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Table S1 Properties of the NCs investigated in this work.!

!

Sample 
SBET 

(m2/g) 

N/(C + N) 

(%) 

N
P
 

(%) 

N
Py

 

(%) 

N
G
 

(%) 

N
ox

 

(%) 

N
ads

 

(%) 

[NP]:[NG] 

NCNTs(A-A)-900 - 3.14 0.78 0.07 1.61 0.38 0.30 0.48 

NCNTs(X-N)-900 - 1.75 0.48 0.10 0.73 0.18 0.27 0.66 

NCNTs(A-N)-900 - 2.46 0.86 0.03 1.03 0.24 0.31 0.83 

NCNTs(A-N)-800 - 2.57 0.91 0.08 0.97 0.15 0.47 0.94 

NCNTs(A-N)-1100 - 2.25 0.62 0.07 0.98 0.34 0.24 0.64 

NG-800 705 6.46 1.73 1.32 2.55 0.43 0.43 0.68 

NG-900 - 4.07 1.21 0.80 1.53 0.33 0.20 0.79 

N@CNTs(A-1.5) 78 0.41 0.12 0.06 0.09 0.07 0.08 1.33 

N@CNTs(A-2.5) 68 4.75 1.49 0.21 2.15 0.52 0.38 0.69 

N@CNTs(A-3.5) 64 6.56 1.99 0.27 3.21 0.78 0.31 0.62 

N@CNTs(A-4.5) 43 7.41 2.09 0.23 3.81 0.83 0.45 0.55 

N@CNTs(N-2.5) 78 2.13 0.63 0.41 0.68 0.20 0.20 0.93 

N@CNTs(A-2.5)-800 69 4.51 1.24 0.27 2.07 0.59 0.33 0.60 

N@CNTs(A-2.5)-900 72 2.34 0.49 0.25 1.15 0.23 0.22 0.43 

N@CNTs(A-2.5)-1100 75 0.78 0.13 0.11 0.32 0.07 0.15 0.42 

N@CNTs(N-2.5)-800 80 1.04 0.26 0.27 0.29 0.12 0.09 0.90 

N@CNTs(N-2.5)-1100 81 0.47 0.12 0.10 0.14 0.06 0.04 0.84 

N@RGO(A-2.5) 527 5.53 1.30 0.36 3.00 0.68 0.20 0.43 

N@RGO(N-2.5) 515 5.24 1.92 0.74 1.77 0.50 0.33 1.08 
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Figure S1. N1s XPS spectra of (a) NCNTs, (b) N@CNTs varying deposition time, (c) 

samples of N@CNTs(A-2.5) and N@CNTs(N-2.5) annealed at high temperatures, and 

(d) graphene-based samples, respectively.  
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Figure S2. UV-Vis spectra of the TCNQ solutions in acetonitrile after reacted with 

N-doped carbon materials. In this work, we used the spectrum of TCNQ acetonitrile 

solution as reference. Since the TCNQ reference contains a certain amount of its 

radical anion (TCNQ·-), the negative peak at ca. 450 nm signifies the less amount of 

TCNQ·- anions after reaction with carbon materials, probably due to the 

transformation of TCNQ·- anions to TCNQ2- dianions through a one-electron transfer 

reaction.  
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Figure S3. The optimized structures of (a) PG-TCNQ, (b) NG-TCNQ, (c) PG- 

TCNQ·- and (d) NG-TCNQ·-. The TCNQ molecule is adsorbed on the pristine 

graphene (PG-TCNQ) and nitrogen-doped graphene (NG-TCNQ) containing equal 

number of NP and NG atoms, respectively. For PG-TCNQ in the ground state, the 

Fermi level is -4.470 eV and the LUMO of TCNQ is -3.253 eV. For NG-TCNQ in the 

ground state, the Fermi level is -3.918 eV and the LUMO of TCNQ is -3.119 eV. After 

the identification of wavefunctions, it was found that the HOMO of NG-TCNQ is 

primarily contributed by the defect carbon atoms near the NP atom, highlighted by the 

yellow zone in (b).  

The adsorption energy of TCNQ on graphene (a) and N-doped graphene (b) are 

-0.881 and -1.795 eV, respectively, indicating the stronger adsorption on N-doped 

graphene. Meanwhile, the adsorption energy of TCNQ·- on graphene (c) and N-doped 

graphene (d) are +0.645 and -0.139 eV, respectively. This result indicates that the 

anion cannot be stabilized on pristine graphene, but can be weakly adsorbed on 

N-doped graphene. 
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Figure S4. Dependences of the intensity of electron transfer on the content of (a) 

N/(N+C), (b)!NP/(N+C), (c) NPy/(N+C), and (d) NG/(N+C) of N-doped carbons.

 

Figure S5. The partial density of states (PDOS) of NG and NP atoms for N-doped 

graphene (a) containing pure NG, (b) with [NP]:[NG]=1:2, (c) with [NP]:[NG] =1:1, 

respectively. 
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Figure S6. LSV polarization curves for ORR on N@CNTs with different rotation speeds. The insets show the corresponding K-L plots at -0.7 V, 

-0.6 V, -0.5 V. 
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Figure S7. Dependences of kinetic current densities (jk) of ORR at (a) -0.6 V, and (b) 

-0.5 V vs Ag/AgCl on the intensity of electron transfer and [NP]:[NG] ratio (inset) of 

N@CNTs samples with a coaxial cable structure as shown at lower right panel. jk was 

obtained according to the Koutecky-Levich (K-L) equation, j-1 = 

(0.62nFCD2/3!-1/6ω1/2)-1 + jk-1, and normalized by the mass of NCs. Reaction 

conditions:! the linear scan voltammetric tests for ORR were performed in 

O2-saturated 0.1 M KOH from -1 V to 0.2 V at the scan rate of 5 mV s-1 under 

different rotation rates. 
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Figure S8. The Tafel curves of N@CNTs samples. 



9!
!

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
50

60

70

80

90

100

110

120

Ta
fe
l1s
lo
pe
1(m
V1
de
c:
1 )

IET1(mg
:1)

 
Figure S9. Dependence of Tafel slope on the intensity of electron transfer. 
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Figure S10. Dependence of overpotential at j=1 on the intensity of electron transfer. 
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Figure S11. Dependence of kinetic current densities (jk) of ORR at - 0.7 V on the 

content of (a) N/(N+C), (b) NP/(N+C), (c) NPy/(N+C), and (d) NG/(N+C) of N-doped 

carbons. 
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