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Scheme S1. Scheme illustrating the procedure to prepare the ionic organic cage (I-Cage) from 

its CC3 precursor, (a) CC3, (b) R-CC3, and (c) I-Cage-Cl (The Cl‒ counter anions are omitted 

for clarity). 

 

 
Figure S1. Chemical structures and 1H-NMR spectra of (a) I-Cage-Cl (The integration of the 
spectrum can be referred in Figure S38) and (b) Au@I-Cage-Cl in D2O. The inset on the top 
left shows the comparison between I-Cage-Cl and Au@I-Cage-Cl.  
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Figure S2.  13C-NMR spectra of (a) I-Cage-Cl and (b) Au@I-Cage-Cl in D2O. 

 

Figure S3. ESI(+)-MS spectrum of I-Cage-Cl, selected [M+H]+ at m/z 1155.5 and selected 
[M+Na]+ at m/z 1177.8 are marked in the picture. 
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Figure S4. Cryo-EM image of the I-Cage-Cl (dark dot) on a Lacey carbon grid. The inset is 
the corresponding size distribution histogram of I-Cage-Cl. 
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Figure S5. Cryo-EM image of the neutral RCC3 Cage (some dots highlighted by white circles) 
on a Lacey carbon grid. There are also a large number of RCC3 cage on Lacey carbon 
(highlighted by white dotted ellipses). The inset is the corresponding size distribution histogram 
of RCC3 cage. 

 

 
Figure S6. The number-average size distribution of the Au@I-Cage-Cl in aqueous solution 
observed by DLS. 
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Figure S7. The HAADF-STEM images of (a) Au, (b) Pd and (c) Pt clusters in aqueous solution. 

 

Figure S8. XPS spectrum of Au@I-Cage-Cl showing Au 4f7/2 (84.4 eV) and 4f5/2 (88.4 eV) 
peaks of metallic Au. 
 



S7 
 

 

Figure S9.  1H 2D-DOSY NMR spectrum of I-Cage-Cl in D2O. The inset in upper left is the 
plot of the signal intensity as a function of the gradient strength. Diffusion coefficients are 
obtained by non-linear fitting of the decay curve. 
 

 

Figure S10. 1H 2D-DOSY NMR spectrum of Au@I-Cage-Cl in D2O. The inset in upper left 
is the plot of the signal intensity as a function of the gradient strength. Diffusion coefficients 
are obtained by non-linear fitting of the decay curve. 
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Note: The two diffusion coefficients were calculated using the peaks at 7.62 ppm for I-Cage-
Cl and Au@I-Cage-Cl. These two peaks are well separated from other resonances, so they are 
described by a mono-exponential function. Data were analysed by plotting the signal intensities 
(areas) as a function of the gradient strength, followed by non-linear fitting of the resulting 
decay curves. For internal consistency, we checked the method by calculating the diffusion for 
D2O, which was used as a solvent, from the peak at 4.79 ppm: the diffusion coefficient value 
D(D2O) = 1.84×10-5 cm2 s-1 obtained is in agreement with that of D2O reported in literature.(J. 
Phys. Chem., 1965, 69, 4412–4412). The diffusion coefficient for I-Cage-Cl was measured as 
D(I-Cage-Cl) = 2.06×10-6 cm2 s-1 and for Au@I-Cage-Cl as D(Au@I-Cage-Cl) = 2.16×10-6 cm2 
s-1. 
 

 

Figure S11. UV-vis spectra of Au cluster after staying in (a) acid, (b) base, (c) heat-treatment 
at 363 K and (d) liquid N2. 
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Figure S12. (a) HAADF-STEM image of Au clusters in an acid solution (pH=3) and (b) the 
corresponding size distribution histogram of Au clusters. 

 

Figure S13. (a) HAADF-STEM image of Au clusters in a base solution (pH=10) and (b) the 
corresponding size distribution histogram of Au clusters. 
 

 
Figure S14. (a) HAADF-STEM image of Au clusters after treated by liquid nitrogen and (b) the 
corresponding size distribution histogram of Au clusters. 
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Figure S15. (a) HAADF-STEM images of Au cluster after heat-treatment at 363 K and (b) the 
corresponding size distribution histogram of Au clusters. 
 

 

Figure S16. TEM image of Au nanoparticles produced without any support.  
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Figure S17. (a) Photograph of Au/RCC3 solution. (b) TEM image of Au/RCC3 and (c) the 
corresponding size distribution histogram of Au nanoparticles (4 ± 0.8 nm). 
 

 
Figure S18. (a) TEM image of Au/4-cyanomethyl-1-vinyl-imidazolium bromide and (b) the 
corresponding size distribution histogram of Au nanoparticles (6 ± 0.9 nm). 
 
 

Phase transfer process Amount of Au (mg/L, ppm) left in mother phase 

From aqueous to EA phase 4.5 (in aqueous phase) 

From EA to aqueous phase <1 (in EA phase) 

Figure S19. ICP-OES result of Au metal left in the mother phase after phase-transfer process. 
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Figure S20. Reversible transfer of Au-I-Cage-Cl (absorbance at 300 nm) in water upon 
alternating addition of LiTFSI (pink rectangle) and KCl (violet rectangle). 
 

 
Figure S21. The number-average size distribution of the Au@I-Cage-TFSI in EA solution 
observed by DLS. 
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Figure S22. Cryo-EM image of Au@I-Cage-TFSI on a Lacey carbon grid and the size 
distribution histogram as inset. 
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Figure S23. HAADF-STEM images at different magnifications and their corresponding size 
distribution of Au (a-c), Pd (d-f) and Pt (g-i) clusters in EA solution. 
 

 

Figure S24. Photographs of the reversible phase transfer of Pd clusters assisted by the cage 
molecules between an aqueous and EA phases upon anion exchange. 
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Figure S25. Photographs of the reversible phase transfer of Pt clusters assisted by the cage 
molecules between an aqueous and EA phases upon anion exchange. 
 
 

 
Figure S26. (a) HAADF-STEM image of Pt@I-Cage-Cl catalyst and (b) the corresponding size 
distribution histogram of Pt clusters (0.75 ± 0.2 nm). 
  
 

 

Figure S27. (a) TEM image of Pt/CTAB and (b) the corresponding size distribution histogram 
of Pt nanoparticles (2.7 ± 0.3 nm). 
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Figure S28. The time course plot of H2 generation for Pt/CTAB catalyst. 
 

 
Figure S29. (a) TEM image of Pt/PVP and (b) the corresponding size distribution histogram 
of Pt nanoparticles (4 ± 0.4 nm). 
 

 
Figure S30. The time course plot of H2 generation for Pt/PVP catalyst. 
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Figure S31. (a) TEM image of Pt/RCC3 and (b) the corresponding size distribution histogram 
of Pt nanoparticles (3 ± 0.6 nm). 
 

 
Figure S32. The time course plot of H2 generation for Pt/RCC3 catalyst. 

 
Figure S33. The TEM image of Pt-SP-Free catalyst. 
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Figure S34. The time course plot of H2 generation for pure I-Cage-Cl. 
 

 

Figure S35. Recyclable AB hydrolysis reaction by Pt@I-Cage-Cl through anion exchange 
driven phase transfer. 
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Figure S36. The integration of the 1H NMR spectrum of the CC3 in CDCl3. 
 

 
Figure S37. The 1H NMR spectrum of the RCC3 in CDCl3. 
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Figure S38. The integration of the 1H NMR spectrum of the I-Cage-Cl in D2O. 
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Figure S39. The 1H NMR spectrum of the Pd@ I-Cage-Cl in D2O. 
 
 

 
Figure S40. The 1H NMR spectrum of the Pt@ I-Cage-Cl in D2O. 
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Figure S41. The 1H NMR spectrum of the Au/RCC3 in CDCl3. 
 


