flash column chromatography (SiO₂, 100% ethyl acetate then 20% methanol in dichloromethane) yielded amide product (10.0 mg, 78%) as a white solid (dr = 8.5:1, ¹H NMR). The product was determined to be 93% ee by chiral HPLC analysis (Chiralpak AD-H, 10% ^{*i*}PrOH/hexanes, 1.0

mL/min, $t_r(e_1, \text{ major}) = 9.3 \text{ min}$, $t_r(e_2, \text{ minor}) = 12.2 \text{ min}$). Mp 204-206 °C; $R_f = 0.13 (50\% \text{ EtOAc/hexanes})$; [α] $_D^{20} -21 (c 0.50, \text{CHCl}_3)$; IR (film) 3299, 2942, 1636, 1532 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 6.26 (d, J = 8.6 Hz, 1H), 5.68 (br s, 1H), 4.31 (ddq, J = 13.5, 6.7, 6.7 Hz, 1H), 3.79 (s, 3H), 3.73 (d, J = 5.7 Hz, 1H), 3.18 (dtd, J = 13.3, 6.3, 6.3 Hz, 2H), 1.90 (s, 3H), 1.46 (ddq, J = 7.3, 7.3, 7.3 Hz, 2H), 1.25 (d, J = 6.7 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 172.4, 169.5, 159.1, 130.2, 129.3, 114.3, 55.8, 55.4, 48.2, 41.3, 23.7, 22.8, 17.2, 11.4; HRMS (ESI): Exact mass calcd for C₁₆H₂₅N₂O₃ [M+H]⁺ 293.1860, found 293.1868.

N-((2*S*,3*S*)-4-Morpholino-4-oxo-3-phenylbutan-2-yl)acetamide (24). Prepared according to the general procedure using (2*S*,3*S*)-3-amino-1-morpholino-2-phenylbutan-1-one (19) (7.0 mg, 28 µmol), CH₃COCl (3.3 µL, 42 µmol) and Et₃N (8.0 µL, 56 µmol) in dry CH₂Cl₂ (300 µL). Flash column chromatography (SiO₂, 100% ethyl acetate then 20% methanol in dichloromethane) yielded the amide product (6.5 mg, 80%) as a viscous oil (dr = 20:1, ¹H NMR). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak OZH, 15% EtOH/hexanes, 1.0 mL/min, $t_r(e_1, e_1)$

major) = 13.9 min, $t_r(e_2, \text{minor}) = 18.3 \text{ min}$). $R_f = 0.2 (50\% \text{ EtOAc/hexanes}); [\alpha]_D^{20} -26 (c \ 0.50, \text{ CHCl}_3); \text{ IR (film)}$ 3309, 2934, 1640, 1544, 1444 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.32 (m, 2H), 7.29-7.23 (m, 3H), 6.03 (d, J = 8.2 Hz, 1H), 4.35 (ddq, J = 13.5, 6.8, 6.8 Hz, 1H), 4.17 (d, J = 6.2 Hz, 1H), 3.80-3.76 (m, 1H), 3.69-3.64 (m, 1H), 3.57-3.39 (m, 3H), 3.30-3.24 (m, 1H), 3.16-3.11 (m, 1H), 3.08-3.03 (m, 1H), 1.90 (s, Johnston et al.

3H), 1.21 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 170.6, 169.6, 137.0, 129.1, 128.5, 127.6, 66.8, 66.2, 52.1, 49.0, 46.4, 42.1, 23.8,17.0; HRMS (ESI): Exact mass calcd for C₁₆H₂₃N₂O₃ [M+H]⁺ 291.1703, found 291.1718.

Benzyl ((2*S*,3*S*)-4-oxo-3-phenyl-4-(propylamino)butan-2-yl)carbamate (25). Prepared according to the general procedure using (2*S*,3*S*)-3-amino-2-phenyl-*N*-propylbutanamide (17) (7.5 mg, 34 µmol), benzyl chloroformate (7.5 µL, 51 µmol) and Et₃N (9.5 µL, 68 µmol) in dry CH₂Cl₂ (340 µL). Flash column chromatography (SiO₂, 30-50-100% ethyl acetate in hexanes) yielded amide product (8.0 mg, 66%) as a white solid (dr = 10:1, ¹H NMR). The product was determined to be 93% ee by chiral HPLC analysis (Chiralpak IC, 15% ^{*i*}PrOH/hexanes, 1.0 mL/min, $t_r(e_1, major) = 11.9 min, t_r(e_2, major)$

minor) = 14.1 min). Mp 167-169 °C; $R_f = 0.4$ (50% EtOAc/hexanes); $[\alpha]_D^{20}$ -34 (*c* 0.50, CHCl₃); IR (film) 3314, 2925, 1667, 1536, cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.26 (m, 10H), 5.57 (br s, 1H), 5.20 (br s, 1H), 5.02 (br d, *J* = 3.8 Hz, 2H), 4.21-4.10 (br, m 1H), 3.70 (br s, 1H), 3.16 (dtd, *J* = 13.3, 7.1, 7.1 Hz, 2H), 1.44 (ddq, *J* = 7.3, 7.3, 7.3 Hz, 2H), 1.29 (d, *J* = 6.7 Hz, 3H), 0.82 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 171.4, 155.6, 137.1, 136.5, 128.7, 128.6, 128.3, 127.9, 127.8, 127.5, 66.3, 57.2, 49.9, 41.1, 22.6, 17.9, 11.1; HRMS (ESI): Exact mass calcd for C₂₁H₂₇N₂O₃ [M+H]⁺ 355.2016, found 355.2054.

(9H-Fluoren-9-yl)methyl ((2*S*,3*S*)-4-oxo-3-phenyl-4-(propylamino)butan-2yl)carbamate (26). Prepared according to the general procedure using (2*S*,3*S*)-3amino-2-phenyl-*N*-propylbutanamide (17) (7.5 mg, 34 µmol), FmocCl (13.0 mg, 51 µmol) and Et₃N (9.5 µL, 68 µmol) in dry CH₂Cl₂ (340 µL). Flash column chromatography (SiO₂, 30-50% ethyl acetate in hexanes) yielded product (8.0 mg, 60%) as a white solid (dr = 10:1, ¹H NMR). The product was determined to be 94% ee by chiral HPLC analysis (Chiralpak IC, 15% ⁱPrOH/hexanes, 1.0 mL/min, $t_r(e_1, major) = 11.9 min, t_r(e_2, minor) = 13.5 min)$. Mp 201-203 °C; R_f = 0.5 (50%

EtOAc/hexanes); $[\alpha]_D^{20}$ -28.3 (c 0.20, CH₃OH); IR (film) 3317, 2923, 1669, 1533,

1446 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.75 (br d, *J* = 7.3 Hz, 2H), 7.49-7.37 (br m, 2H) 7.31-7.25 (br m, 9H), 5.61 (br s, 1H), 5.29 (br s, 1H), 4.29 (br s, 2H), 4.16 (br s, 2H), 3.73 (br s, 1H), 3.18 (br s, 2H), 1.46 (ddq, *J* = 7.2, 7.2, 7.2 Hz, 2H), 1.32 (br s, 3H), 0.85 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 171.1, 155.5, 144.1, 141.4, 137.4, 128.9, 127.7 (2C), 127.1, 125.2, 120.0 (2C), 66.7, 57.4, 50.1, 47.3, 71.3, 22.9, 18.1, 11.4; HRMS (ESI): Exact mass calcd for C₂₈H₃₁N₂O₃ [M+H]⁺ 443.2329, found 443.2359.

(2*S*,3*R*)-3-Acetamido-2,3-diphenyl-*N*-propylpropanamide (27). Prepared according to the general procedure using (2*S*,3*R*)-3-amino-2,3-diphenyl-*N*-propylpropanamide (20) (11.0 mg, 38 µmol), CH₃COCl (4.5 µL, 58 µmol) and Et₃N (10.5 µL, 76 µmol) in dry CH₂Cl₂ (380 µL). Flash column chromatography (SiO₂, 50-100% ethyl acetate then 20% methanol in dichloromethane) yielded amide product (10.5 mg, 85%) as a white solid (dr = 20:1, ¹H NMR). The product was determined to be 90% ee by chiral HPLC analysis (Chiralpak IC, 20% ⁱPrOH/hexanes, 1.0 mL/min,

 $t_r(e_1, \text{ major}) = 11.1 \text{ min}, t_r(e_2, \text{ minor}) = 19.3 \text{ min}).$ Mp 268-270 °C; $R_f = 0.3$ (50% EtOAc/hexanes); $[\alpha]_D^{20}$ -28 (*c* 0.20, CH₃OH); IR (film) 3304, 2921, 1639, 1537 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CD₃OD) δ 7.51 (d, *J* = 7.0 Hz, 2H), 7.46 (d, *J* = 7.0 Hz, 2H), 7.32-7.25 (m, 4H), 7.26-7.21 (m, 2H), 5.70 (d, *J* = 11.7 Hz, 1H), 3.93 (d, *J* = 11.7 Hz, 1H), 2.90 (dtd, *J* = 13.3, 6.8, 6.8 Hz, 1H), 2.69 (dtd, *J* = 13.5, 6.9, 6.9 Hz, 1H), 1.61 (s, 3H), 1.10 (ddq, *J* = 7.0, 7.0, 7.0 Hz, 2H), 0.53 (t, *J* = 7.4 Hz, 3H) [N-*H* protons not observed due to exchange with deuterated solvent.]; ¹³C NMR (100 MHz, CDCl₃) ppm 173.2, 171.9, 142.4, 138.9, 129.6, 129.3, 129.2, 128.8, 128.5, 128.4, 59.8, 56.0, 41.8, 23.2, 22.2, 11.3; HRMS (ESI): Exact mass calcd for C₂₀H₂₅N₂O₂ [M+H]⁺ 325.1911, found 325.1922.

(2*S*,3*R*)-3-Acetamido-2-phenyl-*N*-propyl-3-(*p*-tolyl)propanamide (28). Prepared according to the general procedure using ((2*S*,3*R*)-3-amino-2-phenyl-*N*-propyl-3-(*p*-tolyl)propanamide (21) (11.0 mg, 38 µmol), CH₃COCl (4.5 µL, 58 µmol) and Et₃N (10.5 µL, 76 µmol) in dry CH₂Cl₂ (380 µL). Flash column chromatography (SiO₂, 50-100% ethyl acetate then 20% methanol in dichloromethane) yielded the amide product (11.0 mg, 85%) as a white solid (dr = 20:1, ¹H NMR). The product was determined to be 92% ee by chiral HPLC analysis (Chiralpak IC, 20% ^{*i*}PrOH/hexanes, 1.0 mL/min, *t*_r(*e*₁,

major) = 14.3 min, $t_r(e_2, \text{ minor}) = 20.8 \text{ min}$). Mp 275-277 °C; $R_f = 0.2$ (50% EtOAc/hexanes); $[\alpha]_D^{20}$ -30 (*c* 0.20, CH₃OH); IR (film) 3334, 2980, 1644, 1377 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CD₃OD) δ 7.51 (d, *J* = 7.0 Hz, 2H), 7.35-7.22 (m, 5H), 7.12 (d, *J* = 7.9 Hz, 2H), 5.68 (d, *J* = 11.7 Hz, 1H), 3.92 (d, *J* = 11.7 Hz, 1H), 2.91 (dtd, *J* = 13.4, 6.8, 6.8 Hz, 1H), 2.71 (dtd, *J* = 13.5, 6.9, 6.9 Hz, 1H), 2.30 (s, 3H), 1.61 (s, 3H), 1.13 (ddq, *J* = 6.8, 6.8, 6.8 Hz, 2H), 0.53 (t, *J* = 7.4 Hz, 3H) [N-*H* protons not observed due to exchange with deuterated solvent.]; ¹³C NMR (100 MHz, CDCl₃) ppm 173.3, 171.8, 139.4, 138.9, 138.2, 129.9, 129.6, 129.2, 128.7, 128.3, 59.8, 55.7, 41.8, 23.2, 22.2, 21.1, 11.2; HRMS (ESI): Exact mass calcd for C₂₁H₂₇N₂O₂ [M+H]⁺ 339.2067, found 339.2080.

Johnston et al. **Determination of relative stereochemistry**

(5*S*,6*S*)-6-Methyl-5-phenyl-3-propyldihydropyrimidine-2,4(1*H*,3*H*)-dione (29). To a flame-dried vial (5 mL) equipped with a magnetic stir bar was added amine (20.0 mg, 90 µmol) in CH₂Cl₂ (450 µL). To this was added triphosgene (10.8 mg, 36 µmol) and the solution was stirred for 1.5 h at 25 °C. The solution was then cooled to -20 °C, and after 20 min, TBD (15.0 mg, 110 µmol) was added and the solution was stirred for 20 h. The reaction was quenched using HCl (1 M) and the mixture was extracted with CH₂Cl₂. The extracts were combined, dried (MgSO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (30-100% ethyl acetate in hexanes) to afford the product (12.0 mg, 55%) as a white solid (5.5:1 dr, ¹H NMR). The product was determined to be 87% ee by chiral HPLC analysis (Chiralpak IC, 15% ⁱPrOH/hexanes, 1.0 mL/min, *t*_r(*e*₁, minor) = 11.5 min, *t*_r(*e*₂, major) = 14.7 min; R_f = 0.55 (50% EtOAc/hexanes), Mp 184-186 °C; [α] $_D^{20}$ -4 (*c* 1.0, CHCl₃); IR (film) 3290, 2952, 1649, 1551, 1366 cm⁻¹; Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.29 (m, 3H), 7.18-7.16 (m, 2H), 5.69 (br s, 1H), 3.83-3.71 (m, 3H), 3.50 (d, *J* = 9.4 Hz, 1H), 1.62 (ddq, *J* = 7.5, 7.5, 7.5 Hz, 2H), 1.16 (d, *J* = 6.4 Hz, 3H), 0.91 (app t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) ppm 170.5, 154.1. 135.6, 129.0, 128.8, 128.0, 55.1, 48.4, 42.5, 21.7, 20.5, 11.4; HRMS (ESI): Exact mass calcd for C₁₄H₁₈N₂O₂Na [M+Na]⁺ 269.1260, found 269.1261.

Me,

H_b H

Pr

29

2.0% NOE

Measurement of 1D NOE for 29

Measurement of 1D NOE (600 MHz, CDCl₃) identified a 2.0% enhancement of the methyl (Me) when the vicinal H_a was irradiated. Similarly a 1.2% enhancement of the vicinal H_a was observed when methyl (Me) was irradiated. This supports assignment of the major diastereomer as '*anti*' according to convention for Mannich additions.

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	14.939	0.369	7662.591	50.027
2	23.280	0.538	7654.281	49.973

Peak #	RT [min]	Width [min]	Area	Area %
1	14.960	0.340	462.913	2.876
2	23.243	0.567	15632.305	97.124

	in] [r	nin]		
1 1	1.839 ().301	530.124	3.837
2 1	7.746 ().421 13	284.720	96.163

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	18.861	0.466	13345.317	48.671
2	27.732	0.673	14074.090	51.329

Peak #	RT [min]	Width [min]	Area	Area %
1	18.521	0.421	672.438	3.102
2	27.108	0.657	21004.209	96.898

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	21.920	0.584	33802.699	47.468
2	29.795	0.747	37408.266	52.532

Peak #	RT [min]	Width [min]	Area	Area %
1 2	21.728	0.499	209.264	2.563
	29.573	0.707	7955.796	97.437

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	11.892	0.244	317.244	3.461
2	13.717	0.331	8849.635	96.539

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	13.921	0.334	147.778	2.340
2	21.726	0.511	6167.729	97.660

Peak	RT	Width	Area	Area 😵
#	[min]	[min]		
1	10.130	0.339	12449.193	97.103
2	14.918	0.425	371.476	2.897

Peak #	RT [min]	Width [min]	Area	Area %
1	13.428	0.369	223.461	2.492
2	19.373	0.483	8744.991	97.508

Peak #	RT [min]	Width [min]	Area	Area %
1	11.633	0.408	935.618	3.988
2	21.951		22524.932	96.012

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	12.348	0.396	2349.041	49.851
2	20.378	0.549	2363.047	50.149

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	12.504	0.356	156.045	1.494
2	20.507	0.539	10288.186	98.506

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	18.821	0.632	13549.467	49.557
2	34.108	1.126	13791.650	50.443

Peak	RT	Width	Area	Area	S
#	[min]	[min]			
1	18.684	0.668	25320.002	98.0)20
2	34.044	0.953	511.440	1.9	980

Supporting Information

HPLC trace of 6l

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	16.704	0.344	186.982	1.117
2	26.983	0.619	16554.299	98.883

Peak # 	RT [min]	Width [min]	Area	Area %
1	9.171	0.273	3062.125	50.110
2	13.285	0.472	3048.668	49.890

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	9.347	0.256	286.005	2.659
2	13.651	0.455	10470.630	97.341

Peak #	RT [min]	Width [min]	Area	Area %
1	11.129	0.271	5112.963	49.279
2	21.230	0.524	5262.528	50.721

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1 2	11.201 21.114	0.243 0.529	423.253 17137.150	2.410 97.590

SI1-41

Peak #	RT [min]	Width [min]	Area	Area %
1	10.864	0.274	6315.672	49.659
2	14.973	0.378	6402.286	50.341

Peak #	RT [min]	Width [min]	Area	Area %
1	10.811	0.251	253.694	2.455
2	14.788	0.369	10080.985	97.545

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	14.958	0.346	1438.438	6.828
2	23.900	0.563	19628.551	93.172

Supporting Information

Peak #	RT [min]	Width [min]	Area	Area %
1	12.011	0.359	1035.360	4.995
2	15.053	0.404	19690.719	95.005

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	9.474	0.207	5056.245	49.918
2	11.714	0.283	5072.842	50.082

Peak #	RT [min]	Width [min]	Area	Area %
1	9.595	0.196	394.445	4.306
2	11.811	0.355	8764.885	95.694

Johnston et al. HPLC data for 8a

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	11.986	0.371	3095.012	50.478
2	13.965	0.384	3036.456	49.522

Peak # 	RT [min]	Width [min]	Area	Area %
1	11.746	0.366	217.257	3.974
2	13.640	0.377	5250.355	96.026

Johnston et al. HPLC data for 8b

Peak #	RT [min]	Width [min]	Area	Area %
1	9.374	0.320	6009.503	49.778
2	11.843	0.280	6063.034	50.222

Peak #	RT [min]	Width [min]	Area	Area %
1	9.646	0.315	169.693	4.034
2	12.192	0.327	4037.221	95.966

Supporting Information

Johnston et al. HPLC data for 8c

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	8.697	0.318	3608.329	49.701
2	10.542	0.260	3651.746	50.299

Peak #	RT [min]	Width [min]	Area	Area %
1	8.867	0.278	357.159	4.399
2	10.795	0.267	7761.895	95.601

Johnston et al. HPLC data for 8d

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area 😚
1	8.856	0.247	4315.642	49.534
2	9.868	0.254	4396.761	50.466

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	8.920	0.242	115.389	3.178
2	9.895	0.252	3515.740	96.822

Johnston et al. HPLC data for 8e

Peak #	RT [min]	Width [min]	Area	Area %
1	9.498	0.289	4064.717	40.664
2	10.167	0.317	4143.490	41.452
3	16.155	0.505	907.537	9.079
4	17.046	0.529	880.229	8.806

Peak #	RT [min]	Width [min]	Area	Area %
1	9.475	0.262	664.517	8.948
2	10.128	0.310	4820.594	64.913
3	16.040	0.448	1651.050	22.233
4	16.981	0.423	290.128	3.907

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	10.993	0.335	673.654	49.293
2	16.059	0.478	692.982	50.707

Peak #	RT [min]	Width [min]	Area	Area %
1	10.932	0.336	5201.111	97.044
2	15.927	0.371	158.406	2.956

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	7.901	0.265	8327.105	96.949
2	10.277	0.316	262.070	3.051

Peak #	RT [min]	Width [min]	Area	Area 🖇
1	7.123	0.267	2808.563	97.422
2	9.746		74.317	2.578

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1	13.013	0.363	8549.721	49.523
2	14.567	0.409	8714.270	50.477

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	13.048	0.331	743.598	3.226
2	14.566	0.464	22309.018	96.774

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	14.656	0.431	10719.008	97.354
2	16.469	0.439	291.326	2.646

Supporting Information

ĢН

Ň

Johnston et al. HPLC trace of 10g

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	15.420	0.703	24553.059	49.989
2	17.904	0.724	24564.307	50.011

Peak	RT	Width	Area	Area 🖇
#	[min]	[min]		
1	15.176	0.561	381.985	2.693
2	17.588	0.688	13802.241	97.307

OH I N

ll

Me

Me

Johnston et al. HPLC trace of 11

Peak #	RT [min]	Width [min]	Area	Area %
1	16.817	0.664	197.183	4.620
2	18.211	0.855	4071.214	95.380

Peak #	RT [min]	Width [min]	Area	Area %
1	7.092	0.243	3928.871	96.723
2	8.866		133.118	3.277

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1 2	7.922	0.293	1913.334	50.786
	9.810	0.315	1854.085	49.214

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	7.903	0.282	2041.467	97.873
2	9.753	0.262	44.360	2.127

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RT [min]	Width [min]	Area	Area %
1 2	10.764 14.057	0.366 0.455	1768.465 1726.113	50.606 49.394

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RT	Width	Area	Area %
#	[min]	[min]		
1	11.082	0.407	3893.584	95.198
2	14.576	0.481	196.412	4.802

Supporting Information

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

1 2	25.019	1.071 1	2628.146	94.885
	28.791	0.931	680.805	5.115

Peak #	RT [min]	Width [min]	Area	Area %
1	12.117	0.447	2139.081	49.845
2	14.221	0.524	2152.404	50.155

Me

Supporting Information

_ _ _ _ _ _
