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Introduction to Principal Component Analysis (PCA)

Principal component analysis (PCA) describes an unsupervised learning strategy in machine

learning which operates on an unlabelled dataset. Such datasets only contain parameter

vectors, commonly referred to as features, and do not include any associated target values

as it is the case in supervised learning problems. PCA analyzes these features with the goal

of identifying an orthogonal transformation which projects features onto a set of mutually

uncorrelated variables, referred to as the principal components. The principal components

are constructed such that the first principal component accounts for as much variability

of the dataset as possible. Each next principal component is then constructed to explain

the largest possible portion of the remaining variability while satisfying the constraint of

being orthogonal to all already identified principal components. Consequently, principal

components fully describe the variability in the dataset.

Principal components can be constructed by computing the covariance matrix of all fea-

tures across the dataset. The covariance matrix can be diagonalized, and the eigenvectors

of the covariance matrix present the principal components. The principal component asso-

ciated with the largest eigenvalue of the covariance matrix accounts for the most variability

in the dataset.

PCA can be used as a tool for dimensionality reduction. By construction, the first

principal components account for the most variability in the dataset. In practice, it is

often found that the contribution of some of the later constructed principal components

to the overall variability in the dataset is negligible. Most of the variability, and thus the

information content in the dataset, can be explained by the first few principal components.

The dimensionality of the dataset can then be reduced by discarding the uninformative

principal components.

In this study, we use PCA to determine a statistically diverse set of molecular frames

to construct a training set for the Bayesian neural network models. Molecular frames were

projected onto the principal components obtained from the covariance matrix constructed
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for the combined training and validation set. Within the reduced PCA space representation,

we determine the most diverse set of projected features while neglecting the principal com-

ponents which contribute minimally to the overall variability of the dataset, following the

procedure outlined in a previously published work.1

Further details on the Bayesian Neural Networks (BNN)

Bayesian neural networks (BNN) represent probabilistic models containing parameters which

are modelled as random variables. The output of the BNN is therefore a probability distribu-

tion, which can be optimised to resemble a target probability distribution. For the prediction

of 1,2-dioxetane dissociation times we chose to model the probability distributions of weights

and biases as Laplace distributions L parametrised with a location µ and a scale σ, i.e.

wi ∼ L(µi,σi), bj ∼ L(µj,σj), (1)

where wi and bj represent the collection of all weights and biases of all neurons in the

BNN.

In addition to the model parameters wi and bj the BNN models can differ in their

architecture, i.e. the number of neuron layers, the number of neurons per layer and the acti-

vation function of the neurons. The optimal choice for these parameters yielding the models

with the most accurate predictions was determined from a random grid search. Lower and

upper bounds as well as the steps in each hyperparameter for the construction of the hy-

perparameter grid are reported in table S1. In addition to the model hyperparameters we

also benchmarked the effect of the initial learning rate η of the Adam optimisation algorithm.

We evaluated a total of 256 BNN models with hyperparameter sets randomly sampled

from the grid of hyperparameters for each of the two featurisation methods (geometries only,
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Table S1: BNN hyperparameters considered for optimization in a random grid search. The
learning rate set for the Adam optimiser is denoted with η.

Model parameter Lower bound Upper bound Step
lg(η) −4 −1.5 0.125
lg(regularization) −4 −2 0.125
# layers 3 5 1
# neurons per layer 50 150 4
activation function Softsign, LeakyReLU, Tanh

geometries and velocities). The hyperparameter sets yielding the BNN models with the

highest prediction accuracies on the validation set are reported in table S2.

Table S2: Hyperparameters of BNN models with the highest prediction accuracies on the
validation set out of 256 generated BNN architectures.

Hyperparameter BNN1 BNN2
lg(η) -2.25 -2.25
lg(regularization) -3 -2.5
# layers 4 4
# neurons per layer 130 126
activation function Leaky ReLU Leaky ReLU

Figure S1 shows the lowest mean absolute deviations (MAD) between predicted and true

dissociation times achieved by BNN models with different architectures on the validation set.

We observe preferences for particular hyperparameter values for all varied hyperparameters.

In addition, we do not observe a large difference in the lowest prediction errors achieved by

BNN models trained on geometries only, or trained on geometries and velocities.

BNN performance and sampling efficiency

In this section we discuss the sampling efficiency in more detail and determine the perfor-

mance of the BNN models when they are trained on different fractions of the entire training

set. Figure S2 illustrates the achieved sampling efficiencies of both models achieved on the

test set. We observe that the performance of the models degrades substantially when trained

on less than 3000 frames. However, we note that positive R2 values are achieved even when
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the size of the training set is reduced by two orders of magnitude.

Figure S2: Sampling efficiency of the two trained BNN for different training set sizes. (A):
Mean absolute deviation (MAD) achieved on the test set. (B): R2 score achieved on the test
set. Dark lines indicate the minimal achievable MAD and maximal achievable R2 score.

Predictions of dissociation half-times for vibrational states

excited along two normal modes

We have used the trained BNN2 to predict the dissociation times for 153 ensembles of 250

initial conditions, each ensemble representing a vibrational state that is excited to the first

level along two particular normal modes. For example, the ensemble “3,7” corresponds to a

vibrational state that is excited along normal modes 3 and 7, while it remains in the ground

state along all other modes. The predicted dissociation half-times are given in figure S3,

as well as the normal mode z-scores providing information about how a nuclear coordinate

influences another one in figure S4. It is noted that positive z-scores indicate that the

dissociation is slower. We find that combining any vibrationally excited normal mode with

an excitation along normal mode 7 slows down dissociation.
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Figure S3: Predicted dissociation half-times for 153 ensembles of 250 initial conditions rep-
resenting different vibrationally doubly excited states. Ensemble “n,m” corresponds to a
vibrational excitation along normal modes n and m, and ground state along other normal
modes. By construction the image is symmetric with respect to the (1,1)-(17,17) diagonal.
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Figure S4: Normal mode z-scores providing information about how excitation along a nuclear
coordinate on the y-axis influences the dissociation half-time obtained with an excitation
along a reference coordinate on the x-axis.
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Dissociation of 1,2-dioxetane from vibrationally excited

states

Figure S5 shows the time evolution of the fraction of trajectories that have dissociated for

the vibrational ground state (blue), vibrational first excited state along normal mode 3 (red)

and along normal mode 8 (purple). The latter two are the nuclear coordinates that induce

the largest deviations from the reference ensemble 0.
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Figure S5: Fraction of trajectories that have dissociated as a function of time for the molec-
ular dynamics simulations for the vibrational ground state (blue), vibrational first excited
state along normal mode 3 (red) and vibrational first excited state along normal mode 8
(purple). The thin grey lines indicate the dissociation half-times.

Transition state structure and normal modes of the un-

methylated 1,2-dioxetane

The nuclear geometry of the transition state structure for the O–O bond breaking of the

unmethylated 1,2-dioxetane is given in Table S3. It was optimised at CASSCF(12,10)/ANO-
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RCC-VTZP level of theory using the OpenMolcas package. Tables S4-S8 give the normal

modes at the transition state structure, at the same level of theory as for the geometry

optimisation.

Table S3: Transition state structure for the O–O bond breaking optimised at
CASSCF(12,10)/ANO-RCC-VTZP level of theory [Å].

Atom x y z

C -0.75188423 0.15702743 -0.62100275
H -1.33038300 -0.44090287 -1.31225901
H -0.93985370 1.21031672 -0.77447566
C 0.75188426 -0.15702747 -0.62100257
H 0.93985382 -1.21031676 -0.77447539
H 1.33038305 0.44090285 -1.31225878
O -1.10698084 -0.22955661 0.71807154
O 1.10698064 0.22955673 0.71807174

References

(1) Häse, F.; Kreisbeck, C.; Aspuru-Guzik, A. Machine learning for quantum dynamics:

deep learning of excitation energy transfer properties. Chem. Sci. 2017, 8, 8419–8426,

DOI: 10.1039/C7SC03542J.

10



Table S4: Normal modes calculated at the transition state structure for the O–O bond
breaking, at CASSCF(12,10)/ANO-RCC-VTZP level of theory. The numbering goes from 0
to 17, 0 being the reaction coordinate.

Normal mode 0 x y z

C 0.00468 -0.00734 -0.04412
H -0.04500 -0.03812 0.02697
H -0.01614 -0.01384 -0.05648
C -0.00464 0.00730 -0.04422
H 0.01639 0.01386 -0.05651
H 0.04481 0.03828 0.02683
O 0.16239 0.04055 0.03499
O -0.16242 -0.04053 0.03502

Normal mode 1 x y z

C -0.03040 -0.09645 -0.01998
H 0.08474 -0.29834 0.05787
H -0.18529 -0.15270 -0.21503
C 0.03015 0.09647 -0.01977
H 0.18549 0.15277 -0.21454
H -0.08473 0.29844 0.05832
O -0.04434 0.08881 0.02476
O 0.04452 -0.08884 0.02481

Normal mode 2 x y z

C 0.10140 -0.02215 0.08021
H -0.03383 0.12363 0.06931
H 0.26107 0.01338 0.13858
C 0.10152 -0.02202 -0.08043
H 0.26136 0.01348 -0.13842
H -0.03356 0.12429 -0.06883
O -0.09056 0.00796 0.05687
O -0.09034 0.00786 -0.05675

Normal mode 3 x y z

C 0.04902 0.06188 -0.03775
H 0.32237 -0.21349 -0.02418
H -0.29156 -0.01908 -0.13061
C 0.04822 0.06193 0.03866
H -0.29189 -0.01868 0.12989
H 0.32018 -0.21183 0.02521
O -0.03816 -0.03176 0.08442
O -0.03852 -0.03195 -0.08513
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Table S5: ...following of Table S4.

Normal mode 4 x y z

C 0.12827 -0.02857 0.08340
H 0.33154 -0.10398 -0.01899
H 0.10691 -0.04721 -0.02021
C -0.12862 0.02821 0.08254
H -0.10367 0.04735 -0.01981
H -0.33365 0.10498 -0.02008
O 0.02617 0.01784 -0.06015
O -0.02598 -0.01764 -0.05936

Normal mode 5 x y z

C 0.01868 0.01357 0.12968
H 0.08141 -0.22385 0.27274
H -0.22612 -0.05688 -0.06852
C 0.01790 0.01403 -0.13140
H -0.22849 -0.05685 0.06918
H 0.07997 -0.22481 -0.27577
O -0.00478 0.00728 -0.07627
O -0.00418 0.00745 0.07771

Normal mode 6 x y z

C -0.08697 0.01295 0.10473
H -0.18116 -0.06584 0.24385
H -0.13634 -0.00222 0.01259
C 0.08720 -0.01295 0.10287
H 0.13374 0.00135 0.01281
H 0.18080 0.06344 0.23970
O 0.03177 0.01911 -0.09456
O -0.03176 -0.01891 -0.09326

Normal mode 7 x y z

C -0.03992 -0.10831 0.01464
H -0.01699 0.22377 -0.29166
H 0.07217 -0.03206 0.39945
C 0.03977 0.10858 0.01490
H -0.07025 0.03246 0.40063
H 0.01772 -0.22464 -0.29185
O 0.00896 0.04069 -0.01776
O -0.00902 -0.04086 -0.01805
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Table S6: ...following of Table S5.

Normal mode 8 x y z

C -0.07908 0.07558 0.01860
H 0.43370 -0.04556 -0.30848
H -0.24463 0.04637 0.00703
C 0.07895 -0.07593 0.01802
H 0.24363 -0.04663 0.00460
H -0.43093 0.04579 -0.30616
O 0.01535 0.00176 0.00519
O -0.01536 -0.00149 0.00533

Normal mode 9 x y z

C -0.01504 -0.05247 0.03967
H 0.31081 0.07358 -0.34386
H -0.19644 -0.04071 0.39624
C -0.01576 -0.05161 -0.03962
H -0.19812 -0.04033 -0.39529
H 0.31357 0.07310 0.34532
O 0.00429 0.03705 -0.01003
O 0.00433 0.03690 0.00984

Normal mode 10 x y z

C -0.06655 0.01314 0.06873ă
H 0.32157 -0.03859 -0.20628
H 0.36868 0.03735 -0.31895
C -0.06585 0.01327 -0.06805
H 0.36597 0.03787 0.31071
H 0.32385 -0.04252 0.20467
O 0.00622 -0.00990 0.00603
O 0.00615 -0.00954 -0.00592

Normal mode 11 x y z

C -0.07722 -0.02630 0.03484
H 0.05954 0.02296 -0.12280
H 0.49646 0.02460 -0.35715
C 0.07792 0.02615 0.03568
H -0.49982 -0.02475 -0.36178
H -0.06271 -0.02315 -0.12531
O 0.00827 -0.01243 0.00400
O -0.00839 0.01257 0.00402
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Table S7: ...following of Table S6.

Normal mode 12 x y z

C 0.03191 -0.02120 0.04162
H -0.12986 0.40093 -0.20942
H -0.27756 -0.12343 -0.36856
C 0.03272 -0.02128 -0.04222
H -0.28340 -0.12560 0.37439
H -0.13219 0.40723 0.21146
O 0.00167 -0.00165 0.00478
O 0.00169 -0.00171 -0.00483

Normal mode 13 x y z

C 0.03678 -0.01879 0.04399
H -0.14520 0.41095 -0.18981
H -0.29248 -0.12429 -0.36571
C -0.03552 0.01833 0.04374
H 0.28440 0.12185 -0.36258
H 0.14027 -0.40419 -0.18880
O 0.00258 -0.00180 0.00196
O -0.00271 0.00186 0.00196

Normal mode 14 x y z

C -0.02860 0.01316 -0.03026
H 0.25995 0.28564 0.31889
H 0.07235 -0.44321 0.05285
C -0.02959 0.01426 0.03116
H 0.07594 -0.46456 -0.05556
H 0.26728 0.29376 -0.32763
O 0.00054 0.00006 -0.00135
O 0.00055 0.00006 0.00140

Normal mode 15 x y z

C 0.02886 -0.02386 0.02756
H -0.23157 -0.25157 -0.27757
H -0.08861 0.53118 -0.06719
C -0.02772 0.02360 0.02634
H 0.08626 -0.51578 -0.06541
H 0.22074 0.23954 -0.26475
O -0.00009 -0.00000 0.00106
O 0.00007 -0.00001 0.00103
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Table S8: ...following of Table S7.

Normal mode 16 x y z

C -0.01732 -0.05817 -0.02347
H 0.27909 0.28862 0.33458
H -0.07457 0.40577 -0.05736
C 0.01741 0.05795 -0.02352
H 0.07389 -0.40269 -0.05696
H -0.27957 -0.28907 0.33527
O -0.00031 -0.00000 0.00014
O 0.00031 0.00000 0.00012

Normal mode 17 x y z

C 0.01232 0.06148 0.01780
H -0.24153 -0.24624 -0.28491
H 0.09171 -0.48134 0.06565
C 0.01246 0.06154 -0.01797
H 0.09160 -0.48052 -0.06563
H -0.24308 -0.24790 0.28665
O 0.00019 -0.00028 0.00005
O 0.00020 -0.00028 -0.00004
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