A Tandem Dearomatization/Rearomatization Strategy: Enantioselective N-Heterocyclic Carbene-Catalyzed α-Arylation

Zijun Wu[†] and Jian Wang^{*,†}

†School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 (China) <u>*Wangjian012@tsinghua.edu.cn</u>

Supporting Information

Table of Contents

1: General information	S2
2: Screening of catalysts and condition optimization	S3
3: General procedure for the synthesis of products 3 and 4	S4
4: Characterization data	S5
5: Cleavage of the N-N bond in 3a	S25
6: Gram-scale synthesis of 3a	S25
7: Reference	S25
8: ¹ H and ¹³ C NMR spectra	S26
9: HPLC spectra	S60
10: X-ray single crystal data for compound 3r	

1. General information

Chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. ¹H and ¹³C NMR spectra were recorded on a Bruker ACF400 (400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode, and a Finnigan/MAT 95XL-T mass spectrometer in EI mode. All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. For thin layer chromatography (TLC), Visualization on TLC was achieved by use of UV light (254 nm). Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). The enantiomeric excesses of products were determined by chiral phase HPLC analysis. Optical rotations were recorded on Jasco DIP-1000 polarimeter. α -Chloro aldehyde substrates¹ and azonaphthalenes² were prepared according to literature procedures.

2. Screening of catalysts and condition optimization^a

entry	cat.	solvent	base	yield (%) ^b	ee (%) ^c
1	Α	THF	DIPEA	8	
2	В	THF	DIPEA	58	88
3	C1	THF	DIPEA	76	99
4	C2	THF	DIPEA	73	90
5	C3	THF	DIPEA	71	99
6	C1	THF	Et₃N	66	96
7	C1	THF	DBU	trace	
8	C1	THF	NaOAc	43	80
9	C1	THF	Cs_2CO_3	22	24
10	C1	THF	DMAP	trace	
11	C1	THF	K ₃ PO ₄	74	99
12	C1	THF	Li ₂ CO ₃	15	94
13	C1	1,4-Dioxane	DIPEA	54	98
14	C1	DCM	DIPEA	77	97
15	C1	EtOAc	DIPEA	83	98
16	C1	toluene	DIPEA	65	98
17	C1	^t BuOMe	DIPEA	90	99
18	C1	CH₃CN	DIPEA	71	82
19 ^d	C1	^t BuOMe	DIPEA	89	99
20 ^e	C1	^t BuOMe	DIPFA	61	99

^{*a*}Reaction conditions: α -chloroaldehyde **1a** (0.20 mmol, 2.0 equiv), azonaphthalene **2a** (0.10 mmol, 1.0 equiv), cat. (0.02 mmol), base (0.20 mmol), solvent (1.0 mL), 10 h, room temperature. ^{*b*} Yields of isolated products after column chromatography. ^{*c*} The *ee* values were determined by HPLC using a chiral stationary phase. ^{*d*} **C1** (10 mol %), 16 h. ^{*e*} **C1** (5 mol %), 24 h.

3. General procedure for the synthesis of products 3 and 4

To a flame-dried Schlenk reaction tube equipped with a magnetic stir bar, was added the azolium precatalyst **C1** (4.2 mg, 0.01 mmol), azonaphthalene **1a** (21.4 mg, 0.10 mmol). The Schlenk tube was closed with a septum, evacuated and refilled with Ar. α -Chloro aldehyde **2a** (33.6 mg, 0.20 mmol), DIPEA (^{*i*}Pr₂NEt, 25.8 mg, 33 µL, 0.20 mmol) and freshly distilled ^{*t*}BuOMe (1.0 mL) was added. The mixture was then stirred at room temperature until TLC indicated that **1** disappeared. Subsequently, the reaction mixture was directly purified through preparative thin layer chromatography on silica gel to afford pure products **3a**.

4: Characterization data.

Methyl (R)-1-benzyl-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (3a)

According to the general procedure, **3a** was obtained in 89% yield (30.8 mg) with 99% *ee* as a white solid. m.p. 168-169 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.80 – 7.75 (m, 2H), 7.49 – 7.46 (m, 1H), 7.37 – 7.33 (m, 2H), 7.19 (d, *J* = 8.7 Hz, 1H), 7.14 – 7.08 (m, 3H), 6.94 (dd, *J* = 7.3, 2.0 Hz, 2H), 4.66 (t, *J* = 8.0 Hz, 1H), 4.04 (s, 3H), 3.25 (ddd, *J* = 21.2, 13.2, 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 152.5, 138.8, 137.3, 130.9, 130.4, 129.3, 128.7, 128.6, 128.3, 127.0, 126.7, 124.3, 121.4, 116.8, 115.4, 55.2, 47.9, 35.6. HRMS (ESI): calcd for C₂₁H₁₉N₂O₃⁺ (M+H⁺): 347.1390, found 347.1385. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (minor) = 16.1 min, *t*_R (major) = 30.6 min, *ee* = 99%. [α]_D²⁵ = - 69.0 (*c* = 1.2 in CHCl₃)

Methyl

(*R*)-1-(2-fluorobenzyl)-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (3b)

According to the general procedure, **3b** was obtained in 81% yield (29.5 mg) with 98% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.84 – 7.71 (m, 3H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.43 – 7.34 (m, 2H), 7.21 (d, *J* = 8.7 Hz, 1H), 7.17 – 7.11 (m, 1H), 6.97 – 6.88 (m, 3H), 4.73 (t, *J* = 7.9 Hz, 1H), 4.04 (s, 3H), 3.34 (dd, *J* = 13.4, 8.3 Hz, 1H),

3.17 (dd, J = 13.6, 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.4, 162.7, 160.3, 152.6, 138.8, 131.5$ (d, J_{CF} 3.0), 130.8, 130.4, 128.8, 128.7 (d, J_{CF} 3.0), 127.2, 124.5 (d, J_{CF} 12.0), 124.3, 123.9 (d, J_{CF} 3.0), 121.2, 116.5, 115.3, 115.1, 55.3, 46.5, 28.6. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -118.43$. HRMS (ESI): calcd for C₂₁H₁₈FN₂O₃⁺ (M+H⁺): 365.1296, found 365.1288. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{R} (minor) = 14.7 min, t_{R} (major) = 27.5 min, ee = 98%. [α]_D²⁵ = -91.2 (c = 1.0 in CHCl₃).

Methyl

(*R*)-2-oxo-1-(3-(trifluoromethyl)benzyl)-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carb oxylate (3c)

According to the general procedure, **3c** was obtained in 88% yield (36.4 mg) with 94% *ee* as a light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.78 – 7.75 (m, 2H), 7.69 (s, 1H), 7.35 – 7.32 (m, 3H), 7.30 – 7.28 (m, 1H), 7.21 – 7.18 (m, 2H), 7.17 – 7.06 (m, 2H), 4.65 (dd, *J* = 8.5, 6.6 Hz, 1H), 4.06 (s, 3H), 3.35 – 3.24 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.6, 152.4, 138.8, 138.2, 132.7, 130.9, 130.3, 129.0, 128.7, 128.6, 127.1, 126.2, 126.2, 124.3, 123.5, 123.5, 121.0, 115.4, 115.0, 55.3, 47.6, 34.9. ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.84. HRMS (ESI): calcd for C₂₂H₁₈F₃N₂O₃⁺ (M+H⁺): 415.1270, found 415.1261. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (minor) = 10.4 min, *t*_R (major) = 14.8 min, *ee* = 94%. [α]_D²⁵ = -64.9 (*c* = 3.0 in CHCl₃).

Methyl

(*R*)-1-(4-methoxybenzyl)-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (3d)

According to the general procedure, **3d** was obtained in 80% yield (30.1 mg) with 99% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.81 – 7.74 (m, 2H), 7.53 – 7.50 (m, 1H), 7.41 – 7.35 (m, 3H), 7.19 (d, *J* = 8.6 Hz, 1H), 6.85 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 8.5 Hz, 2H), 4.62 (t, *J* = 7.3 Hz, 1H), 4.04 (s, 3H), 3.73 (s, 3H), 3.19 (ddd, *J* = 21.2, 13.4, 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.6, 158.5, 152.6, 138.7, 130.9, 130.4, 130.3, 129.4, 128.7, 127.1, 124.3, 121.5, 117.0, 115.6, 113.7, 55.2, 55.2, 48.1, 34.9. HRMS (ESI): calcd for C₂₂H₂₁N₂O₄⁺ (M+H⁺): 377.1501, found 377.1506. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (minor) = 22.8 min, *t*_R (major) = 47.3 min, *ee* = 99%. [α]_D²⁵ = -23.8 (*c* = 1.1 in CHCl₃).

Methyl

(*R*)-1-(4-chlorobenzyl)-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (3e)

According to the general procedure, **3e** was obtained in 88% yield (33.5 mg) with 95% *ee* as a light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.81 – 7.75 (m, 2H), 7.61 (s, 1H), 7.48 – 7.45 (m, 1H), 7.39 – 7.35 (m, 2H), 7.19 (d, J = 8.7 Hz, 1H), 7.08 (d, J = 8.3 Hz, 2H), 6.87 (d, J = 8.3 Hz, 2H), 4.62 (t, J = 7.4 Hz, 1H), 4.05 (s, 3H), 3.20 (ddd, J = 21.4, 13.3, 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.8, 152.5, 138.8,

135.8, 132.7, 130.8, 130.6, 130.4, 128.9, 128.7, 128.4, 127.2, 124.4, 121.2, 116.1, 115.2, 55.3, 47.8, 34.8. HRMS (ESI): calcd for $C_{21}H_{18}ClN_2O_3^+$ (M+H⁺): 381.1006, found 381.1012. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (minor) = 18.8 min, t_R (major) = 39.6 min, ee = 95%. $[\alpha]_D^{25} = -88.4$ (c = 0.9 in CHCl₃).

Methyl

(*R*)-1-(4-bromobenzyl)-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (3f)

According to the general procedure, **3f** was obtained in 85% yield (36.1 mg) with 95% *ee* as a yellow solid. m.p. 155-156 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.80 – 7.75 (m, 2H), 7.62 (s, 1H), 7.47 (dd, J = 5.9, 3.9 Hz, 1H), 7.39 – 7.35 (m, 2H), 7.25 – 7.18 (m, 3H), 6.83 – 6.81 (m, 2H), 4.62 (t, J = 8.0 Hz, 1H), 4.05 (s, 3H), 3.23 (dd, J = 13.3, 6.8 Hz, 1H), 3.13 (dd, J = 13.3, 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.8$, 152.4, 138.8, 136.4, 131.3, 131.0, 130.8, 130.3, 128.9, 128.8, 127.3, 124.4, 121.2, 120.8, 116.1, 115.2, 55.3, 47.7, 34.8. HRMS (ESI): calcd for C₂₁H₁₈BrN₂O₃⁺ (M+H⁺): 425.0501, 427.0480, found 425.0505, 427.0484. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (minor) = 19.9 min, t_R (major) = 35.6 min, ee = 95%. $[\alpha]_D^{25} = -67.5$ (c = 0.8 in CHCl₃).

Methyl

(*R*)-1-(naphthalen-1-ylmethyl)-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carbox ylate (3g)

According to the general procedure, **3g** was obtained in 88% yield (34.8 mg) with 99% *ee* as a light brown oil. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.0 Hz, 1H), 7.81 – 7.79 (m, 1H), 7.70 (t, J = 8.4 Hz, 2H), 7.62 (d, J = 8.2 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.22 (ddd, J = 12.3, 7.4, 4.0 Hz, 2H), 7.10 – 7.00 (m, 3H), 6.89 – 6.87 (m, 1H), 4.82 (dd, J = 9.0, 5.9 Hz, 1H), 4.04 (s, 3H), 3.85 (dd, J = 13.4, 5.9 Hz, 1H), 3.58 (dd, J = 13.5, 9.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.1$, 152.5, 138.7, 133.7, 133.4, 132.0, 131.1, 130.2, 128.8, 128.7, 128.4, 127.7, 126.7, 125.5, 125.1, 124.1, 123.1, 121.2, 116.9, 115.0, 55.2, 47.1, 32.1. HRMS (ESI): calcd for C₂₅H₂₁N₂O₃⁺ (M+H⁺): 397.1552, found 397.1548. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (minor) = 9.3 min, $t_{\rm R}$ (major) = 38.6 min, *ee* = 99%. [α]_D²⁵ = -121.4 (*c* = 1.1 in CHCl₃).

Methyl

(*R*)-1-(furan-2-ylmethyl)-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (3h)

According to the general procedure, **3h** was obtained in 73% yield (24.5 mg) with 96% *ee* as a light brown oil. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (t, J = 9.3 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.65 (d, J = 8.3 Hz, 1H), 7.46 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.39 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 7.28 (d, J = 0.8 Hz, 2H), 7.19 (d, J = 8.7 Hz, 1H), 6.13 (dd, J = 3.1, 1.9 Hz, 1H), 5.82 (dd, J = 3.2, 0.5 Hz, 1H), 4.77 (t, J = 7.5 Hz, 1H), 4.05 (s, 3H), 3.41 – 3.27 (m, 1H), 3.23 – 3.07 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ =

165.6, 152.5, 151.0, 141.7, 138.7, 130.8, 130.4, 128.8, 128.7, 127.3, 124.4, 121.2, 116.4, 115.2, 110.5, 107.8, 55.3, 45.7, 27.6. HRMS (ESI): calcd for $C_{19}H_{17}N_2O_4^+$ (M+H⁺): 337.1188, found 337.1189. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): t_R (minor) = 19.1 min, t_R (major) = 33.2 min, ee = 96%. $[\alpha]_D^{25} = +17.1$ (c = 1.2 in CHCl₃).

Methyl

(*R*)-1-(benzofuran-2-ylmethyl)-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carbox ylate (3i)

According to the general procedure, **3i** was obtained in 78% yield (30.1 mg) with 95% *ee* as a light brown oil. ¹H NMR (400 MHz, CDCl₃): δ 7.81 – 7.73 (m, 4H), 7.41 (dd, J = 8.2, 0.7 Hz, 1H), 7.37 – 7.32 (m, 3H), 7.24 – 7.19 (m, 2H), 7.14 (td, J = 7.5, 0.9 Hz, 1H), 6.28 (s, 1H), 4.94 (t, J = 7.5 Hz, 1H), 4.05 (d, J = 1.9 Hz, 3H), 3.48 (dd, J = 14.8, 7.6 Hz, 1H), 3.26 (dd, J = 14.8, 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.2, 154.9, 154.1, 152.5, 138.9, 130.7, 130.4, 129.0, 128.5, 127.4, 124.5, 123.7, 122.5, 121.1, 120.6, 116.2, 115.1, 110.9, 109.7, 104.8, 55.3, 45.1, 28.1. HRMS (ESI): calcd for C₂₃H₁₉N₂O₄⁺ (M+H⁺): 387.1345, found 387.1342. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, <math>\lambda = 254$ nm): t_R (minor) = 15.1 min, t_R (major) = 24.2 min, ee = 95%. $[\alpha]_D^{25} = +55.8$ (c = 1.0 in CHCl₃).

Methyl (R)-1-butyl-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (3j)

According to the general procedure, **3j** was obtained in 93% yield (29.0 mg) with 96% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (dd, J = 12.1, 8.4 Hz, 2H), 7.75 (d, J = 8.6 Hz, 2H), 7.63 – 7.51 (m, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 8.7Hz, 1H), 4.43 (t, J = 7.7 Hz, 1H), 4.05 (s, 3H), 2.11 – 1.92 (m, 1H), 1.89 – 1.72 (m, 1H), 1.54 – 1.28 (m, 4H), 0.87 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 166.6, 152.6, 138.5, 130.8, 130.5, 128.9, 128.4, 127.4, 124.4, 121.5, 117.6, 115.3, 55.2, 45.7, 29.6, 29.3, 22.6, 13.9. HRMS (ESI): calcd for C₁₈H₂₁N₂O₃⁺ (M+H⁺): 313.1552, found 313.1556. HPLC analysis: (Chiralpak AS-H, isopropanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (major) = 8.9 min, t_R (minor) = 13.7 min, ee = 96%. [α]_D²⁵ = +28.3 (c = 0.9 in CHCl₃).

Methyl (R)-1-hexyl-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (3k)

According to the general procedure, **3k** was obtained in 90% yield (30.6 mg) with 95% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (dd, J = 12.1, 8.3 Hz, 2H), 7.78 – 7.68 (m, 2H), 7.56 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.49 – 7.37 (m, 1H), 7.18 (d, J = 8.7 Hz, 1H), 4.47 – 4.36 (m, 1H), 4.05 (s, 3H), 2.12 – 1.94 (m, 1H), 1.87 – 1.71 (m, 1H), 1.54 – 1.20 (m, 8H), 0.86 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.6$, 152.6, 138.5, 130.8, 130.5, 128.9, 128.4, 127.3, 124.4, 121.5, 117.6, 115.3, 55.2, 45.8, 31.6, 29.5, 29.2, 27.5, 22.6, 14.1. HRMS (ESI): calcd for C₂₀H₂₅N₂O₃⁺ (M+H⁺): 341.1865, found 341.1864. HPLC analysis: (Chiralpak AS-H, isopropanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 6.6 min, $t_{\rm R}$ (minor) = 10.9 min, ee = 95%. [α]_D²⁵ = +98.2 (c = 1.0 in CHCl₃).

Methyl (*R*)-1-isopropyl-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (31)

According to the general procedure, **31** was obtained in 51% yield (15.2 mg) with 91% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.6 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 8.6 Hz, 1H), 7.71 (s, 1H), 7.57 – 7.50 (m, 1H), 7.43 (dd, *J* = 11.0, 3.9 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 1H), 4.14 (d, *J* = 9.4 Hz, 1H), 4.05 (s, 3H), 2.54 – 2.41 (m, 1H), 1.22 (d, *J* = 6.7 Hz, 3H), 0.83 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.9, 152.7, 138.9, 131.8, 130.5, 128.8, 128.5, 127.2, 124.3, 122.3, 117.4, 115.4, 55.2, 53.0, 28.5, 21.5, 21.1. HRMS (ESI): calcd for C₁₇H₁₉N₂O₃⁺ (M+H⁺): 299.1396, found 299.1386. HPLC analysis: (Chiralpak AS-H, isopropanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 8.6 min, *t*_R (minor) = 15.8 min, *ee* = 91%. [α]_D²⁵ = +13.5 (*c* = 1.0 in CHCl₃).

Methyl (R)-1-allyl-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (3m)

According to the general procedure, **3m** was obtained in 88% yield (26.4 mg) with 95% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (t, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 8.7 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 1H), 5.87 – 5.76 (m, 1H), 5.06 (dd, *J* = 24.8, 13.5 Hz, 2H), 4.51 (t, *J* = 7.7 Hz, 1H), 4.05 (s, 3H), 2.84 – 2.67 (m, 1H), 2.62 (dt, *J* = 14.0, 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.9, 152.5, 138.6, 134.2, 130.7, 130.5, 128.9, 128.7, 127.4, 124.5, 121.6, 118.0, 116.6, 115.3, 55.3, 46.0, 33.7. HRMS (ESI): calcd for C₁₇H₁₇N₂O₃⁺ (M+H⁺): 297.1239, found 297.1241. HPLC analysis: (Chiralpak AS-H,

isopropanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 10.5 min, $t_{\rm R}$ (minor) = 16.8 min, ee = 95%. $[\alpha]_{\rm D}^{25}$ = +55.5 (c = 1.0 in CHCl₃).

Methyl

(*R*,*E*)-1-(oct-2-en-1-yl)-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (3n)

According to the general procedure, **3n** was obtained in 87% yield (31.8 mg) with 95% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (t, *J* = 7.1 Hz, 2H), 7.74 (d, *J* = 8.7 Hz, 2H), 7.59 – 7.48 (m, 1H), 7.42 (dd, *J* = 11.2, 4.1 Hz, 1H), 7.18 (d, *J* = 8.7 Hz, 1H), 5.46 – 5.29 (m, 2H), 4.46 (t, *J* = 7.6 Hz, 1H), 4.04 (s, 3H), 2.78 – 2.64 (m, 1H), 2.64 – 2.52 (m, 1H), 1.85 (d, *J* = 5.8 Hz, 2H), 1.23 (dq, *J* = 14.0, 7.2 Hz, 2H), 1.14 (tt, *J* = 10.9, 5.6 Hz, 4H), 0.86 (dd, *J* = 8.6, 5.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 152.5, 138.5, 134.4, 130.9, 130.5, 128.8, 128.5, 127.1, 125.3, 124.3, 121.9, 116.8, 115.2, 55.2, 46.4, 32.7, 32.4, 31.2, 28.7, 22.5, 14.1. HRMS (ESI): calcd for C₂₂H₂₇N₂O₃⁺ (M+H⁺): 367.2022, found 367.2028. HPLC analysis: (Chiralpak AS-H, isopropanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 6.9 min, *t*_R (minor) = 11.5 min, *ee* = 95%. [α]_D²⁵ = +87.2 (*c* = 0.7 in CHCl₃).

Methyl

(R)-1-(non-8-en-1-yl)-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (30)

According to the general procedure, 30 was obtained in 91% yield (34.6 mg) with 95%

ee as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (dd, J = 10.9, 8.6 Hz, 2H), 7.79 – 7.64 (m, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.08 – 4.76 (m, 2H), 4.42 (t, J = 7.7 Hz, 1H), 4.05 (s, 3H), 2.08 – 1.96 (m, 3H), 1.86 – 1.73 (m, 1H), 1.54 – 1.26 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.6$, 152.6, 139.2, 138.5, 130.8, 130.5, 128.9, 128.4, 127.4, 124.4, 121.5, 117.6, 115.3, 114.2, 55.2, 45.8, 33.8, 29.5, 29.4, 29.2, 29.0, 28.8, 27.5. HRMS (ESI): calcd for C₂₃H₂₉N₂O₃⁺ (M+H⁺): 381.2178, found 381.2180. HPLC analysis: (Chiralpak AS-H, isopropanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 6.3 min, $t_{\rm R}$ (minor) = 10.9 min, ee = 95%. [α]_D²⁵ = +100.2 (c = 0.6 in CHCl₃).

Methyl

(S)-1-(((tert-butyldimethylsilyl)oxy)methyl)-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (3p)

According to the general procedure, **3p** was obtained in 71% yield (28.4 mg) with 91% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.7 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.47 – 7.41 (m, 1H), 7.20 (d, *J* = 8.7 Hz, 1H), 4.68 (t, *J* = 6.8 Hz, 1H), 4.12 (dd, *J* = 9.8, 6.9 Hz, 1H), 4.10 – 4.02 (m, 4H), 0.77 (s, 9H), -0.15 (s, 3H), -0.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.5, 152.6, 139.0, 131.3, 130.6, 128.9, 128.8, 127.3, 124.5, 121.9, 115.8, 115.4, 61.6, 55.1, 49.0, 25.7, 18.1, -5.8, -5.8. HRMS (ESI): calcd for C₂₁H₂₉N-O₄Si⁺ (M+H⁺): 401.1897, found 401.1891. HPLC analysis: (Chiralpak AS-H, isopropanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 8.3 min, *t*_R (minor) = 11.6 min, *ee* = 91%. [α]_D²⁵ = -43.9 (*c* = 0.8 in CHCl₃).

Methyl

(R)-1-(2-(benzyloxy)ethyl)-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate

According to the general procedure, **3q** was obtained in 92% yield (35.9 mg) with 94% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.78 – 7.49 (m, 2H), 7.46 – 7.44 (m, 1H), 7.42 – 7.40 (m, 1H), 7.39 (d, *J* = 4.4 Hz, 4H), 7.35 – 7.30 (m, 1H), 7.19 (d, *J* = 8.7 Hz, 1H), 4.72 (t, *J* = 7.4 Hz, 1H), 4.47 (s, 2H), 4.01 (s, 3H), 3.58 – 3.54 (m, 1H), 3.41 – 3.37 (m, 1H), 2.33 (dtd, *J* = 11.8, 7.4, 4.5 Hz, 1H), 2.27 – 2.09 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.7, 152.5, 138.9, 138.4, 131.1, 130.5, 128.8, 128.6, 128.4, 127.6, 127.5, 127.4, 124.5, 121.8, 117.2 115.4, 72.9, 67.1, 55.1, 42.7, 29.6. HRMS (ESI): calcd for C₂₃H₂₃N₂O₄⁺ (M+H⁺): 391.1658, found 391.1657. HPLC analysis: (Chiralpak AS-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 12.4 min, *t*_R (minor) = 24.7 min, *ee* = 94%. [α]_D²⁵ = -108.0 (*c* = 1.1 in CHCl₃).

Methyl

$(R) \hbox{-} 1-(3-chloropropyl) \hbox{-} 2-oxo-1, 4-dihydrobenzo[f] cinnoline-3(2H) \hbox{-} carboxylate$

(**3**r)

According to the general procedure, **3r** was obtained in 86% yield (28.6 mg) with 96% *ee* as a white solid. m.p. 161-162 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 11.7, 8.4 Hz, 2H), 7.77 (d, J = 8.6 Hz, 2H), 7.58 (dd, J = 11.3, 4.0 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 4.46 (dd, J = 8.8, 6.2 Hz, 1H), 4.06 (s, 3H), 3.65 – 3.55 (m, 2H), 2.17 (dd, J = 19.0, 9.0 Hz, 1H), 2.06 – 1.88 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.0, 152.4, 138.6, 130.6, 130.6, 129.0, 128.8, 127.6, 124.5, 121.3, 116.7, 115.2, 55.3, 44.8, 44.3, 30.0, 26.4. HRMS (ESI): calcd for$

 $C_{17}H_{18}ClN_2O_3^+$ (M+H⁺): 333.1006, found 333.1010. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 254 nm): t_R (minor) = 29.5 min, t_R (major) = 33.0 min, ee = 96%. [α]_D²⁵ = +70.5 (c = 0.8 in CHCl₃).

Methyl (R)-2-oxo-1-phenyl-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (3s)

According to the general procedure, **3s** was obtained in 76% yield (25.2 mg) with 57% *ee* as a light brown oil. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (t, J = 8.6 Hz, 2H), 7.76 (d, J = 8.3 Hz, 1H), 7.71 – 7.68 (m, 1H), 7.53 – 7.42 (m, 2H), 7.28 – 7.21 (m, 5H), 5.75 (s, 1H), 4.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 164.6, 152.5, 139.1, 134.5, 131.2, 130.6, 129.4, 128.9, 128.9, 127.9, 127.7, 127.7, 124.7, 121.6, 115.4, 115.4, 55.3, 50.3. HRMS (ESI): calcd for C₂₀H₁₇N₂O₃⁺ (M+H⁺): 333.1239, found 333.1237. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 29.8 min, *t*_R (minor) = 47.1 min, *ee* = 57%. [α]_D²⁵ = -44.1 (*c* = 1.0 in CHCl₃).

Ethyl (R)-1-benzyl-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (4a)

According to the general procedure, **4a** was obtained in 88% yield (31.7 mg) with 98% *ee* as a white solid. m.p. 163-164 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.74 (m, 2H), 7.45 (dd, J = 6.4, 2.9 Hz, 1H), 7.34 – 7.30 (m, 3H), 7.19 (d, J = 8.7 Hz, 1H), 7.15 – 7.07 (m, 3H), 6.93 (dd, J = 7.4, 1.9 Hz, 2H), 4.64 (dd, J = 8.1, 6.6 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 3.29 (dd, J = 13.1, 6.5 Hz, 1H), 3.20 (dd, J = 13.1, 8.2 Hz, 1H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.2$, 151.9, 138.8, 137.4, 131.0, 130.3, 129.3, 128.7, 128.6, 128.2, 127.0, 126.7, 124.2, 121.4, 116.8, 115.4, 64.9, 48.0, 35.6, 14.4. HRMS (ESI): calcd for C₂₂H₂₁N₂O₃⁺ (M+H⁺): 361.1552, found

361.1558. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (minor) = 14.0 min, $t_{\rm R}$ (major) = 30.4 min, ee = 98%. [α]_D²⁵ = -109.2 (c = 1.2 in CHCl₃).

Propyl (*R*)-1-benzyl-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (4b)

According to the general procedure, **4b** was obtained in 87% yield (32.6 mg) with 99% *ee* as a white solid. m.p. 138-140 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.80 – 7.74 (m, 2H), 7.50 (s, 1H), 7.45 (dd, J = 6.2, 3.1 Hz, 1H), 7.37 – 7.31 (m, 3H), 7.19 (d, J = 8.7 Hz, 1H), 7.13 – 7.09 (m, 2H), 6.94 – 6.92 (m, 2H), 4.64 (dd, J = 8.1, 6.6 Hz, 1H), 4.38 (t, J = 6.6 Hz, 2H), 3.29 (dd, J = 13.1, 6.5 Hz, 1H), 3.20 (dd, J = 13.1, 8.2 Hz, 1H), 1.88 – 1.79 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.2$, 152.1, 138.8, 137.4, 131.0, 130.3, 129.3, 128.6, 128.6, 128.3, 127.0, 126.7, 124.2, 121.4, 116.8, 115.4, 70.2, 48.1, 35.6, 22.0, 10.3. HRMS (ESI): calcd for C₂₃H₂₃N₂O₃⁺ (M+H⁺): 375.1709, found 375.1711. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (minor) = 12.9 min, $t_{\rm R}$ (major) = 29.1 min, ee = 99%. [α]_D²⁵ = -35.2 (c = 0.7 in CHCl₃).

Cyclopentyl (*R*)-1-benzyl-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (4c)

According to the general procedure, **4c** was obtained in 83% yield (33.2 mg) with 99% *ee* as a white solid. m.p. 161-162 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.73 (m, 2H), 7.53 (s, 1H), 7.43 – 7.41 (m, 1H), 7.37 – 7.28 (m, 3H), 7.19 (d, *J* = 8.7 Hz, 1H), 7.12 – 7.08 (m, 2H), 6.92 (dd, *J* = 7.4, 1.6 Hz, 2H), 5.41 – 5.39 (m, 1H), 4.61 (dd, *J* = 8.3, 6.4 Hz, 1H), 3.28 (dd, *J* = 13.1, 6.3 Hz, 1H), 3.19 (dd, *J* = 13.1, 8.4 Hz, 1H), 1.89

(dddd, J = 24.4, 18.9, 11.7, 4.8 Hz, 6H), 1.87 – 1.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.0$, 151.7, 138.9, 137.5, 131.0, 130.3, 129.3, 128.6, 128.5, 128.2, 126.9, 126.7, 124.2, 121.4, 116.7, 115.4, 82.4, 48.1, 35.6, 32.7, 23.6, 23.6. HRMS (ESI): calcd for C₂₅H₂₅N₂O₃⁺ (M+H⁺): 401.1865, found 401.1860. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (minor) = 12.2 min, $t_{\rm R}$ (major) = 22.5 min, ee = 99%. [α]_D²⁵ = -90.5 (c = 0.9 in CHCl₃).

According to the general procedure, **4d** was obtained in 85% yield (35.9 mg) with 99% *ee* as a white solid. m.p. 155-156 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.80 – 7.73 (m, 2H), 7.51 – 7.33 (m, 9H), 7.17 (d, J = 8.7 Hz, 1H), 7.13 – 7.07 (m, 3H), 6.94 – 6.92 (m, 2H), 5.46 (s, 2H), 4.67 – 4.64 (m, 1H), 3.25 (ddd, J = 21.2, 13.1, 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.2, 151.8, 138.7, 137.4, 134.8, 130.9, 130.4, 129.3, 128.7, 128.6, 128.6, 128.3, 128.3, 128.0, 127.0, 126.7, 124.3, 121.4, 116.7, 115.5, 69.8, 48.0, 35.7. HRMS (ESI): calcd for C₂₇H₂₃N₂O₃⁺ (M+H⁺): 423.1709, found 423.1709. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, <math>\lambda = 254$ nm): $t_{\rm R}$ (minor) = 24.2 min, $t_{\rm R}$ (major) = 47.1 min, *ee* = 99%. [α]_D²⁵ = -13.5 (*c* = 0.8 in CHCl₃).

(*R*)-1-Benzyl-2-oxo-*N*-propyl-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxamide (4e)

According to the general procedure, **4e** was obtained in 91% yield (33.9 mg) with 99% *ee* as a white solid. m.p. 150-151 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.13 (t, J = 5.4

Hz, 1H), 8.46 (s, 0.7H), 7.81 – 7.74 (m, 2H), 7.53 (dd, J = 6.6, 2.7 Hz, 1H), 7.37 – 7.34 (m, 2H), 7.23 (d, J = 8.7 Hz, 1H), 7.18 – 7.15 (m, 3H), 7.04 (dd, J = 6.5, 3.0 Hz, 2H), 4.63 (t, J = 7.7 Hz, 1H), 3.40 – 3.34 (m, 2H), 3.24 (dd, J = 13.2, 7.6 Hz, 1H), 3.09 (dd, J = 13.2, 7.8 Hz, 1H), 1.66 – 1.61 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.9$, 151.7, 139.1, 137.6, 130.9, 130.2, 129.3, 128.7, 128.6, 128.3, 127.0, 126.7, 124.0, 121.2, 115.5, 115.1, 47.4, 42.4, 35.0, 22.7, 11.4. HRMS (ESI): calcd for C₂₃H₂₄N₃O₂⁺ (M+H⁺): 374.1869, found 374.1873. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda =$ 254 nm): *t*_R (minor) = 12.2 min, *t*_R (major) = 63.7 min, *ee* = 99%. [α]_D²⁵ = -69.1 (*c* = 1.8 in CHCl₃).

(*R*)-1-Benzyl-3-tosyl-3,4-dihydrobenzo[*f*]cinnolin-2(1*H*)-one (4f)

According to the general procedure, **4f** was obtained in 79% yield (35.0 mg) with 93% *ee* as a light yellow solid. m.p. 173-174 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 – 7.82 (m, 3H), 7.73 (d, *J* = 8.7 Hz, 1H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.52 – 7.41 (m, 2H), 7.26 – 7.16 (m, 3H), 7.15 – 7.04 (m, 3H), 6.75 (d, *J* = 7.2 Hz, 2H), 5.84 (s, 1H), 4.54 (t, *J* = 6.0 Hz, 1H), 3.22 (ddd, *J* = 41.5, 13.3, 6.0 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 145.5, 138.2, 136.5, 134.1, 131.4, 130.5, 129.5, 129.3, 129.0, 128.9, 128.7, 128.2, 127.3, 127.2, 125.2, 121.5, 119.9, 118.2, 46.5, 37.6, 21.7. HRMS (ESI): calcd for C₂₆H₂₃N₂O₃S⁺ (M+H⁺): 443.1429, found 443.1435. HPLC analysis: (Chiralpak OD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 28.4 min, *t*_R (minor) = 36.9 min, *ee* = 93%. [α]_D²⁵ = +132.0 (*c* = 1.5 in CHCl₃).

Methyl

(*R*)-1-benzyl-9-methoxy-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (4g)

According to the general procedure, **4g** was obtained in 90% yield (33.8 mg) with 98% *ee* as a white solid. m.p. 157-158 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.65 (t, J = 8.8 Hz, 2H), 7.12 – 7.05 (m, 4H), 6.93 (ddd, J = 9.2, 8.5, 2.0 Hz, 3H), 6.54 (d, J = 2.3 Hz, 1H), 4.55 (dd, J = 9.0, 5.7 Hz, 1H), 4.06 (s, 3H), 3.68 (s, 3H), 3.25 (qd, J = 12.9, 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.5$, 158.5, 152.5, 139.3, 137.7, 132.6, 130.0, 129.4, 128.4, 128.3, 126.8, 125.7, 117.0, 115.7, 112.7, 100.1, 55.3, 55.0, 48.5, 35.4. HRMS (ESI): calcd for C₂₂H₂₁N₂O₄⁺ (M+H⁺): 377.1501, found 377.1506. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 24.5 min, $t_{\rm R}$ (minor) = 36.4 min, ee = 98%. [α]_D²⁵ = -66.6 (c = 2.0 in CHCl₃).

Methyl

(*R*)-1-benzyl-8-methyl-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (4h)

According to the general procedure, **4h** was obtained in 84% yield (30.2 mg) with 96% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.7 Hz, 1H), 7.57 (s, 1H), 7.38 (dd, J = 15.7, 6.2 Hz, 2H), 7.19 (dd, J = 8.6, 1.4 Hz, 1H), 7.16 – 7.105 (m, 4H), 6.95 (dd, J = 7.1, 2.0 Hz, 2H), 4.64 (t, J = 7.3 Hz, 1H), 4.03 (s, 3H), 3.24 (ddd, J = 21.0, 13.2, 7.3 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.6$, 152.6, 138.1, 137.4, 134.0, 130.7, 129.3, 129.0, 128.3, 128.0, 127.7, 126.8, 121.3, 117.1, 115.6, 55.2, 48.0, 35.7, 21.4. HRMS (ESI): calcd for C₂₂H₂₁N₂O₃⁺ (M+H⁺): 361.1552, found 361.1550. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (minor) = 17.6 min, t_R (major) = 31.8 min, ee = 96%. $[\alpha]_D^{25} = +16.7$ (c = 1.8 in CHCl₃).

Methyl

(R)-1-benzyl-8-bromo-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (4i)

According to the general procedure, **4i** was obtained in 93% yield (39.5 mg) with 93% *ee* as a light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.58 (s, 1H), 7.33 (dd, J = 9.0, 2.0 Hz, 1H), 7.22 (dd, J = 8.9, 3.8 Hz, 2H), 7.13 – 7.07 (m, 3H), 6.88 (dd, J = 7.8, 1.4 Hz, 2H), 4.57 (dd, J = 8.7, 6.1 Hz, 1H), 4.05 (s, 3H), 3.23 (ddd, J = 21.8, 13.1, 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.9$, 152.4, 139.0, 137.1, 131.4, 130.5, 130.1, 129.6, 129.3, 128.3, 127.8, 126.9, 123.2, 118.0, 116.8, 116.4, 55.3, 48.1, 35.5. HRMS (ESI): calcd for C₂₁H₁₈BrN₂O₃⁺ (M+H⁺): 425.0501, 427.0480, found 425.0505, 427.0484. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (minor) = 18.9 min, $t_{\rm R}$ (major) = 39.7 min, *ee* = 93%. [α]_D²⁵ = -88.3 (*c* = 1.3 in CHCl₃).

Methyl

(R)-1-benzyl-2-oxo-8-phenyl-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (4j)

According to the general procedure, **4j** was obtained in 80% yield (33.8 mg) with 96% *ee* as a white solid. m.p. 172-173 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 1.8 Hz, 1H), 7.81 (d, J = 8.6 Hz, 1H), 7.70 – 7.68 (m, 2H), 7.61 (dd, J = 8.8, 1.9 Hz, 1H), 7.53 – 7.48 (m, 3H), 7.40 (ddd, J = 7.4, 3.9, 1.2 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 7.16 – 7.09 (m, 3H), 6.96 (dd, J = 6.5, 3.0 Hz, 2H), 4.67 (dd, J = 8.0, 6.6 Hz, 1H), 4.05 (s, 3H), 3.31 (dd, J = 13.1, 6.5 Hz, 1H), 3.23 (dd, J = 13.2, 8.1 Hz, 1H). ¹³C

NMR (100 MHz, CDCl₃): δ = 166.3, 152.5, 140.6, 138.8, 137.3, 136.9, 130.7, 130.1, 129.3, 129.0, 128.9, 128.3, 127.4, 127.2, 126.8, 126.6, 126.4, 122.0, 116.7, 115.9, 55.2, 48.0, 35.7. HRMS (ESI): calcd for C₂₇H₂₃N₂O₃⁺ (M+H⁺): 423.1709, found 423.1711. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): $t_{\rm R}$ (minor) = 16.6 min, $t_{\rm R}$ (major) = 29.7 min, *ee* = 96%. $[\alpha]_{\rm D}^{25}$ = -64.0 (*c* = 0.8 in CHCl₃).

Methyl

(*R*)-1-benzyl-8-cyclohexyl-2-oxo-1,4-dihydrobenzo[*f*]cinnoline-3(2*H*)-carboxylate (4k)

According to the general procedure, **4k** was obtained in 83% yield (35.6 mg) with 96% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.7 Hz, 1H), 7.59 (s, 1H), 7.46 (d, J = 8.8 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.25 (d, J = 1.6 Hz, 1H), 7.14 (dt, J = 9.3, 4.7 Hz, 4H), 6.97 (dd, J = 6.9, 2.3 Hz, 2H), 4.63 (t, J = 7.2 Hz, 1H), 4.03 (s, 3H), 3.28 (dd, J = 13.2, 7.0 Hz, 1H), 3.18 (dd, J = 13.2, 7.5 Hz, 1H), 2.65 – 2.60 (m, 1H), 1.95 – 1.88 (m, 4H), 1.80 (d, J = 12.6 Hz, 1H), 1.54 – 1.40 (m, 4H), 1.35 – 1.27 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.6, 152.6, 144.1, 138.1, 137.4, 130.8, 129.3, 129.3, 128.4, 128.3, 127.4, 126.8, 125.3, 121.3, 117.0, 115.5, 55.1, 47.9, 44.3, 35.8, 34.3, 26.9, 26.2.$ HRMS (ESI): calcd for C₂₇H₂₉N₂O₃⁺ (M+H⁺): 429.2178, found 429.2170. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (minor) = 16.6 min, t_R (major) = 31.3 min, *ee* = 96%. [α]_D²⁵ = -137.4 (*c* = 1.4 in CHCl₃).

Methyl

(R)-1-benzyl-7-methyl-2-oxo-1,4-dihydrobenzo[f]cinnoline-3(2H)-carboxylate (4l)

According to the general procedure, **41** was obtained in 85% yield (30.6 mg) with 98% *ee* as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.9 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.28 – 7.20 (m, 3H), 7.15 – 7.12 (m, 3H), 6.97 (dd, *J* = 6.5, 2.9 Hz, 2H), 4.68 (t, *J* = 7.3 Hz, 1H), 4.04 (s, 3H), 3.29 (dd, *J* = 13.2, 6.9 Hz, 1H), 3.20 (dd, *J* = 13.2, 7.7 Hz, 1H), 2.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 152.6, 138.5, 137.4, 135.0, 131.0, 129.6, 129.3, 128.3, 126.8, 126.8, 125.4, 124.8, 119.8, 117.5, 115.1, 55.2, 48.1, 35.8, 19.8. HRMS (ESI): calcd for C₂₂H₂₁N₂O₃⁺ (M+H⁺): 361.1552, found 361.1550. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (minor) = 13.8 min, *t*_R (major) = 21.8 min, *ee* = 98%. [α]_D²⁵ = -117.5 (*c* = 1.3 in CHCl₃).

Methyl

(R)-1-benzyl-2-oxo-1,4-dihydronaphtho[2,3-f]cinnoline-3(2H)-carboxylate (4m)

According to the general procedure, **4m** was obtained in 76% yield (30.1 mg) with 95% *ee* as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, 1H), 8.01 (s, 1H), 7.97 – 7.91 (m, 2H), 7.83 (dd, J = 6.3, 3.0 Hz, 1H), 7.49 – 7.42 (m, 3H), 7.17 (d, J = 8.9 Hz, 1H), 7.12 – 7.06 (m, 3H), 7.02 – 6.99 (m, 2H), 4.82 (t, J = 7.1 Hz, 1H), 4.06 (s, 3H), 3.36 (dd, J = 13.2, 6.5 Hz, 1H), 3.26 (dd, J = 13.2, 7.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.0$, 152.5, 137.8, 137.5, 132.3, 130.4, 129.4, 129.0, 128.9, 128.2, 128.1, 128.0, 127.4, 126.9, 126.0, 125.2, 119.8, 116.3, 114.5, 55.2, 47.8, 35.8. HRMS (ESI): calcd for C₂₅H₂₁N₂O₃⁺ (M+H⁺): 397.1552, found 397.1552. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (minor) = 26.0 min, t_R (major) = 66.4 min, ee = 95%. $[\alpha]_D^{25} = -18.2$ (c = 1.1 in CHCl₃).

5. Cleavage of the N-N bond in 3a

To the solution of **3a** (34.6 mg, 0.1 mmol, 99% ee) in MeOH (1.0 mL) was added Raney-Ni (~100 mg, washed with MeOH). The reaction vial was degassed with H₂ and back-filled with H₂. This reaction vial was immersed in an ultrasonic cleaner filled with water, and sonicated under H₂ atmosphere (1 atm) untill disappearance of the starting material. The reaction mixture was filtered through a Buchner funnel and the filtrate was evaporated in vacuo. The residue was purified by column chromatography (PE/EA = 20/1 to 8/1) on silica gel to afford **5** (18.8 mg, 65% yield, 97% ee) as a light yellow solid.

(*R*)-2-(2-aminonaphthalen-1-yl)-3-phenylpropanamide (5)

¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.6 Hz, 2H), 7.55 (dd, J = 9.6, 5.1 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.12 – 7.03 (m, 4H), 6.93 – 6.66 (m, 3H), 4.26 (t, J = 4.8 Hz, 1H), 3.90 – 3.71 (m, 2H), 3.65 (dd, J = 13.7, 4.8 Hz, 1H), 3.56 (dd, J = 13.7, 4.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.8$, 138.3, 136.9, 131.3, 130.8, 129.7, 129.2, 128.9, 128.5, 127.9, 127.2, 126.9, 124.8, 121.5, 118.4, 42.7, 38.3. HRMS (ESI): calcd for C₁₉H₁₉N₂O⁺ (M+H⁺): 291.1497, found 291.1487. HPLC analysis: (Chiralpak AD-H, isopropanol/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (minor) = 24.1 min, $t_{\rm R}$ (major) = 37.4 min, ee = 97%. [α]_D²⁵ = +55.3 (c = 0.7 in CHCl₃).

6. Gram-scale synthesis

3a was synthesis under the corresponding optimal conditions with 90% yield, 97% ee.

7. Reference

- (a) Borg, T.; Danielsson, J.; Mohiti, M.; Restorp, P.; Somfai, P. Adv. Synth. Catal.
 2011, 353, 2022. (b) Jing, Y.; Daniliuc, C. G.; Studer, A. Org. Lett. **2014**, 16, 4932.
- 2) Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B. Nat. Chem. 2018, 10, 58.

8. ¹H and ¹³C NMR spectra

9. HPLC spectra

Chiral HPLC spectrum of racemic 3a

405873

100.000

100.000

20186398

Chiral HPLC spectrum of 3a

Total

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.083	176753	5486	0.568	1.286
2	30.565	30943761	421108	99.432	98.714
Total		31120515	426594	100.000	100.000

Chiral HPLC spectrum of racemic 3b

数据文件名:WZJ-13-16-1-P.lcd 样品名:WZJ-13-16-1-P 样品ID:WZJ-13-16-1-P

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.943	27604629	639040	49.671	64.446
2	30.677	27970809	352551	50.329	35.554
Total		55575438	991592	100.000	100.000

Chiral HPLC spectrum of 3b

Chiral HPLC spectrum of racemic 3c

数据文件名:wzj-13-14-1.lcd 样品名:wzj-13-14-1 样品ID:wzj-13-14-1

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.358	30010195	1180794	50.641	60.198
2	14.920	29251050	780734	49.359	39.802
总计		59261245	1961529	100.000	100.000

Chiral HPLC spectrum of 3c

Chiral HPLC spectrum of racemic 3d

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.977	36129091	615004	50.916	66.604
2	47.774	34829014	308366	49.084	33.396
Total		70958105	923370	100.000	100.000

Chiral HPLC spectrum of 3d

数据文件名:WZJ-13-8-2.lcd 样品名:WZJ-13-8-2 样品ID:WZJ-13-8-2

Chiral HPLC spectrum of racemic 3e

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.895	2605885	55811	50.511	66.784
2	40.067	2553175	27759	49.489	33.216
Total		5159059	83570	100.000	100.000

Chiral HPLC spectrum of 3e

数据文件名:WZJ-13-5-2.lcd 样品名:WZJ-13-5-2 样品ID:WZJ-13-5-2

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.853	191127	5153	2.397	5.974
2	39.636	7782525	81108	97.603	94.026
Total		7973652	86261	100.000	100.000

Chiral HPLC spectrum of 3f

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.493	22605980	491010	50.227	65.093
2	35.164	22401702	263313	49.773	34.907
Total		45007683	754323	100.000	100.000

Chiral HPLC spectrum of 3f

数据文件名:WZJ-13-9-2.lcd 样品名:WZJ-13-9-2 样品ID:WZJ-13-9-2

ream	Ree: Thine	Inea	mengine	I Hea /o	ineight /o
1	19.878	1223419	32597	2.509	6.124
2	35.615	47531664	499708	97.491	93.876
Total		48755082	532305	100.000	100.000

Chiral HPLC spectrum of racemic 3g

数据文件名:WZJ-13-47-1(ASH).lcd 样品名:WZJ-13-37-1 样品ID:WZJ-13-37-1

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.247	37462887	887214	50.359	85.952
2	37.615	36928056	145003	49.641	14.048
Total		74390943	1032218	100.000	100.000

Chiral HPLC spectrum of 3g

Chiral HPLC spectrum of racemic 3h

数据文件名:WZJ-13-17-1.lcd 样品名:WZJ-13-17-1 样品ID:WZJ-13-17-1

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.276	11100192	229235	50.426	62.859
2	33.776	10912444	135449	49.574	37.141
Total		22012636	364684	100.000	100.000

Chiral HPLC spectrum of 3h

Chiral HPLC spectrum of racemic 3i

Chiral HPLC spectrum of 3i

Total

数据文件名:WZJ-13-48-2.lcd 样品名:WZJ-13-48-2 样品ID:WZJ-13-48-2

974987

100.000

100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.123	2010731	65920	2.419	4.577
2	24.171	81104198	1374215	97.581	95.423
Total		83114929	1440135	100.000	100.000

Chiral HPLC spectrum of racemic 3j

数据文件名:wzj-13-23-1(ASH).lcd 样品名:wzj-13-23-1 样品ID:wzj-13-23-1 54nm,4nm 1500 625 1250 13.418 1000-750-500 250-0-2.5 7.5 15.0 5.0 10.0 17.5 20.0 22.5 0.0 12.5 min Peak# Ret. Time Height Area % Area Height %

			0		0
1	8.625	54760773	1247340	49.385	61.123
2	13.418	56123675	793364	50.615	38.877
Total		110884448	2040704	100.000	100.000

Chiral HPLC spectrum of 3j

Chiral HPLC spectrum of racemic 3k

数据文件名:WZJ-13-24-1.lcd 样品名:WZJ-13-24-1 样品ID:WZJ-13-24-1

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.639	41567017	1449989	49.314	62.984
2	10.828	42723439	852178	50.686	37.016
Total		84290457	2302167	100.000	100.000

Chiral HPLC spectrum of 3k

Chiral HPLC spectrum of racemic 3l

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.630	86741690	2031581	49.360	64.066
2	15.696	88989716	1139479	50.640	35.934
Total		175731407	3171060	100.000	100.000

Chiral HPLC spectrum of 31

Chiral HPLC spectrum of racemic 3m

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.673	19726794	375394	50.587	61.870
2	16.954	19269153	231355	49.413	38.130
Total		38995947	606749	100.000	100.000

Chiral HPLC spectrum of 3m

Chiral HPLC spectrum of racemic 3n

数据文件名:WZJ-13-26-1-P.lcd 样品名:WZJ-13-26-1-P 样品ID:WZJ-13-24-1-P

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.910	27925843	1014033	49.626	65.353
2	11.412	28346224	537598	50.374	34.647
Total		56272067	1551631	100.000	100.000

Chiral HPLC spectrum of 3n

Chiral HPLC spectrum of racemic 30

数据文件名:WZJ-13-27-1.lcd 样品名:WZJ-13-27-1 样品ID:WZJ-13-27-1

		-			-
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.339	60215725	1988977	50.524	63.277
2	10.789	58967010	1154286	49.476	36.723
Total		119182735	3143263	100.000	100.000

Chiral HPLC spectrum of 30

Chiral HPLC spectrum of racemic 3p

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.336	9666842	223314	49.769	58.676
2	11.574	9756555	157275	50.231	41.324
Total		19423397	380589	100.000	100.000

Chiral HPLC spectrum of **3p**

Chiral HPLC spectrum of racemic 3q

数据文件名:WZJ-13-90-1(ASH).lcd 样品名:WZJ-13-90-1 样品ID:WZJ-13-90-1

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.620	49958178	687916	50.489	67.368
2	24.570	48989988	333220	49.511	32.632
Total		98948166	1021135	100.000	100.000

Chiral HPLC spectrum of 3q

数据文件名:WZJ-13-90-2.lcd 样品名:WZJ-13-90-2 样品ID:WZJ-13-90-2 2000^m nAU 254nm,4nm 12.370 1750 1500-1250-1000-750-500-24.699 250-0-25.0 5.0 15.0 30.0 min 10.0 20.0 35.0 0.0 Peak# Ret. Time Height Area % Height % Area 1 12.370 116394347 1482555 97.006 98.003 2 24.699 3592316 30217 2.994 1.997 Total 119986663 1512772 100.000 100.000

Chiral HPLC spectrum of racemic 3r

数据文件名:WZJ-13-100-1(ADH).lcd 样品名:WZJ-13-100-1(ADH) 样品ID:WZJ-13-100-1(ADH)

41605891

Chiral HPLC spectrum of **3r**

Total

数据文件名:WZJ-13-100-2.lcd 样品名:WZJ-13-100-2 样品ID:WZJ-13-100-2

540743

100.000

100.000

Chiral HPLC spectrum of racemic 3s

数据文件名:wzj-13-190-2-adh.lcd 样品名:wzj-13-190-2-adh 样品ID:wzj-13-190-2-adh mAU 1250 <u>254nm,4nm</u> 1000-29.796 750-48.060 500-250 0 20 40 50 60 min 10 30 0 Ret. Time Peak# Area Height Area % Height % 29.796 1 50056138 604848 50.502 61.442 2 48.060 49061638 379567 49.498 38.558 99117775 984415 100.000 100.000 Total

Chiral HPLC spectrum of 3s

Chiral HPLC spectrum of racemic 4a

数据文件名:WZJ-12-193-1.lcd 样品名:WZJ-12-193-1 样品ID:WZJ-12-193-1

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.850	7584582	217112	49.525	66.426
2	30.212	7730035	109734	50.475	33.574
Total		15314617	326846	100.000	100.000

Chiral HPLC spectrum of 4a

Γ

数据文件名:WZJ-12-199-1.lcd 样品名:WZJ-12-199-1 样品ID:WZJ-12-199-1

1 000000	1.000 111110	1 11 0 00	11018	11104 / 0	
1	14.009	61894	2254	1.183	3.080
2	30.435	5171889	70918	98.817	96.920
Total		5233782	73172	100.000	100.000

Chiral HPLC spectrum of racemic 4b

数据文件名:WZJ-12-193-2.lcd 样品名:WZJ-12-193-2 样品ID:WZJ-12-193-2

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.957	10349943	311884	50.062	67.853
2	29.665	10324168	147762	49.938	32.147
Total		20674111	459646	100.000	100.000

Chiral HPLC spectrum of 4b

数据文件名:WZJ-12-199-2.lcd 样品名:WZJ-12-199-2 样品ID:WZJ-12-199-2

			0		5
1	12.929	226889	8534	0.661	1.758
2	29.062	34093649	476809	99.339	98.242
Total		34320538	485343	100.000	100.000

Chiral HPLC spectrum of racemic 4c

数据文件名:WZJ-12-193-4.lcd 样品名:WZJ-12-193-4 样品ID:WZJ-12-193-4 700<u>mAU</u> 254nm,4nm 12.31 600 500-22.857 400-300-200-100-0 2.5 7.5 17.5 27.5 0.0 5.0 10.0 12.5 15.0 20.0 22.5 25.0 30.0 32.5 min

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.313	17303729	551050	49.742	63.500
2	22.857	17483009	316740	50.258	36.500
Total		34786739	867789	100.000	100.000

Chiral HPLC spectrum of 4c

数据文件名:WZJ-12-200-1.lcd 样品名:WZJ-12-200-1 样品ID:WZJ-12-200-1

Chiral HPLC spectrum of racemic 4d

Peak#	Ret. Time	Area	Height	Area %	Height %
1	24.283	8073450	136483	49.867	64.773
2	47.490	8116455	74228	50.133	35.227
Total		16189905	210712	100.000	100.000

Chiral HPLC spectrum of 4d

数据文件名:WZJ-12-200-2.lcd 样品名:WZJ-12-200-2 样品ID:WZJ-12-200-2

Chiral HPLC spectrum of racemic 4e

数据文件名:WZJ-13-99.lcd 样品名:WZJ-13-99 样品ID:WZJ-13-99 54nm.4nm 1.20 1250 1000-750-64.393 500-250-0 20 30 40 50 60 70 10 min Peak# Ret. Time Height Area % Height % Area 11.200 38504449 1371415 49.527 84.944 1 2 64.393 39239360 243077 50.473 15.056 Total 77743809 1614493 100.000 100.000

Chiral HPLC spectrum of **4e**

数据文件名:WZJ-13-96.lcd 样品名:WZJ-13-96 样品ID:WZJ-13-96

Chiral HPLC spectrum of racemic 4f

数据文件名:wzj-13-175-2-achiral.lcd 样品名:wzj-13-175-2-achiral 样品ID:wzj-13-175-2-achiral mAU _254nm,4nm 200 28.133 150-33.201 100-50 0-22.5 30.0 35.0 45.0 47.5 min 25.0 37.5 42.5 27.5 32.5 40.0

Peak#	Ret. Time	Area	Height	Area %	Height %
1	28.133	11342400	115816	50.157	54.908
2	33.201	11271373	95112	49.843	45.092
Total		22613772	210928	100.000	100.000

Chiral HPLC spectrum of 4f

Total

222309421

数据文件名:wzj-13-175-1.lcd 样品名:wzj-13-175-1 样品ID:wzj-13-175-1

2125135

100.000

100.000

Chiral HPLC spectrum of racemic 4g

Peak#	Ret. Time	Area	Height	Area %	Height %
1	24.592	58457923	964094	50.216	60.562
2	36.275	57954668	627828	49.784	39.438
Total		116412591	1591921	100.000	100.000

Chiral HPLC spectrum of 4g

Chiral HPLC spectrum of racemic 4h

数据文件名:WZJ-13-76-1-P.lcd 样品名:WZJ-13-76-1-P 样品ID:WZJ-13-76-1-P

0.0	5.0 10.0	15.0 20.0	25.0	30.0 35.0	40.0 min
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.141	52724473	1206945	49.365	62.949
2	31.090	54081526	710406	50.635	37.051
Total		106805999	1917352	100.000	100.000

Chiral HPLC spectrum of 4h

数据文件名:WZJ-13-76-2-P.lcd 样品名:WZJ-13-76-2 样品ID:WZJ-13-76-2

Chiral HPLC spectrum of racemic 4i

数据文件名:WZJ-13-79-1-P.lcd 样品名:WZJ-13-79-1-P 样品ID:WZJ-13-79-1-P 254nm,4nm Ĵ 2500 Λœ 2000 38.741 1500-1000-500-0-5.0 15.0 20.0 25.0 30.0 35.0 40.0 10.0 45.0 min 0.0 Peak# Ret. Time Area Height Area % Height % 18.441 131211987 2422516 49.362 61.857 1 2 1493777 38.741 50.638 38.143 134603412 Total 265815399 3916293 100.000 100.000

Chiral HPLC spectrum of 4i

数据文件名:WZJ-13-79-2-P.lcd 样品名:WZJ-13-79-2-P 样品ID:WZJ-13-79-2-P

Chiral HPLC spectrum of racemic 4j

数据文件名:WZJ-13-77-11.lcd 样品名:WZJ-13-77-11 样品ID:WZJ-13-77-11 1000 mAU 254nm,4nm 16.565 750-29.834 500-250 0-5.0 10.0 15.0 20.0 25.0 30.0 35.0 min 0.0 Peak# Ret. Time Area Height Area % Height % 16.565 27662951 678711 49.656 63.364 1 2 29.834 28045930 392423 50.344 36.636 Total 55708881 1071134 100.000 100.000

Chiral HPLC spectrum of 4j

数据文件名:WZJ-13-77-22.lcd 样品名:WZJ-13-77-22 样品ID:WZJ-13-77-22

Chiral HPLC spectrum of racemic 4k

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.399	80872247	1655243	50.201	63.497
2	31.428	80223698	951576	49.799	36.503
Total		161095945	2606819	100.000	100.000

Chiral HPLC spectrum of 4k

Chiral HPLC spectrum of racemic 41

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.765	50780188	1400853	49.074	58.549
2	21.987	52696417	991756	50.926	41.451
Total		103476605	2392608	100.000	100.000

Chiral HPLC spectrum of racemic 41

数据文件名:snp8538.tmp 样品名:WZJ-13-104-2 样品ID:WZJ-13-104-2

Chiral HPLC spectrum of racemic 4m

Chiral HPLC spectrum of 4m

Chiral HPLC spectrum of racemic 5

Chiral HPLC spectrum of 5

Peak#	Ret. Time	Area	Height	Area %	Height %
1	24.092	85134231	1379699	98.648	99.050
2	37.365	1167030	13235	1.352	0.950
Total		86301261	1392935	100.000	100.000

10. X-ray single crystal data for compound 3r

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 20180723wuzijun

Bond precision: C-C = 0.0028 A Wavelength=1.54184 Cell: a=7.5990(1) b=10.2490(1) c=10.4880(1)alpha=90 beta=109.100(1) gamma=90 Temperature: 100 K Calculated Reported Volume 771.861(15) 771.861(15) Space group P 21 P 1 21 1 Hall group P 2yb P 2yb Moiety formula C17 H17 Cl N2 O3 C17 H17 Cl N2 O3 Sum formula C17 H17 Cl N2 O3 C17 H17 Cl N2 O3 Mr 332.78 332.77 1.432 1.432 Dx,g cm-3 2 2 Ζ Mu (mm-1) 2.342 2.342 F000 348.0 348.0 F000′ 349.72 h,k,lmax 9,12,12 9,12,12 2997[1588] Nref 2950 0.430,0.473 0.811,1.000 Tmin,Tmax Tmin' 0.303 Correction method= # Reported T Limits: Tmin=0.811 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 1.86/0.98 Theta(max)= 71.200 R(reflections) = 0.0244(2941) wR2(reflections) = 0.0629(2950) S = 1.087Npar= 209

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

```
Alert level G
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .....
                                                                         1 Report
                                                                  Please Check
PLAT012_ALERT_1_G No ____shelx_res_checksum Found in CIF .....
PLAT142_ALERT_4_G s.u. on b - Axis Small or Missing .....
                                                                   0.00010 Ang.
PLAT143_ALERT_4_G s.u. on c - Axis Small or Missing ..... 0.00010 Ang.
PLAT791_ALERT_4_G Model has Chirality at C11
                                                  (Chiral SPGR)
                                                                        R Verify
  0 ALERT level A = Most likely a serious problem - resolve or explain
  0 ALERT level B = A potentially serious problem, consider carefully
  0 ALERT level C = Check. Ensure it is not caused by an omission or oversight
  5 ALERT level G = General information/check it is not something unexpected
  1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
  0 ALERT type 2 Indicator that the structure model may be wrong or deficient
  0 ALERT type 3 Indicator that the structure quality may be low
  3 ALERT type 4 Improvement, methodology, query or suggestion
  1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 14/07/2018; check.def file version of 05/06/2018