Supporting Information

Enantioselective and site-specific copper-satalyzed reductive

allyl-allyl cross-coupling of allenes

Guoxing Xu, Bin Fu, Haiyan Zhao, Yanfei Li, Ge Zhang, Ying Wang, Tao Xiong* and Qian Zhang

Department of Chemistry, Northeast Normal University Changchun, 130024 (China) E-mail: xiongt626@nenu.edu.cn.

Table of Contents

1. General Considerations1
2. Optimization Studies for Asymmetric Hydroallylation of Allenes2
3. General Procedure for Enantioselective Hydroallylation of Allene4
4. Preparation of Primary Allyl Phosphates4
5. Compounds Characterization
6. References
7. ¹ H, ¹³ C and ¹⁹ F Spectra of New Compounds
8. Copies of HPLC Traces for Chiral Products

1. General Considerations

All reactions were performed under nitrogen atmosphere in flame dried flasks. All reactions were monitored by thin layer chromatography (TLC) using Macherey-Nagel 0.20 mm silica gel 60 plates. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Taizhou, China). ¹H, ¹³C, ¹⁹F nuclear magnetic resonance (NMR) spectra were recorded on Varian (400/500 MHz) or Bruker 600 MHz NMR spectrometers. ¹H and ¹³C NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm for ¹H) and CHCl₃ (77.0 ppm for ¹³C), respectively. High resolution mass spectra were recorded on Bruck microtof. High-pressure liquid chromatography (HPLC) was performed on Agilent 1260 Series chromatographs using a chiral column (25 cm) as noted for each compound. HPLC analysis carried on Chiralpak OZ-H, OD-H, AD-H, IA column (Daicel Chemical Industries, LTD). Optical rotations were measured on a Perkin–Elmer 341 polarmeter.

Unless otherwise stated, all commercially available compounds were purchased from Aldrich or Energy–Chemical Limited and used as supplied without further purification. THF was purified by distillation from sodium benzophenone ketyl immediately prior to use. 1,4–Dioxane was distilled over sodium, degassed, and stored over activated molecular sieves. (Me₂SiH)₂O (TMDS) was purchased from Energy–Chemical Limited and vacuum transferred over calcium hydride before use. L1 and L2 have been reported by Amir H. Hoveyda.¹ To obtain racemic samples of the hydroallylation products, rac-L1 was used as the ligand. Allenes were prepared according to the procedure reported by Gérard Buono.² Primary allylic phosphates and (*Z*)-allylic phosphate were prepared according to the reported procedures.³

2. Optimization Studies for Asymmetric Hydroallylation of Allenes^a.

	+ Ph OP(0	。)) <u>v)</u> ► Ph	CH3			
-n 1a	CH ₃ 2a	Sili TH	anes (3.0 eqı F, 50 ^o C, 12	s (3.0 equiv) <mark>Þh</mark> j0 ºC, 12 h 3a		
entry	cat.	base	silanes	yield (%)	ee ^c	
1	CuCl	NaO'Bu	TMDS	50	33	
2	CuBr	NaO ^t Bu	TMDS	14	33	
3	CuOAc	NaO ^t Bu	TMDS	30	33	
4	CuI	NaO ^t Bu	TMDS	24	32	
5	Cu(CH ₃ CN) ₄ PF ₆	NaO ^t Bu	TMDS	30	nd	
6	CuCl ₂	NaO ^t Bu	TMDS	42	nd	
7	CuCl	LiO ^t Bu	TMDS	50	26	
8	CuCl	KO ^t Bu	TMDS	nr		
9	CuCl	NaOMe	TMDS	nr		
10	CuCl	NaO ^t Bu	DEMS	nr		
11	CuCl	NaO ^t Bu	PMHS	58	27	
12	CuCl	NaO ^t Bu	PhSiH ₃	nr		

Table S1. Screening of the catalysts, bases and hydrosilanes^{*a,b*}

^{*a*}Reaction conditions: **1a** (0.2 mmol), allyl phosphate (1.5 equiv), catalyst (2.5 mol%), **L1** (2,5 mol%), base (3.0 equiv) and silane (3.0 equiv) in 2.0 mL THF at 50 °C. ^{*b*}Isolated yields. ^{*c*}ee determined by HPLC. TMDS = (Me₂HSi)₂O, DEMS = (EtO)₂MeSiH.

Ph 1a	+ Ph CH ₃ 2a	0)(OR) ₂	CuCl (2.5 mol%) L (2.5 mol%) <u>NaO^tBu (3.0 equiv)</u> TMDS (3.0 equiv) solvent, 50 °C, 12 h <u>Augusta</u>			
entry	solvent	R	L	yield (%)	ee^d	
1	THF	Me	L1	50	33	
2	THF	Me	L2	50	85	
3	THF	Me	L3	0		
4	THF	Me	L4	0		
5	THF	Me	L5	0		
6	THF	Me	L6	0		
7	THF	Me	L2	50	85	
8	THF	ⁱ Bu	L2	50	78	
9	THF	Et	L2	50	87	
10	THF	ⁱ Pr	L2	50	89	
11	СуН	ⁱ Pr	L2	66	77	
12	MTBE	ⁱ Pr	L2	trace	nd	
13	Toluene	ⁱ Pr	L2	70	76	
14	Et ₂ O	ⁱ Pr	L2	tace	nd	
15	Dioxane	ⁱ Pr	L2	60	93	
16 ^c	Dioxane	ⁱ Pr	L2	73	93	

Table S2. Screening of the ligands, leaving groups and solvents^{*a,b*}

^{*a*}Reaction conditions: **1a** (0.2 mmol), allyl phosphate (1.5 equiv), catalyst (2.5 mol%), **L2** (2.5 mol%), base (3.0 equiv) and silane (3.0 equiv) in 2.0 mL solvent at 50 °C. MTBE = methyl tert-butyl ether. ^{*b*}Isolated yields. ^{*c*}**1a** (1.5 equiv), allyl phosphate (0.2 mmol). ^{*d*}ee determined by HPLC.

3. General Procedure for Enantioselective Hydroallylation of Allene

In a nitrogen-filled glove box, a screw-cap test tube was charged with L2 (9 mg, 0.010 mmol) and NaO^tBu (60 mg, 0.6 mmol). Anhydrous dioxane (2.0 mL) was added and the mixture was stirred for 30 minutes at 50 °C after the addition of CuCl (1 mg, 0.010 mmol). TMDS (80 mg, 0.6 mmol) was added, after 5 minutes, **1a** (34.8 mg, 0.3 mmol) and **2c** (62.4 mg, 0.2 mmol) was added to the mixture. The reaction tube was sealed with a Teflon screw cap, removed from the glove box and stirred at 50 °C for 12 h. Then, the mixture was quenched by 1M NaOH (10.0 mL), extracted with CH_2Cl_2 (3 × 5.0 mL), combined the organic phases, and dried over anhydrous MgSO₄. The solvents were evaporated under vacuum and the crude product was purified on silica gel column chromatography to give the corresponding product **3a** (36.2 mg, 73% yield, 93% ee) as a colorless oil.

4. Preparation of Primary Allyl Phosphates

In a 50 ml dry two-neck flask equipped with a magnetic bar was added 4-dimethylaminopyridine (DMAP, 0.042 mmol, 51 mg). The flask was then evacuated and back-filled with argon three times. Dry dichloromethane (10 mL), pyridine (24.9 mmol, 2.0 mL) and (*E*)-2-methyl-3-phenylprop-2-en-1-ol (8.3 mmol, 1.2 g) were added in turn to the flask. The reaction mixture was cooled to 0 $^{\circ}$ C and then diisopropyl phosphorochloridate (12.5 mmol, 2.5 g) was added dropwise. After the reaction was slowly

warmed to room temperature through overnight with stirring, it was quenched with water (10.0 mL) at 0 °C. The organic layer was separated and the water layer was extracted with $CH_2Cl_2(3\times15 \text{ mL})$. The solution was concentrated in vacuo, which afforded an oil that was purified by flash chromatography (ethyl acetate : petroleum ether = 10:90) to give (*E*)-diisopropyl (2-methyl-3-phenylallyl) phosphate (1.55 g, 60%) as a colorless oil.

5. Compounds Characterization

(*R*,*E*)-(5-methylhexa-1,5-diene-1,4-diyl)dibenzene (3a)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (36.2 mg, 73%); ¹H NMR (600 MHz, CDCl₃) δ: 7.31 -7.27 (m, 5H), 7.24 – 7.22 (m, 3H), 7.20 – 7.15 (m, 2H), 6.38 (d, J = 16.2 Hz, 1H), 6.14 – 6.09 (m, 1H), 4.97 (s, 1H), 4.89 (s, 1H), 3.36 (t, J = 7.2 Hz, 1H), 2.78 – 2.73 (m, 1H), 2.67 – 2.60 (m, 1H), 1.61 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 147.3, 143.1, 137.7, 131.0, 129.1, 128.4, 128.3, 127.8, 126.9, 126.3, 126.0, 110.8, 53.0, 36.8, 21.2. HRMS (ESI-TOF) (m/z): Calcd for $C_{19}H_{20}Na$ ([M + Na]⁺): 271.1457; found: 271.1462. $[\alpha]_D^{14} = 21.3$, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, $t_{\rm R}$ (minor) = 31.0 min, $t_{\rm R}$ (major) = 37.9 min); ee = 93%.

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (41.8 mg, 72%); ¹H NMR (600 MHz, CDCl₃)

 δ : 7.28 (t, J = 7.2 Hz, 2H), 7.23 – 7.18 (m, 5H), 7.12 (d, J = 7.8 Hz, 2H), 6.35 (d, J = 15.6 Hz, 1H), 6.09 – 6,04 (m, 1H), 4.96 (s, 1H), 4.87 (s, 1H), 3.35 (t, *J* = 7.8 Hz, 1H), 2.88 – 2.83 (m, 1H), 2.76 -2.71 (m, 1H), 2.65 - 2.60 (m, 1H), 1.60 (s, 3H), 1.22 (d, J = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) *δ*: 147.7, 147.4, 143.1, 135.4, 130.8, 128.3, 128.1, 127.8, 126.5, 126.3, 126.0, 110.8, 53.1, 36.8, 33.8, 23.9, 21.1. HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₂₆Na ([M + Na]⁺): 313.1928; found: 313.1927. $[\alpha]_D^{14} = 2.8$, (c = 0.5, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, $t_{\rm R}$ (minor) = 23.6 min, $t_{\rm R}$ (major) = 26.8 min); ee = 90%.

(*R*,*E*)-1-(tert-butyl)-4-(5-methyl-4-phenylhexa-1,5-dien-1-yl) benzene (3c)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (56.0 mg, 92%); ¹H NMR (600 MHz,

CDCl₃) δ : 7.29 – 7.26 (m, 4H), 7.22 (t, J = 8.4 Hz, 4H), 7.20 – 7.17 (m, 1H), 6.35 (d, J = 16.2 Hz, 1H), 6.09 – 6.04 (m, 1H), 4.96 (s, 1H), 4.87 (s, 1H), 3.34 (t, J = 7.2 Hz, 1H), 2.76 – 2.71 (m, 1H), 2.65 – 2.60 (m, 1H), 1.60 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 149.9 147.4, 143.1, 135.0, 130.7, 128.3, 128.2, 127.8, 126.3, 125.7, 125.3, 110.8, 53.1, 36.8, 34.4, 31.3, 21.2. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₂₈K ([M + K]⁺): 343.1828; found: 343.1823. [α] $_{D}^{14} = 30.7$, (c = 2.5, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_{R} (minor) = 20.8 min, t_{R} (major) = 23.5 min); ee = 92%.

(*R*,*E*)-2,4-dimethyl-1-(5-methyl-4-phenylhexa-1,5-dien-1-yl) benzene (3d)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (36.4 mg, 66%); ¹H NMR (600 MHz,

CDCl₃) δ : 7.28 (t, J = 7.2Hz, 2H), 7.24 (s, 2H), 7.19 (t, J = 7.8 Hz, 2H), 6.91 (d, J = 6.6 Hz, 2H), 6.49 (d, J = 15.6 Hz, 1H), 5.94 – 5.89 (m, 1H), 4.97 (s, 1H), 4.88 (s, 1H), 3.36 (t, J = 7.8 Hz, 1H), 2.78 – 2.73 (m, 1H), 2.67 – 2.62 (m, 1H), 2.27 (s, 3H), 2.20 (s, 3H), 1.61 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 147.5, 143.1, 136.5, 134.8, 134.1, 130.8, 129.4, 128.9, 128.2, 127.9, 126.6, 126.2, 125.5, 110.7, 53.1, 37.1, 21.2, 21.0, 19.6. HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₂₄K ([M + K]⁺): 315.1503; found: 315.1509. [α] $_{D}^{14} = 57.7$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_{R} (minor) = 34.2 min, t_{R} (major) = 39.8 min); ee = 94%.

(*R*,*E*)-1-methoxy-4-(5-methyl-4-phenylhexa-1,5-dien-1 -yl)benzene (3e)

Purified by flash column chromatography (eluent: Petroleum ether / dichloromethane = 20:1). Colorless oil

(30.0 mg, 54%); ¹**H** NMR (500 MHz, CDCl₃) δ : 7.29 (t, J = 7.5 Hz, 2H), 7.24 – 7.22 (m, 3H), 7.20 – 7.19 (m, 2H), 6.80 (d, J = 8.5 Hz, 2H), 6.32 (d, J = 15.5 Hz, 1H), 6.00 – 6.94 (m, 1H), 4.96 (s, 1H), 4.88 (s, 1H), 3.78 (s, 3H), 3.34 (t, J = 7.5 Hz, 1H), 2.76 – 2.70 (m, 1H), 2.64 – 2.59 (m, 1H), 1.61 (s, 3H). ¹³**C** NMR (150 MHz, CDCl₃) δ : 158.7, 147.4, 143.2, 130.6, 130.3, 128.2, 127.8, 127.1, 126.9, 126.3, 113.8, 110.7, 55.3, 53.1, 36.8, 21.16. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₀H₂₂ONa ([M + Na]⁺): 301.1549; found: 301.1562. [α] $p^{14} = 94.0$, (c = 1.5, CHCl₃). **HPLC** analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, $t_{\rm R}$ (minor) = 19.0 min, $t_{\rm R}$ (major) = 20.6 min); ee = 94%.

(*R*,*E*)-1,2-dimethoxy-4-(5-methyl-4-phenylhexa-1,5-dien-1yl)benzene (3f)

Purified by flash column chromatography (eluent: Petroleum ether / dichloromethane = 20:1). Colorless oil (38.2 mg, 62%);

¹**H NMR** (500 MHz, CDCl₃) δ: 7.30 (t, J = 7.0 Hz, 2H), 7.25 – 7.19 (m, 3H), 6.83 – 6.76 (m, 3H), 6.32 (d, J = 16.0 Hz, 1H), 6.01 - 5.95 (m, 1H), 4.97 (s, 1H), 4.89 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.36 (t, J = 7.5 Hz, 1H), 2.77 – 2.71 (m, 1H), 2.65 – 2.59 (m, 1H), 1.61 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 148.9, 148.3, 147.3, 143.1, 130.9, 130.6, 128.2, 127.8, 127.2, 126.3, 118.8, 111.1, 110.8, 108.7, 55.9, 55.8, 53.1, 36.8, 21.2. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₁H₂₅ ([M + H]⁺): 309.1846; found: 309.1849. [α] $p^{14} = 26.2$, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak AD-H column, hexanes/i-PrOH = 99/1, 0.5 mL/min, 250 nm, t_R (minor) = 21.6 min, t_R (major) = 25.1 min); ee = 92%.

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (22.9 mg, 43%); ¹H NMR (600 MHz, CDCl₃)

δ: 7.31 – 7.28 (m, 2H), 7.25 – 7.20 (m, 5H), 6.94 (t, J = 8.4 Hz, 2H), 6.33 (d, J = 15.6 Hz, 1H), 6.04 – 5.99 (m, 1H), 4.96 (s, 1H), 4.89 (3) – 4.88 (8) (m, 1H), 3.35 (t, J = 7.2 Hz, 1H), 2.76 – 2.71 (m, 1H), 2.65 – 2.60 (m, 1H), 1.61 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 161.9 (J = 244.2 Hz), 147.3, 143.0, 129.8, 128.8 (J = 2.1 Hz), 128.3, 127.8, 127.4 (J = 117.0 Hz) 126.35, 115.2 (J = 20.9 Hz,), 110.80, 53.0, 36.8, 21.2. ¹⁹**F NMR** (564 MHz; CDCl₃) δ: -115.63 – -115.68 (m). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₉H₂₀F ([M + H]⁺): 267.1543; found: 267.1544. [α]p¹⁵ = 58.3, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_R (minor) = 10.6 min, t_R (major) = 12.4 min); ee = 93%.

(*R*,*E*)-(6-methylhepta-2,6-diene-2,5-diyl)dibenzene (3h)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (45.6 mg, 63%); ¹**H NMR** (600 MHz, CDCl₃) δ: 7.30 – 7.26 (m, 6H), 7.25 – 7.23 (m, 2H), 7.21 – 7.17 (m, 2H), 5.70 – 5.68

(m, 1H), 4.97 (s, 1H), 4.91 (s, 1H), 3.35 (t, J = 7.8 Hz, 1H), 2.75 – 2.70 (m, 1H), 2.64 – 2.59(m, 1H), 1.96 (s, 3H), 1.62 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 147.5, 143.9, 143.3, 135.4, 128.2, 128.1, 127.9, 126.7, 126.5, 126.3, 125.7, 110.8, 52.7, 32.7, 21.3, 16.0. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₀H₂₂Na ([M + Na]⁺): 285.1619; found: 285.1614. [α] $_{D}^{14}$ = 41.3, (c = 1.5, CHCl₃). **HPLC** analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_{R} (minor) = 5.4 min, t_{R} (major) = 5.6 min); ee = 90%.

(*R*,*E*)-(2-methylocta-1,5-diene-3,6-diyl)dibenzene (3i)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (42.0 mg, 76%); ¹H NMR (400 MHz, CDCl₃) δ : 7.31 – 7.26 (2) (m, 4H), 7.25 (5) – 7.24 (m, 4H), 7.21 – 7.18 (m, 2H), 5.55 (t,

J = 6.4 Hz, 1H), 5.01 (s, 1H),4.91 (d, J = 6.4 Hz, 1H), 3.34 (t, J = 6.4 Hz, 1H), 3.76 – 2.70 (m, 1H), 2.65 – 2.59 (m, 1H), 2.45 (q, J = 6.0 Hz, 2H), 1.62 (s, 3H), 0.89 (t, J = 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 147.5, 143.3, 143.0, 142.2, 128.2, 128.1, 127. 9, 126.5, 126.3, 126.3, 110.8, 53.1, 32.3, 23.0, 21.4, 13.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₂₄Na ([M + Na]⁺): 299.1767; found: 299.1770. [α] $_{D}^{14} = 43.1$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 0.4 mL/min, 250 nm, t_{R} (minor) = 11.8 min, t_{R} (major) = 12.1min); ee = 92%.

(*R*,*E*)-1-(6-(4-(tert-butyl)phenyl)-2-methylhexa-1,5-dien-3-yl)-2-methylbenzene (3j)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (51.5 mg, 81%); ¹H NMR (600 MHz,

CDCl₃) δ : 7.31 – 7.27 (m, 2H), 7.23 – 7.20 (m, 3H), 7.18 – 7.15 (m, 1H), 7.13 – 7.08 (m, 2H), 6.36 (d, J = 15.6 Hz, 1H), 6.10 – 6.05 (m, 1H), 4.91 (s, 2H), 3.59 (t, J = 7.8 Hz, 1H), 2.77 – 2.72 (m, 1H), 2.61 – 2.56 (m, 1H), 2.32 (s, 3H), 1.60 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 149.9, 146.8, 141.2, 136.4, 135.0, 130.7, 130.3, 128.3, 126.5, 126.0, 125.7, 125.3, 111.1, 48.3, 37.2, 34.5, 31.3, 21.6, 19.8. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₄H₃₀Na ([M + Na]⁺): 341.2245; found: 341.2242. [α] $p^{14} = 23.1$, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_R (minor) = 11.0 min, t_R (major) = 12.3 min); ee = 94%.

(*R*,*E*)-1-(6-(4-(tert-butyl)phenyl)-2-methylhexa-1,5-dien-3-yl) -3-methylbenzene (3k)

Purified by flash column chromatography (eluent: Petroleum

ether). Colorless oil (36.3 mg, 57%); ¹H NMR (600 MHz, CDCl₃) δ : 7.29 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.19 – 7.15 (m, 1H), 7.04 – 7.00 (m, 3H), 6.36 (d, J = 16.2 Hz, 1H), 6.10 – 6.05 (m, 1H), 4.95 (s, 1H), 4.89 – 4.86 (m, 1H), 3.31 (t, J = 7.8 Hz, 1H), 2.75 – 2.70 (m, 1H), 2.64 – 2.59 (m, 1H), 2.33 (s, 3H), 1.60 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 149.9, 147.4, 143.1, 137.7, 135.0, 130.6, 128.6, 128.4, 128.1, 127.0, 125.7, 125.3, 124.8, 110.7, 53.1, 36.8, 34.5, 31.3, 21.5, 21.2. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₃₀Na ([M + Na]⁺): 341.2245; found: 341.2241. $[\alpha]_D^{14} = 8.1$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 ml/min, 250 nm, t_R (minor) = 9.5 min, t_R (major) = 10.7 min); ee = 93%.

(*R*,*E*)-1-(tert-butyl)-4-(5-methyl-4-(p-tolyl)hexa-1,5-dien-1-yl)benzene (3l)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (36.3 mg, 57%); ¹H NMR (600 MHz, CDCl₃) δ : 7.29 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H),

7.11 – 7.09 (m, 4H), 6.36 (d, J = 15.6 Hz, 1H), 6.10 – 6.05 (m, 1H), 4.94 (s, 1H), 4.86 – 4.85 (m, 1H), 3.31 (t, J = 7.2 Hz, 1H), 2.74 – 2.69 (m, 1H), 2.63 – 2.58 (m, 1H), 2.32 (s, 3H), 1.60 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 149.9, 147.6, 140.1, 135.7, 135.0, 130.6, 128.9, 128.4, 127.7, 125.7, 125.3, 110.6, 52.7, 36.9, 34.5, 31.3, 21.1, 21.0. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₃₀Na ([M + Na]⁺): 341.2245; found: 341.2242. [α] $p^{14} = 18.4$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak IA column, hexanes/i-PrOH = 99.9/0.1, 1.0 mL/min, 250 nm, t_R (minor) = 7.7 min, t_R (major) = 9.7 min); ee = 90%.

(*R*,*E*)-1-(6-(4-(tert-butyl)phenyl)-2-methylhexa-1,5-dien-3-yl)-2-chlorobenzene (3m)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (58.8 mg, 87%); ¹H NMR (600 MHz,

CDCl₃) δ : 7.34 – 7.33 (m, 1H), 7.29 – 7.27 (m, 3H), 7.22 – 7.20 (m, 3H), 7.13 – 7.10 (m, 1H), 6.33 (d, J = 15.6 Hz, 1H), 6.11 – 6.06 (m, 1H), 4.96 (s, 2H), 3.97 (t, J = 7.2 Hz, 1H), 2.77 – 2.72 (m, 1H), 2.61 – 2.56 (m, 1H), 1.64 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 149.9, 146.2, 140.6, 134.9, 134.7, 130.9, 129.5, 128.3, 127.7, 127.4, 126.8, 125.7, 125.3, 111.6, 47.9, 37.0, 34.5, 31.3, 22.1. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₃H₂₈Cl ([M + H]⁺): 339.1876; found: 339.1874. **[a]** $\mathbf{p}^{14} = 48.5$, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 12.3 min, t_R (major) = 13.0 min); ee = 92%.

(*R*,*E*)-1-(tert-butyl)-4-(4-(4-chlorophenyl)-5-methylhexa-1,5dien-1-yl)benzene (3n)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (52.1 mg, 77%); ¹H NMR (600 MHz, CDCl₃) δ : 7.29 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H),

7.21 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.34 (d, J = 15.6 Hz, 1H), 6.05 – 6.00 (m, 1H), 4.94 (s, 1H), 4.89 – 4.88 (m, 1H), 3.31 (t, J = 7.8 Hz, 1H), 2.74 – 2.67 (m, 1H), 2.60 – 2.55 (m, 1H), 1.58 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 150.0, 146.9, 141.6, 134.8, 131.9, 131.1, 129.2, 128.4, 127.7, 125.7, 125.3, 111.1, 52.5, 36.8, 34.5, 31.3, 21.1. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₂₈Cl ([M + H]⁺): 339.1877; found: 339.1874. [α] p^{14} = 78.3, (c = 2.0, CHCl₃). HPLC analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 21.7 min, t_R (major) = 24.6 min); ee = 91%.

(*R*,*E*)-1-(tert-butyl)-4-(4-(4-fluorophenyl)-5-methylhexa-1,5dien-1-yl)benzene (30)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (39.9 mg, 62%); ¹H NMR (600 MHz, CDCl₃) δ : 7.30 – 7.28 (m, 2H), 7.22 – 7.20 (m, 2H), 7.18 – 7.16

(m, 2H), 6.98 – 6.95 (m, 2H), 6.34 (d, J = 16.2 Hz, 1H), 6.06 – 6.01(m, 1H), 4.94 (s, 1H), 4.88 –

4.87 (m, 1H), 3.32 (t, J = 7.8 Hz, 1H), 2.72 – 2.69 (m, 1H), 2.61 – 2.56 (m, 1H), 1.59 (s, 3H), 1.29 (s, 9H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 161.5 (d, J = 242.6 Hz), 150.0, 147.3, 138.7 (d, J = 3.0 Hz), 134.9, 130.9, 129.2 (d, J = 7.65 Hz), 127.9, 125.7, 125.4, 115.0 (d, J = 20.85 Hz), 110.9, 52.31, 36.97, 34.47, 31.28, 21.12. ¹⁹**F NMR** (564 MHz; CDCl₃) δ -117.02 – (-117.07) (m). **HRMS** (ESI-TOF) (m/z): Calcd for C₂₃H₂₇FK ([M + K]⁺): 361.1723; found: 361.1728. [α]_D¹⁴ = 90.5, (c = 2.0, CHCl₃). **HPLC** analysis (Chiralpak OZ-H column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_R (minor) = 7.2 min, t_R (major) = 7.8 min); ee = 92%.

(*R*,*E*)-1-bromo-4-(6-(4-(tert-butyl)phenyl)-2-methylhexa-1,5dien-3-yl)benzene (3p)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (55.0 mg, 72%); ¹H NMR (600 MHz, CDCl₃) δ : 7.40 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 7.8 Hz, 2H),

7.21 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.34 (d, J = 15.6 Hz, 1H), 6.05 – 6.00 (m, 1H), 4.94 (s, 1H), 4.88 (s, 1H), 3.30 (t, J = 7.2 Hz, 1H), 2.73 – 2.69 (m, 1H), 2.60 – 2.55 (m, 1H), 1.58 (s, 3H), 1.29 (s, 9H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 150.0, 146.9, 142.1, 134.8, 131.3, 131.1, 129.7, 127.6, 125.7, 125.4, 120.1, 111.2, 52.5, 36.7, 34.5, 31.3, 21.2. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₃H₂₇BrK ([M + K]⁺): 421.0924; found: 421.0910. [α] p^{14} = 21.8, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 22.9 min, t_R (major) = 33.1 min); ee = 94%.

(*R*,*E*)-1-(tert-butyl)-4-(4-(4-iodophenyl)-5-methylhexa-1,5-di en-1-yl)benzene (3q)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (26.7 mg, 31%); ¹H NMR (600 MHz, CDCl₃) δ : 7.32 – 7.26 (m, 4H), 7.23 – 7.21 (m, 4H), 6.35 (d, *J* =

13.8 Hz, 1H), 6.01 – 6.0 (m, 1H), 4.96 (s, 1H), 4.88 – 4.87 (m, 1H), 3.35 (t, J = 7.8 Hz, 1H), 2.76

- 2.71 (m, 1H), 2.66 - 2.60 (m, 1H), 1.60 (s, 3H), 1.29 (s, 11H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 149.9, 147.4, 143.1, 135.0, 130.7, 128.3, 128.3, 127.9, 126.3, 125.7, 125.3, 110.8, 53.1, 36.8, 34.5, 31.3, 21.2. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₃H₂₇IK ([M + K]⁺): 469.0786; found: 469.0789. [α] \mathbf{p}^{15} = 2.5, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_R (minor) = 9.6 min, t_R (major) = 10.6 min); ee = 84%.

(*R*,*E*)-1-(tert-butyl)-4-(5-methyl-4-(4-(trifluoromethoxy)phen yl)hexa-1,5-dien-1-yl)benzene (3r)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (38.0 mg, 49%); ¹H NMR (600 MHz, CDCl₃) δ : 7.30 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H),

7.21 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 6.34 (d, J = 16.2 Hz, 1H), 6.06 – 6.01 (m, 1H), 4.96 (s, 1H), 4.90 (s, 1H), 3.36 (t, J = 7.8 Hz, 1H), 2.75 – 2.70 (m, 1H), 2.62 – 2.57 (m, 1H), 1.59 (s, 3H), 1.29 (s, 10H). ¹³C NMR (150 MHz, CDCl₃) δ : 150.1, 147.7, 146.9, 141.8, 134.8, 131.1, 129.1, 127.6, 125.7, 125.4, 120.7, 120.5 (q, J = 255.0 Hz), 111.3, 52.5, 36.8, 34.5, 31.3, 21.1. ¹⁹F NMR (564 MHz; CDCl₃) δ : -57.82. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₂₇F₃ONa ([M + Na]⁺): 411.1904; found: 411.1904. [α] $_{D}^{20} = 23.5$, (c = 2.0, CHCl₃). HPLC analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_{R} (minor) = 12.3 min, t_{R} (major) = 13.3 min); ee = 93%.

(*R*,*E*)-1-(tert-butyl)-4-(5-methyl-4-(4-(trifluoromethyl)phenyl))hexa-1,5-dien-1-yl)benzene (3s)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (27.5 mg, 37%); ¹H NMR (600 MHz, CDCl₃) δ : 7.54 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H),

7.30 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.35 (d, *J* = 15.6 Hz, 1H), 6.01 – 6.0 (m, 1H), 4.98 (s, 1H), 4.93 – 4.92 (m, 1H), 3.41 (t, *J* = 7.8 Hz, 1H), 2.79 – 2.74 (m, 1H), 2.65 – 2.60 (m,

1H), 1.60 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 150.1, 147.2, 146.5, 134.7, 131.3, 128.2, 127.4, 125.7, 125.4, 125.2, 125.2, 111.6, 52.9, 36.7, 34.5, 31.3, 21.2. ¹⁹F NMR (564 MHz; CDCl₃) δ : -62.29. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₄H₂₇F₃Na ([M + Na]⁺): 395.1952; found: 395.1957. **[a]** \mathbf{p}^{14} = 13.4, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, *t*_R (minor) = 15.3 min, *t*_R (major) = 19.4 min); ee = 98%.

(*R*,*E*)-3-(6-(4-(tert-butyl)phenyl)-2-methylhexa-1,5-dien-3-yl)benzo[b]thiophene (3t)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (25.2 mg, 35%); ¹H NMR (600 MHz,

CDCl₃) δ : 7.85 – 7.82 (m, 2H), 7.37 – 7.20 (m, 4H), 7.24 – 7.23 (m, 2H), 7.20 (s, 1H), 6.43 (d, J = 15.6 Hz, 1H), 6.20 – 6.15 (m, 1H), 5.03 (s, 1H), 4.94 (d, J = 1.8 Hz, 1H), 3.84 (t, J = 7.2 Hz, 1H), 2.82 (t, J = 7.2 Hz, 2H), 1.63 (s, 3H), 1.29 (d, J = 1.8 Hz, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 150.0, 145.7, 140.5, 138.9, 137.6, 134.8, 131.0, 127.9, 125.8, 125.4, 124.2, 123.7, 122.8, 122.3, 121.6, 112.4, 47.2, 36.2, 34.5, 31.3, 20.2. HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₂₈SNa ([M + Na]⁺): 383.1806; found: 383.1806. [α] $_{D}^{14} = 2.4$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_{R} (minor) = 12.3 min, t_{R} (major) = 16.4 min); ee = 85%.

(*R*,*E*)-1-(tert-butyl)-4-(5-methylene-4-phenylhept-1-en-1-yl)benzene (3u)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (33.7 mg, 53%); ¹H NMR (600 MHz,

CDCl₃) δ : 7.28 (t, J = 8.4 Hz, 4H), 7.23 – 7.17 (m, 5H), 6.33 (d, J = 16.2 Hz, 1H), 6.08 – 6.03 (m, 1H), 5.01 (s, 1H), 4.93 (d, J = 1.2 Hz, 1H), 3.36 (t, J = 7.6 Hz, 1H), 2.77 – 2.72 (m, 1H), 2.64 – 2.59 (m, 1H), 1.98 – 1.92 (m, 1H), 1.89 – 1.84 (m, 1H), 1.29 (s, 9H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 153.0, 149.9, 143.5, 135.0, 130.7, 128.4, 128.2, 128.0, 126.2, 125.7,

125.3, 108.2, 52.2, 37.7, 34.5, 31.3, 27.7, 12.2. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₄H₃₀K ([M + K]⁺): 357,1977; found: 357.1979. $[\alpha]_D^{14} = 16.8$, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_R (minor) = 8.0 min, t_R (major) = 8.7 min); ee = 84%.

(*R*,*E*)-1-(tert-butyl)-4-(5-methylene-4-phenyloct-1-en-1-yl)b enzene (3v)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (41.2 mg, 62%); ¹H NMR (600 MHz,

CDCl₃) δ : 7.27 (t, J = 7.8 Hz, 4H), 7.22 – 7.17 (m, 5H), 6.33 (d, J = 16.2 Hz, 1H), 6.08 – 6.03 (m, 1H), 5.02 (s, 1H), 4.93 (s, 1H), 3.33 (t, J = 7.8 Hz, 1H), 2.76 – 2.72 (m, 1H), 2.63 – 2.58 (m, 1H), 1.91 – 1.81 (m, 2H), 1.45 – 1.34 (m, 2H), 1.29 (s, 9H), 0.83 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 151.3, 149.8, 143.5, 135.0, 130.7, 128.4, 128.2, 128.0, 126.2, 125.7, 125.3, 109.3, 51.9, 37.8, 37.3, 34.5, 31.3, 20.8, 13.8. HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₃₂K ([M + K]⁺): 371.2131; found: 371.2136. [α] $_{D}^{14} = 31.7$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_{R} (minor) = 7.6 min, t_{R} (major) = 8.2 min); ee = 88%.

(*R*,*E*)-1-(tert-butyl)-4-(4-phenylhexa-1,5-dien-1-yl)benzene (3w) Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (40.6 mg, 70%); ¹H NMR (600 MHz, CDCl₃) δ : 7.32 – 7.29 (m, 5H), 7.24 – 7.20 (m, 5H), 6.36 (d, *J* = 15.6 Hz, 1H), 6.11 –

5.99 (m, 2H), 5.08 – 5.04 (m, 2H), 3.42 (q, J = 7.8 Hz, 1H), 2.67 – 2.60 (m, 2H), 1.29 (s, 9H). ¹³C **NMR** (150 MHz, CDCl₃) δ : 150.0, 143.8, 141.5, 134.9, 131.1, 128.5, 127.7, 126.3, 125.7, 125.3, 114.6, 50.2, 39.1, 34.5, 31.3. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₂H₂₆Na ([M + Na]⁺): 313.1932; found: 313.1931. [α]_D¹⁴ = 3.0, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak OD-H column, hexanes/i-PrOH = 99.9/0.1, 0.5 mL/min, 250 nm, t_R (minor) = 23.9 min, t_R (major) = 25.7 min); ee

(*R*,*E*)-hepta-2,6-diene-2,5-diyldibenzene (3x)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (35.2 mg, 71%); ¹H NMR (600 MHz, CDCl₃) δ: 7.32 -7.28 (m, 5H), 7.26 - 7.22 (m, 3H), 7.20 - 7.18 (m, 2H), 6.08 - 6.02 (m, 1H), 5.72 (t, J = 7.2 Hz, 1H), 5.10 (d, J = 4.2 Hz, 1H), 5.07 (s, 1H), 3.43 (q, J = 7.2 Hz, 1H), 2.67 – 2.57 (m, 2H), 1.96 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 143.9, 141.6, 135.8, 128.4, 128.1, 127.7, 126.5, 126.3, 126.1, 125.7, 114.5, 49.8, 34.7, 16.0. HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₂₀Na $([M + Na]^+)$: 271.1463; found: 271.1462. $[\alpha]_D^{20} = 22.9$, (c = 1.0, CHCl₃). Enantiomeric purity was determined by chiral HPLC analysis in comparison with authentic racemic material obtained from the derived alcohol 7, which was synthesized by hydroboration of the terminal olefin with 9-BBN, followed by oxidation with H_2O_2 . **HPLC** analysis (chiralpak IB column, hexanes/i-PrOH = 97/3, 1.0 mL/min, 250 nm, t_R (minor) = 10.0 min, t_R (major) = 11.6 min); ee = 93%.

tert-butyldimethyl((7-methyl-6-phenylocta-3,7-dien-1-yl)oxy)silane (3z)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (52.8 mg, 80%, Z:E = 2:1); ¹**H NMR** (600

MHz, CDCl₃) δ: 7.29 – 7.25 (m, 3.56H), 7.21 – 7.18 (m, 4.72H), 5.40 – 5.34 (m, 3.19H), 4.92 (s, 1H), 4.91 (s, 0.6H), 4.87 (s, 1H), 4.84 (s, 0.59H), 3.55 – 3.52 (m, 3.25H), 3.23 (t, J = 7.2 Hz, 1H), 2.61 – 2.40 (m, 3.38H), 2.26 – 2.13 (m, 3.46H), 1.58 (s, 3H), 1.57 (s, 1.69H), 0.04 (s, 6H), 0.03 (s, 3.22H). ¹³C NMR (150 MHz, CDCl₃) δ: 147.6, 147.5, 143.3, 143.2, 130.5, 129.7, 128.2, 128.1, 128.0, 127.8 (8), 127.8 (7), 126.6, 126.2, 126.1, 110.5, 63.3, 62.8, 53.1, 52.8, 36.5, 36.3, 31.3, 31.2, 25.9 (6), 25.9 (5), 21.3, 21.1, 18.4, 18.3, -5.3. **HRMS** (ESI-TOF) (m/z): Calcd for $C_{21}H_{34}NaOSi$ ([M + Na]⁺): 353.2277; found: 353.2275.

(*R*,*E*)-(4,5-dimethylhexa-1,5-diene-1,4-diyl)dibenzene (4a)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (39.8 mg, 55%); ¹H NMR (600 MHz, CDCl₃) δ : 7.31 – 7.30 (m, 3H), 7.28 – 7.23 (m, 5H), 7.20 – 7.17 (m, 2H), 6.39 (d, J =

15.6 Hz, 1H), 6.01 – 5.96 (m, 1H), 5.02 (s, 1H), 4.99 (s, 1H), 2.79 – 2.70 (m, 2H), 1.54 (s, 3H), 1.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 150.8, 147.0, 137.8, 132.2, 128.4, 128.1, 127.5, 126.9, 126.4, 126.0, 125.9, 111.0, 47.2, 42.5, 25.4, 20.3. HRMS (ESI-TOF) (m/z): Calcd for $C_{20}H_{22}Na$ ([M + Na]⁺): 285.1619; found: 285.1617. [α] p^{20} = 20.9, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H then OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 46.3 min, t_R (major) = 47.5 min); ee = 87%.

(*R*,*E*)-1-(tert-butyl)-4-(4,5-dimethyl-4-phenylhexa-1,5-dien-1-y l)benzene (4b)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (38.8 mg, 61%); ¹H NMR (600 MHz, CDCl₃) δ : 7.31 – 7.29 (m, 5H), 7.24 – 7.19 (m, 4H), 6.37 (d, *J* = 16.2 Hz,

1H), 5.97 - 5.92 (m, 1H), 5.00 (d, J = 18.0 Hz, 2H), 2.78 - 2.69 (m, 2H), 1.53 (s, 3H), 1.38 (s, 3H), 1.30 (s, 9H). ¹³**C** NMR (150 MHz, CDCl₃) δ : 150.8, 149.9, 147.1, 135.0, 131.9, 128.1, 126.6, 126.5, 125.8, 125.7, 125.3, 111.0, 47.2, 42.5, 34.5, 31.3, 25.3, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₃₀Na ([M + Na]⁺): 341.2245; found: 341.2242. [α]_D¹⁴ = 22.7, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 15.0 min, t_R (major) = 15.2 min); ee = 91%.

(*R*,*E*)-1-(4,5-dimethyl-4-phenylhexa-1,5-dien-1-yl)-4-methylbe nzene (4c)

Purified by flash column chromatography (eluent: Petroleum

ether). Colorless oil (27.0 mg, 49%); ¹H NMR (600 MHz, CDCl₃) δ : 7.32 – 7.29 (m, 5H), 7.24 – 7.20 (m, 5H), 6.36 (d, J = 15.6 Hz, 1H), 6.11 – 5.99 (m, 2H), 5.08 – 5.04 (m, 2H), 3.42 (q, J = 7.8 Hz, 1H), 2.67 – 2.60 (m, 2H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 150.0, 143.8, 141.5, 134.9, 131.1, 128.5, 127.7, 126.3, 125.7, 125.3, 114.6, 50.2, 39.1, 34.5, 31.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₂₄Na ([M + Na]⁺): 299.1773; found: 299.1770. [α]_D¹⁵ = 66.1, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_R (minor) = 5.2 min, t_R (major) = 5.8 min); ee = 88%.

(*R*,*E*)-1-(4,5-dimethyl-4-phenylhexa-1,5-dien-1-yl)-4-isopropyl benzene (4d)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (37.1 mg, 61%); ¹H NMR (600 MHz, CDCl₃)

δ: 7.39 – 7.29 (m, 4H), 7.21 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 6.37 (d, J = 15.6 Hz, 1H), 5.96 – 5.91 (m, 1H), 5.01 (s, 1H), 4.98 (s, 1H), 2.90 – 2.94 (m, 1H), 2.78 – 2.69 (ddd, J = 31.3, 13.7, 7.3 Hz, 2H), 1.53 (s, 3H), 1.38 (s, 3H), 1.22 (d, J = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ: 150.8, 147.7, 147.1, 135.4, 132.0, 128.1, 126.5, 126.5, 126.0, 125.8, 111.0, 47.2, 42.5, 33.8, 25.3, 23.9, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₂₈Na ([M + Na]⁺): 327.2083; found: 327.2083. [α]_D¹⁴ = 1.4, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 16.9 min, t_R (major) = 17.5 min); ee = 91%.

(*R*,*E*)-1-(4,5-dimethyl-4-phenylhexa-1,5-dien-1-yl)-2,4-dimethy lbenzene (4e)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (31.9 mg, 55%); ¹H NMR (600 MHz, CDCl₃) δ : 7.30 – 7.29 (m, 4H), 7.20 – 7.18 (m, 2H), 6.92 (d, *J* = 7.8 Hz,

2H), 6.52 (d, *J* = 15.6 Hz, 1H), 5.93 – 5.79 (m, 1H), 5.02 (s, 1H), 4.98 (s, 1H), 2.80 – 2.71 (m, 2H),

2.27 (s, 3H), 2.24 (s, 3H), 1.54 (s, 3H), 1.40 (s, 3H).¹³**C** NMR (150 MHz, CDCl₃) δ : 150.9, 147.1, 136.5, 134.8, 134.2, 130.8, 130.1, 128.1, 127.9, 126.7, 126.5, 125.8, 125.7, 111.0, 47.2, 42.8, 25.3, 21.0, 20.3, 19.7.**HRMS** (ESI-TOF) (m/z): Calcd for C₂₂H₂₆Na ([M + Na]⁺): 313.1932; found: 313.1934. **[a]** \mathbf{p}^{14} = 17.9, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak IA column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 9.2 min, t_R (major) = 9.4 min); ee = 91%.

(*R*,*E*)-1-(4,5-dimethyl-4-phenylhexa-1,5-dien-1-yl)-4-fluorobenz ene (4f)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (34.2 mg, 61%); ¹H NMR (600 MHz, CDCl₃) δ : 7.31

- 7.30 (m, 4H), 7.24 - 7.19 (m, 3H), 6.95 (t, J = 9.0 Hz, 2H), 6.35 (d, J = 15.6 Hz, 1H), 5.91 - 5.86 (m, 1H), 5.02 (s, 1H), 5.00 (s, 1H), 2.78 - 2.69 (m, 2H), 1.53 (s, 3H), 1.38 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 161.9 (J = 244.4 Hz), 150.8, 146.9, 133.9, 131.0, 128.1, 127.4 (J = 7.8 Hz), 127.2 (J = 2.1 Hz), 126.4, 125.9, 115.3 (J = 21.5 Hz), 111.0, 47.2, 42.5, 25.3, 20.3. ¹⁹F NMR (564 MHz; CDCl₃) δ : -115.59 - -115.64. HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₂₁F ([M + Na]⁺): 303.1525; found: 303.1523. [α] $p^{14} = 8.5$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_R (minor) = 9.5 min, t_R (major) = 10.2 min); ee = 90%.

(*R*,*E*)-1-(4,5-dimethyl-4-phenylhexa-1,5-dien-1-yl)-4-methoxy benzene (4g)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (28.0 mg, 48%); ¹H NMR (600 MHz, CDCl₃)

 δ : 7.31 – 7.30 (m, 4H), 7.21 (d, J = 8.4 Hz, 2H), 7.18 – 7.15 (m, 1H), 6.81 (d, J = 9.0 Hz, 2H), 6.33 (d, J = 16.2 Hz, 1H), 5.86 – 5.81 (m, 1H), 5.02 – 4.98 (m, 2H), 3.78 (s, 3H), 2.79 – 2.58 (m, 2H), 1.53 (d, J = 0.6 Hz, 3H), 1.38 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 158.7, 150.9, 147.1, 131.5, 130.7, 128.1, 127.1, 126.5, 125.8, 125.2, 113.9, 111.0, 55.3, 47.2, 42.5, 25.3, 20.3. **HRMS** (ESI-TOF) (m/z):

Calcd for C₂₁H₂₅O ([M + H]⁺): 293.1505; found: 293.1508. $[\alpha]_D^{15} = 40.1$, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak IB column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 32.7 min, t_R (major) = 34.6 min); ee = 91%.

(*R*,*E*)-1-(4,5-dimethyl-4-(4-(trifluoromethoxy)phenyl)hexa-1,5-dien-1-yl)-4-isopropylbenzene (4h)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (37.2 mg, 55%); ¹H NMR (400 MHz,

CDCl₃) δ : 7.32 (d, J = 7.2 Hz, 2H), 7.21 (d, J = 6.4 Hz, 2H), 7.14 (d, J = 7.2 Hz, 4H), 6.36 (d, J = 12.8 Hz, 1H), 5.93 – 5.87 (m, 1H), 5.02 – 5.00 (m, 2H), 2.77 – 2.73 (m, 1H), 2.70 – 2.65 (m, 2H), 1.53 (s, 3H), 1.38 (s, 3H), 1.23 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ : 149.8, 147.4, 146.9, 145.4, 134.8, 132.0, 127.4, 126.0, 125.5, 125.3, 120.0, 111.0, 46.5, 42.1, 33.3, 24.9, 23.5, 19.8. ¹⁹F NMR (470 MHz; CDCl₃) δ : -71.11. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₂₇F₃NaO ([M + Na]⁺): 411.1912; found: 411.1913. [α]_D¹⁴ = 38.5, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H then OD-H column in series, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_R (minor) = 45.8 min, t_R (major) = 46.9 min); ee = 90%.

(*R*,*E*)-1-(4-(4-chlorophenyl)-4,5-dimethylhexa-1,5-dien-1-yl)-4 -isopropyl-2-methylbenzene (4i)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (37.2 mg, 55%); ¹H NMR (600 MHz, CDCl₃)

δ: 7.26 (d, J = 8.4 Hz, 2H), 7.23 – 7.20 (m, 4H), 7.14 (d, J = 8.4 Hz, 2H), 6.36 (d, J = 15.6 Hz, 1H), 5.92 – 5.87 (m, 1H), 5.01 (s, 1H), 4.99 (s, 1H), 2.90 – 2.84 (m, 1H), 2.74 – 2.65 (m, 2H), 1.52 (s, 3H), 1.36 (s, 3H), 1.23 (d, J = 6.6 Hz, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 150.4, 147.8, 145.7, 135.3, 132.4, 131.6, 128.2, 128.0, 126.5, 126.0, 125.9, 111.3, 46.9, 42.6, 33.8, 25.2, 23.9, 20.2. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₃H₂₈Cl ([M + H]⁺): 339.1874; found: 339.1874. [α]_D¹⁴ = 60.5, (c = 1.0, CHCl₃). **HPLC** analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, $t_{\rm R}$ (minor) = 21.6 min, $t_{\rm R}$ (major) = 22.7 min); ee = 91%.

(*R*,*E*)-1-(4,5-dimethyl-4-(p-tolyl)hexa-1,5-dien-1-yl)-4-isopropyl benzene (4j)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (46.4 mg, 73%); ¹H NMR (600 MHz, CDCl₃) δ : 7.22 (d, *J* = 7.8 Hz, 2H), 7.19 (d, *J* = 7.8 Hz, 2H), 7.13 (d, *J* = 8.4

Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 6.37 (d, J = 15.6 Hz, 1H), 5.97 – 5.92 (m, 1H), 4.99 – 4.96 (m, 2H), 2.89 – 2.84 (m, 1H), 2.78 – 2.67 (m, 2H), 2.32 (s, 3H), 1.53 (d, J = 0.6 Hz, 3H), 1.36 (s, 3H), 1.22 (d, J = 7.8 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ : 150.9, 147.6, 144.2, 135.5, 135.2, 131.9, 128.8, 126.7, 126.5, 126.3, 126.0, 110.9, 46.8, 42.5, 33.8, 25.5, 23.9, 20.9, 20.3. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₃₁ ([M + H]⁺): 319.2426; found: 319.2424. [α] $_{D}^{14} = 20.4$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 0.5 mL/min, 250 nm, t_{R} (minor) = 14.5 min, t_{R} (major) = 15.3 min); ee = 92%.

(*R*,*E*)-1-isopropyl-4-(4-methyl-4-phenylhexa-1,5-dien-1-yl)benze ne (4k)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (38.9 mg, 67%); ¹**H NMR** (600 MHz, CDCl₃) δ : 7.36

(d, J = 7.2 Hz, 2H), 7.33 – 7.30 (m, 3H), 7.19 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 6.35 (d, J = 16.2 Hz, 1H), 6.02 – 6.07 (m, 1H), 6.00 – 5.94 (m, 1H), 5.14 – 5.06 (m, 2H), 2.89 – 2.84 (m, 1H), 2.70 – 2.61 (m, 2H), 1.40 (s, 3H), 1.22 (d, J = 7.2 Hz, 6H).¹³**C** NMR (150 MHz, CDCl₃) δ : 147.7, 147.1, 146.6, 135.3, 132.3, 128.1, 126.7, 126.5, 126.1, 126.0, 125.9, 112.1, 44.7, 44.6, 33.8, 25.0, 23.9. [α] $p^{14} = 19.7$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 mL/min, 250 nm, t_R (minor) = 11.4 min, t_R (major) = 12.1 min); ee = 91%.

(*R*,*E*)-1-(4-ethyl-4-phenylhexa-1,5-dien-1-yl)-4-isopropylbenzene

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (37.1 mg, 61%); ¹H NMR (600 MHz, CDCl₃) δ :7.32 – 7.31 (m, 4H), 7.19 (d, J = 8.4 Hz, 3H), 7.12 (d, J = 9.0 Hz, 2H), 6.34 (d, J = 16.2 Hz, 1H), 6.00 – 5.92 (m, 2H), 5.23 (d, J = 11.4 Hz, 1H), 5.12 (d, J = 17.4 Hz, 1H), 2.88 – 2.83 (m, 1H), 2.67 (d, J = 7.2 Hz, 2H), 1.87 – 1.78 (m, 2H), 1.22 (d, J = 6.6 Hz, 6H), 0.76 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 147.7, 145.5, 145.3, 135.4, 131.9, 128.0, 127.4, 126.5, 126.7, 126.0, 125.9, 113.1, 48.1, 40.5, 33.8, 29.5, 23.9, 8.4. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₂₈Na ([M + Na]⁺): 327.2089; found: 327.2088. [α] $_D^{14} = 6.7$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak OD-H column, hexanes/i-PrOH = 100/0, 1.0 ml/min, 250 nm, t_R (minor) = 9.7 min, t_R (major) = 10.1 min); ee = 90%.

(*R*,*E*)-1-isopropyl-4-(4-phenyl-4-vinylhept-1-en-1-yl)benzene (4m)

Purified by flash column chromatography (eluent: Petroleum ether). Colorless oil (36.9 mg, 58%); ¹**H NMR** (600 MHz, CDCl₃) δ : 7.32 –

7.31 (m, 4H), 7.19 (d, J = 8.4 Hz, 3H), 7.12 (d, J = 7.8 Hz, 2H), 6.33 (d, J = 16.2 Hz, 1H), 6.01 – 5.92 (m, 2H), 5.61 (t, J = 7.2 Hz, 0.23H), 5.21 (dd, J = 10.8, 1.2 Hz, 1H), 5.11 (dd, J = 17.4, 1.2Hz, 1H), 2.89 – 2.84 (m, 1H), 2.67 (dd, J = 7.2, 1.2 Hz, 2H), 1.79 – 1.70 (m, 2H), 1.22 (d, J = 6.6 Hz, 6H), 1.19 – 1.01 (m, 2H), 0.84 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 147.7, 145.8, 145.5, 135.4, 131.9, 128.0, 127.3, 126.5, 126.1, 126.0, 125.8, 112.9, 48.0, 41.2, 39.6, 33.8, 23.9, 17.2, 14.7. HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₃₀Na ([M + Na]⁺): 341.2245; found: 341.2243. [α] $_{D}^{14} = 27.7$, (c = 1.0, CHCl₃). HPLC analysis (Chiralpak IB column, hexanes/i-PrOH = 100/0, 1.0 ml/min, 250 nm, t_{R} (minor) = 9.1 min, t_{R} (major) = 9.7 min); ee = 85%. A structure undetermined compound and compound 4m were obtained and can not isolated by flash column chromatography.

(R,E)-(4-methylhexa-1,5-diene-1,4-diyl)dibenzene (4n)

Purified by flash column chromatography (eluent: Petroleum ether).

Colorless oil (46.4 mg, 73%); ¹**H** NMR (600 MHz, CDCl₃) δ : 7.36 (d, J = 7.8 Hz, 2H), 7.32 (t, J = 7.2 Hz, 3H), 7.26 – 7.24 (m, 2H), 7.22 – 7.16 (m, 3H), 6.37 (d, J = 15.6 Hz, 1H), 6.10 (dd, J = 17.4, 10.8 Hz, 1H), 6.04 – 5.99 (m, 1H), 5.15 (d, J = 10.8 Hz, 1H), 5.09 (d, J = 17.4 Hz, 1H), 2.72 – 2.64 (m, 2H), 1.41 (s, 3H).. ¹³C NMR (150 MHz, CDCl₃) δ : 147.0, 146.5, 137.7, 132.4, 128.4, 128.1, 127.1, 126.9, 126.6, 126.0 (3), 125.9 (6), 112.2, 44.7, 44.6, 25.0. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₉H₂₀Na ([M + Na]⁺): 271.1463; found: 271.1462. [α]p²⁰ = 7.8, (c = 0.5, CHCl₃). **HPLC** analysis (Chiralpak IB column, hexanes/i-PrOH = 100/0, 0.3 ml/min, 250 nm, t_R (minor) = 25.7 min, t_R (major) = 26.9 min); ee = 90%.

Proof of Stereochemistry:

Spectra datas are in accordance with literature.⁴ Based on the optical rotation of **6** in ref 4 (which was assigned to possess *S* absolute stereochemistry, $[\alpha]_D^{20} = -45.342$, (c = 2.1, CHCl₃), the absolute stereochemistry of product **4n** was determined as *R*.

2-((*R*,1*E*,5*E*)-3,6-diphenylhepta-1,5-dien-1-yl)-4,4,5,5-tetramethyl-1, 3,2-dioxaborolane (5)

Hoveyda-Grubbs Catalyst 2nd (6.26 mg, 0.01 mmol), pinacol vinylboronate (61.6 mg, 0.4 mmol) were weighed out into a flamedried

50 mL round-bottom flask under a N₂ atmosphere in a glove box. The flask was fitted with a reflux condenser and removed from the glove box. A solution of **3y** (49.6 mg, 0.2 mmol) dissolved in DCM (5.0 mL) was added through a plastic syringe and the resulting mixture was allowed to stir at reflux (50 °C) for 24 h. The mixture was allowed to cool to 22 °C and the volatiles were removed in vacuo and the crude product was purified by flash column chromatography (using 1% diethyl ether / *n*-hexane) to give the corresponding product **5** colorless oil (56.1 mg, 75%); ¹H NMR (600 MHz, CDCl₃) δ : 7.31 – 7.25 (m, 6H), 7.22 – 7.18 (m, 4H), 6.81 (dd, *J* = 18.0, 7.2 Hz, 1H), 5.67 (t, *J* = 7.7 Hz, 1H), 5.48 (d, *J* = 17.4 Hz, 1H), 3.49 (d, *J* = 7.2 Hz, 1H), 2.72 – 2.67 (m, 1H), 2.65 – 2.59 (m, 1H), 1.95 (s, 3H), 1.25 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ : 156.2, 143.9, 143.0, 136.0, 128.4, 128.1, 128.0, 126.5, 126.4, 125.9, 125.7, 83.1, 51.7, 34.3, 24.8, 24.8, 16.1. HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₂₀BNaO₂ ([M + Na]⁺):

(R,2E,6E)-ethyl 4,7-diphenylocta-2,6-dienoate (6)

Hoveyda-Grubbs Catalyst 2nd (6.26 mg, 0.01 mmol), ethyl acrylate (40.0 mg, 0.4 mmol) were weighed out into a flamedried 50 mL round-bottom flask under a N_2 atmosphere in a glove box. The flask was fitted with a reflux condenser and removed from the glove box. A

solution of **3y** (49.6 mg, 0.2 mmol) dissolved in DCM (5.0 mL) was added through a plastic syringe and the resulting mixture was allowed to stir at reflux (50 °C) for 24 h. The mixture was allowed to cool to 22 °C and the volatiles were removed in vacuo and the crude product was purified by flash column chromatography (using 1% diethyl ether / *n*-hexane) to give the corresponding product **6** colorless oil (49.5 mg, 77%); ¹H NMR (600 MHz, CDCl₃) δ : 7.32 (t, *J* = 7.2 Hz, 2H), 7.28 (d, *J* = 4.2 Hz, 4H), 7.24 – 7.22 (m, 3H), 7.11 – 7.14 (m, 1H), 5.83 (d, *J* = 15.6 Hz, 1H), 5.66 (t, *J* = 6.6 Hz, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.57 (q, *J* = 7.2 Hz, 1H), 2.74 – 2.64 (m, 2H), 1.97 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 166.6, 151.0, 143.7, 141.8, 137.0, 128.7, 128.1, 127.9, 126.9, 126.7, 125.7, 124.9, 121.2, 60.3, 48.5, 34.3, 16.1, 14.2. HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₂₄O₂Na ([M + Na]⁺): 343.1674; found: 343.1670.

(*R*,*E*)-3,6-diphenylhept-5-en-1-ol (7)

A dry 25 mL flask equipped with a magnetic stirring bar was flushed with nitrogen. To the flask were added 3y (49.6 mg, 0.2 mmol) and dry THF (2.0 mL) and then a solution of 9-BBN (0.5 M solution in THF, 0.4 mL) at 0 °C. Then the reaction flask was stirred for 6 h at rt. NaOH

(80 mg) and H₂O₂ (30%, 1.2 mL) were added to the reaction. After 3 h, the mixture was extracted with DCM (3 × 5.0 mL). The residue was purified by chromatography on silica gel (using 5% EtOAc/*n*-hexane) to afford **7** (colorless oil, 39.4 mg, 74 %); ¹H NMR (600 MHz, CDCl₃) δ : 7.30 (t, J = 7.2 Hz, 2H), 7.27 – 7.25 (m, 4H), 7.22 – 7.19 (m, 4H), 5.68 (t, J = 7.8 Hz, 1H), 3.59 – 3.56 (m, 1H),

3.52 - 3.48 (m, 1H), 2.90 - 2.85 (m, 1H), 2.58 - 2.53 (m, 1H), 2.50 - 2.46 (m, 1H), 2.08 - 2.02 (m, 1H), 1.95 - 1.85 (m, 4H), 1.16 (s, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 144.6, 143.9, 135.9, 128.5, 128.1, 127.6, 126.9, 126.5, 126.3, 126.2, 126.1, 125.6, 61.2, 42.8, 38.6, 36.3, 15.9. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₉H₂₀Na ([M + Na]⁺): 289.1563; found: 289.1580.

(S,E)-(7-(p-tolyl)hept-2-ene-2,5-diyl)dibenzene (8)

To the dry 25 mL flask with a magnetic stirring bar was added **3y** (49.6 mg, 0.2 mmol) and dry THF (2.0 mL) and then added the solution of 9-BBN (0.5 M solution in THF, 0.4 mL) at 0 $^{\circ}$ C under N₂ atmosphere. After 12 h at rt, Pd(dppf)Cl₂ (14.5 mg, 10 mol%), 4-bromotoluene (51.3

mg, 1.5 equiv.) and aqueous NaOH (3.0 mL of 3 M) were added successively to the above mixture at rt and then reacted 16 h under reflux. The reaction mixture was diluted with hexane (10.0 mL), and the residual borane was oxidized by addition of H₂O₂ (30%, 4.0 mL) at rt. The mixture was extracted with DCM (3 × 5.0 mL). The residue was purified by chromatography on silica gel (using 1% diethyl ether / *n*-hexane) to afford **8** (colorless oil, 39.4 mg, 59%); ¹H NMR (600 MHz, CDCl₃) δ : ¹H NMR (600 MHz, CDCl₃) δ 7.31 (t, *J* = 7.8 Hz, 2H), 7.26 – 7.21 (m, 7H), 7.19 – 7.17 (m, 1H), 7.06 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 7.8 Hz, 2H), 5.65 (t, *J* = 6.6 Hz, 1H), 2.74 – 2.69 (m, 1H), 2.57 – 2.40 (m, 4H), 2.30 (s, 3H), 2.07 – 1.93 (m, 2H), 1.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 145.1, 144.0, 139.3, 135.7, 135.1, 129.0, 128.3, 128.2, 128.1, 127.8, 126.5, 126.1, 125.6, 45.8, 37.6, 36.4, 33.3, 21.0, 15.9. HRMS (ESI-TOF) (m/z): Calcd for C₂₆H₂₈Na ([M + Na]⁺): 363.2089; found: 363.2086.

(E)-3-(4-iodophenyl)-2-methylallyl dimethyl phosphoroperoxoite

Following the general procedure 4. ¹H NMR (600 MHz, CDCl₃)

δ: 7.67 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 6.49 (s, 1H), 4.57 (d, J = 7.8 Hz, 2H), 3.80 (d, J = 9.6 Hz, 6H), 1.90 (d, J = 1.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 137.3, 136.2, 133.7(d, J = 6.75)

Hz), 130.7, 127.2, 92.3, 72.9(d, J = 5.55 Hz), 54.3(d, J = 6.0 Hz), 15.1. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₂H₁₆NaIO₄P ([M + Na]⁺): 404.9723; found: 404.9722.

(*E*)-dimethyl (2-methyl-3-phenylbut-2-en-1-yl) phosphoroperoxoite

Following the general procedure **4.** ¹**H** NMR (600 MHz, CDCl₃) δ :

7.33 (t, J = 7.8 Hz, 2H), 7.24 (t, J = 7.8 Hz, 1H), 7.13 (d, J = 6.6 Hz, 2H), 4.73 (d, J = 7.2 Hz, 2H), 3.81 (d, J = 10.8 Hz, 6H), 2.07 (s, 3H), 1.67 (d, J = 1.2 Hz, 3H). ¹³**C** NMR (150 MHz, CDCl₃) δ : 143.8, 137.2, 128.2, 127.7, 126.6, 126.1 (d, J = 6.6 Hz), 68.4 (d, J = 5.55 Hz), 54.2 (d, J = 6.0 Hz), 20.6, 17.8. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₃H₁₉NaO₄P ([M + Na]⁺): 293.0913; found: 293.0914.

(*E*)-dimethyl (2-methyl-3-(*p*-tolyl)but-2-en-1-yl) phosphoroperoxoite

Following the general procedure 4. ${}^{1}H$ NMR (600 MHz, CDCl₃)

δ: 7.14 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 7.8 Hz, 2H), 4.72 (d, J = 7.2 Hz, 2H), 3.80 (d, J = 11.4 Hz, 6H), 2.35 (s, 4H), 2.05 (d, J = 1.8 Hz, 3H), 1.68 (d, J = 1.8 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 140.8, 137.1, 136.1, 128.8, 127.7, 125.9 (d, J = 6.6 Hz), 68.5 (d, J = 5.7 Hz), 54.2 (d, J = 6.0 Hz), 21.1, 20.6, 17.9. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₄H₂₁NaO₄P ([M + Na]⁺): 307.1075; found: 307.1074.

(*E*)-3-(4-chlorophenyl)-2-methylbut-2-en-1-yl dimethyl phosphoroperoxoite

Following the general procedure **4.** ¹**H** NMR (500 MHz, CDCl₃)

 δ : 7.30 (d, J = 8.5 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 4.72 (d, J = 7.5 Hz, 2H), 3.81 (d, J = 11.0 Hz, 6H), 2.04 (s, 3H), 1.67 (d, J = 1.0 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 141.9, 135.7, 132.1, 129.0, 128.1, 126.6 (d, J = 6.45 Hz), 67.9 (d, J = 5.55 Hz), 54.0 (d, J = 6.0 Hz), 20.2, 17.5. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₃H₁₈ClNaO₄P ([M + Na]⁺): 327.0529; found: 327.0524.

(*E*)-dimethyl (3-phenylbut-2-en-1-yl) phosphoroperoxoite Following the general procedure 4. ¹H NMR (600 MHz, CDCl₃) δ : 7.40 (d, *J* = 7.2 Hz, 2H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.27 (t, *J* = 7.2 Hz,

1H), 5.96 – 5.93 (m, 1H), 4.77 (t, J = 7.2 Hz, 2H), 3.77 (d, J = 10.8 Hz, 6H), 2.12 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 142.1, 140.7, 128.1, 127.5, 125. 7, 121.3(d, J = 6.45 Hz), 64.4 (d, J = 5.4 Hz), 54.1 (d, J = 6.0 Hz), 16.0. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₂H₁₇NaO₄P ([M + Na]⁺): 279.0757; found: 279.0765.

(*E*)-dimethyl (3-phenylpent-2-en-1-yl) phosphoroperoxoite Following the general procedure 4. ¹H NMR (600 MHz, CDCl₃) δ : 7.37 (d, *J* = 7.2 Hz, 2H), 7.33 (t, *J* = 7.2 Hz, 2H), 7.28 (t, *J* = 7.2 Hz,

1H), 5.81 (t, J = 7.2 Hz, 1H), 4.77 (t, J = 7.2 Hz, 2H), 3.78 (d, J = 11.4 Hz, 6H), 2.59 – 2.86 (m, 2H), 1.00 (t, J = 7.8 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 147.6, 141.4, 128.3, 127.6, 126.4, 121.2 (d, J = 6.6 Hz), 64.3 (d, J = 5.4 Hz), 54.2 (d, J = 5.85 Hz), 23.3, 13.7. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₃H₁₉NaO₄P ([M + Na]⁺): 293.0913; found: 293.0909.

(*E*)-dimethyl (3-phenylhex-2-en-1-yl) phosphoroperoxoite Following the general procedure 4. ¹H NMR (600 MHz, CDCl₃) δ : 7.36 – 7.31 (m, 4H), 7.29 – 7.26 (m, 1H), 5.84 (t, *J* = 6.6 Hz, 1H),

4.77 (t, J = 7.2 Hz, 2H), 3.78 (d, J = 10.8 Hz, 6H), 2.53 (t, J = 7.8 Hz, 2H), 1.41 – 1.35 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 145.9, 141.7, 128.3, 127.5, 126.4, 122.1(d, J = 6.75 Hz), 64.4 (d, J = 5.4 Hz, 6H), 54.2 (d, J = 6.0 Hz, 6H), 32.0, 21.8, 13.7. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₄H₂₁NaO₄P ([M + Na]⁺): 3071070; found: 3071056.

6. References

- 1. B. Jung and A. H. Hoveyda, J. Am. Chem. Soc. 2012, 134, 1490.
- 2. M. S. Baird, A. V. Nizovtsev and I. G. Bolesov, Tetrahedron 2002, 58, 1581.
- C.-M. Zhong, S. Kunii, Y. Kosaka, M. Sawamura and H. Ito, J. Am. Chem. Soc. 2010, 132, 11440.
- 4. P. Zhang, H. Le, R. E. Kyne and J. P. Morken, J. Am. Chem. Soc. 2011, 133, 9716.

7. ¹H, ¹³C and ¹⁹F Spectra of New Compounds

S45

S63

S65

8. Copies of HPLC Traces for Chiral Products

Peak	Ret. Time	Width	Area	Height	Area
#	[min]	[min]	[mAU * s]	[mAU]	%
1	22.369	0.4584	6850.30371	228.74400	54.1361
2	26.128	0.5494	5803.55469	162.60884	45.8639

Peak	Ret. Time	Width	Area	Height	Area
#	[min]	[min]	[mAU * s]	[mAU]	%
1	18.969	0.7625	389.39426	8.38979	3.2410
2	20.562	1.4194	1.16251e ⁴	135.62494	96.7590

