Supplementary information

A Hypervalent and Cubically Coordinated Molecular Phase of IF₈ Predicted at High Pressure

Dongbao Luo,^{1‡} Jian Lv, ^{1‡} Feng Peng,⁴ Yanchao Wang,¹ Guochun Yang,^{2*} Martin Rahm,^{3*}and Yanming Ma^{1,5*}

1. International Center of Future Science, Jilin University, Changchun 130012, China State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

2. Centre for Advanced Optoelectronic Functional Materials Research and Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China

3. Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden

4. College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China

5. International Center of Future Science, Jilin University, Changchun 130012, China

*Address correspondence to: <u>yanggc468@nenu.edu.cn</u>; <u>martin.rahm@chalmers.se</u>; <u>mym@calypso.cn</u>

Index	page
1. Computational details	3
2. Phonon dispersion curves and phonon density of states of I-F compound	s4
3. Crystal structure of P -1-IF ₁₂	5
4. Histograms of I-F separations in IF ₈	
5. Crystal structure and electronic structures of Pn^3n -IF ₈	6
6. Integration of total I 5d in $R^{\overline{3}}$ -IF8	7
7. PDOS and COHP and ICOHP of Fm^3m-I_2	8
8. PDOS of $P2_1/m$ -structured IF ₇ ·····	

9. PDOS of R^3 -structured IF ₈ ⁺ and IF ₈ and IF ₈ ⁻
10. Spin-PDOS of $R^{\overline{3}}$ -IF ₈ ·····9
11. PDOS of $R^{\overline{3}}$ -IF ₈ by WIEN2k·····10
12. ELF of R^3 -IF ₈ molecule at ambient conditions $\cdots 10$
13. Equation of state 11
14. Decomposition reaction of metastable I-F compounds
15. Details structures used for the calculations of decomposition enthalpy14
16. Bond length of IF_n ($n > 2$) compounds \cdots 16
17. Integration of five I 5d in R^3 -IF ₈ 16
18. References

Computational Details

The structural prediction approach is based on a global minimization of free energy surfaces merging ab initio total-energy calculations through CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) methodology as implemented in its same-name CALYPSO code.¹⁻² Our structure search for IF_n (n >1) compounds is performed with the formula units (f.u.) up to 4 at 100, 200, and 300 GPa, respectively. In the first generation, a population of structures with certain symmetry are constructed randomly. Local optimizations of the generating structures are done with the conjugate gradients method through the VASP code, with an economy set of input parameters and an enthalpy convergence of 1×10^{-5} eV per cell.³⁻⁴ Step in the second generation, 60% of them with lower enthalpies are selected to produce the next generation structures by PSO, and 40% of the structures in the new generation are randomly generated. A structure fingerprinting technique of bond characterization matrix is applied to the generated structures, so that identical structures are strictly forbidden. These procedures significantly enhance the diversity of the structures, which is crucial for the efficiency of the global search of structures. For most of the cases, the structure searching simulation for each calculation was stopped after we generated $1000 \sim 1200$ structures (e.g., about $20 \sim 30$ generations).

Higher precision of structure optimization by VASP was adopted for a number of structures with low enthalpies. The cut-off energy for the expansion of wavefunctions into plane waves is set to 950 eV in all calculations, and the Monkhorst-Pack k-mesh with a maximum spacing is 0.032, which gives total energy well converged within ~ 1 meV/atom. The electron-ion interaction was described by means of projector augmented wave with $5s^25p^5$ and $2s^22p^5$ electrons as valence for I and F atoms, respectively. Afterwards, the structures with lowest enthalpies were used to investigate the energetic stabilities for IF_x (x = 1/3, 1/2, 2/3, and 1 - 12) compounds by the following formula: $\Delta H_f = [H(IF_x) - xH(I) - yH(F)]/(x + 1)$, where $H(IF_x)$ is the enthalpy of the considered compound, H(I) is the enthalpy of elemental I, and H(F) is the enthalpy of elemental F. DFT calculations on molecular fragments were made using Gaussian 16, revision B.01.⁵ Atomic charges have been calculated using quantum theory of atoms-in-molecules (QTAIM).⁶

Supplementary Figures

Figure S1. Phonon dispersion curves and phonon density of states (PHDOS) projected on I and F atoms of I-F compounds. (a) IF_3 in $P2_1/m$ structure at 100 GPa. (b-c) IF_5 with P-1 symmetry at 100 GPa and *Pmmm* symmetry at 200 GPa, respectively. (d) IF_7 in $P2_1/m$ phase at 100 GPa. (e) IF_8 in the *R*-3 structure at 300 GPa. (f) IF_{10} in *P*-1 structure at 200 GPa. (g) IF_{11} in *P*-1 structure at 300 GPa. (h-i) IF_{12} with *P*-1 symmetry at 100 and 300 GPa, respectively.

Figure S2. IF_{12} with *P*-1 symmetry at 200 GPa, in which consist of IF_7 and F_2 molecules.

Figure S3. (a) R^3 -IF₈ in a 2×2×1 supercell. The primitive cell is drawn with black solid lines. (b) Histograms of I-F separations. Note that the vertical scale, showing the number of nearest neighbors at a given separation.

Why is $Pn^{3}n$ -structured IF₈ higher in energy compared with R^{3} -structured IF₈?

A comparison of Pn^3n -structured IF₈ with R^3 -structured IF₈ is shown in Figure S4. Partitioning of the total energy clearly reveals that the lower energy of the R^3 -phase is due to both the internal energy, U, and the pV-term. There is a clear difference between the two materials discernable in both the COHP-analysis and in the PDOS. For example, I 5d-F 2p interaction within Pn^3n -IF₈ (Figure S4c) shows antibonding states occupied below the Fermi level. This is in contrast to the bonding situation in R^3 -IF₈ (Figure 4c), which suggests a key role for the I 5d levels in stabilizing the latter near cubical structure. When comparing the PDOS of I 5d in the two materials, the high energy Pn^3n -phase of IF₈ (Figure S3b) shows unoccupied d_z² levels near the Fermi level. These are largely missing in the lower energy R^3 -phase (Figure 4d).

Figure S4. Unstable IF₈ with Pn^3n symmetry with (a) the square antiprismatic geometry. (b) The calculated change of enthalpy (ΔH), internal energy (ΔU), and $\Delta(PV)$ as a function of pressure of the Pn^3n -IF₈ with respect to R^3 -IF₈. (c) Crystal Orbital Hamilton Population (COHP) of Pn^3n -structured IF₈ (d) Partial density of states (PDOS) of I 5d-levels in Pn^3n -structured IF₈ at 300 GPa.

Figure S5. Integration of I 5d in R^3 -IF₈ below the Fermi level. Here, we have enlarged the lattice parameters to increase the volume of the F₈ cage in IF₈, and made single point calculations on the frozen geometries. The calculated I d-level PDOS clearly shows the d-participation decreasing (below the Fermi level) as the volume of the F₈ cage increases.

Figure S6. PDOS, COHP and ICOHP of Fm^3m -structured I₂, and the distance of the nearest neighbor I-I bond is 2.63 Å.

Figure S7. Partial density of states (PDOS) of $P2_1/m$ -structured IF₇ at 300 GPa.

Figure S8. PDOS of I and F in R^3 -structured (a) IF₈⁺, (b) IF₈ and (c) IF₈⁻ at 300 GPa.

Figure S9. Spin-polarized DOS of R^3 -structured IF₈ shows that the material is not magnetic. Magnetic moment of R^3 -structured IF₈ is zero.

Figure S10. Partial density of states (PDOS) of R^3 -structured IF₈ at 300 GPa calculated by WIEN2k.

Figure S11. The calculated electron localization functions (ELF) in the F-I-F plane for R^3 -structured IF₈ at 300 GPa. ELF ranging from 0.0 (blue) to 0.8 (red) is indicative of a high degree of covalency.

Figure S12. Equation of state for the R^3 phase of IF₈ calculated with pseudopotentialbased (VASP) and full-potential (WIEN2k) codes.

Supplementary Tables

Table	S1.	Decomposition	reaction	paths	and	decompos	sition	enthalpies	of	I-F
compou	unds	are assumed as	follows.	The po	ositive	e reaction	enthal	lpies indica	ite 1	these
conside	ered p	phases are metast	table.							

	Decomposition Reaction	Decomposition Enthalpy					
I-F compounds	path	(eV/atom)					
100 GPa							
I ₃ F	$3 I_3F \rightarrow 4 I_2 + IF_3$	0.0391					
I_2F	$6 \text{ I}_2 \text{F} \rightarrow 5 \text{ I}_2 + 2 \text{ IF}_3$	0.0475					
I_3F_2	$6 \text{ I}_3\text{F}_2 \rightarrow 7 \text{ I}_2 + 4 \text{ IF}_3$	0.0470					
IF	$3 \text{ IF} \rightarrow \text{I}_2 + \text{IF}_3$	0.0287					
IF ₂	$6 \text{ IF}_2 \rightarrow \text{I}_2 + 4 \text{ IF}_3$	0.0149					
IF ₄	$2 \text{ IF}_4 \rightarrow \text{ IF}_3 + \text{ IF}_5$	0.0295					
IF ₆	$2 \text{ IF}_6 \rightarrow \text{ IF}_5 + \text{ IF}_7$	0.0502					
IF ₈	$3 \text{ IF}_8 \rightarrow 2 \text{ IF}_7 + \text{IF}_{10}$	0.0400					
IF9	$3 \text{ IF}_9 \rightarrow \text{IF}_7 + 2 \text{ IF}_{10}$	0.0333					
IF ₁₁	$2 \text{ IF}_{11} \rightarrow \text{ IF}_{10} + \text{ IF}_{12}$	0.0416					
200 GPa							
I ₃ F	5 $I_3F \rightarrow 7 I_2 + IF_5$	0.0686					
I_2F	$10 \ I_2F \rightarrow 9 \ I_2 + 2 \ IF_5$	0.0868					
I_3F_2	$10 \ I_3F_2 \rightarrow 13 \ I_2 + 4 \ IF_5$	0.0930					

IF	5 IF \rightarrow 2 I ₂ + IF ₅	0.1082					
IF ₂	$10 \text{ IF}_2 \rightarrow 3 \text{ I}_2 + 4 \text{ IF}_5$	0.0304					
IF ₃	5 $IF_3 \rightarrow I_2 + 3 IF_5$	0.0688					
IF ₄	10 IF ₄ \rightarrow I ₂ + 8 IF ₅	0.0295					
IF ₆	$2 \text{ IF}_6 \rightarrow \text{ IF}_5 + \text{IF}_7$	0.0842					
IF ₈	$3 \text{ IF}_8 \rightarrow 2 \text{ IF}_7 + \text{IF}_{10}$	0.0366					
IF ₉	$3 \text{ IF}_9 \rightarrow \text{ IF}_7 + 2 \text{ IF}_{10}$	0.0026					
IF_{11}	$2 \text{ IF}_{11} \rightarrow \text{ IF}_{10} + \text{ IF}_{12}$	0.0074					
300 GPa							
I ₃ F	5 $I_3F \rightarrow 7 I_2 + IF_5$	0.1339					
I_2F	$10 I_2F \rightarrow 9 I_2 + 2 IF_5$	0.1648					
I_3F_2	10 $I_3F_2 \rightarrow 13 I_2 + 4 IF_5$	0.1722					
IF	5 IF \rightarrow 2 I ₂ + IF ₅	0.1846					
IF ₂	10 IF ₂ \rightarrow 3 I ₂ + 4 IF ₅	0.1135					
IF ₃	5 $IF_3 \rightarrow I_2 + 3 IF_5$	0.1096					
IF ₄	10 IF ₄ \rightarrow I ₂ + 8 IF ₅	0.1158					
IF ₆	$2 \text{ IF}_6 \rightarrow \text{ IF}_5 + \text{IF}_7$	0.0511					
IF9	$3 \text{ IF}_9 \rightarrow 2 \text{ IF}_8 + \text{IF}_{11}$	0.0034					
IF ₁₀	$3 \text{ IF}_{10} \rightarrow \text{ IF}_8 + 2 \text{ IF}_{11}$	0.0214					

(GPa)(Å, °)(fractional)IF_3100 $a = 3.804$ I (2e)0.4010.2500.170P21/m $b = 3.723$ F(2e)0.8820.2500.364 $a = 4.877$ $F(2a)$ 0.9600.2500.960	(Gl				nates		
IF_3100 $a = 3.804$ I (2e)0.4010.2500.170 $P2_1/m$ $b = 3.723$ F(2e)0.8820.2500.364 $a = 4.877$ $F(2a)$ 0.9600.2500.860		(Å, °)		(fractional)			
If 3 100 a 5.007 1 (20) 0.401 0.250 0.170 P21/m b = 3.723 F(2e) 0.882 0.250 0.364 a = 4.877 F(2e) 0.960 0.250 0.860	1(a = 3.804	I (2 _P) 0	401 0 250	0.170		
$\begin{array}{cccc} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 2 & - & 0 \\ 2 & - & 0 \\ 2 & $	1	h = 3,723	F(2e) = 0	0.250 0.250 0.250	0.170		
$C = 4 \delta I I$ $E(2e) = 0.969 = 0.250 = 0.860$	•	c = 4.877	F(2e) = 0) 969 0 250	0.360		
$\alpha = \gamma = 90.000$ F(2e) 0.427 0.250 0.623		$\alpha = \gamma = 90.000$	F(2e) = 0	0.427 0.250	0.623		
$\beta = 99.958$		$\beta = 99.958$	- (•)		0.020		
IF ₅ 100 $a = 3.699$ I(2i) 0.178 0.647 0.768	10	a = 3.699	I(2i) 0	0.178 0.647	0.768		
<i>P</i>-1 $b = 3.824$ $F(2i)$ 0.380 0.253 0.371		b = 3.824	F(2i) 0	0.380 0.253	0.371		
c = 56.673 F(2i) 0.885 0.250 0.541		c = 56.673	F(2i) 0	0.885 0.250	0.541		
$\alpha = 106.193$ F(2i) 0.623 0.755 0.956		$\alpha = 106.193$	F(2i) 0	0.623 0.755	0.956		
$\beta = 90.205$ F(2i) 0.618 0.772 0.292		$\beta = 90.205$	F(2i) 0	0.618 0.772	0.292		
$\gamma = 103.169$ F(2i) 0.108 0.752 0.122		$\gamma = 103.169$	F(2i) 0	0.108 0.752	0.122		
IF ₅ 200 $a = 3.393$ I (8g) 0.500 0.500 -0.14	20	<i>a</i> = 3.393	I(8g) 0	0.500 0.500	-0.145		
Pmmn $b = 6.235$ $F(8g)$ 0.500 0.166 -0.07	n	b = 6.235	F(8g) 0	0.500 0.166	-0.076		
c = 3.534 F(8g) 0.500 0.666 -0.58		c = 3.534	F(8g) 0	0.500 0.666	-0.584		
$\alpha = \beta = \gamma = 90.000 F(8g) 0.500 0.000 -0.57$		$\alpha = \beta = \gamma = 90.00$	F(8g) = 0	0.500 0.000	-0.578		
IF ₇ 100 $a = 3.854$ I(4e) 0.500 0.811 0.250	10	a = 3.854	I(4e) 0	0.500 0.811	0.250		
C2/c $b = 8.136$ F(8f)0.7890.9730.382		<i>b</i> = 8.136	F(8f) 0	0.789 0.973	0.382		
c = 7.364 F(8f) 0.125 0.148 0.411		c = 7.364	F(8f) 0	0.125 0.148	0.411		
$\alpha = \gamma = 90.000$ F(8f) 0.334 0.880 0.455		$\alpha = \gamma = 90.000$	F(8f) 0	0.334 0.880	0.455		
$\beta = 98.925 \qquad F(4e) \qquad 0.500 \qquad 0.780 \qquad 0.750$		$\beta = 98.925$	F(4e) 0	0.500 0.780	0.750		
IF ₇ 200 $a = 4.175$ I(2e) 0.676 0.750 0.014	20	a = 4.175	I(2e) 0	0.676 0.750	0.014		
$P2_1m$ F(4f) 0.131 0.053 0.768			F(4f) 0	0.131 0.053	0.768		
b = 6.239 F(4f) 0.359 0.485 0.255		b = 6.239	F(4f) 0	0.359 0.485	0.255		
c = 3.767 F(2e) 0.994 0.750 0.618		c = 3.767	F(2e) 0	0.994 0.750	0.618		
$\alpha = 90.000$ F(2e) 0.534 0.250 0.523		$\alpha = 90.000$	F(2e) = 0	0.534 0.250	0.523		
$\beta = 78.107$ F(2e) 0.744 0.250 0.000		$\beta = 78.107$	F(2e) = 0	0.744 0.250	0.000		
$\gamma = 90.000$		$\gamma = 90.000$	x(21)				
IF ₈ 300 $a = b = 5.402$ I (3b) 0.000 0.000 0.500	30	a = b = 5.402	I(3b) = 0	0.000 0.000	0.500		
R ³ $c = 5.626$ F(18f) 0.021 0.323 0.604		c = 5.626	F(18f) = 0	0.021 0.323	0.604		
$\alpha = \beta = 90.000$ F(6c) 0.000 0.000 0.1/9		$\alpha = \beta = 90.000$	F(6c) = 0	0.000 0.000	0.179		
$\frac{\gamma = 120.000}{120.000}$	10	$\gamma = 120.000$	I(2 .) 0	074 0 220	0.200		
IF ₁₀ 100 $a = 4.337$ I(21) 0.974 0.229 0.289 P ₁ $b = 5.622$ F (2i) 0.457 0.508 0.000	10	a = 4.337 b = 5.622	I(21) = 0 E(2i) = 0	0.974 0.229	0.289		
P-1 $b = 5.052$ $F(21)$ 0.457 0.508 0.093 $a = 6.060$ $F(2i)$ 0.707 0.164 0.729		b = 5.052	F(21) = 0 F(2i) = 0	0.437 0.308	0.093		
c = 0.900 $F(21)$ 0.707 0.164 0.728		c = 0.900 a = 101.220	$\Gamma(21) = 0$ $\Gamma(23) = 0$	0.707 0.104	0.728		
$\alpha = 101.529 \qquad F(21) \qquad 0.978 \qquad 0.305 \qquad 0.889 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.701 \qquad 0.965 \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.974 \\ R = 105.147 \qquad F(2i) \qquad 0.974 \\ F(2i) \qquad 0.974 \qquad 0.974 \\ F(2i) \qquad 0.974 \qquad 0.974 \\ F(2i) \qquad 0.$		a = 101.329 $\beta = 105.147$	F(21) = 0 $F(2i) = 0$	7.770 0.303	0.009		
$p = 103.147 \qquad F(21) \qquad 0.791 \qquad 0.805 \qquad 0.873$ $n = 104.585 \qquad F(2i) \qquad 0.221 \qquad 0.111 \qquad 0.709$		$\mu = 103.147$ n = 104.595	F(2i) = 0	0.771 0.803	0.073		
$\gamma = 104.363$ $\Gamma(21)$ 0.221 0.111 0.796 $\Gamma(2i)$ 0.254 0.406 0.255		y = 104.363	F(2i) = 0	0.221 0.111	0.790		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14	F(2i) = 0	378 0.470	0.333		
F(2i) = 0.526 = 0.601 = 0.945 F(2i) = 0.136 = 0.471 = 0.646			F(2i) = 0) 136 0 471	0.545		

Table S2. Details structures used for the calculations of decomposition enthalpy.

			F(2i)	0.775	0.852	0.502
			F(2i)	0.348	0.827	0.588
IF ₁₁	300	a = 3.595	I(2i)	0.908	0.398	0.310
<i>P-</i> 1		b = 3.690	F(2i)	0.989	0.847	0.912
		c = 9.449	F(2i)	0.795	0.642	0.535
		$\alpha = 95.018$	F(2i)	0.606	0.423	0.144
		$\beta = 93.275$	F(2i)	0.744	0.949	0.219
		$\gamma = 98.520$	F(2i)	0.353	0.863	0.570
			F(2i)	0.587	0.104	0.948
			F(2i)	0.918	0.152	0.609
			F(2i)	0.198	0.367	0.986
			F(2i)	0.832	0.342	0.816
			F(2i)	0.704	0.839	0.737
			F(2i)	0.467	0.357	0.647
IF ₁₂	100	a = 3.810	I(2i)	0.023	0.273	0.202
<i>P</i> -1		b = 6.944	F(2i)	0.938	0.926	0.900
		c = 7.242	F(2i)	0.594	0.105	0.878
		$\alpha = 74.123$	F(2i)	0.900	0.608	0.058
		$\beta = 97.915$	F(2i)	0.308	0.211	0.801
		$\gamma = 103.937$	F(2i)	0.188	0.867	0.398
			F(2i)	0.379	0.498	0.204
			F(2i)	0.574	0.280	0.818
			F(2i)	0.367	0.411	0.534
			F(2i)	0.150	0.609	0.650
			F(2i)	0.882	0.321	0.660
			F(2i)	0.261	0.955	0.662
			F(2i)	0.321	0.171	0.400
IF ₁₂	200	a = 3.811	I(1a)	0.000	0.000	0.000
<i>P</i> -1		b = 4.624	F(2i)	0.494	0.954	0.234
		c = 4.727	F(2i)	0.155	0.705	0.914
		$\alpha = 68.192$	F(2i)	0.610	0.712	0.683
		$\beta = 107.258$	F(2i)	0.765	0.488	0.609
		$\gamma = 97.940$	F(2i)	0.076	0.853	0.434
			F(2i)	0.289	0.354	0.862

Phase	Pressure (GPa)	I-F (Å)	F-F (Å)	I-I (Å)
IF ₃ - <i>P</i> 2 ₁ / <i>m</i>	100	1.909	2.530	4.277
IF ₅ - <i>P-</i> 1	100	1.867	2.125	3.583
IF ₅ -Pmmm	200	1.863	2.033	3.393
IF ₇ - <i>C</i> 2/ <i>c</i>	100	1.766	1.957	3.854
IF ₇ - <i>P</i> 2 ₁ / <i>m</i>	200	1.763	1.948	3.459
IF ₈ - <i>R</i> ³	300	1.789	1.894	3.639
IF ₁₀ - <i>P</i> -1	100	1.787	1.433	3.706
IF ₁₁ - <i>P</i> -1	300	1.775	3.595	1.431
IF ₁₂ - <i>P</i> -1(I)	100	1.779	3.810	1.416
IF ₁₂ - <i>P</i> -1(II)	200	1.773	3.811	1.450

Table S3. Bond length for IF_n (n > 2) compound. The I-I bond length in solid is 2.715 at 0 GPa, F-F bond length in molecule F_2 is 1.440 Å at 0 GPa.

Table S4. Integration of I 5d in R^3 -IF₈ below the Fermi level. Note that the PDOS is calculated by VASP and shown in Figure 4d. The integrated results show slightly more electrons occupying d_z^2 orbital than the other four d orbitals, which may explain the small structural deviation from a perfect cube.

Energy range	Integration of five I d				
55 to 0 oV	d_z^2	$d_{x}^{2} - y^{2}$	d_{xy}	$d_{\rm xz}$	d_{yz}
-55 to 0 eV	0.27	0.22	0.22	0.15	0.17

References

1. Y. Wang, J. Lv, L. Zhu, Y. Ma, Crystal Structure Prediction via Particle-Swarm Optimization, *Phy. Rew. B*, 2010, **82**, 094116.

2. Y. Wang, J. Lv, L. Zhu, Y. Ma, CALYPSO: A Method for Crystal Structure Prediction, *Comput. Phys. Commun.*, 2012, **183**, 2063-2070.

3. G. Kresse, J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, *Phy. Rew. B*, 1996, **54**, 11169.

4. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865.

Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B.Schlegel, G. E. Scuseria, M. A.Robb, J. R.Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G.Janesko, R.Gomperts, B.Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

6. R. F. Bader, A quantum theory of molecular structure and its applications, *Chem. Rev.*, 1991, **91**, 893-928.