Electronic Supporting Information

to

Investigations on Non-Classical Siylium Ions and Cyclobutenyl Cations

Arthur Martens, Marvin Kreuzer, Alexander Ripp, Marius Schneider, Daniel Himmel, Harald Scherer, Ingo Krossing*

M.Sc. A. Martens, B.Sc. M. Kreuzer, B.Sc. A. Ripp, Marius Schneider, Dr. D. Himmel, Dr. H. Scherer, Prof. Dr. I. Krossing, Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany. * Correspondence to krossing@uni-freiburg.de.

Contents:

General Considerations	3
Experimental Details	4
Reaction of $Me_3Si-F-Al(OR^F)_3$ with $Me_2C=CMe_2$	4
Reaction of $Me_3Si-F-Al(OR^F)_3$ with $Ph_2C=CPh_2$	6
Reaction of $Me_3Si-F-Al(OR^F)_3$ with PhC=CPh	8
Reaction of $Me_3Si-F-Al(OR^F)_3$ with $MeC\equiv CMe$	9
Selective Synthesis of $[Me_4C_4-SiMe_3]^+[al-f-al]^-$	10
Reactions of $[Ph_3C][al-f-al]$ with alkenes and alkynes in Me ₃ SiH	12
Reactions of Ag[al-f-al] with bromoethyl/bromovinyl trimethyl silane	16
Reaction of [Me ₄ C ₄ –SiMe ₃][<i>al–f–al</i>] with [NMe ₄]F	21
Reaction of [Me ₄ C ₄ –SiMe ₃][<i>al–f–al</i>] with DMAP	25
Reactions of $[Me_4C_4-SiMe_3][al-f-al]$ with Et_2O and 2-butyne	28
Crystal Structure Data	33
Crystal Structure of $[Me_4C_4-SiMe_3][al-f-al]$	33
Crystal Structure of DMAP-AI(OR ^F) ₃	35
Crystal Structure of $[Me_4C_4(SiMe_3)(DMAP)][f-al]$ (4)	37
Quantum Chemical Calculations	39
Optimized coordinates and energies of the calculated compounds:	40
BP86–D3(BJ)/def-TZVP	40
COSMO(ε = 13.4)/BP86–D3(BJ)/def-TZVP	43
MP2/def2-TZVPP	46
Reaction path of $[Me_4C_4-SiMe_3]^+$ (BP86–D3(BJ)/def-TZVP)	50

General Considerations

All reactions were carried out in an inert gas atmosphere of argon, using standard vacuum and Schlenk techniques or a glove box to exclude air and moisture. All solvents and reagents were dried using standard drying agents (CaH₂, P₄O₁₀) and were subsequently distilled into airtight vessels. Solution NMR spectra were recorded on a Bruker Avance II WB 400 MHz, Bruker Avance III HD 300 MHz and a Bruker Avance DPX 200 MHz NMR spectrometer using the software package Bruker Topspin 3.2 for analysis. Samples were prepared in 5 mm NMR tubes and then flame-sealed in vacuo. Resonances are given in ppm and referenced to SiMe₄ for the ¹H, ¹³C and ²⁹Si NMR spectra, to CFCl₃ for the ¹⁹F NMR spectra and to a 1.1 M solution of Al(NO₃)₃ in D₂O for the ²⁷Al NMR spectra. Raman spectra were measured on a Bruker Vertex 70 with a Bruker RAM II module in a range of 50 – 4000 cm⁻¹ and analyzed with the OPUS software package. IR spectra were measured on a Bruker Alpha Fourier transform IR spectrometer in a range of 400 – 4000 cm⁻¹ using a diamond ATR unit and analyzed with the OPUS software package.

Single Crystal Diffraction: Obtained single crystals were coated with perfluoroether oil and mounted on 0.1 mm micromounts at the respective crystallization temperature. The crystal structure data were collected from the shock-cooled crystals at 100 K, on a Bruker SMART APEXII QUAZAR CCD area detector diffractometer using Mo-K_a radiation. Data reduction was done with SAINT^[1] and scaling of the data and absorption correction was performed by SADABS^[2]. The structures were solved by intrinsic phasing using SHELXT^[3] and were refined by full matrix least squares minimization on F^2 using all reflections with SHELXL^[4] in the ShelXle^[5] GUI. In addition, a riding model was used to attribute idealized positions to all hydrogen atoms. The disorder of the OR^F groups in the compounds was treated using DSR.^[6] The graphical representations were prepared using the software Mercury 3.6.^[7] CCDC 1868136 (1), CCDC 1868137 (4) and CCDC 1868138 contain the supplementary crystallographic data for this paper.

- [1] SAINT, BRUKER-AXS, Madison, Wisconsin, USA, 2013.
- [2] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3–10.
- [3] G. M. Sheldrick, Acta Cryst. A 2015, 71, 3-8.
- [4] G. M. Sheldrick, Acta Cryst. C 2015, 71, 3–8.
- [5] C. B. Hubschle, G. M. Sheldrick and B. Dittrich, J. Appl. Cryst. 2011, 44, 1281-1284.
- [6] D. Kratzert, J. J. Holstein, I. Krossing, J. Appl. Cryst. **2015**, 48, 933–938. www.xs3.uni-freiburg.de/research/dsr
- [7] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Cryst. **2006**, *39*, 453–457.

Experimental Details

 $Me_3Si-F-Al(OR^F)_3$, Ag[al-f-al], and $[Ph_3C][al-f-al]$ were synthesized according to the literature.^[1] If not stated otherwise, the other starting materials were commercially available and were used as received.

Due to the high sensitivity of the presented compounds towards water, some of the NMR spectra show signals of these hydrolysis products, like $Me_3Si-O(H)-Al(OR^F)_3$ or $(Me_3Si)_2O$.

[1] A. Martens, P. Weis, M. C. Krummer, M. Kreuzer, A. Meierhöfer, S. C. Meier, J. Bohnenberger, H. Scherer, I. Riddlestone and I. Krossing, *Chem. Sci.*, 2018, **9**, 7058.

Reaction of Me₃Si-F-Al(OR^F)₃ with Me₂C=CMe₂

 $Me_2C=CMe_2$ (0.06 mL, 42 mg, 0.51 mmol) was added to a solution of $Me_3Si-F-AI(OR^F)_3$ (0.42 g, 0.51 mmol, 1.0 eq.) in CH_2Cl_2 (2 mL) at rt. The solution was stirred for 1 h. After several minutes the solution changed color to yellow. This solution was analyzed NMR-spectroscopically. All relevant spectra are shown following this section.

The ²⁹Si NMR spectrum only showed signals of impurities and therefore is not shown.

¹H-NMR (300.18 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 0.57$ (s, br, Me₃Si-F-Al(OR^F)₃), 0.7 - 1.8 (several overlapping signals, oligomerization products of Me₂C=CMe₂) ppm.

¹³C-NMR (75.48 MHz, 298 K, CH_2Cl_2/CD_2Cl_2): $\delta = 10 - 65$ (several signals, oligomerization products of $Me_2C=CMe_2$) ppm.

¹⁹**F-NMR** (282.45 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = -75.8$ (s, $[al-f-al]^-$), -75.9 (s, Me₃Si-F-Al(OR^F)₃), -165.9 (s, br, Me₃Si-F-Al(OR^F)₃/Me₃SiF), -184.9 (s, $[al-f-al]^-$) ppm.

²⁷Al-NMR (78.22 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 36.5$ (s, br, Me₃Si-F-Al(OR^F)₃ / [*al*-*f*-*al*]⁻) ppm.

Figure S-1: ¹H-NMR (300.18 MHz, 298 K, CH₂Cl₂/CD₂Cl₂) of the reaction of Me₃Si-F-Al(OR^F)₃ with Me₂C=CMe₂ in CH₂Cl₂.

The signals at 0.07 and 0.50 ppm result from impurities of Me₃Si–O–SiMe₃ and Me₃Si–O(H)–Al(OR^F)₃, respectively. The ${}^{3}J_{H-F}$ coupling constant of Me₃Si–F–Al(OR^F)₃ is not visible, due to exchange reactions involving the Me₃Si moiety.

Figure S- 2: ¹H,¹³C-HMBC NMR spectrum (300.18 MHz, 298 K, optimized to 8 Hz) of the reaction of Me₃Si–F–Al(OR^F)₃ with Me₂C=CMe₂ in CH₂Cl₂.

Figure S- 3: ¹⁹F-NMR spectrum (282.45 MHz, 298 K, CH_2CI_2/CD_2CI_2) of the reaction of $Me_3Si-F-AI(OR^F)_3$ with $Me_2C=CMe_2$ in CH_2CI_2 .

The signal at –76.0 ppm results from an unidentified impurity.

Reaction of Me₃Si-F-Al(OR^F)₃ with Ph₂C=CPh₂

 $Me_3Si-F-Al(OR^F)_3$ (170 mg, 0.21 mmol) and $Ph_2C=CPh_2$ (70 mg, 0.21 mmol, 1.0 eq.) were dissolved in CH_2Cl_2 (2 mL) at rt. The solution was stirred for 1 h. After several minutes, the solution turned green. This solution was analyzed NMR-spectroscopically. All relevant spectra are shown following this section.

¹H-NMR (400.18 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 0.56$ (d, ³J_{H-F} = 11.8 Hz, Me₃Si-F-Al(OR^F)₃), 7.12 (s, br, v_{1/2} = 160 Hz, oligomerization products of Ph₂C=CPh₂) ppm.

¹³C{¹H}-NMR (100.62 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = -127.6$ (s, br, $v_{1/2} = 240$ Hz, oligomerization products of Ph₂C=CPh₂) ppm.

¹⁹**F-NMR (376.54 MHz, 298 K, CH₂Cl₂/CD₂Cl₂):** $\delta = -75.9$ (s, Me₃Si-F-Al(OR^F)₃), -156.7 (s, br Me₃Si-**F**-Al(OR^F)₃) ppm.

²⁷Al-NMR (104.27 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): δ = 37 (s, br, Me₃Si-F-Al(OR^F)₃) ppm.

Figure S- 5: ¹H-NMR spectrum (400.17 MHz, 298 K, CH_2Cl_2/CD_2Cl_2) of the reaction of $Me_3Si-F-Al(OR^F)_3$ with $Ph_2C=CPh_2$ in CH_2Cl_2 .

The signal at 0.52 ppm results from impurities of Me₃Si–O(H)–Al(OR^F)₃. The signal of Me₃Si–F–Al(OR^F)₃ is broadened due to exchange reactions involving the Me₃Si moiety.

 350
 300
 250
 200
 150
 100
 50
 0
 -50
 ppm

 Figure S- 6: 13C{1H}-NMR spectrum (100.62 MHz, 298 K, CH₂Cl₂/CD₂Cl₂) of the reaction of Me₃Si-F-Al(OR^F)₃ with Ph₂C=CPh₂ in CH₂Cl₂.

 CH_2CI_2 .

The signal at -75.4 ppm results from impurities of Me₃Si–O(H)–Al(OR^F)₃. The signal at -75.8 ppm probably results from small amounts of $[f-al]^-$ or $[al-f-al]^-$.

Figure S- 8: ²⁷Al-NMR spectrum (104.27 MHz, 298 K, CH_2Cl_2/CD_2Cl_2) of the reaction of $Me_3Si-F-Al(OR^F)_3$ with $Ph_2C=CPh_2$ in CH_2Cl_2 . Note that the broad hump in the center (max. at 60 ppm) belongs to the ²⁷Al-nuclei in the probe head.

Reaction of Me₃Si−F−Al(OR^F)₃ with PhC≡CPh

 $Me_3Si-F-Al(OR^F)_3$ (400 mg, 0.49 mmol) and PhC=CPh (87 mg, 0.49 mmol, 1.0 eq.) were dissolved in CH_2Cl_2 (3 mL) at rt. The solution was stirred for 1 h. After several minutes the solution turned dark green. This solution was analyzed NMR-spectroscopically. All relevant spectra are shown following this section.

¹H-NMR after 1 h (300.18 MHz, 298 K, CH_2Cl_2/CD_2Cl_2): $\delta = 0.56$ (s, br, $Me_3Si-F-Al(OR^F)_3$ / Me_3SiF), 7.34 – 7.40 (m, H_{ortho} , PhC=CPh), 7.50 – 7.57 (m, $H_{meta/para}$, PhC=CPh) ppm.

¹H-NMR after 7 d (300.18 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 0.48$ (d, ³J_{H-F} = 8.7 Hz, Me₃SiF), 6.5 – 8.0 (several overlapping signals, oligomerization products of PhC=CPh) ppm.

¹⁹F-NMR (282.45 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = -75.8$ (s, $[al-f-al]^-$), -75.9 (s, Me₃Si-F-Al(OR^F)₃), -156.6 (s, br, Me₃Si-F-Al(OR^F)₃ / Me₃SiF), -84.9 (s, $[al-f-al]^-$) ppm. ²⁷Al-NMR (78.22 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 37$ (s, br, Me₃Si-F-Al(OR^F)₃ /

²'AI-NMR (78.22 MHz, 298 K, CH_2Cl_2/CD_2Cl_2): $\delta = 37$ (s, br, $Me_3Si-F-AI(OR^r)_3 / [aI-f-aI]^-$) ppm.

Figure S- 9: ¹H-NMR spectrum (300.18 MHz, 298 K, CH₂Cl₂/CD₂Cl₂) of the reaction of Me₃Si–F–Al(OR^F)₃ with PhC=CPh in CH₂Cl₂. Black: NMR spectrum directly after reaction; red: NMR spectrum after 7 days.

Figure S- 10: ¹⁹F-NMR spectrum (282.45 MHz, 298 K, CH_2Cl_2/CD_2Cl_2) of the reaction of $Me_3Si-F-Al(OR^F)_3$ with PhC=CPh in CH_2Cl_2 .

Reaction of Me₃Si−F−Al(OR^F)₃ with MeC≡CMe

2-butyne (0.04 mL, 28 mg, 0.51 mmol) was added to a solution of $Me_3Si-F-Al(OR^F)_3$ (420 mg, 0.51 mmol, 1.0 eq.) in CH_2Cl_2 (3 mL) at rt. The solution was stirred for 1 h. After several minutes the solution turned orange. This solution was analyzed NMR-spectroscopically. All relevant spectra are shown following this section.

¹H–NMR (400.17 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 0.18$ (s, 9 H, $[Me_4C_4-SiMe_3]^+$), 0.55 (s, br, Me₃Si–F–Al(OR^F)₃), 1.35 (s, 3 H, C1–Me, $[Me_4C_4-SiMe_3]^+$), 1.72 (s, MeC≡CMe), 2.20 (s, C₆Me₆), 2.35 (sept, ⁵J_{H–H} = 0.48 Hz, 3 H, C3–Me, $[Me_4C_4-SiMe_3]^+$), 2.45 (q, ⁵J_{H–H} = 0.48 Hz, 6 H, C2–Me, $[Me_4C_4-SiMe_3]^+$) ppm.

¹³C–NMR (¹H,¹³C HMBC and HSQC) (100.62 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = -3.3$ ([Me₄C₄-SiMe₃]⁺), 10.3 (C3–Me, [Me₄C₄-SiMe₃]⁺), 13.3 (C1–Me, [Me₄C₄-SiMe₃]⁺), 13.6 (C2–Me, [Me₄C₄-SiMe₃]⁺), 16.5 (C₆Me₆), 66.8 (C1, [Me₄C₄-SiMe₃]⁺), 131.2 (C₆Me₆), 166.0 (C2, [Me₄C₄-SiMe₃]⁺), 170.4 (C3, [Me₄C₄-SiMe₃]⁺) ppm.

¹⁹F–NMR (376.54 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = -75.8$ (s, $[al-f-al]^{-}$), -75.9 (s, Me₃Si–F–Al(OR^F)₃), -156.6 (s, br, Me₃Si–F–Al(OR^F)₃ / Me₃SiF), -184.8 (s, br, $[al-f-al]^{-}$) ppm. ²⁷Al–NMR (78.22 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 37$ (s, br, $[al-f-al]^{-}$ / Me₃Si–F–Al(OR^F)₃) ppm.

²⁹Si–NMR (59.64 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 17.5$ ([Me₄C₄-SiMe₃]⁺) ppm.

CH₂Cl₂.

Selective Synthesis of $[Me_4C_4-SiMe_3]^+[al-f-al]^-$

2-butyne (0.50 mL, 345 mg, 6.4 mmol, 1.05 eq.) was added to a solution of $Me_3Si-F-Al(OR^F)_3$ (4.99 g, 6.1 mmol) in *o*-DFB (10 mL) at rt within 2 min. The solution was stirred for 30 min. Parts of the solvent (~ 3 mL) were removed in vacuo, then CH_2Cl_2 (10 mL) was added. The solution was stored at -30°C overnight. The solution was filtered and concentrated to a volume of 5 mL in vacuo. Then hexane (10 mL) was added, which led to precipitation of an orange solid. After 2 h the solvent was filtered off and the precipitate was washed with hexane (10 mL), then with CH_2Cl_2 (5 mL). The orange solid (2.35 g raw yield) was dissolved in *o*-DFB (5 g) and layered with pentane (10 mL). After 2 days the precipitated crystals were isolated by filtering off the solvent. The product was obtained as orange crystals (1.42 g, 0.85 mmol, 28%).

¹H–NMR (300.18 MHz, 298 K, *o*–DFB/CD₂Cl₂): $\delta = 0.35$ (s, 9 H, [Me₄C₄–SiMe₃]⁺), 1.56 (s, 3 H, C1–Me, [Me₄C₄–SiMe₃]⁺), 2.55 (sept, ⁵J_{H–H} = 0.48 Hz, 3 H, C3–Me, [Me₄C₄–SiMe₃]⁺), 2.64 (q, ⁵J_{H–H} = 0.48 Hz, 6 H, C2–Me, [Me₄C₄–SiMe₃]⁺) ppm. ¹⁹F–NMR (282.45 MHz, 298 K, *o*–DFB/CD₂Cl₂): $\delta = -75.5$ (s, [*al*–*f*–*al*]⁻), –184.5 (s, br,

[*al*-*f*-*al*]⁻) ppm. ²⁷Al-NMR (78.22 MHz, 298 K, *o*-DFB/CD₂Cl₂): δ = 37 (s, br, [*al*-*f*-*al*]⁻) ppm.

²⁹Si–NMR (59.64 MHz, 298 K, *o*–DFB/CD₂Cl₂): δ = 17.6 ([Me₄C₄–SiMe₃]⁺) ppm.

Figure S- 16: ²⁷Al-NMR spectrum (78.22 MHz, 298 K, o-DFB/CD₂Cl₂) of [Me₄C₄-SiMe₃]⁺[al-f-al]⁻.

Reactions of $[Ph_3C][al-f-al]$ with alkenes and alkynes in Me₃SiH

In a general procedure a catalytic amount of $[Ph_3C][al-f-al]$ (tip of a small spatula) and alkene/alkyne (see below for weights) were filled into a Schlenk vessel and cooled to -78° C. Then an excess of Me₃SiH (~ 2 mL) was condensed onto this mixture. The suspension was allowed to reach rt and the brown solution was stirred for 1 h.

a) Me₂C=CMe₂ (0.2 mL, 141 mg, 1.7 mmol)

The main product of this reaction is shown in Figure S-17.

Figure S- 17: Main product of the reaction of $[Ph_3C][al-f-al]$ with Me₂C=CMe₂ in Me₃SiH and ¹H (black), ¹³C (blue) and ²⁹Si (red) NMR chemical shifts in ppm.

¹H-NMR (300.18 MHz, 298 K, CD₂Cl₂): $\delta = 0.07$ (s, 9H, Me₃Si-C1), 0.07(4) (s, 12H, Me₄Si) 0.15 (d, ³J_{H-H} = 3.63 Hz, 9H, Me₃SiH), 0.50 (s, 9H, Me₃SiCl), 0.90 (s, 6H, C1-Me₂), 0.94 (d, ³J_{H-H} = 6.86 Hz, 6H, C2-Me₂), 1.68 (sep, ³J_{H-H} = 6.86 Hz, 1H, C2-H), 4.00 (dec, ³J_{H-H} = 3.60 Hz, Me₃SiH) ppm.

¹³C-NMR (75.48 MHz, 298 K, CD₂Cl₂): δ = -2.3 (Me₃Si-C1), -0.4 (Me₄Si), 2.9 (Me₃SiCl), 18.6 (C1-Me₂) 20.7 (C2-Me₂), 23.1 (C1), 35.0 (C2) ppm.

²⁹Si-NMR (59.64 MHz, 298 K, CD₂Cl₂): $\delta = -16.1$ (Me₃SiH), 0.0 (Me₄Si), 7.8 (Me₃Si-C1), 31.7 (Me₃SiCl) ppm.

Figure S- 18: ¹H- NMR spectrum (300.18 MHz, 298 K, CD₂Cl₂) of the reaction of [Ph₃C][*al*-*f*-*al*] with 2-butyne in Me₃SiH.

Figure S- 19: ¹H,¹³C HMBC NMR spectrum (300.18 MHz, 298 K, CD₂Cl₂, optimized to 8 Hz) of the reaction of [Ph₃C][*al*-*f*-*al*] with Me₂C=CMe₂ in Me₃SiH.

b) Ph₂C=CPh₂ (830 mg, 2.5 mmol)

No reaction with the alkene could be observed.

c) MeC=CMe (0.2 mL, 138 mg, 2.6 mmol)

The main product of this reaction is shown in Figure S- 20.

Figure S- 20: Main product of the reaction of $[Ph_3C][al-f-al]$ with 2-butyne in Me₃SiH and ¹H (black), ¹³C (blue) and ²⁹Si (red) NMR chemical shifts in ppm.

¹H-NMR (300.18 MHz, 298 K, CD₂Cl₂): δ = -0.01 (s, 9H, Me₃Si-C1), 0.05 (s, 12H, Me₄Si), 0.13 (d, ³J_{HH} = 3.62 Hz, 9H, Me₃SiH), 0.20 (t, ³J_{HH} = 4.13 Hz, Me₂SiH₂), 0.48 (s, 9H, Me₃SiCl), 0.99 (d, ³J_{HH} = 7.11 Hz, 3H, C2-Me), 1.03 (s, 3H, C1-Me), 1.53-1.57 (m, 6H, MeC3=C4Me), 1.77 (s, 6H, MeC=CMe), 2.42-2.52 (m, 1H, C2-H), 3.80 (sep, ³J_{HH} = 4.14 Hz, Me₂SiH₂), 3.97 (dec, ³J_{HH} = 3.62 Hz, Me₃SiH) ppm.

¹³C-NMR (75.48 MHz, 298 K, CD₂Cl₂): $\delta = -3.9$ (Me₃Si-C1), -3.0 (Me₃SiH), -0.3 (Me₄Si), 2.9 (Me₃SiCl), 3.0 (MeC=CMe), 10.3 (Me-C3/Me-C4), 13.0 (Me-C2), 13.6 (Me-C1), 37.4 (C1), 40.9 (s, 1C, C2), 74.3 (MeC=CMe), 137.1 (C3), 142.2 (C4) ppm.

²⁹Si-NMR (59.64 MHz, 298 K, CD₂Cl₂): δ = -38.0 (Me₂SiH₂), -16.0 (Me₃SiH), -6.9 (Me₂SiH₂), 0.0 (Me₄Si), 3.5 (Me₃Si-C1), 31.5 (Me₃SiCl) ppm.

Figure S- 21: ¹H- NMR spectrum (300.18 MHz, 298 K, CD₂Cl₂) of the reaction of [Ph₃C][*al*-*f*-*al*] with 2-butyne in Me₃SiH.

Figure S- 22: ¹H,¹³C HMBC NMR spectrum (300.18 MHz, 298 K, CD_2Cl_2 , optimized to 8 Hz) of the reaction of [Ph₃C][*al*-*f*-*al*] with 2-butyne in Me₃SiH.

d) PhC=CPh (0.5 mL, 495 mg, 2.78 mmol)

The main product of this reaction is shown in Figure S-23.

Figure S- 23: Main product of the reaction of $[Ph_3C][al-f-al]$ with PhC=CPh in Me₃SiH and ¹H (black), ¹³C (blue) and ²⁹Si (red) NMR chemical shifts in ppm.

¹H-NMR (300.18 MHz, 298 K, CD₂Cl₂): δ = 0.02 (s, 9H, Me₃Si-C1), 0.13 (d, ³J_{H-H} = 3.56 Hz, Me₃SiH), 0.47 (s, Me₃SiCl), 4.0 (dec, ³J_{H-H} = 3.64 Hz, Me₃SiH), 7.22-7.44 (m, 10H, PhC1=C2Ph), 7.54-7.61 (m, 1H, C2–H) ppm.

¹³C-NMR (75.48 MHz, 298 K, CD₂Cl₂): δ = -3.0 (Me₃SiH), 0.5 (Me₃Si-C1), 3.0 (Me₃SiCl), 126.0 (*p*-C, C1-Ph, C2-Ph), 127.3 (*m*-C, C1-Ph, C2-Ph), 128.6 (*o*-C, C1-Ph, C2-Ph), 147.4 (C1), 144.9 (C2) ppm.

²⁹Si-NMR (59.64 MHz, 298 K, CD_2Cl_2): $\delta = -6.6$ (Me₃Si-C1), -16.0 (Me₃SiH), 31.5 (Me₃SiCl) ppm.

Figure S- 24: ¹H- NMR spectrum (300.18 MHz, 298 K, CD₂Cl₂) of the reaction of $[Ph_3C][al-f-al]$ with PhC=CPh in Me₃SiH.

Figure S- 25: ¹H,¹³C HMBC NMR spectrum (300.18 MHz, 298 K, CD_2Cl_2 , optimized to 8 Hz) of the reaction of [Ph₃C][*al*-*f*-*al*] with PhC=CPh in Me₃SiH.

Reactions of Ag[al-f-al] with bromoethyl/bromovinyl trimethyl silane

a) Synthesis of bromoethyl trimethyl silane

Benzoyl peroxide (21 mg, 0.1 mmol, 0.3 mol-%) and trimethylvinylsilane (4.4 mL, 3.0 g, 30 mmol) were weighed into a Schlenk vessel and cooled to 0°C. In a round bottom flask conc. H_2SO_4 (30 mL) was added dropwise onto KBr (30 g). The evolving HBr was bubbled through the trimethylvinylsilane for 1 h under vigorous stirring. Condensation of the volatiles yielded the product as colorless liquid.

¹H-NMR (400.17 MHz, 298 K, CD₂Cl₂): $\delta = 0.06$ (s, 9H, Me₃Si-CH₂-CH₂Br), 1.40 (m, 2H, Me₃Si-CH₂-CH₂Br), 3.59 (m, 2H, Me₃Si-CH₂-CH₂Br) ppm.

¹³C-NMR (100.62 MHz, 298 K, CD₂Cl₂): δ = -1.7 (Me₃Si-CH₂-CH₂Br), 24.0 (Me₃Si-CH₂-CH₂Br), 32.0 (Me₃Si-CH₂-CH₂Br) ppm. ²⁹Si-NMR (79.50 MHz, 298 K, CD₂Cl₂): δ = 1.3 (Me₃Si-CH₂-CH₂Br) ppm.

b) Synthesis of bromovinyl trimethyl silane

Benzoyl peroxide (26 mg, 0.1 mmol, 0.3 mol-%) and trimethylsilylacetylene (5.0 mL, 3.45 g, 36 mmol) were weighed into a Schlenk vessel and cooled to 0°C. In a round bottom flask conc. H_2SO_4 (30 mL) was added dropwise onto KBr (30 g). The evolving HBr was bubbled through the trimethylvinylsilane for 45 min under vigorous stirring. Condensation of the volatiles yielded the product as colorless liquid.

The product contained small amounts of impurities, which were identified as $Me_3Si-C=CH$ (14%) and $Me_3Si-CHBr-CH_2Br$ (9%).

¹H-NMR (400.17 MHz, 298 K, CD₂Cl₂): $\delta = 0.13$ (s, 9H, Me₃Si-CH=CHBr), 0.15 (s, Me₃Si-CHBr-CH₂Br), 0.22 (s, Me₃Si-C=CH), 2.31 (d, ³J_{HH} = 7.39 Hz ,Me₃Si-CHBr-CH₂Br), 2.39 (s, Me₃Si-C=CH), 5.95 (t, ³J_{HH} = 7.39 Hz, Me₃Si-CHBr-CH₂Br), 6.49 (t, 1H, Me₃Si-CH=CHBr), 6.59 (d, 1H, Me₃Si-CH=CHBr) ppm.

¹³C-NMR (100.62 MHz, 298 K, CD₂Cl₂): $\delta = -1.4$ (Me₃Si-CH=CHBr), 116.7 (Me₃Si-CH=CHBr), 139.1 (Me₃Si-CH=CHBr) ppm.

²⁹Si-NMR (79.5 MHz, 298 K, CD₂Cl₂): $\delta = -17.2$ (Me₃Si-C=CH), -4.8 (Me₃Si-CH=CHBr), 2.0 (Me₃Si-CHBr-CH₂Br) ppm.

c) Reaction of bromoethyl trimethyl silane with Ag[al-f-al]

Ag[al-f-al] (196 mg, 0.13 mmol) was dissolved in CH₂Cl₂ (5 mL) and cooled to -40°C. To this solution bromoethyl trimethyl silane (0.02 mL, 23 mg, 0.13 mmol, 1 eq.) was added. After few seconds the solution turned brown, which usually indicates decomposition of the anion. The formation of a precipitate was not observed. The solution was stirred for 1 h at -40°C, then analyzed by NMR spectroscopy at rt.

¹H-NMR (300.18 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 0.04$ (s, Me₄Si), 0.47 (s, Me₃SiCl), 0.62 (s, Me₃SiBr) ppm.

¹³C-NMR (75.48 MHz, 298 K, CH_2Cl_2/CD_2Cl_2): $\delta = 0.0$ (SiMe₄), 3.0 (Me₃SiCl), 3.9 (Me₃SiBr) ppm.

¹⁹F-NMR (282.45 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): δ = -74.5 (s, HOR^F, 43%), -75.4 (s, OR^F), -75.6 (s, OR^F), -75.8 (s, [*a*]-*f*-*a*]⁻, 57%), -75.9 (s, OR^F), -157.1 (Me₃SiF), -184.8 (s, [*a*]-*f*-*a*]⁻) ppm. ²⁹Si-NMR (59.64 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): δ = 0.0 (SiMe₄), 28.1 (Me₃SiBr), 31.3

(Me₃**Si**Cl) ppm.

The signal at 0.54 ppm results from impurities of Me₃Si–O(H)–Al(OR^F)₃, that were already present in the used Ag[al-f-al].

Figure S- 27: ¹⁹F- NMR spectrum (282.54 MHz, 298 K, CH₂Cl₂/CD₂Cl₂) of the reaction of Ag[*al*-*f*-*al*] with bromoethyl trimethyl silane in CH₂Cl₂.

Ag[al-f-al] with bromoethyl trimethyl silane in CH₂Cl₂.

The signal at $\delta(^{29}Si) = 50$ ppm results from impurities of Me₃Si–O(H)–Al(OR^F)₃, that were already present in the used Ag[*al*–*f*–*al*].

d) Reaction of bromovinyl trimethyl silane with Ag[al-f-al]

Ag[al-f-al] (199 mg, 0.13 mmol) was dissolved in CH₂Cl₂ (3 mL). To this solution bromovinyl trimethyl silane (0.02 mL, 23 mg, 0.13 mmol, 1 eq.) was added at rt. The reaction mixture turned immediately turbid and after few minutes it turned red. The solution was stirred for 1 h at rt, then analyzed by NMR spectroscopy.

¹H-NMR (400.17 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 0.04$ (s, Me₄Si), 0.62 (s, Me₃SiBr) ppm. ¹³C-NMR (100.62 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = 0.0$ (SiMe₄), 3.8 (Me₃SiBr) ppm. ¹⁹F-NMR (376.54 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): $\delta = -75.7$ (s, OR^F), -75.8 (s, [*al-f-al*]⁻), -75.9 (s, OR^F), -157.6 (Me₃SiF), -184.9 (s, [*al-f-al*]⁻) ppm.

²⁹Si-NMR (79.50 MHz, 298 K, CH₂Cl₂/CD₂Cl₂): δ = 0.0 (SiMe₄), 28.1 (Me₃SiBr) ppm.

Figure S- 30: ¹H- NMR spectrum (400.17 MHz, 298 K, CH₂Cl₂/CD₂Cl₂) of the reaction of Ag[*al*-*f*-*al*] with bromovinyl trimethyl silane in CH₂Cl₂.

The signal at 0.65 ppm results from impurities of Me₃Si–O(H)–Al(OR^F)₃, that were already present in the used Ag[al-f-al].

trimethyl silane in CH₂Cl₂.

Ag[al-f-al] with bromovinyl trimethyl silane in CH_2Cl_2 .

The signal at $\delta(^{29}Si) = 50$ ppm results from impurities of Me₃Si–O(H)–Al(OR^F)₃, that were already present in the used Ag[*al*–*f*–*al*].

Reaction of [Me₄C₄-SiMe₃][al-f-al] with [NMe₄]F

 $[Me_4C_4-SiMe_3][al-f-al]$ was filled into a NMR tube with J. Young valve and dissolved in a 1:1 mixture of o-DFB and CD_2Cl_2 . Then an excess of dry $[NMe_4]F$ was added to this solution and the NMR tube was immediately closed. The solution was analyzed by NMR spectroscopy. The main product of this reaction is shown in Figure S- 34.

Figure S- 34: Main product of the reaction of $[Me_4C_4-SiMe_3][al-f-al]$ with $[NMe_4]F$ in $o-DFB/CD_2Cl_2$ and ¹H (black), ¹³C (blue) and ²⁹Si (red) NMR chemical shifts in ppm.

¹H-NMR (400.17 MHz, 298 K, *o*-DFB/CD₂Cl₂): $\delta = 0.18$ (s, Me₃Si), 1.37 (s, C₁-Me), 1.76 (q, ⁵J_{H-H} = 1.21 Hz, C₃-Me), 1.89 (m, ⁵J_{H-H} = 1.21 Hz, ⁶J_{H-H} = 0.60/0.58 Hz, C₂-Me), 2.24 (s C₆Me₆), 3.32 (t, ²J_{H-N} = 0.40 Hz, [NMe₄]⁺), 4.45 (q, ⁶J_{H-H} = 0.60 Hz, H_a), 4.61 (q, ⁶J_{H-H} = 0.58 Hz, H_b) ppm.

¹³C-NMR (100.62 MHz, 298 K, *o*–DFB/CD₂Cl₂): δ = -3.3 (Me₃Si), 8.0 (C₃–Me), 10.8 (C₂–Me), 16.6 (C₁–Me), 44.7 (C₁), 90.8 (C₄=CH₂), 133.8 (C₃), 152.6 (C₂), 157.1 (C₄) ppm.

¹⁹**F-NMR (376.54 MHz, 298 K,** *o***-DFB/CD₂Cl₂):** δ = -74.6 (s, HOR^F), -75.6 (d, ⁵*J*_{F-F} = 1.4 Hz, $[f-al]^-$), -75.7 (s, br, $[F_2Al(OR^F)_2]^-$), -180.4 (m, br, $[f-al]^-$), -185.3 (m, br, $[F_2Al(OR^F)_2]^-$) ppm.

²⁷Al-NMR (78.22 MHz, 298 K, *o*-DFB/CD₂Cl₂): $\delta = 41$ (d, ${}^{1}J_{AI-F} = 24$ Hz, $[f-al]^{-}$), 45 (s, $[F_{2}AI(OR^{F})_{2}]^{-}$) ppm.

²⁹Si-NMR (79.50 MHz, 298 K, *o*–DFB/CD₂Cl₂): δ = 2.6 (Me₃Si) ppm.

gure S- 35: 'H- NMR spectrum (400.17 MHz, 298 K, O-DFB/CD₂Cl₂) of the reaction of [Me₄C₄-SIMe₃][al-j-al] with [in O-DFB/CD₂Cl₂.

 $[Me_4C_4-SiMe_3][al-f-al] with [NMe_4]F in o-DFB/CD_2Cl_2.$

 $[Me_4C_4-SiMe_3][al-f-al]$ with $[NMe_4]F$ in $o-DFB/CD_2Cl_2$.

Figure S- 38: ${}^{1}H, {}^{29}Si$ -HMBC NMR spectrum (400.17 MHz, 298 K, o-DFB/CD₂Cl₂, optimized to 8 Hz) of the reaction of $[Me_4C_4$ -SiMe₃][a/-f-a/] with $[NMe_4]F$ in o-DFB/CD₂Cl₂.

Figure S- 39: ¹⁹F NMR spectrum (376.54 MHz, 298 K, *o*–DFB/CD₂Cl₂) of the reaction of [Me₄C₄–SiMe₃][*al–f–al*] with [NMe₄]F in *o*–DFB/CD₂Cl₂.

in o-DFB/CD₂Cl₂.

Reaction of $[Me_4C_4-SiMe_3][al-f-al]$ with DMAP

 $[Me_4C_4-SiMe_3][al-f-al]$ (400 mg, 0.24 mmol) and DMAP (58 mg, 0.48 mmol, 2 eq.) were dissolved in *o*-DFB (0.5 mL) and CH₂Cl₂ (0.3 mL) at rt. The orange solution was stored at -40°C overnight, which led to formation of crystals (DMAP-Al(OR^F)₃). The supernatant solution was filtered and then narrow down to a volume of ~0.4 mL. The concentrated solution was again stored at -40°C overnight, which led to formation of crystals (DMAP-Al(OR^F)₃).

NMR spectra of the reaction solution showed a mixture of several reaction products and will therefore not be discussed. NMR spectra after crystallization of DMAP-Al(OR^F)₃ allowed for assignment of the signals of $[Me_4C_4(SiMe_3)(DMAP)][f-al]$ (Figure S- 41).

Figure S- 41: Main product of the reaction of [Me₄C₄–SiMe₃][*a*|–*f*–*a*] with DMAP in *o*–DFB/CH₂Cl₂/CD₂Cl₂ after crystallization of DMAP-Al(OR^F)₃ and ¹H (black), ¹³C (blue) and ²⁹Si (red) NMR chemical shifts in ppm.

¹H-NMR (300.18 MHz, 298 K, *o*-DFB/CH₂Cl₂/CD₂Cl₂): $\delta = -0.10$ (s, Me₃Si), 1.34 (s, C₁-Me), 1.72 (s, C₄-Me), 1.78 (q, ⁵J_{H-H} = 1.2 Hz, C₂-Me), 1.86 (q, ⁵J_{H-H} = 1.2 Hz, C₃-Me), 3.26 (s, NMe₂), 6.78 (m, DMAP), 7.91 (m, DMAP) ppm.

¹³C-NMR (75.48 MHz, 298 K, o-DFB/CH₂Cl₂/CD₂Cl₂): $\delta = -1.9$ (Me₃Si), 9.5 (C₃-Me), 11.2 (C₂-Me), 15.8 (C₁-Me), 22.2 (C₄-Me), 39.9 (NMe₂), 49.1 (C₁), 75.1 (C₄), 107.0 (DMAP, o-C), 131.4 (C₃), 139.3 (DMAP, m-C) 152.3 (C₂), 157.7 (C-NMe₂) ppm.

¹⁹**F-NMR (282.45 MHz, 298 K,** *o***-DFB/CH₂Cl₂/CD₂Cl₂):** $\delta = -75.8$ (d, ⁵*J*_{F-F} = 1.8 Hz, [*f*-*al*]⁻), -182.2 (m, br, [*f*-*al*]⁻) ppm.

²⁷Al-NMR (78.22 MHz, 298 K, *o*-DFB/CH₂Cl₂/CD₂Cl₂): $\delta = 41$ (d, ¹*J*_{Al-F} = 37 Hz, [*f*-*al*]⁻), 44 (s, br, DMAP-Al(OR^F)₃) ppm.

²⁹Si-NMR (59.64 MHz, 298 K, *o*-DFB/CH₂Cl₂/CD₂Cl₂): δ = 3.3 (Me₃Si) ppm.

Figure S- 44: ¹H,²⁹Si-HMBC NMR spectrum (300.18 MHz, 298 K, *o*-DFB/CH₂Cl₂/CD₂Cl₂ optimized to 8 Hz) of the reaction of [Me₄C₄-SiMe₃][*a*l-*f*-*a*l] with DMAP in *o*-DFB/CH₂Cl₂ after crystallization of DMAP-Al(OR^F)₃.

Figure S- 45: ¹⁹F- NMR spectrum (282.45 MHz, 298 K, *o*–DFB/CH₂Cl₂/CD₂Cl₂) of the reaction of [Me₄C₄–SiMe₃][*al–f–al*] with DMAP in *o*–DFB/CH₂Cl₂ after crystallization of DMAP-Al(OR^F)₃.

Figure S- 46: ²⁷Al- NMR spectrum (300.18 MHz, 298 K, *o*-DFB/CH₂Cl₂/CD₂Cl₂) of the reaction of [Me₄C₄-SiMe₃][*a*l-*f*-*a*l] with DMAP in *o*-DFB/CH₂Cl₂ after crystallization of DMAP-Al(OR^F)₃.

Reactions of $[Me_4C_4-SiMe_3][al-f-al]$ with Et_2O and 2-butyne

a) Reaction with Et₂O

 $[Me_4C_4-SiMe_3][al-f-al]$ was dissolved in CD_2Cl_2 (0.4 mL) and Et_2O (0.4 mL) in a NMR tube. The tube was immediately closed and analyzed by NMR spectroscopy. NMR spectra revealed formation of Me₃SiF, Me₃SiOEt (decomposition of Et_2O), $Et_2O-Al(OR^F)_3$ and $[f-al]^-$. The according cation could not be identified.

 $[Me_4C_4-SiMe_3][al-f-al]$ with Et₂O in Et₂O/CD₂Cl₂.

The signal at $\delta(^{29}Si) = 16$ ppm results from Me₃SiOEt due to decomposition of Et₂O.

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ppm Figure S- 49: ¹⁹F- NMR spectrum (282.45 MHz, 298 K, Et_2O/CD_2Cl_2) of the reaction of $[Me_4C_4-SiMe_3][al-f-al]$ with Et_2O in Et_2O/CD_2Cl_2 .

Figure S- 50: ²⁷Al- NMR spectrum (78.22 MHz, 298 K, Et_2O/CD_2Cl_2) of the reaction of $[Me_4C_4-SiMe_3][al-f-al]$ with Et_2O in Et_2O/CD_2Cl_2 .

b) Reaction with Et₂O and 2-butyne

 $[Me_4C_4-SiMe_3][al-f-al]$ (327 mg, 0.20 mmol) and 2-butyne (0.03 mL, 21 mg, 0.39 mmol, 1.95 eq.) were dissolved in *o*-DFB (1.0 mL). Parts of this solution was transferred into a NMR tube, then CD_2Cl_2 and Et_2O were added. The tube was immediately closed and analyzed by NMR spectroscopy. NMR spectra revealed formation of Me_3SiF , $(Me_3Si)_2O$ (residual water in the Et_2O), $Et_2O-Al(OR^F)_3$, C_6Me_6 and decomposition of $[Me_4C_4-SiMe_3]^+$. Parts of $[al-f-al]^-$ did not decompose, but the according cation could not be identified.

Figure S- 51: ¹H- NMR spectrum (300.18 MHz, 298 K, *o*-DFB/Et₂O/CD₂Cl₂) of the reaction of [Me₄C₄-SiMe₃][*a*l-*f*-*a*l] with 2-butyne and Et₂O in *o*-DFB/Et₂O/CD₂Cl₂.

The signals at $\delta({}^{1}H) = 2.30$ and 1.81 ppm result from C₆Me₆ and 2-butyne, respectively (molar ratio 1:7).

 $[Me_4C_4-SiMe_3][al-f-al]$ with 2-butyne and Et_2O in $o-DFB/Et_2O/CD_2Cl_2$.

The signals at $\delta(^{29}Si) = 33.6$ and 7.8 ppm result from Me₃SiF and (Me₃Si)₂O, respectively.

Figure S- 54: ¹⁹F- NMR spectrum (282.45 MHz, 298 K, o-DFB/Et₂O/CD₂Cl₂) of the reaction of [Me₄C₄-SiMe₃][al-f-al] with 2-butyne and Et₂O in o-DFB/Et₂O/CD₂Cl₂.

Figure S- 55: ²⁷Al- NMR spectrum (78.22 MHz, 298 K, o-DFB/Et₂O/CD₂Cl₂) of the reaction of [Me₄C₄-SiMe₃][al-f-al] with 2-butyne and Et₂O in o-DFB/Et₂O/CD₂Cl₂.

The signal at $\delta({}^{27}AI) = 36.5$ ppm results from Et₂O–AI(OR^F)₃ and [*al*–*f*–*al*]⁻.

c) Reaction with Et_2O and $MeO_2C-C\equiv C-CO_2Me$

 $[Me_4C_4-SiMe_3][al-f-al]$ (263 mg, 0.16 mmol) and $MeO_2C-C\equiv C-CO_2Me$ (0.02 mL, 16 mg, 0.16 mmol, 1.0 eq.) were dissolved in o-DFB (1.0 mL) and stirred for 15 min. Then Et₂O (0.1 mL) was added and the solution was stirred for another 30 min. NMR spectra of the reaction solution revealed decomposition of $[Me_4C_4-SiMe_3]^+$ and retention of $MeO_2C-C\equiv C-CO_2Me$.

d) Reaction with Et₂O and Me₃Si-C=C-SiMe₃

 $[Me_4C_4-SiMe_3][al-f-al]$ (146 mg, 0.09 mmol) and $Me_3Si-C\equiv C-SiMe_3$ (0.02 mL, 23 mg, 0.09 mmol, 1.0 eq.) were dissolved in o-DFB (1.0 mL) and stirred for 15 min. Then Et₂O (0.06 mL) was added and the solution was stirred for another 30 min. NMR spectra of the reaction solution revealed decomposition of $[Me_4C_4-SiMe_3]^+$ and retention of $Me_3Si-C\equiv C-SiMe_3$.

Crystal Structure Data

Crystal Structure of [Me₄C₄-SiMe₃][*al-f-al*]

 $[Me_4C_4-SiMe_3][al-f-al]$ was synthesized as described above and crystals suited for SC-XRD could be obtained from the reaction solution in o-DFB by addition of CH₂Cl₂. Equivalent C-C and C-F bond distances in the anion and thermal ellipsoids were equalized by using SADI, SIMU and RIGU commands.

Figure S- 56: Molecular structure of $[Me_4C_4-SiMe_3][al-f-al]$ with thermal ellipsoids set at 50% probability level. The cation and some of the OR^F moleties were disordered over two positions. For clarity, only the most occupied moleties are shown and H atoms are shown as spheres of arbitrary radius. Scheme: Al (pink), O (red), F (light green), Si (yellow), C (grey), H (white).

Identification code	1	
Empirical formula	C35 H21 Al2 F55 O6 Si	
Formula weight	1664.47	
Temperature	100(2) K	
Wavelength	71.073 pm	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 1040.39(2) pm	a= 88.2350(10)°.
	b = 1268.20(3) pm	b= 80.1750(10)°.
	c = 2140.37(5) pm	g = 82.3730(10)°.
Volume	2.75792(11) nm ³	

Ζ

Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission **Refinement method** Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

2 2.004 Mg/m³ 0.305 mm⁻¹ 1628 0.280 x 0.220 x 0.060 mm³ 0.966 to 31.583°. -15<=h<=15, -18<=k<=18, -31<=l<=31 82248 17826 [R(int) = 0.0205] 99.9 % Semi-empirical from equivalents 0.7463 and 0.7201 Full-matrix least-squares on F² 17826 / 13040 / 1262 1.036 R1 = 0.0355, wR2 = 0.0853 R1 = 0.0479, wR2 = 0.0908 n/a 0.580 and -0.326 e.Å⁻³

Crystal Structure of DMAP-Al(OR^F)₃

DMAP-Al(OR^F)₃ was synthesized as described above by reaction of $[Me_4C_4-SiMe_3][al-f-al]$ with an excess DMAP. Crystals suited for SC-XRD could be obtained from the reaction solution at -40°C. Equivalent C-C and C-F bond distances and thermal ellipsoids in the disordered OC(CF₃)₃ groups were equalized by using SADI, SIMU and RIGU commands.

Figure S- 57: Molecular structure of DMAP–Al(OR^F)₃ with thermal ellipsoids set at 50% probability level. H atoms are shown as spheres of arbitrary radius. Some of the OR^F groups were disordered over two positions. Only the most occupied moiety is shown. Scheme: Al (pink), O (red), F (light green), N (blue), C (grey), H (white).

Table S-2. (Crystal d	ata and	structure	refinement	for E	DMAP-Al	(OR ^F) ₃ .
--------------	-----------	---------	-----------	------------	--------------	---------	-----------------------------------

DMAP-AI(OR ^F) ₃	
C19 H10 Al F27 N2 O3	
854.27	
100(2) K	
71.073 pm	
Monoclinic	
P2 ₁ /c	
a = 1221.82(8) pm	a= 90°.
b = 1139.50(7) pm	b= 105.383(3)°.
c = 2117.52(14) pm	g = 90°.
2.8425(3) nm ³	
4	
	DMAP-Al(OR ^F) ₃ C19 H10 Al F27 N2 O3 854.27 100(2) K 71.073 pm Monoclinic P2 ₁ /c a = 1221.82(8) pm b = 1139.50(7) pm c = 2117.52(14) pm 2.8425(3) nm ³ 4

Density (calculated)	1.996 Mg/m ³
Absorption coefficient	0.279 mm ⁻¹
F(000)	1672
Crystal size	0.34 x 0.32 x 0.1 mm ³
Theta range for data collection	1.729 to 26.039°.
Index ranges	-15<=h<=15, -12<=k<=14, -26<=l<=26
Reflections collected	106462
Independent reflections	5604 [R(int) = 0.0287]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7453 and 0.7026
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5604 / 2973 / 568
Goodness-of-fit on F ²	1.043
Final R indices [I>2sigma(I)]	R1 = 0.0277, wR2 = 0.0685
R indices (all data)	R1 = 0.0295, wR2 = 0.0697
Extinction coefficient	n/a
Largest diff. peak and hole	0.407 and -0.248 e.Å ⁻³

Crystal Structure of [Me₄C₄(SiMe₃)(DMAP)][f-al] (4)

4 was synthesized as described above by reaction of $[Me_4C_4-SiMe_3][al-f-al]$ with an excess DMAP. Crystals suited for SC-XRD could be obtained from the concentrated reaction solution at -40°C after crystallization of DMAP-Al(OR^F)₃. Equivalent C-C and C-F bond distances and thermal ellipsoids in the disordered OC(CF₃)₃ groups were equalized by using SADI, SIMU and RIGU commands.

Figure S- 58: Molecular structure of $[Me_4C_4(SiMe_3)(DMAP)][f-al]$ (4) with thermal ellipsoids set at 50% probability level. H atoms are shown as spheres of arbitrary radius. Scheme: Al (pink), O (red), F (light green), N (blue), Si (yellow), C (grey), H (white).

Table S-3. Crystal data and	structure refinement for	r [Me ₄ C ₄ (SiMe ₃)(DMAP)][<i>f–al</i>].
-----------------------------	--------------------------	---

Identification code	4	
Empirical formula	C30 H31 Al F28 N2 O3 Si	
Formula weight	1054.64	
Temperature	100(2) K	
Wavelength	71.073 pm	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 942.36(2) pm	a= 78.2070(10)°.
	b = 1096.84(3) pm	b= 88.952(2)°.
	c = 2066.76(5) pm	g = 83.352(2)°.
Volume	2.07706(9) nm ³	

Ζ

Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission **Refinement method** Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

2 1.686 Mg/m^3 0.239 mm⁻¹ 1056 0.24 x 0.19 x 0.14 mm³ 1.006 to 30.547°. -13<=h<=12, -15<=k<=15, -28<=l<=29 53293 12146 [R(int) = 0.0259] 100.0 % Semi-empirical from equivalents 0.7461 and 0.6945 Full-matrix least-squares on F² 12146 / 372 / 595 1.048 R1 = 0.0475, wR2 = 0.1241 R1 = 0.0642, wR2 = 0.1330 n/a 0.495 and -0.290 e.Å⁻³

Quantum Chemical Calculations

DFT and MP2 optimizations were carried out with TURBOMOLE^[QC 1,2] using the BP86^[QC 3,4] density functional (RI approximation^[5a]) in combination with the def-TZVP and def2-TZVPP basis sets^[QC 5b,c] and D3 dispersion correction with Becke-Johnson damping.^[QC 5d,e] Vibrational frequencies were calculated analytically with the AOFORCE^[QC 6,7] module and all structures represented true minima without imaginary frequencies on the respective hypersurface. Thermodynamic terms were calculated with inclusion of zero-point energy and thermal contributions to the enthalpy/entropy (FREEH tool; unscaled BP86 vibrational frequencies).

- [QC 1] O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346.
- [QC 2] R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel, Chem. Phys. Lett. 1989, 162, 165.
- [QC 3] J. P. Perdew, Phys. Rev. B 1986, 34.
- [QC 4] A. D. Becke, Phys. Rev. A: Gen. Phys. 1988, 38, 3098.
- [QC 5] a) K. Eichkorn, O. Treutler, H. Oehm, M. Haeser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, 242, 652; b) A. Schäfer, C. Huber, R. Ahlrichs, *The Journal of Chemical Physics* 1994, 100, 5829; c) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297; d) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *The Journal of Chemical Physics* 2010, 132, 154104; e) S. Grimme, S. Ehrlich, L. Goerigk, *Journal of Computational chemistry* 2011, 32, 1456.
- [QC 6] P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511.
- [QC 7] P. Deglmann, F. Furche, J. Chem. Phys. 2002, 117, 9535.
- [QC 8] A. Klamt, G. Schueuermann, J. Chem. Soc., Perkin Trans. 2 1993, 799.
- [QC 9] A. Schäfer, A. Klamt, D. Sattel, J. C. W. Lohrenz, F. Eckert, Phys. Chem. Chem. Phys. 2000, 2, 2187.

SCF energy of [Me₃Si(MeCCMe)]⁺ in dependence of the C–C–Si angle (BP86–D3(BJ)/def-TZVP)

Figure S- 59: SCF energy of $[Me_3Si(MeCCMe)]^+$ in dependence of the C–C–Si angle. The minimum structure features inequivalent Si–C distances between the $[Me_3Si]^+$ moiety and the ligand. Therefore, both minima at 87.6° and 62.4°, respectively, represent the same *non-classical* structure. The *classical* structure with a C–C–Si angle of approximately 100 to 120° is not a minimum structure.

Images of the LUMO of 1

Figure S- 60: Calculated LUMO of $[Me_4C_4-SiMe_3]^+$ (-7.01 eV) at BP86-D3(BJ)/def-TZVP level. The LUMO is mainly located at C2 and C2'.

Optimized coordinates and energies of the calculated compounds:

Atomic coordinates are given in Å, SCF and MP2 energies are given in Hartree, the FREEH energy is given in kJ mol⁻¹, and the FREEH entropy is given in kJ mol⁻¹ K⁻¹. Calculations at MP2 level were performed by using thermal contributions (FREEH energy and FREEH entropy) and solvation energies ($\Delta_{solv}G^0$) from BP86-D3(BJ)/def-TZVP calculations. $H^0_{(g)}$, $G^0_{(g)}$ and $G^0_{(solv)}$ are calculated by the following equations:

 $\begin{array}{l} H^{0}_{(g)} = \text{SCF}/\text{MP2 energy} + \text{FREEH energy} + \text{R}\cdot T \\ G^{0}_{(g)} = \text{SCF}/\text{MP2 energy} + \text{FREEH energy} + \text{R}\cdot T - T \cdot \text{FREEH entropy} \\ G^{0}_{\text{solv}} = G^{0}_{(g)} + \Delta_{\text{solv}}G^{0} \qquad \text{with } \Delta_{\text{solv}}G^{0} = \text{COSMO energy} - \text{SCF energy} + 7.96 \text{ kJ mol}^{-1} \end{array}$

BP86-D3(BJ)/def-TZVP

[Me₃Si]⁺

Si	-0.00000	0.00000	0.00112	
С	0.52047	1.77035	-0.00060	
С	-1.79340	-0.43444	-0.00060	
С	1.27294	-1.33592	-0.00060	
Н	1.60980	1.89658	0.00703	
Н	0.09951	2.27532	-0.88737	
Н	0.08501	2.28366	0.87404	
Н	-2.44739	0.44584	0.00703	
Н	-2.02024	-1.05148	-0.88737	
Н	-2.02021	-1.06821	0.87404	
Н	1.92073	-1.22384	-0.88737	
Н	1.93520	-1.21545	0.87404	
Н	0.83759	-2.34242	0.00703	
SCF energy = -409.0711201408				
FRE	EH energy =	299.76		
FRE	EH entropy =	0.36071		

$H_2C=CH_2$

С	-0.66688	0.00000	0.00000	
С	0.66688	0.00000	0.00000	
Н	-1.24150	-0.92854	0.00000	
Н	-1.24150	0.92854	0.00000	
Н	1.24150	0.92854	0.00000	
Н	1.24150	-0.92854	0.00000	
SCF	energy = -7	78.62010934	8	
FREEH energy = 138.22				
FRE	EH entropy =	0.21962		

$[Me_3Si(H_2C=CH_2)]^+$

С	-1.09870	1.64881	0.37827
С	0.05218	1.99702	-0.25189
Si	0.12516	-0.42482	-0.00673
С	-1.51042	-1.32289	-0.15632
С	1.18128	-0.50706	-1.55060
С	1.02210	-0.59013	1.62124
Н	-1.15318	1.57720	1.46736
Н	-2.03367	1.52970	-0.17209

Н	0.96401	2.21952	0.30796	
Н	0.07953	2.17040	-1.32916	
н	-1.26792	-2.39700	-0.22681	
н	-2.16112	-1.18495	0.71597	
н	-2.05578	-1.04843	-1.06863	
н	1.49909	-1.55913	-1.64942	
н	2.08635	0.10973	-1.48949	
Н	0.61945	-0.24657	-2.45693	
Н	1.89395	0.07343	1.69183	
Н	0.36521	-0.41866	2.48399	
н	1.39249	-1.62618	1.69146	
SCF energy = -487.7335919317				
FREEH energy = 450.82				
FREEH entropy = 0.41480				

Me₂C=CMe₂

0.00000	0.00000	-0.67642		
0.00000	0.00000	0.67642		
0.00193	1.25013	-1.52337		
-0.00193	-1.25013	-1.52337		
0.00193	-1.25013	1.52337		
-0.00193	1.25013	1.52337		
0.01735	2.18103	-0.94765		
0.87720	1.25726	-2.19473		
-0.88703	1.27408	-2.17625		
-0.01735	-2.18103	-0.94765		
-0.87720	-1.25726	-2.19473		
0.88703	-1.27408	-2.17625		
0.01735	-2.18103	0.94765		
0.87720	-1.25726	2.19473		
-0.88703	-1.27408	2.17625		
0.88703	1.27408	2.17625		
-0.01735	2.18103	0.94765		
-0.87720	1.25726	2.19473		
SCF energy = -235.9565983791				
FREEH energy = 440.07				
FREEH entropy = 0.36567				
	0.00000 0.00193 -0.00193 0.00193 -0.00193 0.01735 0.87720 -0.88703 -0.01735 -0.87720 0.88703 0.01735 0.87720 -0.88703 0.88703 -0.01735 -0.87720 energy = -2 H energy = H entropy =	0.00000 0.00000 0.00193 1.25013 -0.00193 -1.25013 0.00193 -1.25013 0.00193 -1.25013 0.00193 1.25013 0.01735 2.18103 0.87720 1.25726 -0.88703 1.27408 -0.01735 -2.18103 -0.87720 -1.25726 0.88703 -1.25726 0.88703 -1.27408 0.01735 2.18103 0.87720 -1.25726 -0.88703 1.27408 0.88703 1.27408 0.88703 1.27408 0.88703 1.27408 0.88703 1.27408 0.88703 1.27408 -0.01735 2.18103 -0.87720 1.25726 energy = -235.95659837 H energy = 440.07 H entropy = 0.36567		

[Me₃Si(Me₂C=CMe₂)]⁺

Si	-0.02188	0.93905	0.82938
С	-1.71822	1.72716	0.68347

С	1.37238	2.07758	0.31343		
С	0.24511	0.14645	2.50856		
С	-0.41963	-0.46926	-1.13697		
С	-1.88636	-0.82191	-1.18145		
С	0.01860	0.42212	-2.27094		
С	0.47032	-1.17495	-0.32880		
С	1.96673	-1.11721	-0.49500		
С	0.00483	-2.31832	0.53815		
Н	-2.53086	1.04381	0.95752		
Н	-1.91637	2.14626	-0.31067		
Н	-1.72877	2.56261	1.40300		
Н	1.23053	2.50729	-0.68531		
Н	1.36908	2.91318	1.03289		
Н	2.35942	1.60348	0.36943		
Н	1.21133	-0.36509	2.59636		
Н	-0.55843	-0.54656	2.78553		
Н	0.23920	0.97156	3.23991		
Н	-2.01431	-1.63918	-1.91106		
Н	-2.29537	-1.17651	-0.22990		
Н	-2.48983	0.02231	-1.53417		
Н	-0.16642	-0.12340	-3.21112		
Н	1.07524	0.70024	-2.25283		
Н	-0.59264	1.33413	-2.32179		
н	2.47611	-1.09358	0.47870		
Н	2.28196	-2.05472	-0.98246		
Н	2.32804	-0.28820	-1.10838		
Н	0.69570	-2.49689	1.37006		
Н	-1.00787	-2.20095	0.93669		
Н	0.00238	-3.23050	-0.08224		
SCF energy = -645.0954455209					
FREE	FREEH energy = 753.26				
FREEH entropy = 0.52255					

$Ph_2C=CPh_2$

С	0.00000	0.00000	-0.68526
С	0.00000	0.00000	0.68526
С	0.13393	1.24813	-1.47853
С	-0.13393	-1.24813	-1.47853
С	0.13393	-1.24813	1.47853
С	-0.13393	1.24813	1.47853
С	1.10798	2.21210	-1.16085
С	1.23094	3.37732	-1.91624
С	0.38217	3.60393	-3.00518
С	-0.57971	2.64614	-3.34168
С	-0.69479	1.47446	-2.59274
С	0.69479	-1.47446	-2.59274
С	0.57971	-2.64614	-3.34168
С	-0.38217	-3.60393	-3.00518
С	-1.23094	-3.37732	-1.91624
С	-1.10798	-2.21210	-1.16085
С	-0.69479	-1.47446	2.59274
С	-0.57971	-2.64614	3.34168
С	0.38217	-3.60393	3.00518
С	1.23094	-3.37732	1.91624
С	1.10798	-2.21210	1.16085
С	0.69479	1.47446	2.59274
С	0.57971	2.64614	3.34168

С	-0.38217	3.60393	3.00518	
С	-1.23094	3.37732	1.91624	
С	-1.10798	2.21210	1.16085	
Н	1.76808	2.03802	-0.31095	
Н	1.99504	4.11171	-1.65623	
Н	0.47653	4.51760	-3.59404	
Н	-1.24154	2.81167	-4.19351	
Н	-1.43927	0.72343	-2.86129	
Н	1.43927	-0.72343	-2.86129	
Н	1.24154	-2.81167	-4.19351	
Н	-0.47653	-4.51760	-3.59404	
Н	-1.99504	-4.11171	-1.65623	
Н	-1.76808	-2.03802	-0.31095	
Н	-1.43927	-0.72343	2.86129	
Н	-1.24154	-2.81167	4.19351	
Н	0.47653	-4.51760	3.59404	
Н	1.99504	-4.11171	1.65623	
Н	1.76808	-2.03802	0.31095	
Н	1.43927	0.72343	2.86129	
Н	1.24154	2.81167	4.19351	
Н	-0.47653	4.51760	3.59404	
Н	-1.99504	4.11171	1.65623	
Н	-1.76808	2.03802	0.31095	
SCF energy = -1003.261793521				
FREEH energy = 1014.65				
FREEH entropy = 0.63855				

$[Me_{3}Si(Ph_{2}C=CPh_{2})]^{+}$

r	0 18720	0 38962	0 82472
c r	-0.06825	0.00002	-0 56/15
c r	-0.94103	0.73584	1 70447
c r	1 518/6	0.79504	1 //0447
c r	-1 50846	0.49402	-1 07758
c c	0.02522	0.00740	1 50110
c r	-1 80864	1 77606	1 20200
c c	2 02220	2 10259	2 15205
c c	-2.65220	2.19536	2.13203
c c	-3.04791	1.34123	2.2/212
	-2.20391	0.49857	3.70840
	-1.13919	0.11645	2.95452
C	1.67836	1.12066	2.67793
С	2.93181	1.25318	3.26467
С	4.06879	0.77521	2.60718
С	3.94359	0.18345	1.34154
С	2.69805	0.05945	0.74712
С	-1.79147	0.75134	-2.28186
С	-3.09877	0.82098	-2.77370
С	-4.14821	0.21645	-2.08236
С	-3.87911	-0.45870	-0.88668
С	-2.57941	-0.52051	-0.39363
С	1.30547	-0.14722	-2.72915
С	2.15882	0.42718	-3.67444
С	2.63195	1.72888	-3.49444
С	2.22940	2.45947	-2.37185
С	1.38203	1.88167	-1.42771
Si	0.17714	-2.12753	-0.39766
С	-0.91265	-2.83738	-1.76823
С	-0.35010	-2.75768	1.29871

С	1.96820	-2.68448	-0.63419		
Н	-1.66195	2.26478	0.34572		
Н	-3.47644	3.01961	1.85060		
Н	-3.87227	1.84933	4.01611		
Н	-2.36844	-0.00897	4.71916		
Н	-0.47141	-0.68322	3.27143		
Н	0.81191	1.53819	3.18439		
Н	3.02415	1.74558	4.23274		
Н	5.05269	0.88207	3.06558		
Н	4.82976	-0.16818	0.81283		
Н	2.63456	-0.36278	-0.24830		
Н	-0.99046	1.23231	-2.83924		
Н	-3.29027	1.35260	-3.70646		
Н	-5.16625	0.26677	-2.46936		
Н	-4.68688	-0.93853	-0.33301		
Н	-2.40590	-1.03775	0.54758		
Н	0.92478	-1.15170	-2.90770		
Н	2.44666	-0.14368	-4.55786		
Н	3.29654	2.17834	-4.23266		
Н	2.56861	3.48705	-2.23602		
Н	1.06716	2.46293	-0.55983		
Н	-0.92364	-2.23157	-2.68165		
Н	-0.52152	-3.83641	-2.01592		
Н	-1.94985	-2.93872	-1.42862		
Н	0.35997	-2.44947	2.07736		
Н	-0.31712	-3.85763	1.24293		
Н	-1.36277	-2.47429	1.60547		
Н	1.89274	-3.76712	-0.83114		
Н	2.48576	-2.22928	-1.48616		
Н	2.57471	-2.55867	0.26979		
SCF	energy GEOC	PT = -1412.3	395420558		
FRE	EH energy = 🗄	1329.36			
FREI	EH entropy =	0.77469			
HC≡	НС≡СН				
с	0.00000	0.00000	-0.60416		

C	0.00000	0.00000	-0.00410	
С	0.00000	0.00000	0.60416	
Н	0.00000	0.00000	-1.67462	
Н	0.00000	0.00000	1.67462	
SCF energy = -77.360512839				
FREEI	H energy =	75.96		
FREEI	H entropy =	0.20179		

[Me₃Si(HC≡CH)]⁺

С	-0.6614554	-2.1273591	-0.0767096	
С	0.5536276	-2.0207460	-0.0612274	
Si	0.0388224	0.2276544	0.0064874	
С	-1.7907118	0.6237940	0.0421886	
С	0.9418857	0.5453642	1.6083891	
С	0.9063341	0.6498621	-1.5903147	
Н	-1.7311543	-2.2487667	-0.0913066	
Н	1.6257676	-2.1332545	-0.0552716	
Н	-1.8590522	1.7240337	0.0860107	
н	-2.3194351	0.3015077	-0.8640875	
Н	-2.2987464	0.2312800	0.9325038	
Н	0.9018088	1.6309472	1.7989981	

Н	1.9992369	0.2538447	1.5673125		
Н	0.4595227	0.0402858	2.4557667		
Н	1.9608642	0.3454091	-1.5963206		
Н	0.3980557	0.2097154	-2.4585372		
Н	0.8746295	1.7464279	-1.7038817		
SCF energy = -486.4700515204					
FREEH energy = 385.76					
FREEH entropy = 0.41154					

MeC≡CMe

С	0.00000	0.00000	-2.06323			
С	0.00000	0.00000	-0.60681			
С	0.00000	0.00000	0.60681			
С	0.00000	0.00000	2.06323			
Н	1.02576	0.00000	-2.46315			
Н	-0.51288	-0.88833	-2.46315			
Н	-0.51288	0.88833	-2.46315			
Н	1.02576	0.00000	2.46315			
Н	-0.51288	0.88833	2.46315			
Н	-0.51288	-0.88833	2.46315			
SCF	SCF energy = -156.0424242801					
FRE	FREEH energy = 229.59					
FREEH entropy = 0.29468						

[Me₃Si(MeC≡CMe)]⁺

С	0.20693	-2.75829	-0.38542	
С	0.80804	-1.46432	-0.15538	
С	1.37617	-0.38042	0.01639	
С	2.48233	0.57532	0.19409	
Si	-0.60652	0.54898	0.04253	
С	-2.08061	-0.59308	0.24213	
С	-0.32757	1.59525	1.57355	
С	-0.55954	1.43409	-1.60506	
Н	-0.32206	-2.80419	-1.34735	
Н	-0.46733	-3.05652	0.42829	
Н	1.03215	-3.49052	-0.42273	
Н	3.41814	0.07605	-0.09205	
Н	2.35769	1.46639	-0.43433	
Н	2.55592	0.89254	1.24258	
Н	-2.25057	-1.25149	-0.61818	
Н	-2.03392	-1.19031	1.16190	
Н	-2.96120	0.06457	0.32652	
Н	-1.26099	2.15045	1.76020	
Н	0.47865	2.32838	1.45080	
Н	-0.12534	0.97808	2.45920	
Н	0.32341	2.07543	-1.72082	
Н	-0.59357	0.72465	-2.44280	
Н	-1.45019	2.07895	-1.67407	
SCF energy = -565.1751674480				
FREEH energy = 540.62				
FREEH entropy = 0.47542				

PhC≡CPh

С	-2.74853	-1.21612	0.00000
С	-4.14170	-1.21021	0.00000

С	-4.84420	0.00000	0.00000	
С	-4.14170	1.21021	0.00000	
С	-2.74853	1.21612	0.00000	
С	-2.02880	0.00000	0.00000	
С	4.14170	-1.21021	0.00000	
С	2.74853	-1.21612	0.00000	
С	2.02880	0.00000	0.00000	
С	2.74853	1.21612	0.00000	
С	4.14170	1.21021	0.00000	
С	4.84420	0.00000	0.00000	
С	0.61068	0.00000	0.00000	
С	-0.61068	0.00000	0.00000	
Н	-2.19734	-2.15669	0.00000	
Н	-4.68462	-2.15661	0.00000	
Н	-5.93498	0.00000	0.00000	
Н	-4.68462	2.15661	0.00000	
Н	-2.19734	2.15669	0.00000	
Н	4.68462	-2.15661	0.00000	
Н	2.19734	-2.15669	0.00000	
Н	2.19734	2.15669	0.00000	
Н	4.68462	2.15661	0.00000	
Н	5.93498	0.00000	0.00000	
SCF energy = -539.6929888251				
FREEH energy = 516.60				
FREEH entropy = 0.44867				

[Me₃Si(PhC≡CPh)]⁺

С	-1.27209	-2.46155	1.70865
С	-2.06799	-3.58279	1.89485
С	-2.42274	-4.38033	0.79669
С	-1.98133	-4.06461	-0.49691
С	-1.18447	-2.94773	-0.70392
С	-0.82336	-2.13076	0.40140
С	3.70273	1.94083	0.98353
С	2.46173	1.31070	1.07286
С	1.89410	0.73606	-0.07686
С	2.55540	0.81729	-1.31397
С	3.79579	1.45055	-1.38829
С	4.36784	2.01620	-0.24435
С	0.59731	0.06563	0.01059
С	-0.02195	-1.00930	0.20462
Si	-0.99502	1.36273	-0.31391
С	-0.62179	1.99183	-2.04212
С	-2.65938	0.49902	-0.20659
С	-0.74682	2.61689	1.05987
н	-0.98135	-1.83161	2.54913
н	-2.41515	-3.84480	2.89416
н	-3.04846	-5.26020	0.95126
н	-2.26180	-4.69755	-1.33864
н	-0.82709	-2.68794	-1.70017
н	4.15189	2.37340	1.87780
Н	1.94128	1.24568	2.02813
н	2.10720	0.37160	-2.20169
Н	4.31756	1.50069	-2.34425
н	5.33541	2.51428	-0.30938
Н	-1.39849	2.72349	-2.31526
Н	0.35418	2.49037	-2.09045

Н	-0.64793	1.18310	-2.78474		
Н	-3.43659	1.25717	-0.39021		
Н	-2.84713	0.06518	0.78415		
Н	-2.77760	-0.28688	-0.96382		
Н	-0.84186	2.15762	2.05298		
Н	0.22958	3.11142	0.98632		
Н	-1.53162	3.38432	0.96855		
SCF energy = -948.8404400839					
FREEH energy = 829.22					
FREEH entropy = 0.62404					

$COSMO(\epsilon = 13.4)/BP86-D3(BJ)/def-TZVP$

[Me₃Si]⁺

Si	0.00000	-0.00000	-0.02264
С	0.51853	1.76777	-0.00630
С	-1.79020	-0.43482	-0.00630
С	1.27167	-1.33295	-0.00630
Н	1.60804	1.88408	-0.03038
Н	0.06456	2.28468	-0.86654
Н	0.11215	2.23833	0.90424
Н	-2.43568	0.45056	-0.03038
Н	-2.01087	-1.08643	-0.86654
Н	-1.99452	-1.02204	0.90424
Н	1.94631	-1.19825	-0.86654
Н	1.88237	-1.21629	0.90424
Н	0.82764	-2.33464	-0.03038
COSN	/IO energy =	-409.1528	251959

$H_2C=CH_2$

С	0.00000	0.00000	-0.60522
С	0.00000	0.00000	0.60522
Н	0.00000	0.00000	-1.67866
Н	0.00000	0.00000	1.67866
COSMO energy =		-77.36601	70332

[Me₃Si(H₂C=CH₂)]⁺

С	-0.65731	-2.09584	-0.07552
С	0.55895	-1.99341	-0.06125
Si	0.03608	0.21527	0.00634
С	-1.79094	0.61370	0.04178
С	0.93912	0.54141	1.60510
С	0.90393	0.64643	-1.58661
Н	-1.72830	-2.21402	-0.08882
Н	1.63316	-2.09531	-0.05652
Н	-1.85210	1.71336	0.08452
Н	-2.31077	0.27914	-0.86461
Н	-2.28967	0.21051	0.93199
Н	0.91753	1.63027	1.77246
Н	1.98702	0.21899	1.56226
Н	0.43748	0.05178	2.44993
Н	1.95046	0.31662	-1.59047
Н	0.37997	0.21702	-2.45051
Н	0.88539	1.74409	-1.68006
COSN	10 energy =	-486.54464	38885

$Me_2C=CMe_2$

С	0.00000	0.00000	-0.67638
С	0.00000	0.00000	0.67638
С	-0.00009	1.25135	-1.52357
С	0.00009	-1.25135	-1.52357
С	-0.00009	-1.25135	1.52357
С	0.00009	1.25135	1.52357
н	-0.00114	2.18240	-0.94729
Н	0.88230	1.26542	-2.18575
Н	-0.88149	1.26422	-2.18705
Н	0.00114	-2.18240	-0.94729
Н	-0.88230	-1.26542	-2.18575
н	0.88149	-1.26422	-2.18705
н	-0.00114	-2.18240	0.94729
Н	0.88230	-1.26542	2.18575
н	-0.88149	-1.26422	2.18705
н	0.88149	1.26422	2.18705
Н	0.00114	2.18240	0.94729
Н	-0.88230	1.26542	2.18575
COSN	/IO energy =	-235.95895	22222

[Me₃Si(Me₂C=CMe₂)]⁺

Si	-0.02101	0.92725	0.81936
С	-1.71681	1.71481	0.67899
С	1.36898	2.07078	0.30586
С	0.25076	0.14015	2.49921
С	-0.41907	-0.46320	-1.13329
С	-1.88408	-0.81650	-1.17799
С	0.02094	0.42947	-2.26361
С	0.46873	-1.16822	-0.32297
С	1.96419	-1.10998	-0.48563
С	-0.00126	-2.30899	0.54300
Н	-2.52203	1.02322	0.95396
Н	-1.91133	2.13015	-0.31748
Н	-1.71918	2.54769	1.40102
Н	1.22177	2.49586	-0.69398
Н	1.35643	2.90192	1.02990
Н	2.35422	1.59310	0.36213
Н	1.21765	-0.37183	2.57689
Н	-0.55536	-0.55165	2.77110
Н	0.24648	0.97162	3.22277
Н	-2.00396	-1.63557	-1.90663
Н	-2.29092	-1.16931	-0.22496
Н	-2.48502	0.02856	-1.53300
Н	-0.16601	-0.11927	-3.20134
Н	1.07837	0.70439	-2.24277
Н	-0.59063	1.34141	-2.31058
Н	2.46894	-1.08244	0.49028
Н	2.27417	-2.05085	-0.96956
Н	2.32421	-0.28293	-1.10247
Н	0.69344	-2.49057	1.37105
Н	-1.01174	-2.18280	0.94478
Н	-0.01086	-3.21629	-0.08403
COSI	NO energy =	-645.15830	94192

$Ph_2C=CPh_2$

С	0.00000	0.00000	-0.68526
С	0.00000	0.00000	0.68526
С	0.13114	1.25320	-1.46976
С	-0.13114	-1.25320	-1.46976
С	0.13114	-1.25320	1.46976
С	-0.13114	1.25320	1.46976
С	1.11135	2.20946	-1.14529
С	1.21034	3.40164	-1.86208
С	0.33162	3.66025	-2.92149
С	-0.62925	2.70441	-3.27250
С	-0.71994	1.50590	-2.56108
С	0.71994	-1.50590	-2.56108
С	0.62925	-2.70441	-3.27250
С	-0.33162	-3.66025	-2.92149
С	-1.21034	-3.40164	-1.86208
С	-1.11135	-2.20946	-1.14529
С	-0.71994	-1.50590	2.56108
C	-0.62925	-2.70441	3.27250
С	0.33162	-3.66025	2.92149
C	1.21034	-3.40164	1.86208
С	1.11135	-2.20946	1.14529
С	0.71994	1.50590	2.56108
C	0.62925	2.70441	3.27250
С	-0.33162	3.66025	2.92149
С	-1.21034	3.40164	1.86208
С	-1.11135	2.20946	1.14529
Н	1.79240	2.01169	-0.31715
н	1.97701	4.13168	-1.59661
н	0.40374	4.59564	-3.47897
н	-1.31107	2.89442	-4.10344
н	-1.47156	0.76346	-2.83494
н	1.47156	-0.76346	-2.83494
н	1.31107	-2.89442	-4.10344
н	-0.40374	-4.59564	-3.47897
н	-1.97701	-4.13168	-1.59661
н	-1.79240	-2.01169	-0.31715
н	-1.47156	-0.76346	2.83494
н	-1.31107	-2.89442	4.10344
н	0.40374	-4.59564	3.47897
н	1.97701	-4.13168	1.59661
н	1.79240	-2.01169	0.31715
н	1.47156	0.76346	2.83494
Н	1.31107	2.89442	4.10344
н	-0.40374	4.59564	3.47897
н	-1.97701	4.13168	1.59661
н	-1.79240	2.01169	0.31715
cos	MO energy =	-1003.2725	446186
-	0,	_	

[Me₃Si(Ph₂C=CPh₂)]⁺

С	0.18850	0.39009	0.82073
С	-0.06753	0.01732	-0.56624
С	-0.94075	0.73899	1.69833
С	1.51849	0.49179	1.40503
С	-1.50873	0.08670	-1.07535
С	0.92178	0.56149	-1.58559

С	-1.79680	1.78847	1.30188
С	-2.82514	2.20650	2.14046
С	-3.05473	1.54599	3.35443
С	-2.21913	0.49601	3.75049
С	-1.15000	0.11235	2.94228
С	1.67699	1.10635	2.67941
С	2.93043	1.23172	3.26813
C	4.06768	0.75912	2.60592
C	3.94341	0.17849	1.33440
C	2.69765	0.06122	0.73903
C	-1 79725	0 75660	-2 27491
c	-3 10717	0.83021	-2 76090
c	-4 15466	0.00021	-2.06642
c	-3 87918	-0 /59/2	-0 87576
c	-3.87918	-0.43942	-0.32008
c	1 20942	0.32472	-0.38998
C C	1.50642	-0.14905	-2.72999
C C	2.10057	0.42812	-3.07540
C	2.62465	1.73445	-3.49895
C	2.21450	2.46661	-2.37897
C	1.36836	1.88589	-1.43473
Si	0.18679	-2.13321	-0.38932
С	-0.90235	-2.84325	-1.75899
С	-0.34284	-2.75165	1.30705
С	1.97794	-2.67834	-0.63020
Н	-1.63601	2.28780	0.34721
Н	-3.46118	3.03937	1.83963
Н	-3.88299	1.85411	3.99376
Н	-2.39268	-0.01755	4.69648
Н	-0.49043	-0.69318	3.26070
Н	0.81199	1.51908	3.19185
Н	3.02206	1.71319	4.24175
Н	5.05137	0.85961	3.06623
Н	4.82923	-0.17159	0.80428
Н	2.63432	-0.35741	-0.25782
н	-0.99920	1.24012	-2.83446
Н	-3.30193	1.36710	-3.69047
н	-5 17536	0 27746	-2 44737
н	-4 68295	-0 94411	-0 32016
н	-2 39976	-1 05221	0 54472
н	0.94011	-1 15836	-2 90572
н	2 / 5631	-0.1/657	-2.50572
н Ц	2.43031	-0.14037 2 19521	4.33403
п	3.29003	2.10331	-4.23030
	2.54791	2.49045	-2.24542
н	1.04817	2.46858	-0.56983
н	-0.88018	-2.25952	-2.68660
н	-0.52142	-3.85430	-1.97145
Н	-1.94478	-2.91726	-1.42856
Н	0.35812	-2.42842	2.08769
Н	-0.29182	-3.85097	1.25134
Н	-1.36267	-2.48085	1.60146
Н	1.89602	-3.76021	-0.82909
Н	2.49199	-2.22080	-1.48297
Н	2.58225	-2.55306	0.27532
COSN	10 energy =	-1412.44780)93524

нс≡сн

С	0.00000	0.00000	-0.60522
-			

C H H COSN	0.00000 0.00000 0.00000 IO energy =	0.00000 0.00000 0.00000 -77.366017	0.60522 -1.67866 1.67866 0332
[Me₃S	i(HC≡CH)]⁺		
С	-0.65731	-2.09584	-0.07552
С	0.55895	-1.99341	-0.06125
Si	0.03608	0.21527	0.00634
С	-1.79094	0.61370	0.04178
С	0.93912	0.54141	1.60510
С	0.90393	0.64643	-1.58661
Н	-1.72830	-2.21402	-0.08882
Н	1.63316	-2.09531	-0.05652
Н	-1.85210	1.71336	0.08452
Н	-2.31077	0.27914	-0.86461
Н	-2.28967	0.21051	0.93199
Н	0.91753	1.63027	1.77246
Н	1.98702	0.21899	1.56226
Н	0.43748	0.05178	2.44993
Н	1.95046	0.31662	-1.59047
Н	0.37997	0.21702	-2.45051
Н	0.88539	1.74409	-1.68006
COSIV	IO energy =	-486.544643	38885
MeC≡	€CMe		
с	-0.00000	0.00000	-2.06692
С	-0.00000	0.00000	-0.60798
С	-0.00000	0.00000	0.60798
С	-0.00000	0.00000	2.06692
Н	1.02596	0.00000	-2.46547
Н	-0.51298	-0.88851	-2.46547
н	-0.51298	0.88851	-2.46547
н	1.02596	0.00000	2.46547
н	-0.51298	0.88851	2.46547
Н	-0.51298	-0.88851	2.46547
COSMO energy =		-156.0473134584	

[Me₃Si(MeC≡CMe)]⁺

С	0.19516	-2.75444	-0.35722
С	0.80498	-1.46468	-0.14941
С	1.36511	-0.37417	0.01018
С	2.46772	0.58733	0.17347
Si	-0.59666	0.54204	0.04306
С	-2.07314	-0.59760	0.21959
С	-0.32942	1.58020	1.58045
С	-0.54281	1.44127	-1.59661
Н	-0.36581	-2.79736	-1.30044
Н	-0.44871	-3.04783	0.48209
Н	1.02077	-3.48382	-0.42268
Н	3.40148	0.09007	-0.12088
Н	2.32931	1.47578	-0.45543
Н	2.54664	0.90696	1.22058
Н	-2.22918	-1.24233	-0.65351
Н	-2.02246	-1.20840	1.12978

Н	-2.94799	0.06627	0.30779
Н	-1.26529	2.13298	1.75812
Н	0.48316	2.30682	1.46132
Н	-0.13144	0.94876	2.45671
Н	0.34878	2.07265	-1.69987
Н	-0.57933	0.72974	-2.43243
Н	-1.43088	2.08974	-1.65465
COSMO energy =		-565.24137	54350

PhC≡CPh

С	-2.74969	-1.21828	0.00000
С	-4.14416	-1.21178	0.00000
С	-4.84637	0.00000	0.00000
С	-4.14416	1.21178	0.00000
С	-2.74969	1.21828	0.00000
С	-2.03146	0.00000	0.00000
С	4.14416	-1.21178	0.00000
С	2.74969	-1.21828	0.00000
С	2.03146	0.00000	0.00000
С	2.74969	1.21828	0.00000
С	4.14416	1.21178	0.00000
С	4.84637	0.00000	0.00000
С	0.61140	0.00000	0.00000
С	-0.61140	0.00000	0.00000
Н	-2.20179	-2.16103	0.00000
Н	-4.68707	-2.15824	0.00000
Н	-5.93731	0.00000	0.00000
Н	-4.68707	2.15824	0.00000
Н	-2.20179	2.16103	0.00000
Н	4.68707	-2.15824	0.00000
Н	2.20179	-2.16103	0.00000
Н	2.20179	2.16103	0.00000
Н	4.68707	2.15824	0.00000
Н	5.93731	0.00000	0.00000
COSN	/IO energy =	-539.70146	27852

[Me₃Si(PhC≡CPh)]⁺

С	-1.26497	-2.45231	1.70948
С	-2.07787	-3.56214	1.89170
С	-2.44021	-4.35386	0.79109
С	-1.99053	-4.04469	-0.50185
С	-1.17660	-2.93961	-0.70683
С	-0.80879	-2.13069	0.40237
С	3.70525	1.94675	0.98146
С	2.46525	1.31234	1.07197
С	1.89877	0.73558	-0.07688
С	2.55894	0.81647	-1.31426
С	3.79835	1.45390	-1.39055
С	4.37071	2.02256	-0.24720
С	0.59872	0.07014	0.01000
С	-0.00685	-1.01208	0.20615
Si	-0.99686	1.35408	-0.31168
С	-0.62357	1.97967	-2.04006
С	-2.64959	0.47361	-0.20312
С	-0.75135	2.60240	1.06654
Н	-0.97258	-1.82344	2.54994

Н	-2.43507	-3.81710	2.88920
Н	-3.08129	-5.22303	0.94287
Н	-2.28056	-4.67084	-1.34531
Н	-0.81690	-2.68115	-1.70239
Н	4.15091	2.38462	1.87531
Н	1.94351	1.25043	2.02671
Н	2.10931	0.37222	-2.20194
Н	4.31673	1.50707	-2.34856
Н	5.33657	2.52474	-0.31365
Н	-1.41713	2.69205	-2.31469
Н	0.34270	2.49748	-2.08286
Н	-0.62902	1.16119	-2.77248
Н	-3.42717	1.23109	-0.38711
Н	-2.82859	0.04008	0.78941
Н	-2.75648	-0.31153	-0.96288
Н	-0.82707	2.12868	2.05460
Н	0.21631	3.11249	0.98270
Н	-1.55297	3.35280	0.98280
COSMO energy = -948.8969889648			

MP2/def2-TZVPP

[Me₃Si]⁺

Si	0.00001	-0.00000	0.00092
С	0.51571	1.74984	0.00033
С	-1.77326	-0.42828	0.00034
С	1.25755	-1.32156	0.00031
Н	1.59483	1.87513	0.00310
Н	0.09176	2.24696	-0.87633
Н	0.08649	2.24998	0.87261
Н	-2.42129	0.44364	0.00302
Н	-1.99181	-1.04408	-0.87627
Н	-1.99181	-1.04997	0.87267
Н	1.90010	-1.20293	-0.87631
Н	1.90525	-1.19998	0.87263
Н	0.82646	-2.31873	0.00299
MP2	energy =	-408.2380332	879

$H_2C=CH_2$

С	-0.66615	0.00000	0.00000
С	0.66615	0.00000	0.00000
Н	-1.22816	-0.92262	0.00000
Н	-1.22816	0.92262	0.00000
Н	1.22816	0.92262	0.00000
Н	1.22816	-0.92262	0.00000
MP2 energy = -78.4006926122			

$[Me_{3}Si(H_{2}C=CH_{2})]^{+}$

С	-0.97938	-1.56492	-0.67708
С	-0.97938	-1.56492	0.67708
Si	0.22569	0.35699	0.00000
С	-0.32804	1.19431	-1.55357
С	-0.32804	1.19431	1.55357
С	1.94500	-0.31313	0.00000
н	-0.17183	-2.01996	-1.23672

Н	-1.82570	-1.18699	-1.23339
Н	-0.17183	-2.01996	1.23672
Н	-1.82570	-1.18699	1.23339
Н	0.20807	2.14599	-1.60198
Н	-0.08418	0.63088	-2.45126
Н	-1.39284	1.41889	-1.54299
Н	0.20807	2.14599	1.60198
Н	-0.08418	0.63088	2.45126
Н	-1.39284	1.41889	1.54299
Н	2.16299	-0.90368	0.88774
Н	2.16299	-0.90368	-0.88774
Н	2.62910	0.53890	0.00000
MP2 energy = -486.6842114601			

Me₂C=CMe₂

С	0.00000	0.00000	-0.67422
С	0.00000	0.00000	0.67422
С	1.24354	0.00000	-1.52022
С	-1.24354	0.00000	-1.52022
С	-1.24354	0.00000	1.52022
С	1.24354	0.00000	1.52022
Н	2.16703	0.00000	-0.95244
Н	1.24961	-0.87506	-2.17344
Н	1.24961	0.87506	-2.17344
Н	-2.16703	0.00000	-0.95244
Н	-1.24961	0.87506	-2.17344
Н	-1.24961	-0.87506	-2.17344
Н	-2.16703	0.00000	0.95244
Н	-1.24961	-0.87506	2.17344
Н	-1.24961	0.87506	2.17344
Н	1.24961	-0.87506	2.17344
н	2.16703	0.00000	0.95244
Н	1.24961	0.87506	2.17344

MP2 energy = -235.3044148381

[Me₃Si(Me₂C=CMe₂)]⁺

Si	-0.01762	1.18842	0.00000
С	-0.92567	1.69647	-1.53666
С	1.75520	1.72517	0.00000
С	-0.92567	1.69647	1.53666
С	0.02787	-1.06349	-0.69154
С	-1.22361	-1.37016	-1.46947
С	1.27599	-1.12343	-1.52749
С	0.02787	-1.06349	0.69154
С	1.27599	-1.12343	1.52749
С	-1.22361	-1.37016	1.46947
Н	-1.96483	1.37700	-1.54264
Н	-0.44200	1.36889	-2.45392
Н	-0.91694	2.78996	-1.53346
Н	2.30164	1.41775	-0.88780
Н	1.72723	2.81847	0.00000
Н	2.30164	1.41775	0.88780
Н	-0.44200	1.36889	2.45392
Н	-1.96483	1.37700	1.54264
Н	-0.91694	2.78996	1.53346
Н	-1.30084	-2.45808	-1.53845

Н	-2.13698	-1.00763	-1.00998
н	-1.15789	-0.98177	-2.48207
н	1.32105	-2.13057	-1.94834
Н	2.19547	-0.94304	-0.98468
Н	1.21433	-0.43792	-2.37212
Н	1.21433	-0.43792	2.37212
Н	1.32105	-2.13057	1.94834
н	2.19547	-0.94304	0.98468
Н	-1.15789	-0.98177	2.48207
н	-2.13698	-1.00763	1.00998
Н	-1.30084	-2.45808	1.53845
MP2 energy = -643.6127868675			

Ph₂C=CPh₂

С	0.00000	0.00000	-0.68434
С	0.00000	0.00000	0.68434
С	0.12588	1.24428	-1.46759
С	-0.12588	-1.24428	-1.46759
С	0.12588	-1.24428	1.46759
С	-0.12588	1.24428	1.46759
С	1.09295	2.20702	-1.14530
С	1.20284	3.37717	-1.88958
С	0.34744	3.60602	-2.96777
С	-0.60636	2.64703	-3.30792
С	-0.70743	1.46943	-2.57222
С	0.70743	-1.46943	-2.57222
С	0.60636	-2.64703	-3.30792
С	-0.34744	-3.60602	-2.96777
С	-1.20284	-3.37717	-1.88958
С	-1.09295	-2.20702	-1.14530
С	-0.70743	-1.46943	2.57222
С	-0.60636	-2.64703	3.30792
С	0.34744	-3.60602	2.96777
С	1.20284	-3.37717	1.88958
С	1.09295	-2.20702	1.14530
С	0.70743	1.46943	2.57222
С	0.60636	2.64703	3.30792
С	-0.34744	3.60602	2.96777
С	-1.20284	3.37717	1.88958
С	-1.09295	2.20702	1.14530
Н	1.75536	2.02806	-0.30788
Н	1.95726	4.10829	-1.63138
Н	0.43051	4.51782	-3.54340
Н	-1.26720	2.81422	-4.14799
Н	-1.44199	0.72007	-2.84040
Н	1.44199	-0.72007	-2.84040
Н	1.26720	-2.81422	-4.14799
Н	-0.43051	-4.51782	-3.54340
Н	-1.95726	-4.10829	-1.63138
Н	-1.75536	-2.02806	-0.30788
Н	-1.44199	-0.72007	2.84040
Н	-1.26720	-2.81422	4.14799
Н	0.43051	-4.51782	3.54340
Н	1.95726	-4.10829	1.63138
Н	1.75536	-2.02806	0.30788
Н	1.44199	0.72007	2.84040
н	1.26720	2.81422	4.14799

Н	-0.43051	4.51782	3.54340	
Н	-1.95726	4.10829	1.63138	
Н	-1.75536	2.02806	0.30788	
MP2 energy = -1000.6575319576				

$[Me_3Si(Ph_2C=CPh_2)]^+$

С	0.17988	0.35916	0.79770
С	-0.08645	0.08411	-0.57612
С	-0.94033	0.67185	1.69608
С	1.51736	0.48575	1.37394
С	-1.50718	0.11759	-1.08784
С	0.92011	0.56043	-1.58635
С	-1.78070	1.73768	1.32812
С	-2.79967	2.14691	2.17808
Ċ	-3.02898	1.46820	3.37653
C	-2 19921	0 41059	3 74690
c	-1 13977	0.03126	2 92756
c	1 65347	1 09702	2 64293
c	2 90454	1 26935	3 22283
c	4 05254	0.8371/	2 56/9/
c	3 939234	0.25196	1 30123
c	2 60972	0.23130	0.70611
c	2.09072 1 7024E	0.09088	2 20266
C	-1.78345	0.77918	-2.29200
C	-3.08539	0.83979	-2.78923
C	-4.13124	0.22696	-2.10572
C	-3.86658	-0.44569	-0.91213
C	-2.5/288	-0.49677	-0.40881
C	1.28082	-0.16530	-2.72599
С	2.15712	0.37969	-3.66300
С	2.66138	1.66678	-3.48714
С	2.27297	2.41484	-2.37544
С	1.40772	1.86682	-1.43460
Si	0.15950	-2.10563	-0.33840
С	-0.92175	-2.76639	-1.71151
С	-0.37300	-2.73990	1.32845
С	1.93219	-2.63517	-0.57376
Н	-1.61965	2.24824	0.38723
Н	-3.42396	2.98463	1.89992
Н	-3.84168	1.76992	4.02245
Н	-2.36464	-0.10707	4.68160
н	-0.47648	-0.76351	3.23629
н	0.78186	1.47444	3.15476
н	2.97978	1.75090	4.18767
Н	5.02511	0.96969	3.01842
н	4.82608	-0.06758	0.77132
н	2.65098	-0.32546	-0.28451
н	-0.98729	1.26463	-2.83889
н	-3.27499	1.36633	-3.71440
н	-5.13849	0.26996	-2.49555
н	-4 66776	-0 92912	-0 36984
н	-2,40270	-1.00961	0.52716
н	0 87778	-1 15780	-2 90065
н	2 12120	-0 10760	-4 52/20
н	2.43420	2 02021	- <u>4</u> 21722
н	2 62575	2.00021	-7 7/565
н	2.03373	J.42JZI 2 /5276	-0 57510
 Ц	-1 00450	2.+JJ20 _2 11120	-0.57540
	-1.00459	-2.11120	-2.3/401

Н	-0.48448	-3.71564	-2.03147	
Н	-1.92848	-2.95460	-1.34362	
Н	0.34209	-2.46930	2.10358	
Н	-0.34934	-3.83007	1.23172	
Н	-1.37357	-2.45945	1.64370	
Н	1.84639	-3.71386	-0.74423	
Н	2.43680	-2.20510	-1.43460	
Н	2.53862	-2.49343	0.31668	
MP2 energy GEOOPT= -1408.9550547501				

HC≡CH

С	0.00000	0.00000	-0.60567
С	0.00000	0.00000	0.60567
Н	0.00000	0.00000	-1.66747
Н	0.00000	0.00000	1.66747
MP2 e	energy =	-77.16059093	390

[Me₃Si(HC≡CH)]⁺

С	-0.51123	-2.09444	0.00000	
С	0.70362	-1.97060	0.00000	
Si	0.00838	0.23259	0.00000	
С	-1.81917	0.51004	0.00000	
С	0.86999	0.63514	1.57878	
С	0.86999	0.63514	-1.57878	
Н	-1.56622	-2.26391	0.00000	
Н	1.77316	-1.98106	0.00000	
Н	-1.96193	1.59419	0.00000	
Н	-2.30459	0.11775	-0.89125	
Н	-2.30459	0.11775	0.89125	
Н	0.79731	1.71482	1.73135	
Н	1.92639	0.37542	1.55885	
Н	0.39652	0.14721	2.42893	
Н	1.92639	0.37542	-1.55885	
Н	0.39652	0.14721	-2.42893	
Н	0.79731	1.71482	-1.73135	
MP2	MP2 energy = -485.4389988239			

MeC≡CMe

С	-0.00000	0.00000	-2.06787
С	-0.00000	0.00000	-0.60807
С	-0.00000	0.00000	0.60807
С	-0.00000	0.00000	2.06787
Н	1.01721	0.00000	-2.45557
н	-0.50860	-0.88093	-2.45557
н	-0.50860	0.88093	-2.45557
Н	1.01721	0.00000	2.45557
Н	-0.50860	0.88093	2.45557
Н	-0.50860	-0.88093	2.45557
MP2	energy = -2	155.6223194	210

[Me₃Si(MeC≡CMe)]⁺

С	1.63970	-0.27816	-2.05691
С	1.38583	-0.28236	-0.61622

С	1.38583	-0.28236	0.61622
С	1.63970	-0.27816	2.05691
Si	-0.77153	0.14048	0.00000
С	-1.42326	-0.68050	-1.52735
С	-1.42326	-0.68050	1.52735
С	-0.78541	1.98690	0.00000
Н	1.25818	0.62836	-2.52170
Н	1.19951	-1.14763	-2.53698
Н	2.72028	-0.30687	-2.19296
Н	2.72028	-0.30687	2.19296
Н	1.25818	0.62836	2.52170
Н	1.19951	-1.14763	2.53698
Н	-1.11662	-0.19645	-2.45024
Н	-1.16602	-1.73778	-1.56579
Н	-2.51229	-0.61170	-1.46444
Н	-2.51229	-0.61170	1.46444
Н	-1.11662	-0.19645	2.45024
Н	-1.16602	-1.73778	1.56579
Н	-0.29777	2.39412	0.88438
Н	-0.29777	2.39412	-0.88438
Н	-1.82029	2.33455	0.00000
MP2 energy = -563.9234579469			

PhC≡CPh

С	-2.74524	-1.21098	0.00000
С	-4.13544	-1.20605	0.00000
С	-4.83531	0.00000	0.00000
С	-4.13544	1.20605	0.00000
С	-2.74524	1.21098	0.00000
С	-2.03415	0.00000	0.00000
С	4.13544	-1.20605	0.00000
С	2.74524	-1.21098	0.00000
С	2.03415	0.00000	0.00000
С	2.74524	1.21098	0.00000
С	4.13544	1.20605	0.00000
С	4.83531	0.00000	0.00000
С	0.61269	0.00000	0.00000
С	-0.61269	0.00000	0.00000
Н	-2.19720	-2.14326	0.00000
Н	-4.67343	-2.14420	0.00000
Н	-5.91654	0.00000	0.00000
Н	-4.67343	2.14420	0.00000
Н	-2.19720	2.14326	0.00000
Н	4.67343	-2.14420	0.00000
Н	2.19720	-2.14326	0.00000
Н	2.19720	2.14326	0.00000
Н	4.67343	2.14420	0.00000
Н	5.91654	0.00000	0.00000
MP2 energy = -538.2917773454			

[Me₃Si(PhC≡CPh)]⁺

С	-1.29010	-2.61675	1.30776
С	-2.16270	-3.69690	1.27738
С	-2.62433	-4.19348	0.05745
С	-2.20170	-3.62098	-1.14275
С	-1.32499	-2.54298	-1.13230

С	-0.87017	-2.04120	0.09803	
С	3.85615	1.93253	1.17094	
С	2.72080	1.13520	1.23691	
С	2.09619	0.73288	0.04568	
С	2.60442	1.13041	-1.20174	
С	3.73829	1.93231	-1.24782	
С	4.35987	2.33735	-0.06611	
С	0.93797	-0.09169	0.09973	
С	0.03080	-0.94020	0.11565	
Si	-1.02252	1.09281	-0.03418	
С	-1.20642	1.25512	-1.86677	
С	-2.52103	0.46881	0.86051	
С	-0.28340	2.56164	0.82116	
Н	-0.92170	-2.22641	2.24672	
Н	-2.48337	-4.15203	2.20368	
Н	-3.30550	-5.03260	0.04199	
Н	-2.55126	-4.01775	-2.08531	
Н	-0.97460	-2.10438	-2.05679	
Н	4.34875	2.23876	2.08286	
Н	2.32414	0.81108	2.18945	
Н	2.12634	0.79346	-2.11153	
Н	4.14007	2.23710	-2.20370	
Н	5.24226	2.96016	-0.10928	
Н	-1.94037	2.03622	-2.07651	
Н	-0.26921	1.54378	-2.33965	
Н	-1.56600	0.33136	-2.31694	
Н	-3.22572	1.30373	0.90228	
Н	-2.29190	0.17731	1.88423	
Н	-3.00116	-0.36349	0.35187	
Н	0.01114	2.33161	1.84381	
Н	0.56947	2.97586	0.28917	
Н	-1.06854	3.32134	0.86413	
MP2	MP2 energy = -946.6052153959			

Reaction path of [Me₄C₄-SiMe₃]⁺ (BP86-D3(BJ)/def-TZVP)

Starting point S

0.27368	-1.55245	0.03499	
0.30878	-1.05266	1.82195	
1.45455	-0.70885	-1.11880	
-0.51967	-3.16333	-0.44880	
-0.54985	-1.44176	2.38374	
1.22705	-1.45892	2.28015	
0.35279	0.04228	1.91428	
2.48456	-0.85204	-0.75257	
1.38468	-1.08805	-2.14555	
1.25869	0.37686	-1.10717	
-0.74901	-3.20588	-1.52162	
0.20458	-3.96960	-0.23213	
-1.42598	-3.36966	0.13567	
0.65657	3.79292	0.10289	
-0.17589	2.61390	-0.04754	
-0.90373	1.64796	-0.17718	
-1.79858	0.53550	-0.33282	
0.02705	4.67688	0.28635	
1.34753	3.69252	0.95249	
1.24546	3.98413	-0.80591	
-2.45873	0.62508	-1.20925	
-1.24636	-0.44471	-0.57541	
-2.39816	0.31988	0.56222	
SCF energy = -565.1374887481			
FREEH energy = 535.22			
FREEH entropy = 0.51323			
	0.27368 0.30878 1.45455 -0.51967 -0.54985 1.22705 0.35279 2.48456 1.38468 1.25869 -0.74901 0.20458 -1.42598 0.65657 -0.17589 -0.90373 -1.79858 0.02705 1.34753 1.24546 -2.45873 -1.24636 -2.39816 energy = -56 H energy = H entropy =	0.27368 -1.55245 0.30878 -1.05266 1.45455 -0.70885 -0.51967 -3.16333 -0.54985 -1.44176 1.22705 -1.45892 0.35279 0.04228 2.48456 -0.85204 1.38468 -1.08805 1.25869 0.37686 -0.74901 -3.20588 0.20458 -3.96960 -1.42598 -3.36966 0.65657 3.79292 -0.17589 2.61390 -0.90373 1.64796 -1.79858 0.53550 0.02705 4.67688 1.34753 3.69252 1.24546 3.98413 -2.45873 0.62508 -1.24636 -0.44471 -2.39816 0.31988 energy = -565.137488748 H energy = 535.22 H entropy = 0.51323	

Transition state 1 (TS1)

Si	0.32759	-1.25515	0.26121
С	0.54102	-0.50898	1.94294
С	1.36231	-0.72860	-1.18283
С	-0.43937	-2.94848	0.17327
Н	-0.34274	-0.66245	2.57627
Н	1.38412	-1.03830	2.42430
Н	0.78242	0.55837	1.88942
н	2.03643	-1.56191	-1.44499
Н	0.73468	-0.52843	-2.06362
н	1.94900	0.16878	-0.95862
н	-0.74796	-3.22132	-0.84451
Н	0.34227	-3.66667	0.48421
н	-1.28408	-3.06741	0.86435
С	0.69925	3.39266	-0.60895
С	-0.22761	2.28401	-0.45706
С	-1.01583	1.36849	-0.33272
С	-2.01510	0.32148	-0.20084
н	0.14642	4.33495	-0.73814
н	1.34511	3.50395	0.27447
н	1.34110	3.25971	-1.49230
н	-2.83058	0.43344	-0.93401
н	-1.63368	-0.71259	-0.43753
н	-2.45477	0.27444	0.80570

SCF energy = -565.1348922380 FREEH energy = 534.03 FREEH entropy = 0.49880

Intermediate 1 (I1)

С	0.20693	-2.75829	-0.38542	
С	0.80804	-1.46432	-0.15538	
С	1.37617	-0.38042	0.01639	
С	2.48233	0.57532	0.19409	
Si	-0.60652	0.54898	0.04253	
С	-2.08061	-0.59308	0.24213	
С	-0.32757	1.59525	1.57355	
С	-0.55954	1.43409	-1.60506	
Н	-0.32206	-2.80419	-1.34735	
Н	-0.46733	-3.05652	0.42829	
Н	1.03215	-3.49052	-0.42273	
Н	3.41814	0.07605	-0.09205	
Н	2.35769	1.46639	-0.43433	
Н	2.55592	0.89254	1.24258	
Н	-2.25057	-1.25149	-0.61818	
Н	-2.03392	-1.19031	1.16190	
Н	-2.96120	0.06457	0.32652	
Н	-1.26099	2.15045	1.76020	
Н	0.47865	2.32838	1.45080	
Н	-0.12534	0.97808	2.45920	
Н	0.32341	2.07543	-1.72082	
Н	-0.59357	0.72465	-2.44280	
Н	-1.45019	2.07895	-1.67407	
SCF energy = -565.1751674480				
FREEH energy = 540.62				
FREE	EH entropy =	0.47542		

Intermediate 2 (I2)

С	-3.36659	0.21204	-0.82879
С	-2.05448	-0.04787	-1.42047
С	-1.11500	-0.26185	-2.23768
С	-0.36599	-0.45755	-3.48117
С	-0.64426	-0.50989	-0.67810
С	0.09483	0.50293	-0.08273
С	-0.59230	-1.96344	-0.26021
Si	1.27783	0.17422	1.43610
С	0.00252	1.92108	-0.51818
С	2.34272	1.71322	1.67114
С	0.10843	-0.05959	2.90850
С	2.38295	-1.32440	1.11596
Н	-4.10175	0.36887	-1.63092
Н	-3.69147	-0.64283	-0.21784
Н	-3.34069	1.10327	-0.18590
Н	-1.03786	-0.30218	-4.33691
Н	0.47293	0.24933	-3.55111
Н	0.03891	-1.47826	-3.53410
Н	-1.47637	-2.50139	-0.62437
Н	0.29353	-2.46700	-0.67211
Н	-0.56072	-2.07095	0.83096
Н	-0.70077	2.11055	-1.33646
н	-0.26720	2.55392	0.34486

Н	1.00420	2.28056	-0.80921	
Н	2.99022	1.56134	2.54754	
Н	3.00171	1.89741	0.81066	
Н	1.75249	2.62054	1.85772	
н	0.71463	-0.21116	3.81423	
н	-0.55393	-0.92848	2.80143	
н	-0 51280	0.83248	3 06886	
 Ц	2 86004	1 27624	0 1 2607	
	2.80004	-1.27024	1.96640	
	3.18/04	-1.31070	1.80049	
H	1.85661	-2.28196	1.20482	
SCF 6	energy = -72	1.260122115	6	
FREE	H energy =	778.72		
FREE	H entropy =	0.58851		
Tran	sition state 3	3-4 (TS3-4)		
С	-2.39165	0.86163	-2.92294	
С	-1.40708	0.88213	-1.82362	
С	-0.66008	1.60341	-1.04789	
С	-0.09318	2.78176	-0.39856	
С	-1.05357	-0.02212	-0.66559	
Ċ	0.30566	-0.34909	-0.49670	
c	-2 15359	-0 40089	0 29077	
C Ci	1 02216	-0.01226	1 2225/	
с С	1.02210	0.24270	1.23334	
C C	1.27455	-0.34379	-1.03303	
C	2.88904	-1.09827	1.04746	
C	0.64320	0.44720	2.49498	
С	0.22882	-2.57375	1.66406	
Н	-2.07084	0.15278	-3.70095	
Н	-3.36534	0.50958	-2.55020	
Н	-2.51418	1.85601	-3.36692	
Н	1.00559	2.76499	-0.39012	
Н	-0.42288	3.67538	-0.95125	
Н	-0.45211	2.86523	0.63734	
Н	-3.03265	0.24239	0.16017	
н	-2.45937	-1.43921	0.09677	
н	-1.83655	-0.33927	1.33874	
н	0.83191	-0.08838	-2.60310	
н	2 13549	0 31598	-1 44379	
н	1 71019	-1 35710	-1 69098	
н	3 31322	-1 38/20	2 02152	
 Ц	2 16705	1 00702	0 22020	
н Ц	2 2 7 9 7 7	0 16211	0.33033	
	3.37622	-0.10211	0.74562	
н	1.01150	0.12096	3.47907	
н	-0.42481	0.67498	2.60629	
н	1.1/381	1.3/596	2.24293	
Н	0.35103	-3.30172	0.84978	
Н	0.73647	-2.98239	2.55072	
Н	-0.83983	-2.49198	1.89791	
SCF e	SCF energy = -721.2571991876			
FREEH energy = 777.01				
FREEH entropy = 0.55710				
[Me ₄ C ₄ -SiMe ₃] ⁺ (P-4)				

С	-0.10953	-2.83322	-1.66117
С	-0.06787	-1.71640	-0.69910
С	0.86876	-1.13765	0.16816

c	2 12155	1 66122	0 74421
c	2.12155	-1.00152	0.74421
c	-0.90100	-1.05946	0.15709
C	-0.00191	0.00778	0.08002
C	-2.26068	-1.47401	0./19/9
Si	0.07074	1.63880	-0.40146
C	0.00135	0.27318	2.18391
С	1.63789	2.55791	0.10493
С	0.12634	1.11496	-2.21347
С	-1.49202	2.62038	-0.01121
Н	0.75491	-3.49993	-1.54025
Н	-1.03416	-3.41705	-1.55926
Н	-0.08006	-2.44096	-2.68987
Н	2.07439	-1.66885	1.84310
Н	2.38095	-2.65863	0.37257
Н	2.92965	-0.95537	0.48268
Н	-2.60371	-2.44191	0.33834
Н	-2.22240	-1.49458	1.81893
Н	-3.00126	-0.69737	0.45946
Н	-0.04924	-0.64923	2.78306
Н	0.91055	0.81463	2.47762
Н	-0.85217	0.90382	2.46673
Н	1.74766	3.46779	-0.50316
Н	1.61225	2.87066	1.15787
Н	2.53968	1.94881	-0.05284
Н	0.16345	2.01283	-2.84787
н	-0.76504	0.54463	-2.51203
н	1.01703	0.51471	-2.44873
н	-1.55119	2,90145	1.04935
Н	-1.50186	3.55182	-0.59605
н	-2 40242	2 06179	-0 27258
SCE	energy = -72	1 299474819	91
FRF	FH energy =	781.05	-
FRE	EH entropy =	0 57707	
	Encidopy	0.37707	
Trar	nsition state 3	3-5 (TS3-5)	
С	-3.38151	0.67803	-0.06657
С	-1.96588	1.02403	0.38829
С	-1.68535	2.17658	0.87799
С	-1.56850	3.40834	1.58780
С	-0.87979	-0.06234	0.27992
С	0.37913	0.22459	-0.11118
С	-1.41490	-1.41987	0.65098
Si	1.63145	-1.19784	-0.60171
С	0.91212	1.60705	-0.21424
С	3.07175	-0.37548	-1.50329
С	2.23741	-1.97518	1.01538
С	0.79986	-2.44068	-1.75576
н	-4.04578	1.54733	-0.02652
н	-3.33095	0.31232	-1.10126
н	-3.78862	-0.11236	0.57668
н	-2.56839	3.66288	1.99541
н	-0.93930	3.25876	2.48537

0.99201

1.62201

-0.09211

0.74820

-0.10818

4.24459

-1.38510

-1.80366

-2.13855

2.34062

н

Н

Н

Н

Н

-1.17816

-1.93178

-2.12846

-0.59600

0.07986

Н	1.61265	1.81981	0.60942	
Н	1.44098	1.81084	-1.15473	
Н	3.80847	-1.14725	-1.77131	
Н	2.75370	0.10815	-2.43783	
Н	3.58893	0.36934	-0.88271	
Н	2.99144	-2.74137	0.77860	
Н	1.44109	-2.46082	1.59459	
Н	2.71528	-1.22178	1.65709	
Н	0.34667	-1.93197	-2.61848	
Н	1.56540	-3.12937	-2.14364	
Н	0.02719	-3.04966	-1.27023	
SCF energy = -721.2443028259				
FREEH	FREEH energy = 773.38			
FREEH	entropy =	0.56053		

5-membered ring (P-5)

С	-1.61533	2.65479	-1.51744
С	-0.64524	1.74943	-0.87576
С	0.69265	2.18992	-0.39624
С	0.63644	3.39459	0.57109
С	-0.86527	0.38183	-0.61558
С	0.27401	-0.15716	0.00415
С	-2.12610	-0.34354	-0.97556
Si	0.55812	-1.98327	0.55970
С	1.29489	0.90769	0.19663
С	2.32156	-2.10303	1.21138
С	-0.70764	-2.31654	1.92782
С	0.30651	-3.07933	-0.96040
Н	-1.14230	3.54448	-1.94994
Н	-2.22275	2.13898	-2.27399
Н	-2.32717	3.00864	-0.74602
Н	0.17325	4.26825	0.09592
Н	0.06220	3.13970	1.47235
Н	1.65343	3.67327	0.87304
Н	-3.01292	0.20925	-0.63535
Н	-2.21227	-0.46182	-2.06649
Н	-2.16063	-1.34193	-0.52920
Н	1.27167	2.50870	-1.28551
Н	1.53594	1.01139	1.27031
Н	2.25473	0.61832	-0.26696
Н	2.51473	-3.12899	1.55727
Н	3.06601	-1.87714	0.43473
Н	2.49603	-1.43424	2.06607
Н	-0.55456	-3.34019	2.30130
Н	-1.74513	-2.23789	1.57835
Н	-0.57258	-1.62762	2.77279
Н	0.99747	-2.80514	-1.76933
Н	0.51867	-4.12150	-0.67848
Н	-0.71842	-3.03991	-1.35062
SCF	energy = -72	1.336331560)1
FREE	H energy =	784.81	
FREE	EH entropy =	0.56275	