Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supporting Information

for

Nickel-catalyzed Cyanation of Aryl Halides and Triflates Using Acetonitrile via C—CN Bond Cleavage Assisted by 1,4-Bis(trimethylsilyl)-2,3,5,6-tetramethyl-1,4dihydropyrazine

Yohei Ueda, Nagataka Tsujimoto, Taiga Yurino, Hayato Tsurugi,* and Kazushi Mashima*

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan

Contents:

- **1. General Information**
- 2. Modified Procedure for Large-scale Synthesis of Si-Me4-DHP
- 3. General Procedure for Catalytic Cyanation of Aryl Halides and Aryl Triflates
- 4. Preparation and Characterization of Ni(C₆H₃-4-OMe-2-Me)Br(L5) (6)
- 5. Stoichiometric Reaction of Complex 6 in the Presence of Reductants
- 6. Catalytic Reaction of Si-Me4-DHP with Ni(cod)2
- 7. Catalytic Cyanation of 4-Bromoanisole (1a) in Benzylnitrile and Its Reaction Mechanism
- 8. Characterization of Aryl Nitriles
- 9. X-Ray Crystallographic Analysis
- 10. ¹H- and ¹³C-NMR Spectra of Aryl Nitriles
- 11. References

1. General Information

All manipulations for involving air- and moisture-sensitive compounds were carried out under argon atmosphere using the standard Schlenk technique and argon-filled glove Si-Me₄-DHP was prepared by the modified procedure of the literature:^{S1} the box. reaction details for the scale-up synthesis is described in Section 2. Other organosilicon reducing reagents, ^{S1} [Ni(MeCN)₆](BF₄)₂, ^{S2} [Ni(L5)₃](BF₄)₂, ^{S3} 4,7-di(9H-carbazol-9-yl)-1,10-phenanthroline,^{S4} dipyrido[3,2-a:2',3'-c]phenazine,^{S5} and 11,12difluorodipyrido[3,2-a:2',3'-c]phenazine^{S5} were prepared by following the literatures. The other nickel precursors (NiCl₂, NiBr₂, Ni(acac)₂, Ni(OAc)₂·4H₂O, Ni(NO₃)₂·6H₂O, and Ni(cod)₂) were purchased and used as received. Aryl halides were purchased and, if necessary, purified by distillation over CaH₂. Aryl triflates were prepared by following the literature.^{S6} MeCN, toluene, hexane, diethyl ether, and THF were dried and deoxygenated by using Grubbs colomn (Glass Counter Solvent Dispending System, Nikko Hansen & Co., Ltd.). Benzylnitrile, benzene, C₆D₆, THF-d₈, acetone-d₆, and CD₃CN were distilled over CaH₂ and thoroughly degassed by trap-to-trap distillation before use. CDCl₃ was used as received. ¹H NMR spectra were measured on a Bruker AV400M (400 MHz) spectrometer at 303 K in 5 mm NMR tubes. Data were reported as follows: chemical shifts in ppm from tetramethylsilane or the residual solvent as an internal standard, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, tt = triplet of triplets, tq = triplet of quartets, ddd = doublet of doublets, br = broad, and app = apparent), coupling constants (Hz), and assignment. ¹³C NMR spectra were measured on a Bruker AV400M (100 MHz) spectrometer at 303 K with complete proton decoupling. Mass spectra were recorded on a JEOL JMS-700 spectrometer. GC analyses were recorded on a Shimadzu GC-2014 gas chromatograph with J&W Scientific DB-5 column (Length: 30 m, Diam.: 0.250 mm). The elemental analysis was recorded by using Perkin Elmer 2400 at the Faculty of Engineering Science, Osaka University. Flash column chromatography was performed using silica gel 60 (0.040-0.063 mm, 230-400 mesh ASTM).

2. Modified Procedure for Large-scale Synthesis of Si-Me4-DHP

Caution: All manipulations should be conducted under inert atmosphere.

In an oven-dried 500 mL round-bottom flask, freshly cutted potassium pieces (15.8 g, 0.404 mol) was suspended in THF (150 mL). Chlorotrimethylsilane (51.3 mL, 0.404 mol) was added to the THF suspension. In a 200 mL Schlenk, 2,3,5,6-tetramethylpyrazine (18.4 g, 0.135 mol) was dissolved in THF (100 mL), and transferred slowly to the THF suspension containing potassium pieces using cannula at rt. After stirring for 1 week, all the solvent was removed under vacuum. The residue was suspended in hexane (100 mL), filtered through Celite[®], then extracted with hexane (50 mL×4). The filtrate was concentrated, giving the target compound, *Si*-Me₄-DHP as a white crystalline solid in 78% yield (29.8 g). The Celite[®] pad must be carefully quenched due to the small contamination of potassium.

3. General Procedure for Catalytic Cyanation of Aryl Halides and Aryl Triflates 3-1. Optimization of the Reaction Conditions

To a solution of 4-bromoanisole (1a) (18.7 mg, 0.100 mmol), nickel precursor (5.00 μ mol) and ligand in MeCN (4.00 mL), was added 2.5 equiv of *Si*-Me₄-DHP (70.6 mg, 0.250 mmol) in a 30 mL Schlenk. This solution was stirred at 80 °C for 24 h, and quenched by adding EtOAc (1.00 mL). The obtained mixture was concentrated under vacuum and poured onto short pat of Celite[®] with EtOAc, and collected eluent was concentrated. The ¹H NMR yield was determined by the measurement of the obtained crude mixture in CDCl₃ using 1,3,5-trimethoxybenzene as an internal standard.

Table S1. Screening of Ligands

Reaction conditions: **1a**; 0.10 mmol (0.025 M), *Si*-Me₄-DHP; 0.25 mmol. ¹H NMR yields using 1,3,5-trimethoxybenzene as an internal standard.

Table S2. Screening of Nickel Catalysts

Br -	Ni cat. (5 mol%) L5 (5 mol%) <i>Si</i> -Me ₄ -DHP (2.5 equiv)	→ CN
MeO 1a	MeCN 80 °C, 24 h	MeO 3a
Entry	Ni cat.	Yield (%) ^a
1	[Ni(MeCN) ₆](BF ₄) ₂	91
2	NiCl ₂	37
3	NiBr ₂	15
4	Ni(acac) ₂	81
5	Ni(OAc) ₂ ·4H ₂ O	0
6	Ni(NO ₃) ₂ ·6H ₂ O	38
7	Ni(cod) ₂	68

Reaction conditions: **1a**; 0.10 mmol (0.025 M), reductant; 0.25 mmol. ^{a 1}H NMR yields using 1,3,5-trimethoxybenzene as an internal standard.

Table S3. Screening of Reductants

Br	[Ni(MeCN) ₆](BF ₄) ₂ (5 mol%) L5 (5 mol%) Reductant (2.5 equiv)	CN
MeO 1a	MeCN 80 °C, 24 h	MeO 3a
Entry	Reductant	Yield (%) ^a
1	Si-Me ₄ -DHP	91
2	Si-Me ₂ -DHP	21
3	Si-DHP	0
4	Si-DHBP	0
5	Mn	0
6	Zn	0
7	TDAE	0

Reaction conditions: **1a**; 0.10 mmol (0.025 M), reductant; 0.25 mmol. ^{*a* 1}H NMR yield using 1,3,5-trimethoxybenzene as an internal standard.

Si-DHBP

Table S4. Effect of Catalyst Concentration

Br	[Ni(MeCN) ₆](BF ₄) ₂ (5 mol%) L5 (5 mol%) <i>Si</i> -Me ₄ -DHP (2.5 equiv)	CN
MeO 1a	MeCN (x mL) 80 °C, 24 h	MeO 3a
Entry	MeCN (x mL)	Yield (%) ^a
1	2.0	80
2	3.0	84
3	4.0	91
4	5.0	81

Reaction conditions: 1a; 0.10 mmol, Si-Me₄-DHP; 0.25 mmol.

^{a 1}H NMR yield using 1,3,5-trimethoxybenzene as an internal standard.

3-2. Substrate Scope of Catalytic Cyanation of Aryl Halides and Aryl Triflates

[Condition A for Aryl Bromides 1]

To a solution of aryl bromides (1) (0.400 mmol), $[Ni(MeCN)_6](BF_4)_2$ (2) (0.0200 mmol) and L5 (0.0200 mmol) in MeCN (15.0 mL) was added 2.5 equiv of *Si*-Me4-DHP (282.6 mg, 1.00 mmol) in a 80 mL Schlenk. This solution was stirred at 80 °C for 24 h, and then quenched by adding EtOAc (5.00 mL). The obtained crude mixture was concentrated under vacuum. The nitrile product was purified by silica gel flush column chromatography. All nitrile compounds were known, and their NMR data were superimposed to the literature.

Cyanation of electron-deficient bromoarenes listed in Table S5 was unsuccessful because of the undesired side reactions.

Table S5. Limitations of Substrate Scope

[Condition B for Aryl Triflates 4]

To a solution of aryl triflate (4) (0.400 mmol), $[Ni(MeCN)_6](BF_4)_2$ (2) (0.0600 mmol, 15 mol% to 4) and L5 (0.0600 mmol, 15 mol% to 4) in MeCN (15.0 mL) was added 2.5 equiv of *Si*-Me₄-DHP (282.6 mg, 1.00 mmol) in a 80 mL Schlenk. This solution was stirred at 100 °C for 24 h, and then quenched by adding EtOAc (5.00 mL). The obtained crude mixture was concentrated under vacuum. The nitrile product was purified by silica gel flush column chromatography. All nitrile compounds were known, and their NMR data were superimposed to the literature.

[Condition C for Aryl Chlorides 5]

For 4-chloroanisole (5a), the reaction was conducted under the same conditions for aryl bromides (Condition A). For other aryl chlorides (5t-5v), the reactions were conducted under the same conditions for aryl triflates (Condition B)

4. Preparation and Characterization of Ni(C₆H₃-4-OMe-2-Me)Br(L5) (6)

To a yellow solution of Ni(cod)₂ (600 mg, 2.18 mmol) in toluene (15.0 mL), were added 1,10-phenanthroline (432 mg, 2.40 mmol, 1.1 equiv) and 4-methoxy-2methylbromobenzene (2.10 mL, 15.0 mmol, 6.9 equiv) at - 40 °C. The reaction mixture was gradually warmed up to rt and stirred for 10 h. The resulting dark purple suspension was washed with toluene (10.0 mL) for three times, with diethyl ether (10.0 mL), and hexane (10.0 mL). Drying the purple precipitates *in vacuo* gave complex **6** as purple powders (693 mg, 76% yield). Single crystals of **6** suitable for X-ray diffraction study were obtained by vapor diffusion of hexane into a concentrated THF / benzene solution at rt. Because of low solubility of complex **6** in THF-*d*₈, benzene-*d*₆, acetone-*d*₆ (solubility: ~1.0 mg in 0.5 mL of solvent), resonances for ¹³C NMR were not clearly detected.

mp 140 °C (decompose).

¹**H** NMR (400 MHz, THF-*d*₈) 9.71 (d, ³*J*(H¹—H²) = 3.7 Hz, 1H, H¹), 8.60 (d, ³*J*(H³—H²) = 8.5 Hz, 1H, H³), 8.55 (d, ³*J*(H⁶—H⁷) = 7.0 Hz, 1H, H⁶), 8.04 (d, ³*J*(H⁴—H⁵) = 8.5 Hz, 1H, H⁵), 7.99 (d, ³*J*(H⁵—H⁴) = 8.5 Hz, 1H, H⁵), 7.92 (app t, 1H, H²), 7.59 (app t, 1H, H⁷), 7.58 (s, 1H, H⁸), 7.36 (d, ³*J*(H¹¹—H¹⁰) = 8.2 Hz, 1H, H¹¹), 6.51 (s, 1H, H⁹), 6.48 (d, ³*J*(H¹⁰—H¹¹) = 8.2 Hz, 1H, H¹⁰), 3.87 (s, 3H, OMe), 3.00 (s, 3H, Me).

Anal. Calcd for $C_{20}H_{17}N_2OBrNi$: C, 54.60; H, 3.89; N, 6.37. Found: C, 53.84; H, 3.76; N, 6.77. We were unable to obtain reasonable elemental analyses because of contamination by nickel black.

Figure S1. ¹H NMR spectrum of complex 6 in THF- d_8 .

5. Stoichiometric Reaction of Complex 6 in the Presence of Reductants

To a solution of complex **6** (22.0 mg, 50 μ mol) in MeCN (4.00 mL), was added a reductant (2.5 equiv) in a 30 mL Schlenk. This mixture was stirred at 80 °C for 24 h, and quenched by adding EtOAc(1.0 mL). ¹H NMR yield was determined by adding 1,3,5-trimethoxybenzene as an internal standard.

Table S6. Stoichiometric Reaction of Complex 6 in the Presence of Reductants

^{*a* 1}H NMR yields using 1,3,5-trimethoxybenzene as an internal standard.

6. Catalytic Reaction of Si-Me4-DHP with Ni(cod)2

To a solution of *Si*-Me₄-DHP (8.5 mg, 30 μ mol) and hexamethylbenzene (1.0 mg, 6.2 μ mol) in CD₃CN (0.50 mL), was added catalytic amount of Ni(cod)₂ (0.8 mg, 3 μ mol). This solution was stand at rt for 24 h, leading to the decomposition of *Si*-Me₄-DHP to give hexamethyldisilane (39% ¹H NMR yield) and Me₄-pyrazine (39% ¹H NMR yield). *Si*-Me₄-DHP was stable in CD₃CN at 80 °C in the absence of Ni(cod)₂.

7. Catalytic Cyanation of 4-Bromoanisole (1a) in Benzylnitrile and Its Reaction Mechanism

To a solution of 4-bromoanisole (1a) (18.7 mg, 0.100 mmol), $[Ni(MeCN)_6](BF_4)_2$ (2) (5.00 µmol) and L5 (5.00 µmol) in benzylnitrile (4.00 mL) was added 2.5 equiv of *Si*-Me₄-DHP (70.6 mg, 0.250 mmol) in a 30 mL Schlenk. This solution was stirred at 80 °C for 24 h, and quenched by adding EtOAc (1.0 mL). GC yield was determined by the measurement of the crude mixture using pentadecane as an internal standard. In this mixture, we found **3a**, 1-benzyl-4-methoxybenzene, and dibenzylketone (12%) is rationally explained by Scheme S1. In this cycle, benzylnitrile further reacts with **G**' to afford **H**', from which 12% of dibenzylketone is formed via reductive elimination from **H**' and subsequent hydrolysis. Additionaly, 33% of 1-benzyl-4-methoxybenzene is formed by the reductive elimination from **E**' to afford **A** with a release of 33% of trimethylsilylisocyanide. Trimethylsilylisocyanide also serves as cyanide source by the reaction with **B**, giving 33% of **3a** with a recovery of **A**. Total amount of **3a** (46%) is consistent with the reaction mechanism as shown in Scheme S1.

Scheme S1. Reaction Mechanism of Ni-catalyzed Cyanation of 1a in Benzylnitrile

Figure S2. GC spectrum for the reaction mixture in benzylnitrile using pentadecane as an internal standard.

8. Characterization of Aryl Nitriles anisonitrile (3a; CAS: 874-90-8) ^{S8}

Isolated as white powder (46.9 mg, 88% yield (condition A); 51.8 mg, 97% yield (condition B); 37.3 mg, 70% yield (condition C)).

¹H-NMR (400 MHz, CDCl₃):δ 7.56 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃):δ 163.0, 134.0, 119.3, 114.8, 104.0, 55.6.

4-(dimethylamino)benzonitrile(3b; CAS: 1197-19-9)^{S9}

Isolated as white powder (40.7 mg, 70% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.44 (d, *J* = 8.7 Hz, 2H), 6.62 (d, *J* = 8.7 Hz, 2H), 3.02 (s, 6H).

¹³C-NMR (100 MHz, CDCl₃): δ 152.6, 133.4, 120.8, 111.5, 97.4, 40.0.

4-(piperidin-1-yl)benzonitrile (3c)^{S10}

Isolated as pale-yellow powder (61.5 mg, 83% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.43 (d, *J* = 8.2 Hz, 2H), 6.81 (d, *J* = 8.2 Hz, 2H), 3.31 (app s, 4H), 1.64 (app s, 6H).

¹³C-NMR (100 MHz, CDCl₃): 8 153.6, 133.5, 120.4, 114.1, 98.9, 48.4, 25.3, 24.3.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₂H₁₄N₂, 186.1157; found, 186.1150.

4-morpholinobenzonitrile (3d)^{S10}

Isolated as yellow oil (66.3 mg, 88% yield (condition A)).

¹H-NMR (400 MHz, CDCl₃):δ 7.50 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 3.88-3.82 (m, 4H), 3.30-3.24 (m, 4H).
¹³C-NMR (100 MHz, CDCl₃):δ 153.6, 133.6, 120.0, 114.2, 101.1, 66.6, 47.4.

HRMS (EI) (m/z): $[M]^+$ calced. for C₁₁H₁₂N₂O, 188.0950; found, 188.0949.

4-butylbenzonitrile (3e)^{S10}

Isolated as colorless oil (53.5 mg, 84% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃ (TMS))**: δ 7.56 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 2.66 (t, *J* = 7.6 Hz, 2H), 1.61 (tt, *J* = 7.6 Hz, 7.5 Hz, 2H), 1.36 (tq, *J* = 7.5 Hz, 7.4 Hz, 2H), 0.93 (t, *J* = 7.4 Hz, 3H).

¹³C-NMR (100 MHz, CDCl₃ (TMS)):δ 148.7, 132.2, 129.3, 119.3, 109.7, 35.9, 33.2, 22.4, 14.0.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₁H₁₃N, 159.1048; found, 159.1046.

4-(*tert*-butyl)benzonitrile (3f; CAS: 4210-32-6)^{S10}

Isolated as pale-yellow oil (50.9 mg, 80% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.58 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 1.32 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): 8 156.7, 132.0, 126.2, 119.2, 109.4, 35.4, 31.0.

4-(trimethylsilyl)benzonitrile (3g)^{S11}

Isolated as pale-yellow oil (53.8 mg, 77% yield (condition A)). ¹H-NMR (400 MHz, CDCl₃):δ 7.67-7.55 (app s, 4H), 0.29 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃):δ 147.4, 133.9, 131.0, 119.1, 112.5, -1.4. HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₄H₁₁NO, 209.0841; found, 209.0839.

4-cyano-1,1'-biphenyl (3h; CAS: 2920-38-9)^{S8}

Isolated as white powder (43.4 mg, 61% yield (condition A); 42.3 mg,59% yield (condition B)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.59 (app d, *J* = 7.0 Hz, 2H), 7.49 (app t, *J* = 7.0 Hz, 2H), 7.43 (app t, *J* = 7.1 Hz, 1H). ¹³**C-NMR (100 MHz, CDCl₃)**:δ 145.8, 139.3, 132.7, 129.2, 128.8, 127.9, 127.4, 119.1,

111.1.

4-cyano-4'-methoxy-1,1'-biphenyl (3i)^{S12}

Isolated as white powder (58.5 mg, 70% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.69 (d, *J* = 8.2 Hz, 2H,), 7.64 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H) 7.01 (d, *J* = 8.6 Hz, 2H), 3.86 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃):δ 160.4, 145.4, 132.7, 131.6, 128.5, 127.2, 119.2, 114.7, 110.3, 55.5.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₀H₁₁NO, 161.0841; found, 161.0840.

benzyl (4-cyanophenyl)carbamate (3k)^{S13}

Isolated as pale-yellow powder (54.4 mg, 54% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.58 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 2H), 7.40-7.35 (m, 5H), 6.92 (br s, 1H), 5.22 (s, 2H).

¹³C-NMR (100 MHz, CDCl₃):δ 152.8, 142.1, 135.6, 128.9, 128.8, 128.6, 119.0, 118.5, 106.6, 67.8.

HRMS (EI) (*m/z*): [M]⁺ calced. for C₁₅H₁₂N₂O₂, 252.0899; found, 252.0900.

4-(benzyloxy)benzonitrile (31; CAS: 52805-36-4)^{S8}

Isolated as white powder (71.9 mg, 86% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.41-7.30 (m, 5H), 7.02 (d, *J* = 8.0 Hz, 2H), 5.12 (s, 2H).

¹³C-NMR (100 MHz, CDCl₃):δ 162.0, 135.8, 134.0, 128.8, 128.4, 127.5, 119.2, 115.6, 104.3, 70.3.

4-(benzyloxy)-3-fluorobenzonitrile (3m)^{S10}

Isolated as white powder (57.0 mg, 63% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**: δ 7.43-7.32 (m, 7H), 7.05 (t, *J* = 8.3 Hz, 1H), 5.21 (s, 2H). ¹³**C-NMR (100 MHz, CDCl₃)**: δ 152.2 (d, *J*_{C-F} = 249.0 Hz), 151.0 (d, *J*_{C-F} = 10.2 Hz), 135.3, 129.7 (d, *J*_{C-F} = 3.6 Hz), 129.0, 128.7, 127.5, 119.9 (d, *J*_{C-F} = 21.1 Hz), 118.1 (d, *J*_{C-F} = 2.7 Hz), 115.5 (d, *J*_{C-F} = 2.2 Hz), 104.5 (d, *J*_{C-F} = 8.2 Hz), 71.4.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₄H₁₀OF, 227.0746; found, 227.0743.

4-methoxy-3-methylbenzonitrile (3n)^{S14}

Isolated as pale-yellow powder (51.8 mg, 88% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.46 (d, *J* = 8.1 Hz, 1H) 7.37 (s, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 3.86 (s, 3H), 2.19 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃):δ 161.2, 133.9, 132.0, 128.2, 119.5, 110.2, 103.4, 55.6, 16.0.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₉H₉NO, 147.0684; found, 147.0680.

4-methoxy-2-methylbenzonitrile (30)^{S14}

Isolated as yellow powder (38.2 mg, 65% yield (condition A)).

¹**H-NMR (400 MHz, CDCl**₃):δ 7.49 (d, *J* = 8.6 Hz, 1H, Ph) 6.79 (s, 1H), 6.76 (d, *J* = 8.6 Hz, 1H, Ph), 3.82 (s, 3H), 2.49 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃):δ 162.8, 144.1, 134.2, 118.6, 115.8, 112.2, 104.6, 55.5, 20.7.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₉H₉NO, 147.0684; found, 147.0681.

4-methoxy-3,5-dimethylbenzonitrile (3p)^{S14}

Isolated as pale-yellow powder (54.9 mg, 85% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.29 (s, 2H), 3.74 (s, 3H), 2.28 (s, 6H).

¹³C-NMR (100 MHz, CDCl₃):δ 160.9, 132.8, 132.6, 119.1, 107.4, 59.4, 16.0.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₀H₁₁NO, 161.0841; found, 161.0840.

4-methoxy-1-naphthonitrile (3q)^{S15}

Isolated as white powder (61.2 mg, 83% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 8.32 (d, *J* = 8.4 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.69 (app t, *J* = 7.5 Hz, 1H), 7.58 (app t, *J* = 7.5 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 4.07 (s, 3H).

¹³**C-NMR (100 MHz, CDCl₃)**:δ 159.6, 134.2, 133.7, 129.1, 126.9, 125.4, 125.1, 122.9, 118.6, 103.5, 102.1, 56.1.

HRMS (FAB) (*m*/*z*): [M+H]⁺ calced. for C₁₂H₁₀ON, 184.0762; found, 184.0758.

2,4-dimethylbenzonitrile (3r)^{S10}

Isolated as white powder (35.4 mg, 67% yield (condition A); 48.8 mg, 93% yield (condition B)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.47 (d, *J* = 7.6 Hz, 1H), 7.12 (s, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 2.50 (s, 3H), 2.37 (s, 3H).

¹³**C-NMR (100 MHz, CDCl₃)**:δ 143.6, 141.8, 132.5, 131.1, 127.1, 118.5, 109.8, 21.8, 20.4.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₉H₉N, 133.0735; found, 133.0731.

3,5-dimethylbenzonitrile (3s)^{S16}

Isolated as white powder (40.0 mg, 75% yield (condition A); 41.6 mg, 78% yield (condition B)).

¹H-NMR (400 MHz, CDCl₃ (TMS)):δ 7.26 (s, 2H), 7.21 (s, 1H), 2.34 (s, 6H).

¹³C-NMR (100 MHz, CDCl₃ (TMS)): 8 139.2, 134.7, 129.8, 119.3, 112.2, 21.1.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₉H₉N, 133.0735; found, 133.0734.

4-((tert-butyldimethylsilyl)oxy)benzonitrile (3t)^{S17}

Isolated as colorless oil (55.0 mg, 59% yield (condition C)).

¹H-NMR (400 MHz, CDCl₃):δ 7.54 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 0.98 (s, 9H), 0.23 (s, 6H).

¹³C-NMR (100 MHz, CDCl₃): 8 159.8, 134.1, 121.0, 119.3, 108.4, 25.6, 18.3, 4.3.

HRMS (FAB) (*m*/*z*): [M+H]⁺ calced. for C₁₃H₂₀NOSi, 234.1314; found, 234.1313.

3-methoxylbenzonitrile (3u; CAS: 1527-89-5)^{S18}

Isolated as white powder (40.9 mg, 77% yield (condition C)).

¹**H-NMR (400 MHz, CDCl₃ (TMS))**:δ 7.39-7.35 (m, 1H), 7.25-7.22 (m, 1H), 7.15-7.11 (m, 2H), 3.83 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃ (TMS)):δ 159.8, 130.4, 124.6, 119.4, 118.8, 117.0, 113.4, 55.6.

3,5-dimethylbenzonitrile (3v; CAS: 19179-31-8)^{S10}

Isolated as white powder (47.6 mg, 73% yield (condition C))

¹H-NMR (400 MHz, CDCl₃):δ 6.76 (s, 2H), 6.65 (s, 1H), 3.81 (s, 6H).

¹³C-NMR (100 MHz, CDCl₃):δ 161.2, 118.8, 113.6, 110.1, 105.8, 55.8.

1-methyl-1H-indole-5-carbonitrile (3w)^{S10}

Isolated as white powder (54.3 mg, 87% yield (condition A)).

¹H-NMR (400 MHz, CDCl₃):δ 7.96 (s, 1H), 7.44 (app d, J = 8.5 Hz, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.17 (d, J = 3.1 Hz, 1H), 6.57 (d, J = 3.1 Hz, 1H), 3.83 (s, 3H).
¹³C-NMR (100 MHz, CDCl₃):δ 138.3, 131.2, 128.3, 126.6, 124.6, 121.0, 110.1, 102.6, 102.3, 33.2.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₀H₈N₂, 156.0687; found, 156.0684.

1-benzyl-1H-indole-5-carbonitrile (3x)^{S15}

Isolated as pale-brown powder (91.6 mg, 98% yield (condition A)).

¹H-NMR (400 MHz, CDCl₃):δ 8.00 (s, 1H), 7.41-7.22 (m, 7H), 7.16-7.04 (m, 2H), 6.63 (s, 1H), 5.35 (s, 2H).

¹³C-NMR (100 MHz, CDCl₃):δ 137.9, 136.5, 130.7, 129.1, 128.6, 128.2, 126.9, 126.7, 124.8, 120.8, 110.7, 102.9, 102.9, 50.6.

HRMS (FAB) (*m*/*z*): [M+H]⁺ calced. for C₁₆H₁₃N₂, 233.1079; found, 233.1076.

1H-indole-5-carbonitrile (3y)^{S16}

Isolated as pale-brown powder (31.2 mg, 55% yield (condition A))

¹**H-NMR (400 MHz, CDCl₃)**:δ 8.52 (br s, 1H), 8.02-7.98 (m, 1H), 7.46 (app dt, *J* = 8.5 Hz, 0.8 Hz, 1H), 7.43 (dd, *J* = 8.5 Hz, 1.5 Hz), 7.34 (dd, *J* = 3.1 Hz, 2.6 Hz, 1H), 6.64 (ddd, *J* = 3.1 Hz, 2.1 Hz, 0.7 Hz, 1H).

¹³C-NMR (100 MHz, CDCl₃):δ 137.6, 127.8, 126.6, 126.5 125.1, 120.9, 112.1, 103.7, 103.2.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₉H₆N₂, 142.0531; found, 142.0529.

1-methyl-1H-indole-6-carbonitrile (3z)^{S20}

Isolated as pale-brown powder (63.0 mg, 99% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.67 (d, *J* = 8.5 Hz, 1H), 7.66 (s, 1H), 7.33 (d, *J* = 8.5 Hz, 1H), 7.26 (s, 1H), 6.57 (s, 1H), 3.84 (s, 3H).

¹³**C-NMR (100 MHz, CDCl₃)**:δ 135.6, 132.7, 131.7, 122.3, 121.7, 120.9, 114.3, 104.1, 102.1, 33.2.

HRMS (FAB) (*m*/*z*): [M+H]⁺ calced. for C₁₀H₉N₂, 157.0766; found, 157.0761.

9-methyl-9H-carbazole-3-carbonitrile (3aa)^{S21}

Isolated as yellow powder (70.7 mg, 86 % yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 8.39 (s, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.71 (dd, *J* = 8.5 Hz, 1.1 Hz, 1H), 7.57 (app t, *J* = 7.7 Hz, 1H), 7.45 (app t, *J* = 8.6 Hz, 2H), 7.34 (app t, *J* = 7.6 Hz, 1H), 3.89 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃):δ 142.5, 141.5, 128.9, 127.2, 125.0, 122.9, 121.8, 120. 7, 120.6, 120.4, 109.1, 109.1, 101.5, 29.3.

HRMS (FAB) (*m/z*): [M+H]⁺ calced. for C₁₄H₁₁N₂, 207.0922; found, 207.0921.

1-methylindoline-5-carbonitrile (3ab)^{S22}

Isolated as white powder (44.3 mg, 70% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**:δ 7.35 (d, *J* = 7.9 Hz, 1H), 7.22 (s, 1H), 6.33 (d, *J* = 7.9 Hz, 1H), 3.49 (t, *J* = 8.4 Hz, 2H), 2.99 (d, *J* = 8.4 Hz, 2H), 2.83 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃):δ 156.2, 133.6, 130.6, 127.4, 121.1, 105.6, 98.5, 55.0, 34.4, 27.9.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₀H₁₀N₂, 158.0844; found, 158.0840.

dibenzo[*b*,*d*]furan-2-carbonitrile (3ac)^{S23}

Isolated as white powder (68.0 mg, 88% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**: δ 8.27 (d, J = 1.5 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.74 (dd, J = 8.5 Hz, J = 1.5 Hz, 1H), 7.67-7.60 (m, 2H), 7.56 (dd, J = 8.3 Hz, J = 7.2 Hz, 1H), 7.42 (dd, J = 7.8 Hz, 7.2 Hz, 1H).

¹³C-NMR (100 MHz, CDCl₃):δ 158.1, 157.0, 131.0, 128.9, 125.6, 125.4, 123.0, 122.7, 121.2, 119.3, 113.0, 112.2, 106.8.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₃H₇NO, 193.0528; found, 193.0527.

benzo[b]thiophene-5-carbonitrile (3ad)^{S24}

Isolated as white powder (30.7 mg, 48% yield (condition A)).

¹**H-NMR (400 MHz, CDCl₃)**: δ 8.15 (app s, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.61 (d, J = 5.5 Hz, 1H), 7.56 (dd, J = 8.3 Hz, J = 1.0 Hz, 1H), 7.41 (d, J = 5.5 Hz, 1H).

¹³C-NMR (100 MHz, CDCl₃):δ 144.0, 139.5, 129.2, 128.3, 126.3, 123.9, 123.6, 119.5, 108.2.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₁₃H₇NO, 159.0143; found, 159.0139.

2-methylbenzo[d]oxazole-5-carbonitrile (3ae)^{S25}

Isolated as white powder (38.9 mg, 61% yield (condition A)).

¹H-NMR (400 MHz, CDCl₃):δ 7.97 (s, 1H), 7.62-7.54 (m, 2H), 2.69 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃):δ 166.3, 153.5, 142.2, 128.9, 124.2, 118.9, 111.6, 108.3, 14.7.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₉H₆N₂O, 158.0480; found, 158.0482.

1-benzyl-1H-pyrazole-4-carbonitrile (3af)^{S26}

Isolated as white powder (38.9 mg, 61% yield (condition A)).

¹H-NMR (400 MHz, CDCl₃):δ 7.82 (s, 1H), 7.74 (s, 1H), 7.42-7.32 (m, 3H), 7.27-7.22 (m, 2H), 5.33 (s, 2H).

¹³C-NMR (100 MHz, CDCl₃):δ 142.6, 134.5, 134.3, 129.3, 129.0, 128.3, 113.4, 92.9, 52.7.

HRMS (EI) (*m*/*z*): [M]⁺ calced. for C₉H₆N₂O, 158.0480; found, 158.0482.

2-(piperidin-1-yl)pyrimidine-5-carbonitrile (3ag)^{S26}

Isolated as white powder (47.0 mg, 62% yield (condition A)).

¹**H-NMR (400 MHz, CDCl**₃):δ 8.46 (s, 2H), 3.86 (t, *J* = 5.6 Hz, 4H), 1.76-1.68 (m, 2H), 1.66-1.58 (m, 4H).

¹³C-NMR (100 MHz, CDCl₃): 8 160.8, 160.4, 117.2, 94.8, 45.2, 25.9, 24.7.

HRMS(EI) (*m*/*z*): [M]⁺ calced. for C₁₀H₁₂N₄, 188.1062; found, 188.1056.

9. X-Ray Crystallographic Analysis

The crystals were mounted on the CryoLoop (Hampton Research Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 113(1) K. All measurements were made on a Rigaku XtaLAB P200 system with graphite-monochromated Mo-K α (0.71075 Å) radiation. Crystal data and structure refinement parameters were listed below (Table S5). The structure was solved by SHELXT-2014^{S27} and refined on F^2 by full matrix least-squares method, using SHELXL-2016.^{S28} Non-hydrogen atoms were anisotropically refined. H-atoms were included in the refinement on calculated positions riding on their carrier atoms. The function minimized was $[\Sigma w(Fo^2 - Fc^2)^2]$ ($w = 1 / [\sigma^2(Fo^2) + (aP)^2 + bP]$), where $P = (Max(Fo^2, 0) + 2Fc^2) / 3$ with $\sigma^2(Fo^2)$ from counting statistics. The function *R*1 and *wR*2 were ($\Sigma ||Fo| - |Fc||$)/ $\Sigma |Fo|$ and [$\Sigma w(Fo^2 - Fc^2)^2 / \Sigma(w(Fo^2)^2)$]^{1/2}, respectively. The ORTEP-3 program was used to draw the molecule.^{S29}

	6
empirical formula	C ₂₀ H ₁₇ BrN ₂ NiO
formula weight	439.97
crystal system	monoclinic
space group	<i>Cc</i> (No. 9)
<i>a</i> , Å	11.964(13)
b, Å	20.02(2)
<i>c</i> , Å	7.423(11)
<i>α</i> , deg.	-
β , deg.	90.11(4)
γ , deg.	-
<i>V</i> , Å ³	1778(4)
Ζ	4
Dcalcd, g/cm ³	1.644
μ [Mo-K α], mm ⁻¹	3.355
<i>Т</i> , К	113
crystal size, mm	0.08~ imes~0.02~ imes~0.02
θ range for data collection (deg.)	3.384 to 27.738
no. of reflections measured	21939
unique data (Rint)	4057
data / restraints / parameters	4057 / 2 / 228
$R1 (I > 2.0\sigma(I))$	0.0728
$wR2 \ (I > 2.0\sigma(I))$	0.1620
R1 (all data)	0.1249
wR2 (all data)	0.1807
GOF on F^2	0.921
Flack Parameter	-0.02(3)
Δho , e Å ⁻³	1.38, -0.97

 Table S5. Crystal Data and Data Collection Parameters of Complex 6

10. ¹H- and ¹³C-NMR Spectra of Aryl Nitriles

Figure S3. ¹H NMR spectrum of 3a.

Figure S4. ¹³C NMR spectrum of 3a.

Figure S5. ¹H NMR spectrum of 3b.

Figure S6. ¹³C NMR spectrum of **3b**.

Figure S7. ¹H NMR spectrum of 3c.

Figure S8. ¹³C NMR spectrum of 3c.

Figure S9. ¹H NMR spectrum of 3d.

Figure S10. ¹³C NMR spectrum of 3d.

Figure S11. ¹H NMR spectrum of 3e.

Figure S12. ¹³C NMR spectrum of 3e.

Figure S13. ¹H NMR spectrum of 3f.

Figure S14. ¹³C NMR spectrum of 3f.

Figure S15. ¹H NMR spectrum of 3g.

Figure S16. ¹³C NMR spectrum of 3g.

Figure S17. ¹H NMR spectrum of 3h.

Figure S18. ¹³C NMR spectrum of 3h.

Figure S19. ¹H NMR spectrum of 3i.

Figure S20. ¹³C NMR spectrum of 3i.

Figure S21. ¹H NMR spectrum of 3k.

Figure S22. ¹³C NMR spectrum of 3k.

Figure S23. ¹H NMR spectrum of 31.

Figure S24. ¹³C NMR spectrum of 3l.

Figure S25. ¹H NMR spectrum of 3m.

Figure S26. ¹³C NMR spectrum of 3m.

Figure S27. ¹H NMR spectrum of 3n.

Figure S28. ¹³C NMR spectrum of 3n.

Figure S29. ¹H NMR spectrum of 30.

Figure S30. ¹³C NMR spectrum of 30.

Figure S31. ¹H NMR spectrum of 3p.

Figure S32. ¹³C NMR spectrum of 3p.

Figure S33. ¹H NMR spectrum of 3q.

Figure S34. ¹³C NMR spectrum of 3q.

Figure S35. ¹H NMR spectrum of 3r.

Figure S36. ¹³C NMR spectrum of 3r.

Figure S37. ¹H NMR spectrum of 3s.

Figure S38. ¹³C NMR spectrum of 3s.

Figure S39. ¹H NMR spectrum of 3t.

Figure S40. ¹³C NMR spectrum of 3t.

Figure S41. ¹H NMR spectrum of 3u.

Figure S42. ¹³C NMR spectrum of 3u.

Figure S43. ¹H NMR spectrum of 3v.

Figure S44. ¹³C NMR spectrum of **3v**.

Figure S45. ¹H NMR spectrum of **3w**.

Figure S46. ¹³C NMR spectrum of **3w**.

Figure S47. ¹H NMR spectrum of 3x.

Figure S48. ¹³C NMR spectrum of 3x.

Figure S49. ¹H NMR spectrum of 3y.

Figure S50. ¹³C NMR spectrum of **3y**.

Figure S51. ¹H NMR spectrum of 3z.

Figure S52. ¹³C NMR spectrum of 3z.

Figure S53. ¹H NMR spectrum of 3aa.

Figure S54. ¹³C NMR spectrum of 3aa.

Figure S55. ¹H NMR spectrum of 3ab.

Figure S56. ¹³C NMR spectrum of 3ab.

Figure S57. ¹H NMR spectrum of 3ac.

Figure S58. ¹H NMR spectrum of 3ac.

Figure S59. ¹H NMR spectrum of 3ad.

Figure S60. ¹³C NMR spectrum of 3ad.

Figure S61. ¹H NMR spectrum of 3ae.

Figure S62. ¹³C NMR spectrum of 3ae.

Figure S63. ¹H NMR spectrum of 3af.

Figure S64. ¹³C NMR spectrum of 3af.

Figure S65. ¹H NMR spectrum of 3ag.

Figure S66. ¹³C NMR spectrum of 3ag.

11. References

- T. Saito, H. Nishiyama, H. Tanahashi, K. Kawakita, H. Tsurugi and K. Mashima, J. Am. Chem. Soc., 2014, 136, 5161.
- 2. R. F. de Souza, D. Thiele and A. L. Monterio, J. Catal., 2006, 241, 232.
- V. R. amírez-Delgado, G. Osorio-Monreal, L. F. Hernández-Ayala, Y. Reyes-Vidal, J. C. García-Ramos, L. Ruiz-Azuara, and L. Ortiz-Frade, *J. Mex. Chem. Soc.*, 2015, 59, 294.
- 4. A. V. Müller, L. D. Ramos, K. P. M. Frin, K. T. de Oliveira and A. S. Polo, *RSC Adv.*, 2016, **6**, 46487.
- 5. H. V. Chavan, L. K. Adsul and B. P. Bandgar, J. Chem. Sci., 2011, 123, 477.
- 6. E. K. Edelstein, S. Namirembe and J. P. Morken, J. Am. Chem. Soc., 2017, 139, 5027.
- (a) J. C. Tellis, D. N. Primer and G. A. Molander, *Science*, 2014, **345**, 433; (b) O. Gutierrez, J. C. Tellis, D. N. Primer, G. A. Molander and M. C. Kozlowski, *J. Am. Chem. Soc.*, 2015, **137**, 4896.
- 8. J. Kim, J. Choi, K. Shin and S. Chang, J. Am. Chem. Soc., 2012, 134, 2528.
- 9. S. Zheng, C. Yu and Z. Shen, Org. Lett., 2012, 14, 3644.
- P. Yu and Morandi, Angew. Chem., Int. Ed., 2017, 56, 15693; Angew. Chem. 2017, 129, 15899.
- 11. R. Möckel, J. Hille, E. Winterling, S. Weidemüller, T. M. Faber and G. Hilt, *Angew. Chem., Int. Ed.* 2018, **57**, 442.
- 12. T. Shen, T. Wang, C. Qin and N. Jiao, Angew. Chem., Int. Ed., 2013, 52, 6677.
- S. D. Straight, J. Andréasson, G. Kodis, A. L. Moore, T. A. Moore and D. Gust, J. Am. Chem. Soc., 2005, 127, 2717.
- 14. Y. Zhu, M. Zhao, W. Lu, L. Li and Z. Shen, Org. Lett., 2015, 17, 2602.
- 15. T. Tamura, K. Moriyama and Togo, Eur. J. Org. Chem., 2015, 9, 2023.
- X. Jiang, J.-M. Wang, Y. Zhang, Z. Chen, Y.-M. Zhu and S.-J. Ji, *Tetrahedron*, 2015, 71, 4883.
- 17. B. V. Rokade, S. K. Malekar and K. R. Prabhu, Chem. Commun., 2012, 48, 5506.
- 18. R. Takise, K. Itami and J. Yamaguchi, Org. Lett., 2016, 18, 4428.
- 19. N. Sun, L. Hong, F. Huang, H. Ren, W. Mo, B. Hu, Z. Shen and X. Hu, *Tetrahedron*, 2013, **69**, 3927.
- P. H.-Y. Cheong, R. S. Paton, S. M. Bronner, G.-Y. J. Im, N. K. Garg and K. N. Houk, J. Am. Chem. Soc., 2010, 132, 1267.

- 21. S. Ushijima, K. Moriyama and H. Togo, Tetrahedron, 2012, 68, 4588.
- 22. K. A. Zachariasse, S. I. Druzhinin, W. Bosch and R. Machinek, J. Am. Chem. Soc., 2004, **126**, 1705.
- 23. J. Y. Cho, G.-B. Roh and E. J. Cho, J. Org. Chem., 2018, 83, 805.
- Y.-L. Shi, Q. Yuan, Z.-B. Chen, F.-L. Zhang, K. Liu and Y.-M. Zhu, *Synlett*, 2018, 29, 359.
- 25. X. Zhang, A. Xia, H. Chen and Y. Liu, Org. Lett., 2017, 19, 2118.
- 26. D. T. Cohen and S. L. Buchwald, Org. Lett., 2015, 17, 202.
- 27. G. M. Sheldrick, Acta Cryst., 2014, A70, C1437.
- 28. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 29. L. J. Farrugia, J. Appl. Cryst., 1999, 32, 837.