ELECTRONIC SUPPORTING INFORMATION

Rare "Janus"-Faced {Fe^{II}₇} Single-Molecule Magnet Exhibiting Intramolecular Ferromagnetic Interactions

Dimitris I. Alexandropoulos,^a Kuduva R. Vignesh,^a Theocharis C. Stamatatos,^{*b} and Kim R. Dunbar^{*a}

^a Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, United States

^b Department of Chemistry, 1812 Sir Isaac Brock Way, Brock University, L2S 3A1 St. Catharines, Ontario, Canada

Corresponding authors: <u>tstamatatos@brocku.ca</u> (Th. C. Stamatatos); <u>dunbar@chem.tamu.edu</u> (K. R. Dunbar)

Fig. S1 IR spectra of 1-w and 1-d.

Fig. S2 The $[Fe_7(\mu_3-N_3)_6(\mu-N_3)_6]^{2+}$ inorganic core of **1**. Color scheme: Fe^{II} yellow, N blue. Symmetry operation for the primed atoms: 1-*x*, -*y*, 1-*z*.

Fig. S3 Frequency dependence of the in-phase (χ_M') component of the *ac* magnetic susceptibility at different temperatures (2.5 – 5.0 K) for 1-d at zero *dc* field; the solid lines are the best fits to the generalized Debye model.

Fig. S4 Cole-Cole plots for **1-d** at zero applied *dc* field and different temperatures; the solid lines are the best fits to the generalized Debye model.

Fig. S5 Temperature dependence of the $\chi_M T$ product for **1-w** at an applied *dc* field of 0.1 T in the temperature range 2-300 K.

Fig. S6 Magnetization (*M*) vs field (*H*) and temperature (*T*) data, plotted as reduced magnetization ($M/N\mu_B$) vs H/T, for **1-w** at applied fields of 1-7 T and in the 1.8-5 K temperature range.

Fig. S7 Cole-Cole plots for **1-w** at zero applied *dc* field and different temperatures; the solid lines are the best fits to the generalized Debye model.

Fig. S8 Seesaw geometry of the potentially 4-coordinate Fe1, Fe2 and Fe3 atoms in **1-d**. Points connected by the black lines define the vertices of the ideal polyhedron. The so-called Continuous Shape Measures (CShM) approach essentially allows one to numerically evaluate by how much a particular polyhedron deviates from an ideal shape. The obtained CShM values are listed in Table S4. Values of CShM between 0.1 and 3 usually correspond to a not negligible but still small distortion from ideal geometry, while values larger than 3 refer to very distorted coordination environments.^{S1,S2,S3}

$M, g mol^{-1}$ 1751.07Crystal systemTriclinicSpace group $P-1$ $a / Å$ 11.4046(7) $b / Å$ 12.5476(8) $c / Å$ 13.4127(9) $a / °$ 93.108(2) $a / °$ 93.108(2) $b / Å$ 94.573(2) $p / °$ 98.460(2) $V / Å^3$ 1888.2(2) Z 1 T / K 100(1) $\lambda / Å$ 0.71073Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	Formula	C ₃₂ H ₄₈ Fe ₇ N ₅₂ O ₈ Cl ₂
Crystal systemTriclinicSpace group $P-1$ $a / Å$ $11.4046(7)$ $b / Å$ $12.5476(8)$ $c / Å$ $12.5476(8)$ $c / Å$ $13.4127(9)$ $a / °$ $93.108(2)$ $a / °$ $94.573(2)$ $g / °$ $94.573(2)$ $y / °$ $98.460(2)$ $V / Å^3$ $1888.2(2)$ Z 1 T / K $100(1)$ $\lambda / Å$ 0.71073 Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454 Measd / independent (R_{int}) reflns $15101 / 6891$ Obsd reflns [$I > 2\sigma(I)$] 5294 $R_1 a$ 0.0404 $wR_2 b$ 0.0833 GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ $0.428, -0.508$	M, g mol ⁻¹	1751.07
Space group $P-1$ $a / Å$ $11.4046(7)$ $b / Å$ $12.5476(8)$ $c / Å$ $13.4127(9)$ $a / °$ $93.108(2)$ $a / °$ $94.573(2)$ $g / °$ $98.460(2)$ $V / Å^3$ $1888.2(2)$ Z 1 T / K $100(1)$ $\lambda / Å$ 0.71073 Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454 Measd / independent (R_{int}) reflns $15101 / 6891$ Obsd reflns [$I > 2\sigma(I)$] 5294 R_1^a 0.0404 wR_2^b 0.0833 GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ $0.428, -0.508$	Crystal system	Triclinic
$a / Å$ $11.4046(7)$ $b / Å$ $12.5476(8)$ a / \circ $13.4127(9)$ a / \circ $93.108(2)$ b / \circ $94.573(2)$ g / \circ $94.573(2)$ g / \circ $98.460(2)$ $V / Å^3$ $1888.2(2)$ Z 1 T / K $100(1)$ $\lambda / Å$ 0.71073 Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454 Measd / independent (R_{int}) reflns $15101 / 6891$ Obsd reflns [$I > 2\sigma(I)$] 5294 R_1^a 0.0404 wR_2^b 0.0833 GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ $0.428, -0.508$	Space group	<i>P</i> -1
b / Å12.5476(8)c / Å13.4127(9)a / °93.108(2) $a / °$ 93.108(2) $b / °$ 94.573(2) $b / °$ 98.460(2) $V / Å^3$ 1888.2(2) Z 1 T / K 100(1) $\lambda / Å$ 0.71073Radiation typeMo Ka $o_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	<i>a</i> / Å	11.4046(7)
$c / Å$ 13.4127(9) a / \circ 93.108(2) a / \circ 94.573(2) b / \circ 94.573(2) b / \circ 98.460(2) $V / Å^3$ 1888.2(2) Z 1 T / K 100(1) $\lambda / Å$ 0.71073Radiation typeMo Ka $o_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	b / Å	12.5476(8)
α / \circ 93.108(2) β / \circ 94.573(2) β / \circ 98.460(2) γ / \circ 98.460(2) $V / Å^3$ 1888.2(2) Z 1 T / K 100(1) $\lambda / Å$ 0.71073Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns $[I > 2\sigma(I)]$ 5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	c / Å	13.4127(9)
β / \circ 94.573(2) γ / \circ 98.460(2) $V / Å^3$ 1888.2(2) Z 1 T / K 100(1) $\lambda / Å$ 0.71073Radiation typeMo Ka $o_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	α/°	93.108(2)
$y/^{\circ}$ 98.460(2) $V/Å^3$ 1888.2(2) Z 1 T/K 100(1) $\lambda/Å$ 0.71073Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	β/°	94.573(2)
$V / Å^3$ 1888.2(2) Z 1 T / K 100(1) $\lambda / Å$ 0.71073Radiation typeMo Ka $o_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	γ / °	98.460(2)
Z1 T/K 100(1) $\lambda/Å$ 0.71073Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 μ / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta\rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	V / Å ³	1888.2(2)
T/K 100(1) $\lambda/Å$ 0.71073Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 μ / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta\rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	Ζ	1
$\lambda / Å$ 0.71073Radiation typeMo Ka $\rho_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	Т / К	100(1)
Radiation typeMo Ka $o_{calc} / g cm^{-3}$ 1.540 u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{max,min} / e Å^{-3}$ 0.428, -0.508	λ / Å	0.71073
	Radiation type	Mo Ka
u / mm^{-1} 1.454Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{\max,\min}$ / e Å-30.428, -0.508	$ ho_{ m calc}$ / g cm ⁻³	1.540
Measd / independent (R_{int}) reflns15101 / 6891Obsd reflns [$I > 2\sigma(I)$]5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{\max,\min}$ / e Å-30.428, -0.508	μ / mm ⁻¹	1.454
Obsd reflns $[I > 2\sigma(I)]$ 5294 R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{\max,\min} / e Å^{-3}$ 0.428, -0.508	Measd / independent (R_{int}) reflns	15101 / 6891
R_1^a 0.0404 wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{\max,\min}$ / e Å-30.428, -0.508	Obsd reflns $[I > 2\sigma(I)]$	5294
wR_2^b 0.0833GOF on F^2 1.084 $(\Delta \rho)_{\max,\min}$ / e Å-30.428, -0.508	$R_1{}^a$	0.0404
GOF on F^2 1.084 $(\Delta \rho)_{\max,\min}$ / e Å-30.428, -0.508	wR_2^b	0.0833
$(\Delta \rho)_{\rm max,min}$ / e Å ⁻³ 0.428, -0.508	GOF on F^2	1.084
	$(\Delta \rho)_{\text{max,min}}$ / e Å ⁻³	0.428, -0.508

 Table S1. Crystallographic data for complex 1·4MeCN.

^{*a*} $R_1 = \Sigma(||F_o| - |F_c||) / \Sigma|F_o|$. ^{*b*} $wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}, w = 1/[\sigma^2(F_o^2) + [(ap)^2 + bp], where <math>p = [\max(F_o^2, 0) + 2F_c^2] / 3.$

Bond lengths			
Fe(1)-N(1)	2.108(3)	Fe(3)-N(4')	2.250(3)
Fe(1)-N(7)	2.244(2)	Fe(3)-N(7)	2.246(2)
Fe(1)-N(10)	2.264(3)	Fe(3)-N(13)	2.103(3)
Fe(1)-N(13)	2.124(3)	Fe(3)-N(16')	2.119(3)
Fe(1)-N(19)	2.123(3)	Fe(3)-N(23)	2.126(3)
Fe(1)-N(20)	2.134(3)	Fe(3)-N(24)	2.148(3)
Fe(2)-N(1)	2.112(3)	Fe(4)-N(4)	2.187(2)
Fe(2)-N(4)	2.234(2)	Fe(4)-N(4')	2.187(2)
Fe(2)-N(10)	2.241(2)	Fe(4)-N(7)	2.200(2)
Fe(2)-N(16)	2.114(3)	Fe(4)-N(7')	2.220(2)
Fe(2)-N(21)	2.136(3)	Fe(4)-N(10)	2.175(2)
Fe(2)-N(22)	2.158(3)	Fe(4)-N(10')	2.175(2)
Bond angles			
Fe(1)-N(1)-Fe(2)	104.5(1)	Fe(2)-N(4)-Fe(3')	96.5(1)
Fe(1)-N(10)-Fe(2)	95.6(9)	Fe(2)-N(16)-Fe(3')	104.4(1)
Fe(1)-N(7)-Fe(3)	96.6(9)	Fe(2)-N(4)-Fe(4)	98.0(9)
Fe(1)-N(13)-Fe(3)	104.9(1)	Fe(2)-N(10)-Fe(4)	98.1(9)
Fe(1)-N(7)-Fe(4)	98.0(1)	Fe(3)-N(4')-Fe(4)	97.8(9)
Fe(1)-N(10)-Fe(4)	98.1(1)	Fe(3)-N(7)-Fe(4)	97.5(9)

Table S2. Selected interatomic distances (Å) and angles (°) for complex 1^a

^{*a*} Symmetry transformation used to generate equivalent atoms: ' = 1-x, -y, 1-z.

Atom	Fe ^{II}	Fe ^{III}
Fe1	2.07	2.35
Fe2	2.07	2.35
Fe3	2.08	2.36
Fe4	1.94	2.20

Table S3. Bond valence sum $(BVS)^a$ calculations for the Fe atoms in centrosymmetric **1**.^{S4}

^{*a*} The values in boldface are the ones closest to the charge for which they were calculated. The oxidation state is the nearest whole number to the boldfaced value.

Table S4. Different spin configurations employed and their corresponding energy values for extracting the *J*-values of complex 1.

	Fe1	Fe2	Fe3	Fe4	Fe5	Fe6	Fe7	Energy
HS	1	1	1	1	1	1	1	-12409.7277191
BS1	\downarrow	1	1	1	1	1	1	-12409.7244548
BS2	1	\downarrow	1	\downarrow	1	\downarrow	1	-12409.7224925

Table S5. Shape measures of the potentially four-coordinate Fe1, Fe2, and Fe3 coordination polyhedra in **1-d**. The values in boldface indicate the closest polyhedron according to the continuous shape measures.

Polyhedron ^a	Fel	Fe2	Fe3
SP-4	22.14	22.36	21.94
T-4	11.81	11.47	11.70
SS-4	0.85	0.82	0.84

^{*a*}Abbreviations: SP-4, square planar; T-4, tetrahedron; SS-4, seesaw.

References

^{S1} M. Llunell, D. Casanova, J. Girera, P. Alemany and S. Alvarez, *SHAPE*, version 2.0, Barcelona, Spain, 2010.

^{S2} S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D. Avnir, *Coord. Chem. Rev.*, 2005, **249**, 1693-1708.

^{S3} H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc., 1993, 115, 8278-8289.

^{S4} W. Liu and H. H. Thorp, *Inorg. Chem.*, 1993, **32**, 4102-4105.