Supporting Information

Benoît Audic, Matthew Wodrich and Nicolai Cramer* Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, BCH 4305, CH-1015 Lausanne, Switzerland

Contents

General ExperimentalS	2
PrecursorsS	3
Experimental Procedures and Characterizations	3
Synthesis of Metal Cp ^x ComplexesS	3
Synthesis of Silylated IntermediatesS	8
Synthesis of Metal Cp ^{XTMS} ComplexesS1	.0
Representative Procedure for the Synthesis of Dihydroquinolinone	2
C-H Transformations using <i>in-situ</i> Cp ^x complexesS2	2
¹ H and ¹³ C NMR SpectraS2	7
X-Ray Crystallographic Data	7
Computational Details	1
References	'4

General Experimental

Experimental procedures, reagents and glassware

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware with magnetic stirring, unless otherwise indicated. Toluene and THF were purified by an Innovative Technology Solvent Delivery System. Chemicals were used as obtained from the suppliers. $[Rh(cod)OH]_2$,^[1] $[Rh(cod)OMe]_2$,^[1] $[Rh(cod)OAc]_2$,^[2] were prepared according to the literature. Iridium precursors were prepared in a similar manner as Rhodium.^[1-2]

Chromatography

Flash column chromatography was performed with Silicycle silica gel 60 (0.040-0.063 µm grade). Analytical thinlayer chromatography was performed with commercial glass plates coated with 0.25 mm silica gel (E. Merck, Kieselgel 60 F254). Compounds were visualized under UV-light at 254 nm and by dipping the plates in an aqueous potassium permanganate or vanillin solution followed by heating.

NMR Spectroscopy

Proton nuclear magnetic resonance (¹H NMR) data were acquired at 400 MHz on a Bruker AV400 spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to CDCl₃ (s, 7.260 ppm) or C₆D₆ (s, 7.160 ppm). Proton decoupled Carbon-13 nuclear magnetic resonance (¹³C{¹H} NMR) data were acquired at 101 MHz on a Bruker AV400 spectrometer. Chemical shifts are reported in ppm relative to CDCl₃ (77.160 ppm) or C₆D₆ (128.06 ppm). Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. All NMR data were recorded at 298 K.

Infrared Spectroscopy

Infrared (IR) data were recorded on an Alpha-P Bruker FT-IR Spectrometer. Absorbance frequencies are reported in reciprocal centimeters (cm⁻¹).

Mass Spectroscopy

HRMS measurements were performed by an Agilent Technologies 622 LC-MS TOF, Waters Xevo G2-S QTOF or Thermo Fisher LTQ Orbitrap ELITE ETD. High resolution mass are given in m/z.

Melting Points

Melting points were measured on a Büchi B-540 and are uncorrected.

Optical rotations

Optical rotations were measured on a Polartronic M polarimeter using a 0.5 cm cell with a Na 589 nm filter.

X-Ray analyses

X-ray analyses of compounds 1m, 3a, 3m and 3o were performed by Dr. R. Scopelliti and Dr. F.Fadaei Tirani at the EPF Lausanne

Precursors

Experimental Procedures and Characterizations

Synthesis of Metal Cp^x Complexes

Without any precautions from air and moisture, in a test tube were dissolved $[Rh(cod)OAc]_2$ (0.6 Equiv.), or $[Ir(cod)OMe]_2$, and corresponding cyclopentadienes **1** (1 Equiv.) in a mixture of MeOH/Toluene (1/1)

(C = 0.1 M) stirred at the preconized temperature for the indicated time. The solvents were evaporated *in vacuo*. The crude was filtrated on a pad of silica (or Celite) with the indicated eluent.

Complex (2a)

Reaction mixture stirred for 1 hour at 23 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 85% yield **Appearance** : Yellow solid ; ¹**H NMR** : (400 MHz, C_6D_6) δ 5.25 - 5.20 (m, 1H), 4.94 - 4.87 (m, 1H), 4.44 (dd, J = 10.0, 6.0 Hz, 1H), 4.18 (t, J = 2.1 Hz, 1H), 4.11 (td, J = 9.7, 6.2 Hz, 1H), 3.98 (ddt, J = 10.4, 4.5, 2.5 Hz, 2H), 3.62 (ddt, J = 9.3, 4.7, 2.5 Hz, 2H), 3.09 (p, J = 6.9 Hz, 1H), 2.53 (d, J = 6.9 Hz, 1H), 2.40 -

2.25 (m, 4H), 2.10 - 1.99 (m, 4H), 1.73 (d, J = 6.9 Hz, 3H), 1.63 (s, 3H), 1.55 (s, 3H), 1.26 (d, J = 7.2 Hz, 3H); 13 C NMR : (101 MHz, C₆D₆) δ 111.29 (d, J = 4,4 Hz), 110.16, 111.29 (d, J = 4,4 Hz), 105.81, 86.79 (d, J = 4.1 Hz), 83.95 (d, J = 3.5 Hz), 82.69 (d, J = 4.1 Hz), 75.12, 74.76, 67.28, 67.13, 64.02, 63.89, 32.91 (d, J = 11.5 Hz), 30.81 (d, J = 15.9 Hz), 27.39 (d, J = 7.7 Hz), 21.39, 15.97 ; IR (ATR) : v = 2979, 2929, 2876, 2825, 1450, 1377, 1238, 1175, 1114, 1077, 1045, 860 cm⁻¹ ; HRMS (ESI) : calculated for [C₂₂H₃₁O₂Rh]+: 430.1374, found: 430.1360 ; [α]_D : -85.83 (c = 0.2, CH₂Cl₂) ; m.p. : 104-106 °C ; R_f [Toluene] : 0.37

Complex (3a)

Reaction mixture stirred for 3 hours at 70 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 57% yield

3.12 (m, 2H), 2.62 (p, J = 7.0 Hz, 1H), 2.31 - 2.21 (m, 1H), 2.05 - 1.91 (m, 4H), 1.80 - 1.67 (m, 4H), 1.33 (d, J = 7.0 Hz, 3H), 1.28 (s, 3H), 1.22 (s, 3H), 0.94 (d, J = 7.1 Hz, 3H) ; 13 **C** NMR : (101 MHz, C₆D₆) $\overline{0}$ 110.32, 105.48, 102.03, 81.87, 80.15, 78.12, 74.90, 74.41, 50.68, 47.46, 34.43, 30.34, 30.24, 27.33, 21.85, 16.39 ; **IR (ATR)** : v = 2965, 2929, 2882, 2827, 1450, 1377, 1367, 1231, 1173, 1113, 1077, 1044, 908, 859, 805, 793 cm⁻¹ ; **HRMS (ESI)** : calculated for [C₂₂H₃₁O₂Ir] ; [M+H]⁺: 521.2026, found : 521.2032 ; **[** α]_D : -83.33 (c = 0.1, CHCl₃) ; **m.p.** : 120-121 °C ; **R**_f [**Toluene]** : 0.50

Complex (2b)

Reaction mixture heated for 3 hours at 70 °C. The crude mixture was evaporated and filtrated on Celite with toluene. 92% NMR yield

Complex (2c)

Reaction mixture heated for 3 hours at 70 $^{\circ}\text{C}.$ The crude mixture was evaporated and filtrated on Celite with toluene. 95% NMR yield

 ^{1}H NMR : (400 MHz, $C_{6}D_{6})$ δ 5.01 (s, 1H), 3.27 – 3.19 (m, 4H), 2.38 – 2.27 (m, 4H), 2.15 – 2.04 (m, 4H), 1.74 (s, 6H), 1.55 (s, 6H)

Complex (2d)

Reaction mixture heated for 3 hours at 70°C. The crude mixture was evaporated and filtrated on Celite with toluene. 91% NMR yield

¹**H NMR** : (400 MHz, C_6D_6) δ 3.10 (d, J = 3.9 Hz, 4H), 2.31 (tdd, J = 10.6, 9.0, 7.5, 4.1 Hz, 4H), 2.14 – 2.06 (m, 4H), 1.70 (s, 15H)

Complex (2e)

Reaction mixture heated for 24 hours at 70 °C. A slurry solution was observed, the crude mixture was filtrated to isolate the target complex 58% yield.

Appearance : Yellow powder ; ¹**H NMR** : (400 MHz, C_6D_6) δ 7.37 – 7.31 (m, 4H), 7.31 – 7.26 (m, 4H), 7.05 (dd, J = 8.2, 6.6 Hz, 4H), 7.01 – 6.93 (m, 8H), 5.87 (s, 1H), 3.71 (d, J = 9.7 Hz, 4H), 2.38 – 2.17 (m, 4H), 1.91 (t, J = 8.1 Hz, 4H)

Complex (2f)

Reaction mixture stirred for 3 hours at 23 °C. The mixture was evaporated *in vacuo* and then purified by flash chromatography on silica with Pentane/toluene [8/1]. 84% vield

Appearance : Yellow gum ; ¹H NMR : (400 MHz, C₆D₆) δ 7.80 - 7.74 (m, 2H), 7.28 (t, J = 7.6 Hz, 2H), 7.19-7.12 (m, 3H), 7.09 - 7.03 (m, 3H), 5.15 (dd, J = 2.6, 1.2 Hz, 1H), 4.69 (dt, J = 5.0, 2.4 Hz, 2H), 4.19 (t, J = 8.8 Hz, 1H), 3.82 (tddd, J = 11.3, 8.0, 6.0, 2.9 Hz, 4H), 3.55 (dd, J = 6.2, 2.6 Hz, 1H), 2.44 - 2.31 (m, 4H), 2.26 (dddd, J = 13.3, 11.2, 7.1, 4.7 Hz, 2H), 2.07 (dddd, J = 13.5, 11.4, 4.9, 2.5 Hz, 2H), 1.93 (dddd, J = 13.8, 10.9, 5.9, 3.2 Hz, 2H) ; ¹³C NMR : (101 MHz, C₆D₆) δ 145.3, 142.8, 128.8, 128.2, 127.9, 127.6, 126.7, 126.6, 118.2 (d, J = 4.0 Hz), 112.8 (d, J = 4.2 Hz), 88.5 (d, J = 4.3 Hz), 80.7 (d, J = 3.4 Hz), 80.3 (d, J = 3.6 Hz), 65.5 (d, J = 14.1 Hz), 65.4 (d, J = 14.0 Hz), 49.2, 43.3, 41.8, 33.5, 32.3 ; IR (ATR) : v = 3058, 3024, 2987, 2959, 2927, 2864, 2823, 1602, 1493, 1448, 1323, 1239, 1153, 1077, 1031, 999, 961, 868, 753, 698 cm⁻¹ ; HRMS (ESI) : calculated for [C₂₈H₂₉Rh]⁺: 468.1319 , found: 468.1318 ; [α]_D : -50.83 (c = 0.2, CH₂Cl₂) ; **R**_f [Pentane/Toluene(4/1)] : 0.5

Complex (3f)

Reaction mixture stirred for 3 hours at 70 °C. The mixture was evaporated *in vacuo* and then purified by flash chromatography on silica with Pentane/toluene [8/1]. 87% vield

Appearance : White gum ; ¹H NMR : (400 MHz, C_6D_6) δ 7.66 – 7.61 (m, 2H), 7.26 (dd, J = 8.3, 6.9 Hz, 2H), 7.15 – 7.12 (m, 3H), 7.10 – 7.05 (m, 1H), 7.05 – 7.00 (m, 2H), 5.05 (t, J = 1.8 Hz, 1H), 4.63 (d, J = 1.7 Hz, 2H), 4.16 (dd, J = 10.3, 7.3 Hz, 1H), 3.73 (td, J = 7.5, 2.5 Hz, 2H), 3.69 – 3.59 (m, 3H), 2.44 – 2.31 (m, 3H), 2.31 – 2.19 (m, 3H), 2.05 (ddq, J = 10.9, 8.3, 2.7 Hz, 2H),

1.96 - 1.88 (m, 2H) ; ¹³C NMR : (101 MHz, C_6D_6) δ 144.85, 141.85, 128.80, 128.41, 127.64, 126.90, 126.72, 113.75, 108.51, 83.69, 76.16, 74.90, 49.14, 48.77, 42.68, 41.36, 34.84, 33.91 ; **IR (ATR)** : v = 2954, 2934, 2871, 2824, 2268, 1618, 1595, 1450, 1421, 1329, 1293, 1225, 1196, 1167, 1150, 1114, 1022, 946, 908, 863, 830, 811, 746, 645, 622 cm⁻¹ ; **HRMS (ESI)** : calculated for $[C_{28}H_{30}Ir]$, $[M+H]^+$: 559.1971 , found: 559.1986 ; $[\alpha]_D$: 43.33 (c = 0.2, CH₂Cl₂) ; **R**_f [Pentane/Toluene: 7/3] : 0.76

Complex (2g)

Reaction mixture stirred for 3 hours at 70 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 95% yield

Appearance : Yellow powder ; ¹**H NMR** : (400 MHz, C_6D_6) δ 7.77 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.34 (dd, J = 8.4, 1.1 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.28 – 7.22 (m, 2H), 7.21 (s, 1H), 7.02 (s, 1H), 6.92 (dddd, J = 8.3, 6.8, 4.0, 1.3 Hz, 2H), 5.34 (t, J = 2.3 Hz, 1H), 4.68 (t, J = 2.6 Hz, 1H), 4.62 (t, J = 2.2 Hz, 1H), 4.33 (d, J = 14.5 Hz, 1H), 3.81 (td, J = 9.6, 3.7 Hz, 3H), 3.66 (s, 3H),

3.49 – 3.38 (m, 5H), 3.11 (dd, J = 14.5, 1.4 Hz, 1H), 2.85 (d, J = 13.3 Hz, 1H), 2.34 – 2.20 (m, 2H), 2.10 (dddd, J = 12.7, 10.1, 7.3, 5.1 Hz, 2H), 2.05 – 1.95 (m, 2H), 1.90 (ddd, J = 12.8, 6.6, 3.5 Hz, 2H) ; ¹³**C NMR** : (101 MHz, C₆D₆) δ 156.46, 155.78, 138.39, 136.75, 133.91 (d, J = 8.7 Hz), 130.03, 126.29, 126.08, 124.32 (d, J = 7.3 Hz), 106.36 (d, J = 4.0 Hz), 106.08, 105.48, 98.73 (d, J = 3.5 Hz), 88.22 (dd, J = 13.0, 3.9 Hz), 82.30 (d, J = 4.2 Hz), 78.56 (d, J = 13.9 Hz), 65.03 (d, J = 14.1 Hz), 64.17 (d, J = 14.0 Hz), 55.02 (d, J = 25.8 Hz), 33.34, 32.43, 26.08, 25.41 ; **IR (ATR)** : v = 2930, 2870, 2823, 2278, 1618, 1595, 1573, 1503, 1449, 1422, 1399, 1361, 1328, 1293, 1260, 1237, 1226, 1195, 1168, 1150, 1114, 1085, 1022, 946, 863, 830, 812, 766, 746 cm⁻¹ ; **HRMS (ESI+)** : calculated for [C₃₇H₃₅O₂Rh]⁺: 614.162, found: 614.1975 ; [α]_D : -232.50 (c = 0.2, CH₂Cl₂) ; **m.p. :** 135-137 °C ; **R**_f [**Pentane/Toluene: 7/3**] : 0.29

Complex (3g)

Reaction mixture stirred for 3 hours at 70 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 93% yield

Appearance : White solid ; ¹H NMR : (400 MHz, C_6D_6) δ 7.79 – 7.74 (m, 1H), 7.74 – 7.69 (m, 1H), 7.31 (dd, J = 8.4, 1.1 Hz, 1H), 7.30 – 7.22 (m, 3H), 7.19 (s, 1H), 7.02 (s, 1H), 6.92 (dtd, J = 8.1, 6.7, 1.3 Hz, 2H), 5.25 – 5.21 (m, 1H), 4.64 (t, J = 2.5 Hz, 1H), 4.54 (t, J = 2.0 Hz, 1H), 4.23 (d, J = 14.5 Hz, 1H), 3.77 – 3.68 (m, 3H), 3.65 (s, 3H), 3.43 (s, 3H), 3.32 (td, J = 7.6, 2.6 Hz, 2H), 3.11 (d, J

= 14.5 Hz, 1H), 2.97 (d, J = 13.4 Hz, 1H), 2.20 (dddd, J = 12.1, 9.8, 7.0, 5.0 Hz, 2H), 2.11 – 2.01 (m, 2H), 1.94 (ddtd, J = 20.2, 12.0, 6.2, 5.3, 2.6 Hz, 4H) ; ¹³**C** NMR : (101 MHz, C₆D₆) δ 156.37, 155.74, 138.30, 136.82, 133.99 (d, J = 4.4 Hz), 130.17, 128.92, 127.38 (d, J = 5.7 Hz), 127.17, 126.36, 126.19, 124.34, 106.07, 105.48, 101.12, 94.65, 83.72, 83.29, 77.82, 55.13, 54.85, 48.48, 47.41, 34.68, 34.22, 25.55, 24.72 ; **IR (ATR)** : v = 3059, 3024, 2952, 2922, 2865, 2824, 1601, 1493, 1442, 1318, 1237, 1152, 1077, 1031, 1003, 909, 838, 797, 750, 697 cm⁻¹ ; **HRMS (ESI)** : calculated for [C₃₇H₃₅O₂Ir], [M+H]⁺: 705.2339 , found: 705.2358 ; [α]_D : -175.83 (c = 0.2, CH₂Cl₂) ; m.p. : 154-155 °C ; **R**_f [Pentane/Toluene: 7/3] : 0.50

Complex (2h)

Reaction mixture stirred for 3 hours at 23 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 92% yield

Appearance : Yellow powder ; ¹**H NMR** : (400 MHz, C₆D₆) δ 7.76 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.32 (s, 1H), 7.25 (ddd, J = 9.4, 6.1, 2.1 Hz, 3H), 7.12 (s, 1H), 6.88 (dddd, J = 15.4, 8.4, 6.8, 1.3 Hz, 2H), 5.36 (t, J = 2.2 Hz, 1H), 4.72 (t, J = 2.6 Hz, 1H), 4.68 (d, J = 2.1 Hz, 1H), 4.56 (hept, J = 6.0 Hz, 1H), 4.39 – 4.29 (m, 2H), 3.89 (d, J = 13.3 Hz, 1H), 3.83 (tt, J = 6.8, 3.0 Hz, 2H), 3.50 (tt, J = 6.3, 2.8 Hz, 2H), 3.14 (d, J = 14.3 Hz, 1H), 2.92 (d, J = 13.2 Hz, 1H), 2.33 – 2.15 (m, 4H), 2.04 – 1.85 (m, 4H), 1.46 (d, J = 6.1 Hz, 3H), 1.25 (d, J = 6.0 Hz, 3H), 1.16 (d, J = 5.9 Hz, 6H) ; ¹³C NMR : (101 MHz, C₆D₆) δ 154.58, 153.85, 138.52, 137.09, 134.04, 133.79, 130.69, 130.51, 127.49, 127.34, 127.01, 126.99, 126.18, 125.97, 124.33, 124.09, 109.00, 107.51, 107.10, 107.06, 98.65, 98.62, 88.43, 88.39, 88.11, 88.07, 82.04, 82.00, 78.63, 78.49, 70.75, 69.60, 65.34, 65.20, 64.16, 64.01, 33.14, 32.60, 30.93, 26.21, 25.75, 23.02, 22.15, 22.04, 21.26 ; **IR (ATR)** : v = 3060, 2973, 2928 2870, 2821, 2279, 1618, 1594, 1572, 1500, 1431, 1383, 1371, 1327, 1291, 1235, 1224, 1203, 1173, 1135, 1111, 1082, 1052, 1027, 997, 965, 944, 864, 831, 813, 768, 746 cm⁻¹ ; **HRMS (ESI+)** : calculated for [C₄₁H₄₃O₂Rh]*: 670.2318, found: 670.2308 ; **[α]**: -211.67 (c = 0.2, CH₂Cl₂) ; **m.p.** : 132-134 °C ; **R** [**Pentane/Toluene: 7/3**] : 0.38

Complex (2i)

Reaction mixture stirred for 3 hours at 70 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 83% yield

Appearance : Yellow powder ; ¹H NMR : (400 MHz, C_6D_6) \overline{o} 7.70 – 7.61 (m, 3H), 7.48 (s, 1H), 7.30 (d, J = 8.5 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 6.99 – 6.93 (m, 1H), 6.89 (dd, J = 8.5, 6.7 Hz, 1H), 5.55 (q, J = 4.5, 3.4 Hz, 1H), 4.85 (h, J = 2.6 Hz, 1H), 4.73 – 4.64 (m, 1H), 4.21 (dd, J = 14.2, 6.4 Hz, 1H), 3.97 (dd, J = 13.5, 9.9 Hz, 1H), 3.84 – 3.74 (m, 2H), 3.42 (tt, J = 7.4, 3.1 Hz, 2H), 3.02 (d,

J = 14.2 Hz, 1H), 2.91 (d, J = 13.4 Hz, 1H), 2.38 (tt, J = 12.8, 5.5 Hz, 2H), 2.31 – 2.18 (m, 2H), 1.96 (ddd, J = 16.4, 7.6, 3.6 Hz, 2H), 1.87 (dq, J = 17.2, 7.1, 5.6 Hz, 2H), 1.43 (dt, J = 14.9, 7.5 Hz, 3H), 1.33 (dt, J = 14.1, 7.1 Hz, 4H), 1.24 (d, J = 7.3 Hz, 8H), 1.19 (dd, J = 7.5, 2.3 Hz, 16H), 1.14 (d, J = 7.3 Hz, 10H), 1.11 – 0.93 (m, 3H) ; ¹³C NMR : (101 MHz, C_6D_6) δ 153.03, 152.35, 138.47, 137.84, 133.97, 133.54, 132.41, 131.64, 128.85, 128.61, 127.20, 127.01, 126.25, 126.11, 124.79, 124.38, 115.62, 113.67, 106.88 (d, J = 3.9 Hz), 98.18 (d, J = 3.3 Hz), 89.06 (d, J = 3.8 Hz), 88.18 (d, J = 4.0 Hz), 82.05, 78.56 (d, J = 13.9 Hz), 65.41, 65.27, 64.77, 64.64, 33.21, 32.34, 26.86, 26.15, 18.48, 18.42, 18.38, 13.65, 13.30 ; **IR (ATR)** : v = 3059, 2942, 2864, 2823, 1592, 1462, 1428, 1329, 1240, 1224, 1171, 1113, 1052, 1014, 997, 957, 926, 881, 867, 812, 779, 763, 744, 728, 683 cm⁻¹ ; **HRMS (ESI+)** : calculated for [$C_{53}H_{71}O_2Si_2Rh$]⁺: 898.4048, found: 898.4040 ; [α]_D : -116.83 (c = 0.2, CH₂Cl₂) ; m.p. : 118-122 °C ; **R**_f [**Pentane/Toluene: 7/3**] : 0.83

Complex (2j)

Reaction mixture stirred for 3 hours at 70 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 96% yield

Appearance : Yellow powder ; ¹H NMR : (400 MHz, C_6D_6) δ 8.13 (s, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.77 (s, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.48 (td, J = 7.3, 1.3 Hz, 2H), 7.44 - 7.39 (m, 2H), 7.39 - 7.17 (m, 8H), 7.15 - 7.07 (m, 2H), 6.98 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 6.88 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 5.08 (p, J = 1.4 Hz, 1H), 4.70 (t, J = 2.1 Hz, 1H), 4.38 (t, J = 2.6 Hz, 1H), 4.03 (d, J = 14.7 H), 4.03 (d, J = 14.7 H)

Hz, 1H), 3.48 (tt, J = 7.8, 3.5 Hz, 2H), 3.38 (d, J = 13.9 Hz, 1H), 3.32 (d, J = 14.7 Hz, 1H), 3.18 (tt, J = 7.6, 2.5 Hz, 2H), 2.81 (d, J = 13.9 Hz, 1H), 2.27 – 2.17 (m, 2H), 2.00 (dddd, J = 14.3, 11.3, 8.1, 3.6 Hz, 2H), 1.89 – 1.81 (m, 2H), 1.54 – 1.46 (m, 2H) ; 13 **C NMR** : (101 MHz, C₆D₆) δ 142.24, 142.02, 141.36, 140.72, 2.17 (m, 2H), 2.27 – 2.17 (m, 2H), 2.27 – 2.17 (m, 2H), 2.20 (dddd, J = 2.14), 2.27 – 2.17 (m, 2H), 2.27 – 2.17 (m, 2H), 2.20 (dddd, J = 2.14), 2.28 + 2.2

137.01, 136.65, 135.86, 134.97, 132.81, 132.63, 132.41, 132.32, 130.55, 130.11, 130.06, 128.50, 127.60, 127.47, 127.12, 127.05, 126.72, 126.58, 126.08, 125.98, 110.62 (d, J = 3.5 Hz), 96.24 (d, J = 3.8 Hz), 90.88 (d, J = 3.3 Hz), 87.24 (d, J = 4.1 Hz), 82.88 (d, J = 4.2 Hz), 78.56 (d, J = 14.0 Hz), 65.61, 65.47, 65.03, 64.89, 33.89, 30.67, 30.41, 29.54 ; **IR (ATR)** : v = 3050, 2921, 2859, 2824, 1588, 1492, 1470, 1445, 1415, 1357, 1322, 1231, 1203, 1181,1155, 1072, 1027, 1000, 959, 890, 870, 855, 810, 794, 763, 748, 729, 701, 645 cm⁻¹; **HRMS (ESI+)** : calculated for $[C_{47}H_{39}Rh]^+$: 706.2107, found: 706.2085 ; $[\alpha]_D$: 170.00 (c = 0.1, CH₂Cl₂) ; **m.p.** : 134-138 °C ; **R**_f**[Pentane/Toluene: 7/3]** : 0.50

Complex (2k)

Reaction mixture stirred for 3 hours at 70 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 92% yield

Appearance : Yellow gum ; ¹H NMR : (400 MHz, C_6D_6) δ 7.79 (dd, J = 8.3, 1.2 Hz, 1H), 7.72 – 7.64 (m, 1H), 7.33 (d, J = 1.0 Hz, 1H), 7.31 – 7.21 (m, 4H), 6.97 (d, J = 9.5 Hz, 1H), 6.92 (ddt, J = 8.3, 6.9, 1.3 Hz, 2H), 4.86 (d, J = 2.2 Hz, 1H), 4.43 (d, J = 2.2 Hz, 1H), 4.21 (d, J = 14.6 Hz, 1H), 4.02 (tt, J = 7.6, 2.8 Hz, 2H), 3.74 (d, J = 13.2 Hz, 1H), 3.67 (s, 3H), 3.48 (s, 3H),

3.38 (td, J = 7.5, 3.0 Hz, 2H), 3.09 (dd, J = 16.6, 13.9 Hz, 2H), 2.28 – 2.16 (m, 2H), 2.09 – 2.00 (m, 2H), 2.00 – 1.92 (m, 4H), 1.23 (s, 9H) ; ¹³C NMR : (101 MHz, C_6D_6) δ 155.94, 155.40, 138.07, 136.40, 133.53, 129.71, 129.14, 127.10, 126.98, 126.85, 126.74, 125.89, 125.57, 123.99, 123.99 – 115.54 (m), 106.06, 105.14, 104.58 (d, J = 4.1 Hz), 97.31 (d, J = 3.7 Hz), 85.15 (d, J = 3.8 Hz), 84.74 (d, J = 3.7 Hz), 66.18 (d, J = 14.0 Hz), 63.72 (d, J = 13.9 Hz), 54.89, 53.72, 54.46, 52.96, 32.56 (d, J = 8.4 Hz), 31.84, 31.04, 25.41, 25.24 ; IR (ATR) : v = 3061, 2957, 2924, 2865, 2822, 2279, 1618, 1596, 1449, 1421, 1326, 1294, 1260, 1224, 1196, 1163, 1112, 1077, 1021, 946, 863, 827, 810, 745, 623 cm⁻¹ ; HRMS (ESI+) : calculated for [$C_{41}H_{43}O_2Rh$]⁺: 670.2313 , found: 670.2318 ; [α]_D : -131.67 (c = 0.1, CH₂Cl₂) ; R_f [Pentane/Toluene: 7/3] : 0.62

Complex (2I)

Reaction mixture stirred for 3 hours at 70 °C. The mixture was evaporated *in vacuo* and then filtrated on a pad of silica with toluene. 94% yield. Match the literature⁶ :

Appearance : White solid ; ¹**H NMR** : (400 MHz, C_6D_6) δ 7.79 (d, J = 7.9 Hz, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.38 (t, J = 9.3 Hz, 2H), 7.26 (t, J = 7.5 Hz, 2H), 7.36 (s, 1H), 6.99 (s, 1H), 6.95 (t, J = 7.9 Hz, 2H), 4.31 (d, J = 14.3 Hz, 1H), 3.77 (d, J = 13.6 Hz, 1H), 3.68 (s, 3H), 3.40 (s, 3H), 3.20 – 3.10 (m, 2H), 2.90

(d, *J* = 14.2, 1H), 2.85 – 2.77 (m, 2H), 2.73 (d, *J* = 13.6 Hz, 1H), 2.30 – 2.19 (m, 2H), 2.18 – 2.08 (m, 2H), 2.15 (3H, s), 2.06 – 1.95 (m, 4H), 1.78 (s, 3H), 1.46 (s, 3H)

Synthesis of Silylated Intermediates

In a flame dried RBF, the corresponding cyclopentadienes **1** (1 Equiv.) was dissolved into dry THF under nitrogen at -78 °C. *n*-BuLi (1.1 Equiv., 1.6M in Hexanes) was added dropwise. The reaction was stirred at the same temperature over 3 hours. The distilled chlorotrimethylsilane (1.3 Equiv.) was added dropwise at the same temperature and stirred over 2 hours. The reaction was quenched with water at -78 °C and slowly warm up to rt. The aqueous layer was extracted with Et_2O (3 times). The combined organic layers were dried over MgSO₄ and concentrated under vacuum to give a white foam. The product was purify by flash column chromatography on silica gel (Eluent : Pentane/EthylAcetate [50/1]).

Intermediate (1m)

Appearance : Yellow solid ; ¹**H NMR** : (400 MHz, Benzene-d6) δ 6.30 (q, J = 5.2 Hz, 2H), 4.15 (qd, J = 10.1, 5.6 Hz, 2H), 3.05 (h, J = 6.7 Hz, 2H), 1.50 (d, J = 12.9 Hz, 6H), 1.22 (dd, J = 22.0, 7.1 Hz, 6H), -0.15 (s, 9H) ; ¹³**C NMR** : (101 MHz, Benzene-d6) δ 143.2, 141.2, 133.6, 131.1, 109.6, 75.2, 74.9, 49.6, 33.7, 33.3, 27.5, 27.4, 15.3, 14.9, 13.8, -2.1 ; **IR (ATR)** : v = 2964, 2932, 2880, 1453, 1376, 1233, 1078, 1036, 833 cm⁻¹ ; **HRMS (APPI+)** : calculated for [C₁₇H₂₈O₂Si]⁺: 292.1859, found: 292.1853 ; **R**_f [Pent/EtOAc (20/1)] : 0.60

Intermediate (1n)

Appearance : Yellow gum ; ¹**H NMR** : (400 MHz, Benzene-d6) δ 7.28 – 7.22 (m, 4H), 7.14 – 7.04 (m, 6H), 6.49 (dd, J = 5.1, 1.4 Hz, 0.7H), 6.42 (dt, J = 5.1, 1.1 Hz, 0.7H), 6.09 – 5.93 (m, 0.6H), 4.35 – 4.24 (m, 0.7H), 4.22 – 4.05 (m, 1.6H), 2.83 – 2.65 (m, 3H), -0.06 (d, J = 7.3 Hz, 9H) ; ¹³C NMR : (101 MHz, Benzene-d6) δ 155.50, 154.02, 149.18, 148.52, 139.09, 130.67, 130.60, 130.54, 129.01, 128.33, 128.25, 128.22, 53.89, 50.49, 48.61, 48.09, 0.23, -0.09. ; **IR (ATR)** : v = 3083, 3061, 3025, 2954, 2928, 2895, 2859, 1601, 1493, 1452, 1248, 1075, 1030, 991, 938, 862, 834, 753, 721, 698 cm⁻¹ ; **HRMS (APPI+)** : calculated for [C₂₃H₂₆Si]⁺: 330.1798, found: 330.1804 ; **R**_f [**Pentane/AcOEt (24/1)**] : 0.70

Intermediate (10)

mixture of isomers

Appearance : White foam ; ¹H NMR : (400 MHz, Benzene-d6) δ 7.75 (t, J = 8.9 Hz, 2H), 7.51 (dd, J = 12.2, 8.5 Hz, 2H), 7.29 (q, J = 8.5, 7.9 Hz, 2H), 7.07 (d, J = 4.0 Hz, 2H), 7.04 – 6.92 (m, 2H), 6.33 – 6.23 (m, 1H), 6.19 (s, 1H), 4.41 (d, J = 14.2 Hz, 1H), 4.32 (d, J = 13.8 Hz, 1H), 3.54 – 3.29 (m, 7H), 3.18 (d, J = 13.8 Hz, 1H), 3.09 (d, J = 6.3 Hz, 1H), -0.12 (s, 7H), -0.27 (s, 1H). ; ¹³C NMR : (101 MHz, Benzene-d6) δ 156.74, 155.85, 144.51, 139.95, 138.53, 138.32, 138.05, 134.24, 133.75, 129.97, 129.21, 128.97, 127.44, 127.18, 126.23, 126.07, 124.31, 106.02, 105.75, 105.54, 55.08, 46.82, 38.97, 29.16, -2.04 ; **IR (ATR)** : v = 3058, 2997, 2951, 2899, 2827,

1618, 1594, 1572, 1449, 1422, 1408, 1328, 1244, 1232, 1195, 1169, 1114, 1021, 963, 862, 826, 744 cm⁻¹ ; **HRMS (ESI+)** : calculated for $[C_{32}H_{32}O_2Si]$; $[M+H]^+$: 477.2244, found: 477.2241 ; **R**_f [Pentane/AcOEt 25/1] : 0.26

Synthesis of Metal Cp^{XTMS} Complexes

<u>With Rhodium</u>: Without any precautions from air and moisture, $[Rh(cod)OAc]_2$ (0.6 Equiv.) and corresponding cyclopentadienes **1***y* (1 Equiv.) were dissolved in a mixture of *t*BuOH/Toluene (1/1) (C = 0.1 M) stirred at room temperature for 3 hours. The solvents were evaporated *in vacuo*. The crude was filtrated on a pad of silica with the indicated eluent.

<u>With Iridium</u>: Without any precautions from air and moisture, $[Ir(cod)OMe]_2$ (0.6 Equiv.) and corresponding cyclopentadienes **1***y* (1 Equiv.) were dissolved in a mixture of MeOH/Toluene (1/1) (C = 0.1 M) stirred at room temperature for 3 hours. The solvents were evaporated *in vacuo*. The crude was filtrated on a pad of silica with the indicated eluent.

Complex (2m)

Appearance : Yellow powder ; ¹H NMR : 1H NMR (400 MHz, C_6D_6) δ 5.01 (dd, J = 2.9, 0.8 Hz, 1H), 4.96 (dd, J = 2.8, 0.7 Hz, 1H), 4.25 (dd, J = 10.0, 6.3 Hz, 1H), 4.11 (dd, J = 10.0, 6.1 Hz, 1H), 3.86 (tt, J = 7.6, 2.7 Hz, 2H), 3.68 (tt, J = 7.7, 2.9 Hz, 2H), 3.25 (p, J = 6.8 Hz, 1H), 2.67 - 2.58 (m, 1H), 2.31 - 2.13 (m, 4H), 2.02 - 1.92 (m, 2H), 1.92 - 1.82 (m, 2H), 1.72 (d, J = 6.9 Hz, 3H), 1.52 (s, 3H), 1.45 (s, 3H), 1.17 (d, J = 7.1 Hz, 3H), 0.14 (s, 9H) ; ¹³C NMR : (101

MHz, C_6D_6) δ 137.89, 129.33, 128.57, 125.70, 116.03 (d, J = 3.9 Hz), 110.34, 109.72 (d, J = 3.3 Hz), 92.12 (d, J = 4.4 Hz), 90.14 (d, J = 4.0 Hz), 86.41 (d, J = 3.8 Hz), 75.72, 74.49, 66.06 (d, J = 14.2 Hz), 64.69 (d, J = 14.0 Hz), 33.13, 32.49, 31.59, 31.18, 27.41 (d, J = 6.5 Hz), 20.97, 16.51, 0.62 ; **IR (ATR)** : v = 2980, 2932, 2875, 2825, 1450, 1377, 1323, 1246, 1230, 1174, 1113, 1078, 1038, 915, 860, 831, 805, 755, 689, 635 cm⁻¹ ; **HRMS (ESI)** : calculated for $[C_{25}H_{39}O_2RhSi]^+$: 502.1774, found: 502.1763 ; $[\alpha]_D$: - 22.50 (c = 0.2, CH₂Cl₂) ; **m.p.** : 109-112 °C ; **R**_f **[Toluene]** : 0.55

Complex (3m)

Appearance : White powder ; ¹**H NMR** : (400 MHz, C_6D_6) δ 4.92 (d, J = 2.6 Hz, 1H), 4.89 (d, J = 2.6 Hz, 1H), 4.20 (dd, J = 10.0, 6.2 Hz, 1H), 4.07 (dd, J = 10.0, 6.2 Hz, 1H), 3.75 (td, J = 7.8, 2.7 Hz, 2H), 3.52 (td, J = 7.9, 2.8 Hz, 2H), 3.19 (p, J = 6.8 Hz, 1H), 2.69 - 2.58 (m, 1H), 2.25 - 2.09 (m, 4H), 1.91 (dddd, J = 24.0, 12.0, 6.3, 3.4 Hz, 4H), 1.66 (d, J = 6.9 Hz, 3H), 1.49 (s, 3H), 1.44 (s, 3H)

3H), 1.17 (d, J = 7.2 Hz, 3H), 0.11 (s, 9H) ; ¹³C NMR : (101 MHz, C_6D_6) δ 110.51, 110.06, 105.94, 87.11, 85.20, 82.14, 75.52, 74.16, 49.66, 48.05, 34.53, 34.09, 31.26, 30.55, 27.36, 21.51, 16.85 ; **IR (ATR)** : v = 2981, 2969, 2934, 2908, 2889, 2877, 2861, 2827, 1457, 1367, 1226, 1195, 1172, 1080, 1042, 911, 832, 753 cm⁻¹ ; **HRMS (ESI)** : calculated for [$C_{25}H_{39}O_2$ IrSi] ; [M+H]⁺: 593.2421, found: 593.2415 ; [α]_D : 38.33 (c = 0.1, CHCl₃) ; **m.p. :** 122-124 °C ; **R**_f [**Toluene**] : 0.62

Complex (2n)

Appearance : Yellow gum ; ¹H NMR : (400 MHz, C_6D_6) δ 7.95 – 7.90 (m, 2H), 7.26 (t, J = 7.6 Hz, 2H), 7.12 (d, J = 11.7 Hz, 4H), 7.10 – 7.02 (m, 2H), 5.28 (dd, J = 2.6, 1.0 Hz, 1H), 4.86 (d, J = 2.7 Hz, 1H), 4.19 – 4.11 (m, 1H), 3.96 (ddt, J = 8.2, 5.8, 2.7 Hz, 4H), 3.54 (t, J = 4.5 Hz, 1H), 2.55 – 2.29 (m, 6H), 2.12 (ddt, J = 11.0, 7.6, 2.6 Hz, 2H), 2.04 – 1.96 (m, 2H), -0.06 (s, 9H) ; ¹³C NMR : (101 MHz, C_6D_6) δ 145.49, 143.43, 129.68, 128.94, 127.73, 127.32, 126.72, 126.35 (d, J = 4.2 Hz), 115.79 (d, J = 4.1 Hz),

94.84 (d, J = 4.6 Hz), 88.12 (d, J = 3.3 Hz), 82.53 (d, J = 3.6 Hz), 66.27, 66.13, 65.71, 65.57, 51.39, 43.91, 43.06, 33.50, 32.48, 0.22 ; **IR (ATR)** : v = 3060, 3025 2952, 2926, 2864, 2825, 1602, 1494, 1450, 1323, 1246, 1153, 1108, 1077, 1031, 961, 868, 835, 777, 753, 698 cm⁻¹ ; **HRMS (ESI)** : calculated for $[C_{31}H_{37}SiRh]^+$: 540.1714 , found: 540.1709 ; $[\alpha]_D$: 5.00 (c = 0.1, CH_2CI_2) ; **R**_f [Pentane/Toluene: 4/1] : 0.68

Complex (3n)

Appearance : Yellow gum ; ¹**H NMR** : (400 MHz, C_6D_6) δ 7.83 – 7.76 (m, 2H), 7.24 (t, J = 7.6 Hz, 3H), 7.12 – 7.05 (m, 5H), 5.11 (d, J = 2.5 Hz, 1H), 4.83 (d, J = 2.5 Hz, 1H), 4.13 (dd, J = 10.8, 6.9 Hz, 1H), 3.84 (dt, J = 7.1, 3.9 Hz, 2H), 3.78 (td, J = 7.7, 2.4 Hz, 2H), 3.60 (d, J = 7.9 Hz, 1H), 2.53 – 2.43 (m, 1H), 2.41 – 2.34 (m, 5H), 2.07 – 2.00 (m, 4H), -0.12 (s, 9H) ; ¹³C NMR : (101 MHz, C_6D_6) δ 144.98, 142.31, 129.76, 128.86, 127.94, 127.66, 127.43, 126.73, 120.57, 111.74, 89.80, 77.46, 50.75, 49.20, 43.35,

42.25, 34.42, 34.27, -0.10 ; **IR (ATR)** : v = 3060, 3025, 2953, 2924, 2865, 2826, 1602, 1494, 1453, 1441, 1318, 1246, 1152, 1110, 1076, 1030, 1003, 907, 875, 833, 752, 697 cm⁻¹ ; **HRMS (ESI)** : calculated for $[C_{31}H_{37}Silr]^{+}$: 631.2367 , found: 631.2368 ; $[\alpha]_{D}$: 16.67 (c = 0.1, CH₂Cl₂) ; **R**_f [Pentane/Toluene: 9/1] : 0.53

Complex (20)

Appearance : Yellow powder ; ¹**H NMR** : (400 MHz, C_6D_6) $\delta \delta 7.75$ (dt, J = 8.2, 0.8 Hz, 1H), 7.69 - 7.65 (m, 1H), 7.34 (dd, J = 8.4, 1.2 Hz, 1H), 7.29 (dd, J = 8.4, 1.1 Hz, 1H), 7.24 (ddt, J = 8.1, 6.8, 1.2 Hz, 2H), 7.13 (s, 1H), 6.92 (dtd, J = 8.2, 6.8, 1.3 Hz, 3H), 5.57 (d, J = 2.6 Hz, 1H), 4.46 (d, J = 14.4 Hz, 1H), 4.36 (d, J = 2.6 Hz, 1H), 4.07 (d, J = 13.4 Hz, 1H), 3.76 (tt, J = 7.5, 3.3 Hz, 2H), 3.64 (s, 3H), 3.44 (ddt, J = 8.9, 6.3, 2.7 Hz, 2H), 3.40 (s, 3H), 3.23 (d, J = 14.4 Hz, 1H), 3.02 (d, J = 13.4 Hz, 1H), 2.24 (ddt, J = 13.5, 10.7, 6.8 Hz, 2H), 2.18 - 2.08 (m, 2H), 2.06 - 1.97 (m, 2H), 1.81 (dtd, J = 13.3, 6.8, 3.5

Hz, 2H), 0.23 (s, 9H); 13 **C** NMR : (101 MHz, C₆D₆) δ 156.27, 155.76, 138.68, 136.55, 133.99, 133.85, 129.83, 127.56, 127.31, 127.25, 127.13, 126.37, 126.07, 124.38, 124.29, 110.91 (d, *J* = 3.7 Hz), 106.25, 105.29, 103.44 (d, *J* = 3.2 Hz), 94.49 (d, *J* = 3.5 Hz), 90.70 (d, *J* = 3.7 Hz), 87.07 (d, *J* = 4.8 Hz), 66.82, 66.68, 64.04, 63.90, 54.99, 54.39, 33.88, 31.85, 26.91, 25.96, 0.47 ; IR (ATR) : v = 3057, 2987, 2971, 2927, 2881, 2860, 2808, 1618, 1596, 1574, 1449, 1425, 1410, 1392, 1327, 1294, 1259, 1242, 1232, 1223, 1223, 1223, 1223, 1223, 1223, 1223, 1223, 1223, 1223, 1223, 1232

1198, 1163, 1151, 1115, 1089, 1021, 970, 894, 867, 826, 801, 768, 745, 679, 647, 625 cm⁻¹; **HRMS (ESI+)** : calculated for $[C_{40}H_{43}O_2RhSi]^+$: 686.2082 , found: 686.2085 ; $[\alpha]_D$: -167.50 (c = 0.2, CH₂Cl₂) ; **m.p. :** >200 °C (Decomposition) ; **Rf [Pentane/Toluene: 1/1]** : 0.75

Complex (3o)

Appearance : White powder ; ¹**H NMR** : (400 MHz, C_6D_6) δ 7.74 (dd, J = 8.2, 1.2 Hz, 1H), 7.67 (dd, J = 8.2, 1.2 Hz, 1H), 7.34 - 7.27 (m, 2H), 7.24 (ddd, J = 8.0, 6.8, 1.2 Hz, 2H), 7.12 (d, J = 6.8 Hz, 1H), 6.91 (m, 4H), 5.46 (d, J = 2.3 Hz, 1H), 4.41 (d, J = 14.4 Hz, 1H), 4.36 (d, J = 2.4 Hz, 1H), 3.97 (d, J = 13.5 Hz, 1H), 3.64 (s, 3H), 3.60 (td, J = 7.7, 3.2 Hz, 2H), 3.39 (d, J = 2.6 Hz, 3H), 3.38 - 3.32 (m, 2H), 3.10 (d, J = 13.4 Hz, 1H), 2.22 - 1.99 (m, 6H), 1.76 (dq, J = 10.6, 3.3, 2.9 Hz, 2H), 0.18 (s, 9H) ; ¹³C NMR : (101 MHz, C_6D_6) δ 156.23, 155.71, 138.56, 136.67, 134.04, 133.95, 129.79, 127.49, 127.35, 127.25,

127.18, 126.43, 126.17, 125.70, 124.37, 124.34, 106.27, 105.91, 105.31, 99.42, 88.95, 85.64, 82.61, 54.99, 54.38, 49.88, 47.43, 35.52, 33.29, 26.30, 25.31 ; **IR (ATR)** : v = 2955, 2907, 2887, 2863, 2813, 1619, 1596, 1450, 1423, 1328, 1294, 1260, 1233, 1197, 1163, 1115, 1021, 907, 827, 746, 647, 623 cm⁻¹ ; **HRMS (ESI+)** : calculated for $[C_{40}H_{43}IrO_2Si]$; $[M+H]^+$: 777.2734, found: 777.2743 ; $[\alpha]_D$: -123.33 (c = 0.1, CHCl₃) ; **m.p. :** >200 °C (Decomposition) ; **R**_f [Pentane/AcOEt (24/1)] : 0.78

Representative Procedure for the Synthesis of Dihydroquinolinone

Prepared according to a modification of the procedure reported^[3]. Without protection from oxygen or moisture, **4a** (5.0 mg, 10.00 µmol) and benzoic peroxyanhydride (2.4 mg, 10.00 µmol) were mixed and dissolved in ethanol (0.400 ml) and stirred for 10 min. Then, N-((tert-butoxycarbonyl)oxy)benzamide (47.5 mg, 0.2 mmol) was added to the mixture and stirred for 15 minutes before to add styrene (0.046 ml, 0.400 mmol). The reaction was stirred for 24 hours at 23 °C. The volatiles were evaporated in vacuo and the residue was purified on a silica gel (CH₂Cl₂:EtOAc (5:1)) giving 35.5 mg (80%, 91 : 9 er) of **6a** as colorless solid.

(R)-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (6a)

Prepared from styrene. Match the literature³ :¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 7.7, 1.4 Hz, 1H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.43 – 7.29 (m, 6H), 7.19 (d, J = 7.5 Hz, 1H), 5.95 (s, 1H), 4.87 (ddd, J = 11.2, 4.7, 1.1 Hz, 1H), 3.22 (dd, J = 15.7, 11.2 Hz, 1H), 3.12 (dd, J = 15.7, 4.7 Hz, 1H) ; **HPLC separation** (Chiralpak

IA, 4.6x250 mm; 20% i-PrOH/hexane, 1.0 mL/min, 280 nm; tr (major) = 10.2 min, tr (minor) = 10.8 min), 96:4 er

(R)-3-(3,5-dimethylphenyl)-3,4-dihydroisoquinolin-1(2H)-one (6b)

Prepared from 3,5-Dimethylstyrene. Match the literature⁸ **Appearance** : White solid ; ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (dt, J = 7.5, 1.0 Hz, 1H), 7.57 (td, J = 7.5, 1.3 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.39 (dd, J = 7.5, 1.0 Hz, 1H), 6.93 (s, 1H), 6.88 (s, 2H), 6.40 (s, 1H), 4.75 (dd, J = 9.9, 4.6 Hz, 1H), 3.21 (dd, J = 13.5, 4.6 Hz, 1H), 2.62 (dd, J = 13.4, 9.9 Hz, 1H), 2.32 (s, 6H) ¹³**C NMR** (101 MHz, CDCl₃) δ 166.44, 141.01, 138.78, 137.89, 132.58, 130.12, 128.47, 128.16, 127.41,

127.36, 124.30, 56.27, 37.71, 21.43 **IR (ATR)** : v = 3206, 3070, 3028, 2945, 2918, 2859, 1661, 1605, 1579, 1463, 1418, 1378, 1328, 1263, 1155, 1033, 907, 855, 837, 726, 701, 644 cm⁻¹ ; **HRMS (ESI)** : calculated for $[C_{17}H_{17}NO+H]^+$: 252.1383 , found: 252.1383, **R**_f [CH₂Cl₂/AcOEt: 5/1] : 0.5, **HPLC separation** (Chiralpak

IA, 4.6x250 mm; 20% i-PrOH/hexane, 1.0 mL/min, 210 nm; tr (major) = 8.8 min, tr (minor) = 7.1 min), 92.5:7.5 er

(4aS,10bS)-1,4a,5,10b-tetrahydrophenanthridin-6(2H)-one (6c)

Prepared from 1,3-Cyclohexadiene. Match the literature³: ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 7.8, 1.5 Hz, 1H), 7.48 (td, J = 7.5, 1.5 Hz, 1H), 7.35 (td, J = 7.6, 1.3 Hz, 1H), 7.27 - 7.23 (m, 1H), 6.13 (s, 1H), 6.03 (dt, J = 9.9, 3.7 Hz, 1H), 5.80 (ddt, J = 9.6, 4.6, 2.2 Hz, 1H), 4.27 (t, J = 4.9 Hz, 1H), 2.94 (dt, J = 12.2, 4.0 Hz, 1H), 2.21 (tt, J = 7.2, 2.8 Hz, 2H), 2.07 - 1.90 (m, 1H), 1.69 (dq, J = 13.1, 3.9 Hz, 1H) ; **HPLC separation**

(Chiralpak IA, 4.6x250 mm; 20% i-PrOH/hexane, 1.0 mL/min, 210 nm; tr (major) = 8.1 min, tr (minor) = 10.6 min), 95:5 er

(3aS,9bS)-1,2,3,3a,4,9b-hexahydro-5H-cyclopenta[c]isoquinolin-5-one (6d)

Prepared from Cyclopentene. Match the literature³: ¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (dd, J = 7.8, 1.4 Hz, 1H), 7.44 (td, J = 7.4, 1.5 Hz, 1H), 7.33 (td, J = 7.5, 1.3 Hz, 1H), 7.21 (dd, J = 7.6, 1.2 Hz, 1H), 6.08 (s, 1H), 4.19 (td, J = 5.4, 1.5 Hz, 1H), 3.10 (td, J = 8.7, 5.0 Hz, 1H), 2.21 – 1.99 (m, 2H), 1.99 – 1.71 (m, 4H) ; **HPLC separation** (Chiralpak IA, 4.6x250 mm; 20% i-PrOH/hexane, 1.0 mL/min, 254 nm; tr (major) = 7.9 min, tr

(minor) = 7.2 min), 95:5 er

(3aS,9bS)-1,3a,4,9b-tetrahydrofuro[2,3-c]isoquinolin-5(2H)-one (6e)

Prepared from 2,3-dihydrofurane. Match the literature³ : ¹H NMR (400 MHz, CDCl₃) : δ 8.16 (dd, J = 7.6, 1.5 Hz, 1H), 7.56 (td, J = 7.4, 1.5 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.02 (s, 1H), 4.83 (d, J = 4.6 Hz, 1H), 4.35 (q, J = 5.2, 3.7 Hz, 1H), 4.11 – 3.96 (m, 2H), 2.43 (dtd, J = 18.1, 8.9, 5.6 Hz, 1H), 2.20 (dddd, J = 13.1, 6.5, 3.8, 2.1 Hz, 1H) ; HPLC separation (Chiralpak AYH, 4.6 x 250 mm; 20% i-PrOH / hexane, 1.0 mL/min, 254 nm; tr (minor) = 26.0 min, tr (major) = 15.8 min), 97 : 3 e.r.

)	5	10	15	20	25	30 [min]
	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]
1	15.821	2004.600	67.544	96.7	97.9	0.45
2	25.999	69.420	1.476	3.3	2.1	0.74
	Total	2074.020	69.020	100.0	100.0	

(1S,4R,4aS,10bS)-1,3,4,4a,5,10b-hexahydro-1,4-methanophenanthridin-6(2H)-one (6f)

Prepared from norbornene. Matched the literature⁹: ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.11 (dd, J = 7.8, 1.5 Hz, 1H), 7.48 (td, J = 7.5, 1.5 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.24 (d, J = 7.7 Hz, 1H), 6.14 (s, 1H), 3.83 (dt, J = 8.8, 1.8 Hz, 1H), 3.15 (d, J = 8.8 Hz, 1H), 2.41 – 2.31 (m, 1H), 2.28 – 2.20 (m, 1H), 1.75 – 1.60 (m, 3H), 1.60 – 1.49 (m, 1H), 1.46 – 1.30 (m, 1H), 1.25 – 1.16 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 163.6, 140.3, 132.3, 128.4, 127.3, 126.3, 125.8, 58.3, 47.8, 46.3, 44.1, 32.4, 30.1,

25.7; **IR (ATR)** : v = 3185, 3039, 2955, 2872, 1665, 1602, 1578, 1491, 1473, 1419, 1341, 1288, 856, 792, 754, 716 cm-1; **HRMS (ESI)** calculated for $[C_{14}H_{16}NO+H]^+$: 214.1226, found: 214.1226; **Rf:** 0.32 (CH₂Cl₂:EtOAc, 1:1); **HPLC separation** (Chiralpak IA, 4.6 x 250 mm 20% i-PrOH / hexane, 1.0 mL/min, 254 nm; tr (minor) = 7.6 min, tr (major) = 14.5 min), 1 : 99 e.r.

(S)-4-(3-bromopropyl)-3,4-dihydroisoquinolin-1(2H)-one (6g)

Prepared from 5-Bromo-1-Pentene. Match the literature⁹: ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.08 (dd, J = 7.6, 1.4 Hz, 1H), 7.48 (td, J = 7.5, 1.5 Hz, 1H), 7.38 (td, J = 7.6, 1.3 Hz, 1H), 7.20 (dd, J = 7.6, 1.1 Hz, 1H), 6.17 (s, 1H), 3.83 – 3.69 (m, 1H), 3.48 – 3.31 (m, 3H), 2.97 – 2.83 (m, 1H), 2.07 – 1.78 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 166.1, 142.2, 132.5, 128.4, 127.5, 127.1, 123.1, 44.3, 37.2, 33.1, 32.0, 30.4; **IR (ATR):** v = 3221, 3073, 2930, 2867, 1664, 1604, 1575, 1475, 1460, 1406, 1334, 1295, 1249, 1058, 759, 720 cm-1; **HRMS (ESI)** calculated for

 $[C_{12}H_{15}BrNO+H]^*$: 268.0332, found: 268.0336; *R*f: 0.15 (CH₂Cl₂:EtOAc, 5:1); **HPLC separation** (Chiralpak AYH, 4.6 x 250 mm; 20% *i*-PrOH / hexane, 1.0 mL/min, 254 nm; tr (major) = 12.2 min, tr (minor) = 23.0 min), 81 : 19 e.r

(S)-3-(3-bromopropyl)-3,4-dihydroisoquinolin-1(2H)-one (6g')

Prepared from 5-Bromo-1-Pentene. Match the literature⁹: ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.05 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.45 (td, *J* = 7.5, 1.5 Hz, 1H), 7.38 - 7.32 (m, 1H), 7.22 - 7.15 (m, 1H), 6.59 (s, 1H), 3.79 - 3.70 (m, 1H), 3.49 - 3.38 (m, 2H), 3.03 (dd, *J* = 15.5, 4.6 Hz, 1H), 2.84 (dd, *J* = 15.5, 9.6 Hz, 1H), 2.10 - 1.91 (m, 2H), 1.82 - 1.75 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ

(ppm) = 166.2, 137.7, 132.4, 128.4, 128.0, 127.5, 127.2, 50.6, 34.0, 33.8, 32.9, 28.6;**IR (ATR):**v = 3204, 3074, 2939, 1665, 1605, 1577, 1465, 1400, 1338, 1305, 746 cm-1;**HRMS (ESI)**calculated for [C12H15BrNO+H]⁺: 268.0332, found: 268.0335;**R**f: 0.18 (CH₂Cl₂:EtOAc, 5:1); HPLC separation (Chiralpak IB, 4.6 x 250 mm; 10%*i*- PrOH / hexane, 1.0 mL/min, 254 nm; tr (minor) = 15.5 min, tr (major) = 13.6 min), 88 : 12 e.r.

(S)-4-(trimethylsilyl)-3,4-dihydroisoquinolin-1(2H)-one (6h)

Prepared from vinyltrimethylsilane. Match the literature³ : ¹**H NMR** δ 8.03 (dd, J = 7.8, 1.5 Hz, 1H), 7.39 (td, J = 7.5, 1.5 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 3.91 (dd, J = 12.0, 4.8 Hz, 1H), 3.54 (ddd, J = 12.0, 5.3, 1.4 Hz, 1H), 2.35 (d, J = 4.7 Hz, 1H), 0.02 (s, 9H) ; **HPLC separation** (Chiralpak OZH, 4.6 x 250 mm; 10% *i*-PrOH / hexane, 1.0 mL/min, 254 nm; tr (minor) = 10.8 min, tr (major) = 12.9 min), 90 : 10 e.r.

)		5		10		15 [min]
	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W 05 [min]
1	10.808	24.024	1.321	10.0	13.4	0.29
2	12.891	215.901	<mark>8.55</mark> 2	90.0	86.6	0.39
	Total	239.925	9.872	100.0	100.0	

C-H Transformations using *in-situ* Cp^X complexes (<u>R</u>)-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (6a)

Prepared according to a modification of the procedure reported³. Without protection from oxygen or moisture, [Rh(cod)OAc]₂ (1.6 mg, 3.0 µmol) and Cp ligand **1a** (2.8 mg, 5.0 µmol) were mixed in EtOH (0.1 mL) over 1 hour. Dibenzoylperoxide (1.5 mg, 6.0 µmol) was added to the solution and stirred at the same temperature for 15 minutes. N-((tert-butoxycarbonyl)oxy)benzamide **4** (71 mg, 0.30 mmol) was added to the mixture and stirred for 30 minutes, followed by styrene (69.0 µL, 0.60 mmol, 2.00 equiv.) and the reaction was stirred for 16 hours at 23°C. The volatiles were evaporated in vacuo

and the residue was purified on a silica gel (CH₂Cl₂:EtOAc 5:1) giving 55 mg (82%, 91 : 9 er) of **6a** as colorless solid. Match the literature³ : ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.47 (td, *J* = 7.5, 1.5 Hz, 1H), 7.43 – 7.29 (m, 6H), 7.19 (d, *J* = 7.5 Hz, 1H), 5.95 (s, 1H), 4.87 (ddd, *J* = 11.2, 4.7, 1.1 Hz, 1H), 3.22 (dd, *J* = 15.7, 11.2 Hz, 1H), 3.12 (dd, *J* = 15.7, 4.7 Hz, 1H) ; HPLC separation (Chiralpak IA, 4.6x250 mm; 20% i-PrOH/hexane, 1.0 mL/min, 280 nm; tr (major) = 10.2 min, tr (minor) = 10.8 min), 91:9 er

(S)-2,4-Dimethylpentan-3-yl 1-methyl-3-oxoisoindoline-1-carboxylate (8)

Prepared according to a modification of the procedure reported.¹⁰ A solution of ligand **1h** (4.5 mg, 5.00 µmol) and [Rh(cod)OAc]2 was stirred in MeOH (0.1 mL) at 35 °C over 90 minutes. Dibenzoylperoxide (1.20 mg, 5.00 µmol) and N-(pivaloyloxy)benzamide **7** (22.0 mg, 0.10 mol) in CH₃CN (0.9 mL) was stirred for 15 minutes at 35°C. Then, 2,4-dimethylpentan-3-yl 2-diazopropanoate (20.0 mg, 0.10 mmol) was added and the solution was stirred at 35°C for 16 h. The volatiles were removed in vacuo and the residue was purified by

chromatography on silica gel with a gradient elution (hexane/EtOAc 5:1 -> 3:1) affording 23.0 mg (79 %) of **8** as colorless foam. NMR matches the literature.¹⁰ **HPLC separation** (Chiralpak IA, 4.6x250 mm; 20% i-PrOH/hexane, 1.0 mL/min, 280 nm; tr (major) = 5.0 min, tr (minor) = 6.2 min), 95:5 er

(R)-2-(3,5-bis(trifluoromethyl)phenyl)-1,3,4-triphenyl-2Hbenzo[c][1,2]azaphosphinine 1-oxide (10)

Prepared according to a modification of the procedure reported.¹¹ Without protection from oxygen or moisture, $[Rh(cod)OBz]_2$ (1.7 mg, 2.5 µmol) and Cp ligand **1g** (2.0 mg, 5.0 µmol) were weighed into a microwave tube equipped with a magnetic stir bar. tBuOH (400 µL) was added and the mixture stirred at 90 °C for 1 hour. The mixture was cooled down to 23 °C, then dibenzoylperoxide (1.2 mg, 5.0 µmol) was added to the solution and stirred at the same temperature for 15 minutes. To the solution were added **9** (42.9 mg, 0.1 mmol, 1.0 equiv.),

diphenylacetylene (26.7 mg, 0.15 mmol, 1.5 equiv.), K_2CO_3 (13.8 mg, 0.1 mmol, 1.0 equiv.), Ag_2CO_3 (55.1 mg, 0.2 mmol, 2.0 equiv.) and the tube sealed. The reaction mixture was stirred at 90°C for 16 hours. After cooling down to 23 °C, the mixture was filtered over a pad of celite (washing with EtOAc), the volatiles removed under reduced pressure and the crude purified by column chromatography on silica gel (hexane:EtOAc 10:1 to 6:1), yielding 45.8 mg of **10** with 94.5:5.5 er. Match the literature¹¹ ¹H **NMR** (400MHz, CDCl₃) δ =7.73 (dd,J=13.0,7.1,2H), 7.59 (ddd,J=14.4,7.7,1.4,1H), 7.50 (t,J=7.8,1H), 7.45 (s,2H), 7.42 (dd, J=7.4, 1.7, 1H), 7.39–7.31(m, 3H), 7.31–7.15 (m, 7H), 7.03–6.96 (m,2H), 6.93–6.79 (m,3H) ppm **HPLC separation** (Chiralpak ID, 4.6x250 mm; 10% i-PrOH/hexane, 1.0 mL/min, 280 nm; tr (major) = 7.7 min, tr (minor) = 10.1 min), 94.5:5.5 er

(S)-1'-cyclohexyl-3'-methyl-2,3-diphenylspiro[indene-1,4'-pyrazol]-5'(1'H)-one (12)

Prepared according to a modification of the procedure reported.¹²To a Schlenk tube, $[Rh(C_2H_4)_2OAC]_2$ (1.4 mg, 3.30 µmol) and **1g** (2.022 mg, 5.00 µmol) were dissolved in *t*AmylOH (0.200 mL) and heated at 80°C over 1 hour. Then, the catalyst solution was added to a solution of anhydrous Cu(OAc)₂ (36 mg, 0.2 mmol), **11** (0.038 g, 0.150 mmol) and 1,2-diphenylethyne (18 mg, 0.1 mmol) in *t*AmylOH (0.200 ml). The resulting mixture was stirred at 80 °C for 2 hours. The reaction was quenched with 25% ammonia aqueous solution, and the aqueous layer was extracted with DCM (25

mL).The combined organic phase was dried over MgSO₄, filtered, and concentrated in vacuo. Purification of the residue by silica gel column chromatography gave **12** (32 mg, 0.074 mmol, 74.0 % yield). Match the literature¹² : ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.31 (m, 7H), 7.27 – 7.22 (m, 1H), 7.15 (qd, J = 4.1, 1.6 Hz, 3H), 7.10 – 7.02 (m, 3H), 4.15 (tt, J = 10.9, 4.4 Hz, 1H), 2.02 – 1.79 (m, 4H), 1.72 (s, 6H), 1.48 – 1.31 (m, 2H), 1.31 – 1.15 (m, 1H) ; **HPLC separation** (Chiralpak IA, 4.6x250 mm; 5% i-PrOH/hexane, 1.0 mL/min, 254 nm; tr (major) = 12.8 min, tr (minor) = 10.7 min, 95.5 : 4.5 er

S27

S30

S41

S42

S46

X-Ray Crystallographic Data Crystal data and structure refinement for (3a)

X-Ray Crystallographic Data		0
Crystal data and structure refinement for (3	a)	
	Q Q	
Empirical formula	$C_{22}H_{31}IrO_2$	
Formula weight	519.67	S Y S
Temperature	100.00(10) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>I</i> 2	
Unit cell dimensions	a = 10.8334(2) Å	α=90°.
	b = 8.23239(14) Å	$\beta = 98.0838(17)^{\circ}.$
	c = 22.2298(4) Å	$\gamma = 90^{\circ}.$
Volume	1962.86(6) Å ³	
Z	4	
Density (calculated)	1.759 Mg/m ³	
Absorption coefficient	6.814 mm ⁻¹	
F(000)	1024	
Crystal size	0.597 x 0.179 x 0.139 mm ³	
Theta range for data collection	2.642 to 32.878°.	
Index ranges	$-16 \le h \le 15, -12 \le k \le 12, -12 \le 12, $	$-33 \le 1 \le 33$
Reflections collected	20184	
Independent reflections	6792 [$R_{\rm int} = 0.0416$]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Analytical	
Max. and min. transmission	0.474 and 0.055	
Refinement method	Full-matrix least-squares or	$1 F^2$
Data / restraints / parameters	6792 / 147 / 266	
Goodness-of-fit on F ²	1.042	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0235, wR_2 = 0.0488$	
R indices (all data)	$R_1 = 0.0247, wR_2 = 0.0497$	
Absolute structure parameter	-0.008(8)	
Largest diff. peak and hole	0.806 and -0.894 e.Å ⁻³	

Crystal data and structure refinement for (1m)

Crystal data and structure refineme	nt for (1m)
Empirical formula	C ₁₇ H ₂₈ O ₂ Si
Formula weight	292.48
Temperature	100.01(10) K
Wavelength	1.54184 Å
Crystal system	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
Unit cell dimensions	$a = 7.53335(13) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 10.27117(14) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 22.6089(3) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	1749.39(4) Å ³
Z	4
Density (calculated)	1.111 Mg/m ³
Absorption coefficient	1.172 mm ⁻¹
F(000)	640
Crystal size	0.545 x 0.119 x 0.079 mm ³
θ range for data collection	3.910 to 73.574°.
Index ranges	$-9 \le h \le 8, -12 \le k \le 12, -28 \le l \le 28$
Reflections collected	28192
Independent reflections	3520 [$R_{\rm int} = 0.0236$]
Completeness to $\theta = 67.684^{\circ}$	100.0 %
Absorption correction	Gaussian
Max. and min. transmission	1.000 and 0.512
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3520 / 0 / 293
Goodness-of-fit on F^2	1.058
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0223, wR_2 = 0.0567$
R indices (all data)	$R_1 = 0.0225, wR_2 = 0.0569$
Absolute structure parameter	-0.006(6)
Largest diff. peak and hole	0.182 and -0.156 e.Å ⁻³

Crystal data and structure refinement for (3m)

Crystal data and structure remember for	
Empirical formula	CarHaoltOaSi
Formula weight	591.85
Temperature	100 01(10) K
Wavelength	0 71073 Å
Crystal system	Orthorhombic
Space group	P2.2.2.
Unit call dimensions	$n = 7.70304(11)$ Å $q = 90^{\circ}$
onit cen dimensions	a = 7.70504(11) A $a = 90$.
	b = 11.49824(10) A $p = 90$.
V. Lever	$c = 20.9058(4) \text{ A}$ $\gamma = 90^{\circ}$.
volume	2383.08(6) A ³
	4
Density (calculated)	1.650 Mg/m ⁻³
Absorption coefficient	5.671 mm ⁻¹
F(000)	1184
Crystal size	0.829 x 0.186 x 0.151 mm ³
θ range for data collection	2.750 to 32.981°.
Index ranges	$-11 \le h \le 11, -17 \le k \le 16, -40 \le l \le 41$
Reflections collected	51991
Independent reflections	8448 [$R_{int} = 0.0458$]
Completeness to $\theta = 25.242^{\circ}$	99.9 %
Absorption correction	Gaussian
Max. and min. transmission	0.963 and 0.145
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8448 / 0 / 270
Goodness-of-fit on F^2	1.042
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0205, wR_2 = 0.0366$
<i>R</i> indices (all data)	$R_1 = 0.0223, wR_2 = 0.0374$
Absolute structure parameter	-0.014(3)
Extinction coefficient	0.00045(6)
Largest diff. peak and hole	0.643 and -0.944 e.Å ⁻³

Crystal data and structure refinement for (30)

Empirical formula	C ₄₀ H ₄₃ IrO ₂ Si
Formula weight	776.03
Temperature	100.00(10) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21
Unit cell dimensions	$a = 10.1531(2) \text{ Å}$ $\alpha = 90^{\circ}$.
	b = 14.0965(3) Å β = 102.019(2)°.
	$c = 23.1228(6) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	3236.86(14) Å ³
Z	4
Density (calculated)	1.592 Mg/m ³
Absorption coefficient	4.197 mm ⁻¹
F(000)	1560
Crystal size	0.883 x 0.593 x 0.118 mm ³
θ range for data collection	2.517 to 29.700°.
Index ranges	$-13 \le h \le 14, -19 \le k \le 19, -31 \le l \le 31$
Reflections collected	54468
Independent reflections	16010 [$R_{\rm int} = 0.0663$]
Completeness to $\theta = 25.242^{\circ}$	99.8 %
Absorption correction	Gaussian
Max. and min. transmission	1.000 and 0.028
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	16010 / 493 / 803
Goodness-of-fit on F^2	1.052
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0409, wR_2 = 0.0881$
R indices (all data)	$R_1 = 0.0448, wR_2 = 0.0912$
Absolute structure parameter	-0.007(5)
Largest diff. peak and hole	1.649 and -1.516 e.Å ⁻³

٩

3

Computational Details

The geometries of all species were optimized at the MO6^{13,14}/def2-SVP¹⁵ level in implicit methanol solvent using the SMD solvation model.¹⁶ Each geometry optimizations were performed in Gaussian09¹⁷ and used the "ultrafine" integration grid to remove known problems with grid size involving the Minnesota family of density functionals.¹⁸ Refined energy estimates were obtained through single point computations on the MO6 optimized geometries with a density-dependent dispersion correction (-dDsC)¹⁹⁻²² appended to the PBEO functional^{23,24} (PBEO-dDsC) using the TZ2P basis set as implemented in ADF.^{25,26} Final reported free energies include PBEO-dDsC electronic energies, MO6 free energy corrections obtained using the rigid-rotor harmonic oscillator proposed by Grimme²⁷ and implemented in the "Goodvibes" program of Paton and Funes-Ardoiz,²⁸ and PBEO-dDsC solvation corrections (in methanol) obtained from COSMO-RS.²⁹ All structures were confirmed as either minima or transition states by inspection of the number of imaginary frequencies (zero for minima, one for transition states).

Table S1. Computed electronic energies, free energy corrections and solvation energies for relevant species. Values in hartree. Free energies reported in the manuscript include PBE0-dDsC/TZ2P electronic energies, the free energy correction (determined using the rigid-rotor harmonic oscillator, see computational details), and COSMO-RS solvation energies.

	M06/def2-SVP Electronic Energy	Free Energy Correction	PBE0-dDsC/TZ2P Electronic Energy	COSMO-RS Solvation Energy
Methanol	-115.568506	0.028256	-1.376639	-0.008332
Acetic Acid	-228.802073	0.033941	-2.150562	-0.013522
Cp* Precursor	-390.091292	0.191122	-6.583055	-0.007237
[Rh(COD)OAc] ₂ , 2 MeOH	-1532.018061	0.511077	-17.714368	-0.030084
Int1	-765.994163	0.242240	-8.846723	-0.017645
A(TS1)	-765.979455	0.241253	-8.825916	-0.017906
A(INT2)	-650.393767	0.192029	-7.418881	-0.024182
A(INT3)	-1040.502995	0.411003	-14.030623	-0.028757
A(TS2)	-1040.467463	0.405538	-14.008738	-0.017471
A(Prod)	-1040.524346	0.411304	-14.072150	-0.017374
B(TS1)	-765.965277	0.238749	-8.782566	-0.045060
B(TS2)	-765.966644	0.236701	-8.800694	-0.026686
B(Int2)	-537.143077	0.184760	-6.633340	-0.017312
B(Int3)	-927.245457	0.400769	-13.235869	-0.017973
B(TS3)	-927.227327	0.397346	-13.229686	-0.015461
B(Prod)	-927.289644	0.403560	-13.297280	-0.014755

Optimized Cartesian Coordinates (M06/def2-SVP)

6			
Met	thanol		
0	-0.75537	-1.09598	-0.62007
Н	-0.88709	-0.21169	-0.25325
С	-0.65596	-1.99957	0.44927
Н	-0.50555	-3.00901	0.03477
Н	-1.56932	-2.03208	1.07390
Н	0.20073	-1.78622	1.11714
8			
Ace	tic Acid		
Η	-1.44817	0.99851	-1.32276
0	-1.16261	0.20327	-0.83645
С	-0.01387	0.47574	-0.21506
0	0.52493	1.55738	-0.29167
С	0.49224	-0.69085	0.55848
Н	-0.24698	-0.97698	1.32276
Н	1.44817	-0.44662	1.03709
Н	0.61457	-1.55738	-0.10929

26

Cp*	Precursor C	Dlefin	
С	2.18453	1.20009	1.51384
С	3.56924	1.69278	1.91419
Н	3.56690	2.78849	2.05563
Н	4.32192	1.45220	1.14520
Н	3.90595	1.23036	2.85682
С	1.66920	1.80979	0.23778
С	2.44614	1.75715	-1.02825
Н	1.86707	2.11785	-1.89292
Н	3.36365	2.37362	-0.97402
Н	2.78461	0.73019	-1.25715
С	0.46511	2.38430	0.48259
С	-0.42721	3.10333	-0.46825
Н	-1.42738	2.63710	-0.52162
Н	-0.59574	4.15034	-0.15777
Н	-0.01755	3.12649	-1.48984
С	0.11867	2.19951	1.90824
С	-1.14758	2.71881	2.49497
Н	-2.03464	2.30921	1.97929
Н	-1.24393	2.47455	3.56411
Н	-1.22090	3.81732	2.40066
С	1.11365	1.51351	2.52407
С	1.23634	1.11194	3.94989
Н	0.30916	1.28722	4.51794
Н	2.04175	1.66818	4.46634
Н	1.49398	0.04199	4.05197
Н	2.23808	0.09566	1.38368

68			
[Rh((COD)OAc]	2, 2MeOH	2 05045
н	0.48499	0.85984	-2.05045
C	-0.63133	1.46369	-1.43691
Н	-0.43058	2.33394	-0.79502
С	-2.04795	1.34411	-1.96092
Н	-2.03105	1.21520	-3.05695
H	-2.58509	2.28983	-1.78204
С	-2.79480	0.19438	-1.28540
н u	-3.23823	0.55850	-0.55111
п С	-3.03450	-0.10399	-0.91400
H	-2.25260	-1.56711	-0.08311
С	-0.89220	-1.51969	-1.73809
Н	-0.57247	-2.54087	-1.47785
С	-0.65166	-1.09713	-3.17535
Н	-1.60213	-0.75764	-3.62268
Н	-0.34774	-1.97511	-3.77010
с ц	0.42059	-0.01044	-3.27999
н	0 27134	-0.48334	-3.40790
C	2.30591	1.35357	1.04582
С	2.81814	2.43323	1.95024
Н	2.01753	3.09495	2.30546
Н	3.59347	3.02005	1.43592
H	3.30037	1.95318	2.81817
C	0.76100	-1.80033	2.14/91
н	-0.18020	-2.11/03	3.33909
н	1.24248	-2.33240	4 19226
Н	-0.32010	-2.97441	3.57260
С	3.68877	-1.21927	-2.02916
Н	3.34784	-0.24137	-2.40321
С	3.36427	-2.41494	-2.90507
Н	4.29292	-2.96693	-3.13167
Н	2.98954	-2.06432	-3.88154
н	1 31458	-3.01400	-2.23091
н	2.42950	-4.37425	-2.62568
C	2.38270	-3.30111	-0.75056
Н	1.43660	-3.54854	-0.24383
С	3.56160	-3.42842	0.01181
H	3.44359	-3.73430	1.06185
С	4.93236	-3.66162	-0.59014
п Н	4.85549	-4.21311	-1.33984
C	5.68023	-2.34516	-0.79907
Ĥ	6.23158	-2.08627	0.12173
Н	6.45078	-2.44261	-1.58987
С	4.75536	-1.19705	-1.10761
Н	5.15396	-0.20832	-0.83695
0	-0.16914	-1.62682	1.31610
0	1.96079	-1./14/9	0.00307
õ	3.16437	0.69399	0.40052
Rh	2.95413	-1.40231	-0.05060
Rh	-0.01579	-0.22023	-0.31536
0	4.53613	-1.14385	2.81144
Н	3.61450	-1.39320	2.59898
С U	4./6322	-1.39124	4.17363
н Н	4.09942 4.63507	-0./96/0 -2 45750	4.83027 4.44240
Н	5.80113	-1.11363	4.41784
0	-1.39704	1.04925	2.37114
Н	-0.49585	0.99875	2.00113
С	-1.76508	2.40333	2.37860
Н	-1.04642	3.03519	2.93460
H U	-1.8/051	2.82683	1.35974
п	-2.14337	2.30230	2.07300

34 Int1

Rh	0.63675	-0.66748	-2.20529
C	-0.39947	3 43199	-1.29423
Č	1.91101	-2.25403	-1.67904
č	0.999990	-2.70685	-2.65304
С	1.23091	-0.41594	-4.19296
С	2.31089	-0.08666	-3.34728
С	3.35032	-1.87943	-1.92367
С	1.36604	-2.93723	-4.10579
С	1.07467	-1.70305	-4.96124
С	3.52135	-0.97664	-3.14496
Н	-1.11402	3.95284	-0.58678
Н	-0.05718	3.920/1	-2.04710
H	-1.//500	3.51481	-2.18868
H	1.68406	-2.50446	-0.03185
п u	0.11790	-5.25550	-2.20034
н	2 46075	0.42397	-3 13628
н	3 98159	-2 78687	-2 00326
н	3.70827	-1.34785	-1.02473
Н	2.42853	-3.22635	-4.17925
Н	0.79971	-3.79881	-4.49471
Н	1.70345	-1.69201	-5.87384
Н	0.03165	-1.74629	-5.32050
Н	4.42047	-0.35162	-3.02104
Н	3.70088	-1.57343	-4.05566
0	-0.09650	1.35123	-2.28479
0	-0.87403	1.46747	-0.18812
0	-0.77328	-1.10022	-0.60463
Н	-0.88069	-0.16109	-0.27083
С	-0.64821	-2.02049	0.45434
п u	-1.30903	-2.05/09	0.04104
п u	-0.30329	-5.05091	0.04194
11	0.20195	-1.70415	1.11031
34			
34 A(TS	51)	0 22 459	0.02502
34 A(TS Rh	51) -0.01669	-0.22458	0.02503
34 A(TS Rh C	51) -0.01669 -2.51116 -3.84831	-0.22458 -1.11009	0.02503 -0.04136 0.01663
34 A(TS Rh C C C	51) -0.01669 -2.51116 -3.84831 1 22133	-0.22458 -1.11009 -1.76974 0.73093	0.02503 -0.04136 0.01663 -1.38109
34 A(TS Rh C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654	-0.22458 -1.11009 -1.76974 0.73093 1.41067	0.02503 -0.04136 0.01663 -1.38109 -0.15616
34 A(TS Rh C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894
34 A(TS Rh C C C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950
34 A(TS Rh C C C C C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599
34 A(TS Rh C C C C C C C C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708
34 A(TS Rh C C C C C C C C C C C C C C C C C	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276
34 A(TS Rh C C C C C C C C C C C C C C C C C C	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.53202 2.29995 2.68060	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939
34 A(TS Rh C C C C C C C C C C C C C C C C C C	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.53202 2.29995 2.68060 -4.17582	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358
34 A(TS Rh C C C C C C C C C C C C C C C C C C	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.53202 2.29995 2.68060 -4.17582 -3.83128	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507
34 A(TS Rh C C C C C C C C C C C C C C C C C C	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.5320 2.53202 2.53200000000000000000000000000000000000	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208
34 A(TS Rh C C C C C C C C C C C C C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.53202 2.22995 2.68060 -4.17582 -3.83128 -4.58411 0.52740	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.2075 (0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380
34 A(TS Rh C C C C C C C C C C C C C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.53212 0.5321000000000000000000000000000000000000	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14220
34 A(TS Rh C C C C C C C C C C C C C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.23995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 2.56941	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550
34 A(TS Rh C C C C C C C C C C C C C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.23995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38315
34 A(TS Rh C C C C C C C C C C C C C C C C C C	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.2200 2.53202 2.23995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.23995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.2200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.2200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.2200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.70409
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	51) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.2200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.70409 -1.38857
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348 3.57961	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200 -0.91166	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.70409 -1.38857 -0.35787
34 A(TS Rh C C C C C C C C C C H H H H H H H H H H	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348 3.57961 -1.53876	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200 -0.91166 -1.61011	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.70409 -1.38857 -0.35787 0.60975
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348 3.57961 -1.53876 -2.35412	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200 -0.91166 -1.61011 -0.06270	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.70409 -1.38857 -0.35787 0.60975 -0.72817
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348 3.57961 -1.53876 -2.35412 -1.87924 -1.8794 -1.8794 -1.8794 -1.8794 -1.8794 -1.8794 -1.8794 -1.8794	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200 -0.91166 -1.61011 -0.06270 2.27284	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.70409 -1.38857 -0.35787 0.60975 -0.72817 0.72817
34 A (TS Rh C C C C C C C C C C H H H H H H H H H H	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348 3.57961 -1.53876 -2.35412 -1.87924 -2.13093 1.07921 -2.3592	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200 -0.91166 -1.61011 -0.06270 2.27284 1.38549	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.70409 -1.38857 -0.35787 0.60975 -0.72817 0.74682 0.43078
34 A Rh C C C C C C C C C C H H H H H H H H H H	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348 3.57961 -1.53876 -2.35412 -1.87924 -2.13093 -1.97052	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200 -0.91166 -1.61011 -0.06270 2.27284 1.38549 3.12348	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.70409 -1.38857 -0.35787 0.60975 -0.72817 0.74682 0.43078 -0.36615 0.77220
34 CC C C C C C C C C H H H H H H H H H H	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348 3.57961 -1.53876 -2.35412 -1.87924 -2.13093 -1.97602 -3.00558 -3.6840	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200 -0.91166 -1.61011 -0.06270 2.27284 1.38549 3.12348 3.17426 4.14258	0.02503 - 0.04136 0.01663 - 1.38109 - 0.15616 1.34894 0.10950 - 1.93599 0.76708 1.84276 - 0.88939 - 1.00358 0.63507 0.42208 - 2.12380 - 0.02939 2.14229 0.04550 - 2.38215 - 2.77220 0.18177 1.24231 2.24004 2.70409 - 1.38857 - 0.35787 0.60975 - 0.72817 0.74682 0.43078 - 0.36615 - 0.77030
3 A Rh C C C C C C C C C C H H H H H H H H H H	S1) -0.01669 -2.51116 -3.84831 1.22133 1.33654 1.43050 1.57852 2.22200 2.53202 2.29995 2.68060 -4.17582 -3.83128 -4.58411 0.52740 0.71251 0.89317 1.13686 3.08517 1.73535 3.44111 2.71551 3.25858 1.78423 2.98348 3.57961 -1.53876 -2.35412 -1.87924 -2.13093 -1.97602 -3.00558 -1.68849 -1.30460	-0.22458 -1.11009 -1.76974 0.73093 1.41067 -0.88573 -1.56325 -0.25066 1.30270 0.24080 -1.26777 -2.02330 -2.67681 -1.05774 1.15643 2.30756 -1.42988 -2.56941 0.28173 -0.78170 1.08355 2.27978 -0.14777 0.70016 -2.20200 -0.91166 -1.61011 -0.06270 2.27284 1.38549 3.12348 3.17426 4.14258 2.82660	0.02503 -0.04136 0.01663 -1.38109 -0.15616 1.34894 0.10950 -1.93599 0.76708 1.84276 -0.88939 -1.00358 0.63507 0.42208 -2.12380 -0.02939 2.14229 0.04550 -2.38215 -2.77220 0.18177 1.24231 2.24004 2.77420 0.18177 1.24231 2.24004 2.77420 0.18177 1.24231 2.24004 2.77420 0.18177 1.24231 2.24004 2.77420 0.18177 1.24231 2.24004 2.77420 0.18177 1.24231 2.24004 2.77420 0.18177 1.24231 2.24004 2.77420 0.35787 0.60975 -0.72817 0.74682 0.43078 -0.36615 -0.77030 -0.06168 -1.19556

28 A(Int2)

()		
Rh	2.09853	-0.42156	0.27913
С	0.14217	-2.41232	-0.38099
С	-0.60882	-3.71220	-0.27167
С	2.99140	1.24357	-0.65217
С	3.29599	1.28742	0.71770
С	3.79671	-1.40607	0.89746
С	3.72680	-1.40792	-0.52684
С	3.91650	0.78207	-1.74958
С	4.65373	0.93085	1.28729
С	4.70087	-0.53256	1.72764
С	4.60451	-0.54110	-1.41065
Н	-1.39812	-3.78484	-1.03206
Н	0.09453	-4.55121	-0.39655
Н	-1.04946	-3.81527	0.73221
Н	2.13997	1.85662	-0.98844
Н	2.65702	1.92449	1.34777
Н	3.47300	-2.33153	1.39837
Н	3.34536	-2.33014	-0.99228
Н	4.65700	1.56784	-1.99785
Н	3.30517	0.65039	-2.65918
Н	5.43717	1.14437	0.54008
Н	4.87699	1.58669	2.14419
Н	5.73787	-0.92336	1.71822
Н	4.36334	-0.61187	2.77566
Н	4.84147	-1.08366	-2.33978
Н	5.57474	-0.36789	-0.91351
0	1.04459	-2.23064	0.51300
0	-0.10786	-1.60456	-1.28726

54 A(Int3)

O`	1.48273	-1.12957	0.35735
Rh	-0.40914	-0.56767	-0.43640
С	2.42373	-1.22057	-0.50240
Ċ	-1.79223	-0.39893	-2.01866
Č	-2.50043	-0.20670	-0.82208
Č	-1.19026	-2.26083	0.48287
Č	-0 70064	-2 61986	-0.80017
č	-1 76571	-1 65739	-2 84689
č	-3 40035	-1 23929	-0 17419
c	-2 63901	-2.08323	0.8/890
c	-1.58780	-2.00525	-1 99290
с u	-1.38780	-2.91032	-1.99290
п u	-1.49417	0.91132	-2.30182
п	-2.70921	0.65414	-0.34971
н	-0.52706	-2.4/545	1.33309
н	0.29796	-3.0/9/8	-0.82695
Н	-2.6/2/9	-1./2185	-3.48043
Н	-0.91649	-1.5/338	-3.54832
Н	-3.86166	-1.87595	-0.94854
Н	-4.23999	-0.72690	0.32373
Н	-3.12461	-3.06803	1.00009
Н	-2.67046	-1.58386	1.83354
Н	-1.13857	-3.71258	-2.59999
Н	-2.56127	-3.30424	-1.65444
С	-0.33346	1.82657	1.06453
С	0.79102	1.50437	1.96011
С	1.66468	2.15044	-0.10468
С	1.95712	1.69677	1.29605
С	0.15618	2.15343	-0.17584
С	2.26488	3.51689	-0.42504
Н	2.09232	1.41473	-0.81832
С	3.34699	1.46019	1.76274
C	0.58273	0.96200	3.32963
Ċ	-1.72061	1.98131	1.58568
Ĉ	-0 56514	2 78902	-1 31464
õ	2 32033	-0.89178	-1 69679
č	3 71828	-1 80929	-0.00190
н	3 85/12	-1.66120	1.07930
ц	3 60063	2 80616	0.10044
ц	4 57337	1 30385	0.55486
ц	2.05405	3 82288	1 46267
п п	1 85846	4 20000	-1.40207
п	2 26072	4.29090	0.25000
н	3.30073	3.50521	-0.30492
н	-0.43088	3.88837	-1.30411
H	-0.1/654	2.44443	-2.28927
н	-1.64937	2.59689	-1.29248
Н	-1.72764	2.73678	2.39257
H	-2.42829	2.32555	0.81759
H	-2.11516	1.05164	2.03186
Н	1.53264	0.78224	3.85600
Н	-0.02379	1.63580	3.96018
Η	0.03528	0.00017	3.29100
Η	3.93730	0.92467	0.99704
Н	3.88743	2.40677	1.95267
Н	3.38649	0.87209	2.69360

54 A(TS2)

Rh -0.68096 0.02582 -0.0656 C 1.30508 2.27011 -0.36926 C -2.04186 -0.39637 1.47572 C -2.30683 -1.26345 0.39410 C -2.08327 0.74303 -1.50540 C -2.08782 1.63204 -0.41761 C -2.83268 0.83480 1.83560 C -3.49017 -1.11433 -0.54366 C -3.12710 -0.30409 -1.78652 C -3.18357 1.69386 0.62284 H -1.48095 -0.81440 2.32163 H -1.46822 1.02507 -2.37290 H -1.47346 2.53357 -0.51777 H -3.7919 0.55335 2.40884 H -2.21454 1.42768 2.53757 H -3.32923 2.73913 0.94055 H -4.02765 0.15470 -2.24175 H -2.71855 -0.98068 -2	о`	0.72824	1.42254	-1.08762	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rh	-0.68096	0.02582	-0.06561	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	1.30508	2.27011	-0.36926	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-2.04186	-0.39637	1.47572	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ċ	-2.30683	-1.26345	0.39410	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ċ	-2.08327	0.74303	-1.50540	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ċ	-2.08782	1.63204	-0.41761	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ĉ	-2.83268	0.83480	1.83560	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ĉ	-3.49017	-1.11433	-0.54366	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ĉ	-3 12710	-0 30409	-1 78652	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	c	-3 18357	1 69386	0.62284	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	н	-1 48095	-0.81440	2 32161	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	н	-1 91831	-2 28589	0.48114	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	н	-1 /6822	1.02507	-2 37296	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ព ប	1 47346	2 53837	-2.37290	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	п п	2 72010	0.55225	2 40884	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	п u	2 21 454	1 42769	2.40004	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	п	4 22772	0.65520	2.33334	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	п	-4.33/72	-0.03320	-0.00005	
H -4.02765 0.13470 -2.24175 H -2.71855 -0.98068 -2.55775 H -3.32923 2.73913 0.94055 H -3.32923 2.73913 0.94055 H -4.14553 1.38309 0.18090 C 1.17240 -1.83999 -0.46928 C 2.34967 -1.19982 -0.92349 C 1.98385 -0.48161 1.24416 C 2.88208 -0.43811 0.12508 C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 2.67186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.42700 -2.86959 -1.25541 C 0.42700 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 </td <td>H</td> <td>-3.84270</td> <td>-2.11417</td> <td>-0.84505</td> <td></td>	H	-3.84270	-2.11417	-0.84505	
H -2.71855 -0.98068 -2.577 H -3.32923 2.73913 0.94055 H -4.14553 1.38309 0.18090 C 1.17240 -1.83999 -0.46922 C 2.34967 -1.19982 -0.92349 C 1.98385 -0.48161 1.24416 C 2.88208 -0.43811 0.12508 C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.32050 C C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 <	H	-4.02/05	0.15470	-2.24175	
H -3.32923 2.73913 0.94053 H -4.14553 1.38309 0.18090 C 1.17240 -1.83999 -0.46928 C 2.34967 -1.19982 -0.92349 C 1.98385 -0.48161 1.24416 C 2.88208 -0.48161 1.24416 C 2.88208 -0.48311 0.12508 C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 4.07595 0.44309 -0.00271 C 2.87186 -1.21497 -2.32050 C 0.40377 -2.38921 0.97115 C 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402	H	-2./1855	-0.98068	-2.55778	
H -4.14553 1.38309 0.18090 C 1.17240 -1.83999 -0.46928 C 2.34967 -1.19982 -0.92349 C 2.34967 -1.19982 -0.92349 C 1.98385 -0.48161 1.24416 C 2.88208 -0.43811 0.12508 C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 4.07595 0.44309 -0.00271 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.875151 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81902 H 2.65311 3.94244 -0.47402 <td>H</td> <td>-3.32923</td> <td>2.73913</td> <td>0.94055</td> <td></td>	H	-3.32923	2.73913	0.94055	
C 1.17240 -1.83999 -0.46928 C 2.34967 -1.19982 -0.92349 C 1.98385 -0.48161 1.24416 C 2.88208 -0.43811 0.12508 C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68206 H 1.58797 0.82244 1.01479 C 2.39268 -0.28308 2.68205 H 1.58797 0.82244 1.01479 C 4.07595 0.44309 -0.00271 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81902 H 2.65311 3.94244 -0.47402	H	-4.14553	1.38309	0.18090	
C 2.34967 -1.19982 -0.92345 C 1.98385 -0.48161 1.24416 C 2.88208 -0.43811 0.12508 C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 4.07595 0.44309 -0.00271 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81902 H 2.65311 3.94244 -0.47402 H 3.15570 0.02692 3.30529 H 2.81035 -1.19866 3.13913 H 3.15570 0.50724 2.78190	C	1.1/240	-1.83999	-0.46928	
C 1.98385 -0.48161 1.24416 C 2.88208 -0.43811 0.12508 C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 2.39268 -0.28308 -0.60271 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224	C	2.34967	-1.19982	-0.92349	
C 2.88208 -0.43811 0.12508 C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05244 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.00860 -1.89232 2.85580 <	C	1.98385	-0.48161	1.24416	
C 0.91074 -1.43184 0.87453 C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263	C	2.88208	-0.43811	0.12508	
C 2.39268 -0.28308 2.68200 H 1.58797 0.82244 1.01479 C 4.07595 0.44309 -0.00271 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263	С	0.91074	-1.43184	0.87453	
H 1.58797 0.82244 1.01479 C 4.07595 0.44309 -0.00271 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.03529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85586 H -0.44856 -3.00074 1.58263 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444	С	2.39268	-0.28308	2.68200	
C 4.07595 0.44309 -0.00271 C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81902 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263 H -0.44856 -3.00074 1.58263 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 <td>Н</td> <td>1.58797</td> <td>0.82244</td> <td>1.01479</td> <td></td>	Н	1.58797	0.82244	1.01479	
C 2.87186 -1.21497 -2.32050 C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81902 H 2.65311 3.94244 -0.47402 H 2.65311 3.94244 -0.47402 H 2.65315 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263 H -0.44706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 0.02292 -2.46491 -2.20163 <td>С</td> <td>4.07595</td> <td>0.44309</td> <td>-0.00271</td> <td></td>	С	4.07595	0.44309	-0.00271	
C 0.42700 -2.86959 -1.25541 C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81902 H 2.65311 3.94244 -0.47402 H 2.65311 3.94244 -0.47402 H 3.15570 0.02692 3.30529 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263 H -0.44856 -3.00074 1.58263 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 2.02726 -1.45792 2.25163	С	2.87186	-1.21497	-2.32050	
C 0.40377 -2.38921 1.91771 O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 2.0229 -2.46491 -2.20163	С	0.42700	-2.86959	-1.25541	
O 1.52203 2.08928 0.87515 C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05244 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263 H -0.44706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20164 H 0.02292 -2.46491 -2.20164	С	0.40377	-2.38921	1.91771	
C 1.74848 3.56477 -0.97098 H 1.91344 3.46222 -2.05244 H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 2.0229 -2.46491 -2.20163	0	1.52203	2.08928	0.87515	
H 1.91344 3.46222 -2.05240 H 0.94705 4.30751 -0.81902 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 2.02126 -1.45720 2.25163	С	1.74848	3.56477	-0.97098	
H 0.94705 4.30751 -0.81904 H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58263 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20160 H 2.02726 -1.45792 2.28164	Н	1.91344	3.46222	-2.05240	
H 2.65311 3.94244 -0.47402 H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85588 H -0.44856 -3.00074 1.58263 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 2.02162 -2.46491 -2.20163	Н	0.94705	4.30751	-0.81904	
H 1.53505 0.02692 3.30529 H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58262 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 2.32165 -1.15770 -2.32163	Н	2.65311	3.94244	-0.47402	
H 2.81035 -1.19986 3.13913 H 3.15570 0.50724 2.78190 H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58262 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 1.15770 -2.32163	Н	1.53505	0.02692	3.30529	
H 3.15570 0.50724 2.78190 H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58262 H -0.44856 -3.00074 1.58262 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 1.15720 -2.25163	Н	2.81035	-1.19986	3.13913	
H 1.20789 -3.10025 2.19224 H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58262 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 2.37266 1.15772 2.32163	Н	3.15570	0.50724	2.78190	
H 0.10860 -1.89232 2.85580 H -0.44856 -3.00074 1.58262 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.69444 H 0.02292 -2.46491 -2.20163 H 2.37266 1.15772 2.25163	Н	1.20789	-3.10025	2.19224	
H -0.44856 -3.00074 1.58262 H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.6944 H 0.02292 -2.46491 -2.20160 H 2.07206 -1.5772 -2.2515	Н	0.10860	-1.89232	2.85580	
H 1.08894 -3.70862 -1.53900 H -0.41706 -3.29878 -0.6944 H 0.02292 -2.46491 -2.20160 H 1.5772 -2.25165	Н	-0.44856	-3.00074	1.58262	
H -0.41706 -3.29878 -0.6944 H 0.02292 -2.46491 -2.20168 H 2.07206 115772 -2.2515	Н	1.08894	-3.70862	-1.53906	
H 0.02292 -2.46491 -2.20168	Н	-0.41706	-3.29878	-0.69446	
II 2.07206 1.15770 2.2515	Н	0.02292	-2.46491	-2.20168	
п 5.97500 -1.15772 -2.5515.	Н	3.97306	-1.15772	-2.35151	
Н 2.57666 -2.12501 -2.86840	Н	2.57666	-2.12501	-2.86846	
Н 2.49833 -0.35358 -2.90946	Н	2,49833	-0.35358	-2.90946	
H 4.27936 1.01437 0.91641	H	4.27936	1.01437	0.91641	
H 4.98361 -0.14476 -0.22914	н	4.98361	-0.14476	-0.22914	
H 3 97208 1 16778 -0 83377	H	3.97208	1.16778	-0.83377	

54 A(Prod)

0	2 45839	-2 61101	1 13065
Rh	-0 40943	0 48454	0.04835
C	2 51228	-2 75328	-0.07357
c	1 40231	0.07700	1 17068
č	2 34084	-0.97700	-1.17008
c	1 25206	-0.02114	1 97559
C	-1.33200	-0.02550	1.67336
C	-0.55946	-1.12981	1.40//3
C	-1.32822	-2.38321	-0.01/5/
C	-3.35590	-0.34413	0.37541
C	-2.85370	0.07454	1./5401
C	-1.14592	-2.41637	0.90447
Н	-1.05296	-0.87169	-2.21085
Н	-2.63288	0.77399	-1.40881
Н	-0.93019	0.60562	2.67278
Н	0.40299	-1.24462	1.98792
Н	-2.22641	-2.96098	-0.91892
Н	-0.48076	-2.89619	-1.10066
Н	-3.58845	-1.42381	0.35541
Н	-4.31006	0.16310	0.15474
Н	-3.35752	-0.50036	2.55870
Н	-3.12714	1.13085	1.93253
Н	-0.48695	-3.25847	1.17850
н	-2.10719	-2.62930	1 40846
C	-0.10548	2.71732	0.07377
č	0.91562	2.08848	0.86093
č	1 25231	1 / 19/3	-1 32/33
c	1 78037	1 33070	0.02030
č	0.05263	2 23344	1 26321
c	1.82216	0.87102	2 58720
U U	1.02310	1 22157	-2.36/39
п	1.28200	-1.32137	-0.44062
C	3.00805	0.71180	0.41657
C	1.19903	2.51/18	2.30602
C	-1.14122	3.6//65	0.55303
C	-0.74126	2.64558	-2.45525
0	1.84007	-1.98434	-0.92479
С	3.31587	-3.79636	-0.77031
Н	3.93933	-4.34289	-0.05244
Н	2.63649	-4.49946	-1.27791
Н	3.94352	-3.33718	-1.54880
Н	1.07499	0.31281	-3.17519
Н	2.18724	1.68401	-3.24321
Н	2.67062	0.19485	-2.40252
Н	-0.22531	3.44276	-3.02176
Н	-0.89693	1.81040	-3.15872
Н	-1.73156	3.03982	-2.17713
Н	-0.84399	4.72913	0.38317
Н	-2.10726	3.53177	0.04032
Н	-1.32651	3.57077	1.63453
н	2.00787	3 05906	2,44225
н	0.31986	2 69668	2 84932
н	1 53125	1 30785	2.04932
н	3 5/256	0 12172	_0 38078
и П	3.54550	1 18062	0.73672
п u	2.19019	1.40002	0.73023
п	2.93314	0.03422	1.2//1/

34 B(TS1)

D(1	51)		
Rh	0.65116	-0.81495	-2.80979
С	-1.26983	2.45435	-0.80838
С	-0.95253	3.88483	-0.44165
С	1.88456	-2.04111	-1.70227
С	1.11761	-2.82588	-2.61165
С	1.49954	-1.09328	-4.70401
С	2.44454	-0.46489	-3.87038
С	3.33734	-1.67859	-1.86896
С	1.69190	-3.46008	-3.86456
С	1.50246	-2.55328	-5.08099
С	3.64614	-1.17042	-3.27698
Н	-0.08227	4.24270	-1.01395
Н	-1.81004	4.54968	-0.61658
Н	-0.67093	3.93321	0.62310
Н	1.53455	-2.01668	-0.65868
Н	0.22715	-3.32394	-2.19713
Н	0.91343	-0.43927	-5.36915
Н	2.51028	0.63205	-3.93411
Н	3.98531	-2.53434	-1.59443
Н	3.56275	-0.88596	-1.13462
Н	2.75871	-3.69307	-3.70454
Н	1.20069	-4.42993	-4.04206
Н	2.26752	-2.75655	-5.85586
Н	0.53117	-2.77513	-5.55527
Н	4.50185	-0.47716	-3.24526
Н	3.95853	-1.99722	-3.93728
0	-2.42395	2.13436	-1.12904
0	-0.28535	1.64019	-0.74627
0	-0.86744	-0.71959	-1.31679
Н	-0.71740	0.28044	-1.05360
С	-1.00269	-1.49188	-0.14822
Н	-1.98771	-1.31209	0.31806
Н	-0.94011	-2.56426	-0.39341
Н	-0.22495	-1.25593	0.60115

34 B(TS2)

Rh	0.40964	-0.87625	-3.33087
С	-0.94007	2.14758	-0.22683
С	-0.27657	3.32158	0.42111
С	1.68143	-1.41572	-1.80394
С	1.13899	-2.58477	-2.41294
С	1.49110	-1.62885	-4.97594
С	2.24275	-0.60761	-4.36908
С	3.07243	-0.87854	-2.01847
С	1.92686	-3.49698	-3.33590
С	1.73700	-3.10769	-4.80346
С	3.45822	-0.84980	-3.49794
Η	0.10424	4.00909	-0.35011
Н	-0.97497	3.85217	1.08084
Η	0.59522	2.98029	1.00150
Н	1.21847	-1.09618	-0.85716
Η	0.30272	-3.06546	-1.88344
Н	0.90096	-1.35323	-5.86436
Н	2.16247	0.39646	-4.81349
Н	3.80929	-1.44870	-1.41822
Н	3.08983	0.14924	-1.61363
Н	2.99396	-3.47619	-3.05467
Н	1.60259	-4.53896	-3.18372
Н	2.59778	-3.43935	-5.41743
Н	0.85958	-3.63975	-5.21041
Н	4.20215	-0.05581	-3.67353
Η	3.95383	-1.78935	-3.79577
0	-2.09508	1.82061	0.00267
0	-0.16151	1.50161	-1.05894
0	-1.17532	-0.51251	-2.06939
Η	-0.66407	0.65963	-1.50152
С	-1.59046	-1.32384	-1.01580
Н	-2.48761	-0.89601	-0.52558
Н	-1.86904	-2.34265	-1.35084
Η	-0.82489	-1.43774	-0.21629
26			
B(In	1t2)		
Rh	-1.62562	0.14415	-0.00133
0	0.01592	1 27759	-0 13269
č	0.10455	2.64019	-0.33085
Ĉ	-2.87448	1.49476	-0.92988
Ĉ	-3.00197	1.61130	0.48615
C	-3.08291	-1.11517	0.88815
C	-3.19614	-1.20992	-0.51044
С	-3.87022	0.81752	-1.83732
С	-4.20698	1.11419	1.26425
С	-3.98926	-0.30794	1.78528
С	-4.30442	-0.55060	-1.30769
Н	-0.58562	3.24158	0.30484
Н	1.12487	3.01039	-0.09045
Н	-0.08787	2.95807	-1.38182
Н	-2.25656	2.25561	-1.43148
Н	-2.44878	2.43844	0.95794
Н	-2.51733	-1.91286	1.39618
Н	-2.70235	-2.06815	-0.99145
Н	-4.74392	1.47555	-2.01825
Н	-3.38535	0.69301	-2.82153
Н	-5.10802	1.16940	0.62883
Н	-4.40253	1.79381	2.10960
Н	-4.95730	-0.82392	1.94461
Н	-3.51183	-0.26024	2.77969
Н	-4.59273	-1.20079	-2.14991
н	-5 21085	-0 46060	-0 68437

52 B(Int3)

0	1.71967	-1.66431	-0.05744
Rh	-0.04329	-0.88141	-0.63861
С	2.06216	-2.99218	0.08441
С	-1.41090	0.11757	-1.90903
C	-2.01657	-0.05257	-0.65124
Ċ	-1.10048	-2.63153	-0.33350
Ĉ	-0.70908	-2.53806	-1.70030
č	-1 69346	-0 71949	-3 13268
č	-3 09131	-1.08308	-0.36786
c	-2 48905	-2 37250	0.19147
č	-1 67030	-2 21838	-2 82974
н	3 16/31	-3 10791	0.17350
н	1 76805	-3 64177	-0.77216
н	1.63669	-3 /7/09	0.99519
н	-0.96692	1 103/13	-2 11851
и п	1 08760	0.80746	0.02520
п u	-1.98709	2 28084	0.03339
п	-0.49371	-3.20904	1.00272
п	0.16347	-3.11149	-1.99373
п	-2.03234	-0.42420	-3.00344
п	-0.91403	-0.48780	-5.87950
н	-3.00934	-1.28429	-1.28020
п	-3.61622	-0.07004	0.55088
н	-3.140/1	-3.24370	-0.00217
н	-2.41458	-2.29585	1.29055
Н	-1.3/248	-2.77604	-3./3242
Н	-2.6/896	-2.58/40	-2.5/483
C	0.44767	2.34029	0.47639
C	0.10405	2.16671	1.90437
C	2.17934	1.17929	1.51781
С	1.10808	1.49633	2.52429
С	1.64796	1.74812	0.22980
С	3.55078	1.72898	1.89447
Н	2.26338	0.07653	1.41097
С	1.23408	1.10344	3.95201
С	-1.16227	2.68842	2.48942
С	-0.38744	3.15377	-0.44925
С	2.43555	1.71528	-1.03263
Н	4.30824	1.48251	1.13206
Н	3.51870	2.82886	1.99596
Η	3.90314	1.31039	2.85187
Η	3.27475	2.43712	-1.01592
Н	2.88931	0.72150	-1.19655
Н	1.82477	1.95504	-1.91851
Н	-0.43990	4.20336	-0.10623
Н	0.01475	3.16972	-1.47422
Н	-1.43335	2.80074	-0.49698
Н	-1.24839	2.46469	3.56396
Н	-1.24447	3.78419	2.37394
Н	-2.05077	2.26114	1.98958
Н	1.49021	0.03344	4.05689
Н	2.04354	1.66041	4.46097
Н	0.30932	1.28173	4.52293

52 B(TS3)

2(1)			
0	-0.52742	1.93763	0.20851
Rh	0.57463	0.15661	-0.02558
С	-0.50803	2.77103	1.32236
С	1.76285	-1.16977	-1.16397
С	1.75259	-1.62707	0.16599
С	2.09582	0.89591	1.24534
С	2.36981	1.30879	-0.07537
Ĉ	2.88675	-0.41490	-1.82677
č	2 92077	-1 48000	1 12035
c	2.72017	0.22677	1.12035
č	3 44717	0.70374	0.04083
п	1 27102	2 16752	1 20774
п	-1.3/193	3.40/33	1.29774
H	0.39619	3.41239	1.36160
H	-0.565/1	2.22156	2.28/12
Н	1.09372	-1.67798	-1.8/166
Н	1.06911	-2.44993	0.40635
Н	1.62313	1.63403	1.90729
Н	2.05879	2.32854	-0.34430
Н	3.68723	-1.11091	-2.14882
Н	2.48386	0.02200	-2.75798
Н	3.86968	-1.47037	0.55715
Н	2.97466	-2.36952	1.76930
Н	3.75980	0.10595	2.37446
Н	2.16601	-0.46097	2.86701
н	3 88465	1 48919	-1 58721
н	4 27660	0.33699	-0.32146
C	1 44388	1 27804	0.11816
c	1 02066	1 1 2 0 0 1	-0.41810
C	-1.93900	-1.16901	0.90101
Č	-2.12929	0.04038	-0.20904
C	-2.74275	-0.07798	1.07164
C	-1.97882	-0.189/5	-1.12563
С	-3.8/181	1.52040	-0.66578
Н	-1.74532	1.41355	0.02221
С	-3.46253	0.42712	2.27400
С	-1.60414	-2.19063	2.01692
С	-1.11866	-2.59707	-1.05963
С	-1.86520	0.08695	-2.58270
Н	-3.60198	2.10916	-1.55870
Н	-4.77776	0.93907	-0.92284
Н	-4.16432	2.24667	0.11211
Н	-2.82568	-0.08197	-3.10649
н	-1 59632	1 14244	-2 77013
н	-1 10583	-0 54107	-3.07576
н	-2 02940	-3 22510	-1.08721
ц	0.78736	2 40025	2 10446
и п	0.26050	2 10204	-2.10440
п u	-0.30030	-3.17204	-0.52070
п	-2.13002	-1.900/8	2.90310
н	-1.8//29	-3.21/0/	1./1100
н	-0.52247	-2.21450	2.24823
Н	-3.1/967	1.46/93	2.51/52
Н	-4.55784	0.44015	2.11941
Н	-3.26703	-0.18304	3.17006
52 B(Prod)

0	2.54912	-0.41307	-1.80447
Rł	n -0.32465	0.08115	0.18317
С	3.80648	-0.62519	-1.22204
Ċ	-0.44825	-1.84835	-0.73556
č	-1.53491	-1.67191	0.15994
č	0.04362	-0 58837	2 15810
\tilde{c}	1 14630	-0 97794	1 35300
c	0 73939	-2 73530	-0.43491
c	1 61743	2.75550	1 50350
c	-1.01743	1 50228	2.62660
C	-1.00423	-1.30228	2.02009
п	1.36073	-2.41093	0.91780
п	4.14/51	0.25116	-0.00845
H	4.54481	-0.76305	-2.02841
H	3.84195	-1.53333	-0.58855
H	-0.66481	-1./2026	-1.80884
H	-2.50232	-1.39696	-0.28632
Н	0.19692	0.28899	2.80481
Н	2.05312	-0.35892	1.45272
Н	0.45154	-3.80555	-0.49571
Η	1.48402	-2.58481	-1.23428
Η	-1.08034	-3.33976	1.45385
Η	-2.66624	-2.64010	1.71961
Η	-0.73762	-2.11578	3.49225
Η	-1.87561	-0.85782	3.01302
Η	2.46601	-2.61177	0.86955
Η	1.00546	-3.10061	1.70084
С	-1.60175	1.41764	-1.05294
С	-1.63245	1.91311	0.29127
С	0.54077	2.13471	-0.55808
С	-0.28823	2.27892	0.62296
С	-0.26769	1.60755	-1.58930
С	1.96308	2.57217	-0.63495
Н	1.88589	-0.26811	-1.09971
С	0.17809	2.90229	1.89392
С	-2.83112	2.00923	1.17359
С	-2.77181	0.97175	-1.86151
С	0.09925	1.36206	-3.01223
Н	2.47265	2.17654	-1.52628
Н	2.04098	3.67480	-0.66898
Н	2.53999	2.25009	0.24910
Н	-0.37868	2.10407	-3.67829
н	1,18515	1.42051	-3.17722
Н	-0.23631	0.37091	-3.36261
н	-3.12852	1.78068	-2.52539
н	-2.52208	0.11730	-2.51291
н	-3.62396	0.67512	-1.22975
н	-2.55640	1.97781	2.24090
н	-3.39124	2.94949	1.01538
н	-3.53921	1.18221	0.99548
н	1,17915	2,54356	2.18771
н	0 25411	4 00071	1 79423
Н	-0.50729	2.70246	2.73272

References

[1] R. Uson, L. A. Oro, J. A. Cabeza, H. E. Bryndza, M. P. Stepro, in *Inorg. Synth.*, John Wiley & Sons, Inc., **2007**, pp. 126-130.

[2] K. Shibata, S. Natsui, N. Chatani Org. Lett., 2017, 19, 2234–2237

[3] B. Ye, N. Cramer, Science 2012, 338, 504-506

- [4] B. Ye, N. Cramer, J. Am. Chem. Soc. 2013, 135, 636-639
- [5] Y. Sun, N. Cramer, Chem. Sci. 2018, 9, 2981-2985
- [6] G. Smits, B. Audic, M. D. Wodrich, C. Corminboeuf, N. Cramer, Chem. Sci. 2017, 8, 7174-7179

[7] S.-G. Wang, S.-H. Park, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 5459-5462

[8] S. Miaskiewicz, J. H. Reed, P. A. Donets, C. C. Oliveira and N. Cramer, *Angew. Chem. Int. Ed.*, **2018**, *57*, 4039-4042

- [9] B. Ye, PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2015
- [10] B. Ye, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 7896-7899
- [11] Y. Sun, N. Cramer, Angew. Chem. Int. Ed. 2017, 56, 364-367
- [12] J. Zheng, S-B. Wang, C. Zheng, S-L. You, Angew. Chem. Int. Ed. 2017, 56, 4540-4544
- [13] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157-167.
- [14] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
- [15] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [16] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09* (Gaussian, Inc., Wallingford CT, 2009).
- [18] S. E. Wheeler, K. N. Houk, J. Chem. Theory Comput. 2010, 6, 395-404.
- [19] S. N. Steinmann, C. Corminboeuf, J. Chem. Theory Comput. 2010, 6, 1990-2001.

- [20] S. N. Steinmann, C. Corminboeuf, Chimia 2011, 65, 240-244.
- [21] S. N. Steinmann, C. Corminboeuf, J. Chem. Phys. 2011, 134, 044117.
- [22] S. N. Steinmann, C. Corminboeuf, J. Chem. Theory Comput. 2011, 7, 3567-3577.
- [23] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
- [24] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
- [25] C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, *Theor. Chem. Acc.* **1998**, *99*, 391-403.
- [26] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931-967.
- [27] S. Grimme, Chem. Eur. J. 2012, 18, 9955-9964.
- [28] I. Funes-Ardoiz, R. S. Paton. **2016**. Goodvibes: Goodvibes v1.0.2. https://doi.org/10.5281/zenodo.595246.
- [29] A. Klamt, WIREs Comput. Mol. Sci. 2011, 1, 699-709.