Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Benzene Construction via Pd-catalyzed Cyclization of 2,7-Alkadiynylic Carbonates in the Presence of Alkynes

Yuchen Zhang, Wangteng Wu, Chunling Fu, Xin Huang* and Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.

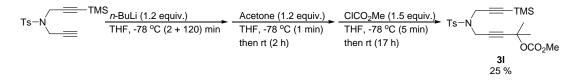
Fax: (+86)21-64167510

E-mail: xinhuangzju@zju.edu.cn; masm@sioc.ac.cn

Supporting Information

General information	S2
Synthesis of new starting materials	S3-S6
Synthesis of products 5aa/6aa~5la/6la.	S7-S29
Control experiments	S30-S38
Deuterium labelling experiments	S39-S43
Synthetic applications	S44-S48
References	S49
Copies of the ¹ H NMR and ¹³ C NMR spectra	S50-S140

General Information


¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ using a Bruker AM 300 MHz NMR spectrometer (¹H at 300 MHz, ¹³C at 75 MHz). IR spectra were recorded with a Perkin–Elmer 983G instrument. Elemental analyses were measured with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. Pd(OAc)₂ was purchased from *Adamas*. TFP was purchased from *J&K*. Na₂CO₃ was bought from *Hongguang Chemical Reagent Co., Ltd.* CH₃CN was refluxed over CaH₂ and distilled right before use. Unless otherwise indicated, chemicals and solvents were purchased from commercial suppliers. All the temperatures are referred to the oil baths used. 2,7-Alkadiynylic carbonates were prepared according to our previous literatures.^{1,2}

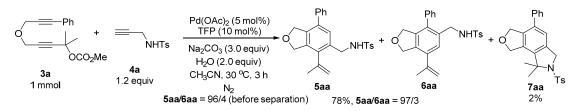
0Ph	<u>n-BuLi (1.2 equiv.)</u> THF, -78 °C, (20 + 90) min	Cyclohexanone (1.2 equiv.) THF, -78 °C, 20 min then rt, 110 min then -78 °C, 20 min	CICO₂Me (1.5 equiv.) THF, -78 ℃, 15 min then rt, 15 h	Ph MeO ₂ CO 3j
				43 %

Synthesis of starting material 3j.¹ (wwt-2-35)

To a solution of 3-(propargyloxy)phenylpropyne (5086.4 mg, 30 mmol) in THF (120 mL) was added dropwise *n*-BuLi (2.5 M in hexane, 14.4 mL, 36 mmol) at -78 °C within 20 minutes. After lithiation for 90 minutes at -78 °C, cyclohexanone (3.7 mL, d = 0.95 g/mL, 3515.0 mg, 36 mmol) was added dropwise with an addition funnel at -78 °C within 20 minutes. The cooling bath was removed and the reaction mixture was warmed up to room temperature and stirred for 110 minutes. Then the mixture was cooled down to -78 $^{\circ}$ C again for 20 minutes. Methyl chloroformate (3.5 mL, d = 1.22 g/mL, 4270.0 mg, 45 mmol) was added dropwise at -78 °C within 15 minutes. The cooling bath was removed and the reaction mixture was warmed up to room temperature and stirred for 15 h. After the reaction was complete as monitored by TLC (eluent: petroleum ether/ethyl acetate = 20/1), it was quenched with a saturated aqueous solution of NH₄Cl (50 mL). The resulting mixture was extracted with ethyl acetate (30 mL \times 3) and the combined organic phase was dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the crude residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50/1 (3570 mL) ot 10/1 (1100 mL)) to afford **3j** (4165.2 mg, 43%) as a liquid: ¹H NMR (300 MHz, CDCl₃) & 7.50-7.39 (m, 2 H, ArH), 7.35-7.27 (m, 3 H, ArH), 4.49 (s, 2 H, OCH₂), 4.40 (s, 2 H, OCH₂), 3.76 (s, 3 H, OCH₃), 2.24-2.10 (m, 2 H, CH₂), 1.95-1.80 (m, 2 H, CH₂), 1.75-1.46 (m, 5 H, CH₂ × 2 and one proton of CH₂), 1.41-1.23 (m, 1 H, one proton of CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 153.3, 131.8, 128.5, 128.3, 122.5, 86.6, 86.3, 84.3, 81.9, 77.6, 57.1, 56.8, 54.3, 36.8, 24.9, 22.6; IR (neat) v (cm⁻¹) 2938, 2859, 2236, 2197, 1752, 1490, 1441, 1349, 1274, 1247, 1217, 1181, 1130, 1082, 1016; MS (EI): *m/z* (%) 326 (M⁺, 1.79), 115 (100); HRMS calcd. for C₂₀H₂₂O₄ [M⁺]: 326.1518; Found: 326.1521.

Synthesis of starting material 3l.¹ (zyc-3-26)

To a solution of *N*-(prop-2-ynyl)-*N*-(3-(trimethylsilyl)prop-2-ynyl)-*p*-tolylsulfonamide (1596.2 mg, 5 mmol) in THF (12 mL) was added dropwise *n*-BuLi (2.5 M in hexane, 2.4 mL, 6 mmol) at -78 °C within 2 minutes. After lithiation for 120 minutes at -78 °C, acetone (0.45 mL, d = 0.788 g/mL, 354.6 mg, 6.1 mmol) was added dropwise with an addition funnel at -78 °C within 1 minutes. The cooling bath was removed and the reaction mixture was warmed up to room temperature and stirred for 2 hours. Then methyl chloroformate (0.58 mL, d = 1.22 g/mL, 707.6 mg, 7.5 mmol) was added dropwise at -78 °C within 5 minutes. The cooling bath was removed and the reaction mixture was warmed up to room temperature for 17 h. After the reaction mixture was warmed up to room temperature and stirred for 17 h. After the reaction was complete as monitored by TLC (eluent: petroleum ether/ethyl acetate = 20/1), it was quenched with a saturated aqueous solution of NH₄Cl (10 mL). The resulting mixture was dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the crude residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate/diethyl ether = 20/1/1) to afford **31** (560.2 mg, purity = 96%, 25%) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2 H, ArH), 7.30 (d, *J* = 8.1 Hz, 2 H, ArH), 4.18 (s, 4 H, OCH₂ × 2), 3.73 (s, 3 H, OCH₃), 2.42 (s, 3 H, CH₃), 1.53 (s, 6 H, CH₃ × 2), 0.05 (s, 9 H, CH₃ × 3); ¹³C NMR (75 MHz, CDCl₃) δ 153.2, 143.6, 135.0, 129.4, 127.7, 97.4, 90.7, 86.0, 77.1, 73.5, 54.1, 37.0, 36.3, 28.3, 21.3, -0.6; IR (neat) v (cm⁻¹) 2990, 2958, 2900, 2180, 1755, 1598, 1495, 1441, 1354, 1278, 1194, 1165, 1138, 1096, 1045, 1003; MS (EI): *m/z* (%) 435 (M⁺, 3.89), 73 (100); HRMS calcd. for C₂₁H₂₉NO₅SSi [M⁺]: 435.1536; Found: 435.1539.


Synthesis of starting material 4f.³ (zyc-1-124)

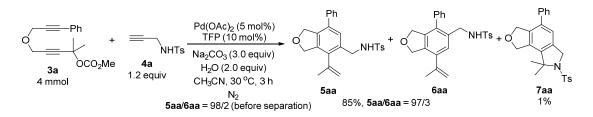
To a dry flask were added 6-bromoindole (1000.8 mg, 5 mmol)/toluene (4 mL), propargyl bromide (0.6 mL, d = 1.52 g/mL, 912.0 mg, 7.7 mmol)/toluene (6 mL), Bu₄NI (92.9 mg, 0.25 mmol), and an aqueous solution of NaOH (2492.4 mg in 2.5 mL of H₂O) sequentially. The reaction was complete after being stirred at room temperature for 4 hours as monitored by TLC. The resulting mixture was transferred to a separation funnel. Water (5 mL) and ethyl acetate (10 mL) were then added. After the separation of the organic phase, the aqueous phase was extracted with ethyl acetate (10 mL × 2). The combined organic phase was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the residue was purified by column chromatography on silica gel (eluent: petroleum ether (60-90 °C)/ethyl acetate = 150/1) to afford impure **4f** (985.6 mg), which was further purified by recrystallization (*n*-hexane/DCM) to afford pure **4f** (493.9 mg, 42%) as a solid: m.p. 51.8-52.7 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.54 (t, *J* = 0.9 Hz, 1 H, ArH), 7.46 (dd, *J*₁ = 8.3 Hz, *J*₂ = 0.5 Hz, 1 H, ArH), 7.22 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.5 Hz, 1 H, ArH), 7.14 (d, *J* = 3.3 Hz, 1 H, ArH), 6.48 (dd, *J*₁ = 3.3 Hz, *J*₂ = 0.9 Hz, 1 H, ArH), 4.77 (d, *J* = 2.4 Hz, 2 H, NCH₂), 2.40 (t, *J* = 2.6 Hz, 1 H, =CH); ¹³C NMR (75 MHz, CDCl₃) δ 136.5, 127.9, 127.7, 123.1, 122.3, 115.5, 112.4, 102.3, 77.1, 73.9, 35.8; IR (KBr) v (cm⁻¹) 3270, 3123, 3102, 2932, 2117, 1869, 1724, 1700, 1695, 1685, 1601, 1560, 1504, 1462, 1425, 1418, 1391, 1343, 1334, 1317, 1308, 1247, 1191, 1100, 1057, 1042; MS (EI): *m*/*z* (%) 235 (M(⁸¹Br)⁺, 32.16), 233 (M(⁷⁹Br)⁺, 31.09), 154 (100); Anal. Calcd. for C₁₁H₈BrN (%): C 56.44, H 3.44, N 5.98, Found: C 56.28, H 3.47, N 5.98.

Synthesis of products 5aa/6aa~5ia/6ia.

1. Synthesis of N-((7-phenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl)methyl)-

4-methylbenzenesulfonamide (5aa). (wwt-1-193)

Typical Procedure I: To a flame-dried Schlenk tube containing Na₂CO₃ (318.6 mg, 3.0 mmol) were added Pd(OAc)₂ (11.1 mg, 0.05 mmol), TFP (23.3 mg, 0.1 mmol), **4a** (250.9 mg, 1.2 mmol)/CH₃CN (2.0 mL), **3a** (286.7 mg, 1.0 mmol)/CH₃CN (6.0 mL), and H₂O (35.6 mg, 2.0 mmol)/CH₃CN (2.0 mL) sequentially under nitrogen atmosphere. The reaction was complete after being stirred at 30 °C for 3 hours as monitored by TLC. The resulting mixture was filtrated through a short column of silica gel and eluted with ethyl acetate (30 mL × 3). After evaporation, the crude residue (**5aa/6aa** = 96/4 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard) was purified by chromatography on silica gel (eluent: petroleum ether (60-90 °C)/ethyl acetate = 5/1 (360 mL) to petroleum ether (60-90 °C)/ethyl acetate/DCM = 4/1/1 (600 mL)) to afford **7aa** (6.7 mg, 2%) and **5aa/6aa** (326.7 mg, 78%, **5aa/6aa** = 97/3 as determined by ¹H NMR analysis of the isolated product).

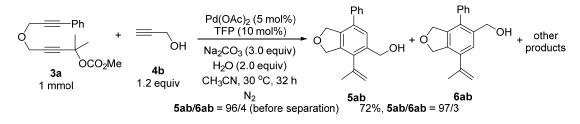

5aa/6aa (97/3): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 2 H, ArH), 7.48-7.30 (m, 3 H, ArH), 7.30-7.20 (m, 4 H, ArH), 7.15 (s, 1 H, ArH), 5.26-5.09 (m, 3 H, one proton of =CH₂ and OCH₂), 5.08-4.87 (m, 3 H, OCH₂ and NH), 4.85-4.77 (m, 1 H, one proton of =CH₂), 4.15 (d, J = 6.0 Hz, 2 H, NCH₂), 2.39

(s, 3 H, CH₃), 1.89 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 141.9, 139.3, 138.3, 136.8, 136.7, 136.0, 134.7, 132.9, 129.6, 128.6, 128.5, 127.6, 127.5, 127.1, 116.6, 73.7, 72.9, 44.3, 23.4, 21.4; IR (KBr) v (cm⁻¹) 3277, 3061, 2916, 2856, 1598, 1477, 1446, 1327, 1290, 1159, 1093, 1058; MS (EI): *m/z* (%) 419 (M⁺, 0.09), 264 ((M-Ts)⁺, 100); Anal. Calcd. for C₂₅H₂₅NO₃S (%): C 71.57, H 6.01, N 3.34; Found: C 71.53, H 6.07, N 3.17. The following signals are discernible for **6aa**: ¹H NMR (300 MHz, CDCl₃) δ 4.77-4.72 (m, 1 H, OCH₂), 3.98 (d, *J* = 6.3 Hz, 2 H, NCH₂), 2.06 (s, 3 H, CH₃).

This mixture may further be purified by recrystallization to afford the pure product **5aa**: m.p. 152.4-154.5 °C (*n*-hexane/DCM).

7aa: liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 2 H, ArH), 7.49-7.27 (m, 7 H, ArH), 7.10 (s, 1 H, ArH), 5.19 (s, 2 H, OCH₂), 5.11 (s, 2 H, OCH₂), 4.68 (s, 2 H, NCH₂), 2.41 (s, 3 H, CH₃), 1.78 (s, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 139.6, 139.2, 138.1, 137.9, 135.8, 133.8, 133.0, 129.5, 128.7, 127.8, 127.7, 127.4, 121.8, 72.8, 71.2, 70.6, 53.1, 27.1, 21.5; IR (neat) v (cm⁻¹) 2971, 2923, 2854, 1763, 1598, 1495, 1467, 1409, 1339, 1273, 1162, 1149, 1135, 1093, 1058, 1005; MS (EI): m/z (%) 419 (M⁺, 0.1), 404 ((M-CH₃)⁺, 100); HRMS calcd. for C₂₄H₂₂NO₃S [(M-CH₃)⁺]: 404.1320; Found: 404.1321.

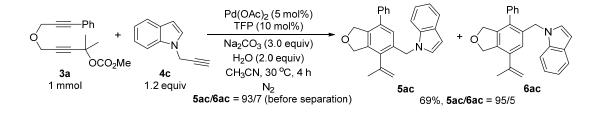
Gram-scale synthesis of 5aa. (zyc-1-166)



Following **Typical Procedure I**, the reaction of **3a** (1144.6 mg, 4.0 mmol), **4a** (1004.7 mg, 4.8 mmol), Pd(OAc)₂ (44.5 mg, 0.2 mmol), TFP (93.4 mg, 0.4 mmol), Na₂CO₃ (1272.2 mg, 12.0 mmol), and H₂O (144.4 mg, 8.0 mmol) in CH₃CN (40 mL) afforded **7aa** (20.5 mg, 1%) and **5aa/6aa** (1417.3 mg, 85%, **5aa/6aa** = 97/3 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate/DCM = 10/1/1 (2040 mL) to 5/1/1 (210 mL)) (**5aa/6aa** = 98/2 as determined by ¹H NMR analysis of the crude product using mesitylene (184 μ L) as the internal standard).

5aa/6aa (97/3): ¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 2 H, ArH), 7.44-7.18 (m, 7 H, ArH), 7.15 (s, 1 H, ArH), 5.25-5.16 (m, 1 H, one proton of =CH₂), 5.26-5.06 (m, 3 H, one proton of NH and OCH₂), 5.05-4.95 (m, 2 H, OCH₂), 4.84-4.76 (m, 1 H, one proton of =CH₂), 4.15 (d, *J* = 6.0 Hz, 2 H, NCH₂), 2.37 (s, 3 H, CH₃), 1.89 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 141.9, 139.3, 138.2, 136.9, 136.6, 136.0, 134.7, 132.9, 129.6, 128.6, 128.4, 127.6, 127.5, 127.1, 116.5, 73.6, 72.9, 44.2, 23.4, 21.4. The following signals are discernible for **6aa**: ¹H NMR (300 MHz, CDCl₃) δ 4.75-4.72 (m, 1 H, one proton of =CH₂), 3.97 (d, *J* = 6.0 Hz, 2 H, NCH₂), 2.04 (s, 3 H, CH₃).

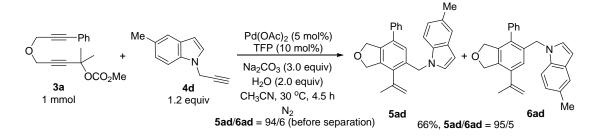
7aa: liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 2 H, ArH), 7.47-7.25 (m, 7 H, ArH), 7.10 (s, 1 H, ArH), 5.19 (s, 2 H, OCH₂), 5.11 (s, 2 H, OCH₂), 4.68 (s, 2 H, NCH₂), 2.41 (s, 3 H, CH₃), 1.78 (s, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 139.6, 139.2, 138.0, 137.8, 135.8, 133.8, 132.9, 129.5, 128.7, 127.8, 127.7, 127.3, 121.8, 72.8, 71.1, 70.6, 53.1, 27.1, 21.5. The following compounds **5ab/6ab** ~ **5ia/6ia** were prepared according to **Typical Procedure I**.


Synthesis of (7-phenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl)methanol
 (5ab). (wwt-1-189, wwt-2-90)

The reaction of Na₂CO₃ (316.4 mg, 3.0 mmol), Pd(OAc)₂ (11.3 mg, 0.05 mmol), TFP (23.1 mg, 0.1 mmol), **4b** (67.3 mg, 1.2 mmol), **3a** (285.4 mg, 1.0 mmol), and H₂O (36.2 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ab/6ab** (190.1 mg, 72%, **5ab/6ab** = 97/3 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10/1 (330 mL) to 5/1 (480 mL)) (**5ab/6ab** = 96/4 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ab/**6ab** (97/3): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.28 (m, 6 H, ArH), 5.29-5.23 (m, 1 H, one proton of =CH₂), 5.20-5.14 (m, 2 H, OCH₂), 5.09-5.02 (m, 2 H, OCH₂), 4.91-4.85 (m, 1 H, one proton of =CH₂), 4.68 (s, 2 H, OCH₂), 2.34 (br s, 1 H, OH), 2.00 (t, *J* = 1.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.4, 139.7, 137.9, 137.6, 136.2, 135.5, 134.6, 128.6, 127.7, 127.6, 127.4, 116.0, 73.7, 72.9, 62.4, 23.6; IR (neat) v (cm⁻¹) 3416, 3076, 3029, 2938, 2911, 2855, 1640, 1601, 1474, 1446, 1370, 1329, 1287, 1195, 1136, 1057; GC-MS (GC condition: injector: 280 °C; column: DB-5, temperature: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min)) (EI) *m/z* (%) for **5ab**: T_R 5.3 min: 266 (M⁺, 100); for **6ab**: T_R 5.2 min: 266 (M⁺, 100); HRMS calcd. for C₁₈H₁₈O₂ [M⁺]: 266.1307; Found: 266.1306. The following signals are discernible for **6ab**: ¹H NMR (300 MHz, CDCl₃) δ 5.23-5.20 (m, 1 H, one proton of =CH₂), 5.00-4.97 (m, 2 H, OCH₂), 4.84-4.80 (m, 2 H, OCH₂), 4.48 (s, 2 H, CH₂), 2.14-2.10 (m, 3 H, CH₃).

3. Synthesis of 1-((7-phenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl)methyl)-1*H*-indole (**5ac**). (wwt-2-123, zyc-1-68)

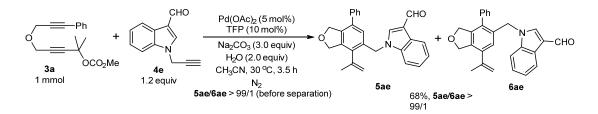


The reaction of Na₂CO₃ (317.6 mg, 3 mmol), Pd(OAc)₂ (11.3 mg, 0.05 mmol), TFP (23.1 mg, 0.1 mmol), **4c** (185.4 mg, 1.2 mmol), **3a** (285.4 mg, 1.0 mmol), and H₂O (36.2 mg, 2 mmol) in CH₃CN (10 mL) afforded **5ac/6ac** (252.9 mg, 69%, **5ac/6ac** = 95/5 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 40/1) (**5ac/6ac** = 93/7 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ac/6ac (95/5): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.57 (m, 1 H, ArH), 7.47-7.00 (m, 9 H, ArH), 6.93 (s, 1 H, ArH), 6.52-6.46 (m, 1 H, ArH), 5.34-5.26 (m, 3 H, one proton of =CH₂ and NCH₂), 5.21-5.15 (m, 2 H, OCH₂), 5.11-5.05 (m, 2 H, OCH₂), 4.99-4.93 (m, 1 H, one proton of =CH₂), 1.88 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.1, 139.4, 138.4, 136.6, 136.3, 135.8, 134.7, 133.9, 128.6, 128.0, 127.6, 127.4, 127.3, 121.5, 120.9, 119.4, 116.3, 109.5, 101.7, 73.7, 72.9, 47.2, 23.1; GC-MS (GC condition: injector: 280 °C; column: DB-5, temperature: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min)) (EI) *m/z* (%) for **5ac**: T_R 6.8 min: 365 (M⁺, 71.0), 350 (100); for **6ac**: T_R 7.5 min: 365 (M⁺, 31.1), 350 (100); HRMS calcd. for C₂₆H₂₃NO [M⁺]: 365.1780, Found: 365.1784. The following signals are discernible for **6ac**: ¹H NMR (300 MHz, CDCl₃) δ 6.46-6.42 (m, 1 H, ArH), 5.46-5.38 (m, 3 H, one proton of =CH₂ and NCH₂), 5.13 (s, 2 H, OCH₂).

This mixture may further be purified by recrystallization to afford the pure product **5ac**: m.p. 121.5-123.3 °C (*n*-hexane/DCM).

4. Synthesis of 5-methyl-1-((7-phenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl)methyl)-1*H*-indole (**5ad**). (zyc-1-102)

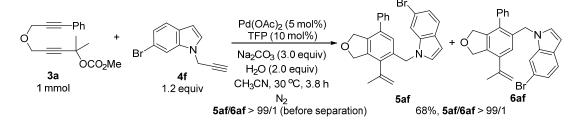


The reaction of Na₂CO₃ (317.9 mg, 3.0 mmol), Pd(OAc)₂ (11.8 mg, 0.05 mmol), TFP (24.1 mg, 0.1 mmol), **4d** (203.5 mg, 1.2 mmol), **3a** (285.7 mg, 1.0 mmol), and H₂O (37.5 mg, 2.1 mmol) in CH₃CN (10 mL) afforded **5ad/6ad** (249.9 mg, 66%, **5ad/6ad** = 95/5 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 30/1) (**5ad/6ad** = 94/6 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ad/6ad (95/5): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.10 (m, 7 H, ArH), 7.07-6.88 (m, 3 H, ArH), 6.42 (d, J = 3.3 Hz, 1 H, ArH), 5.37-5.24 (m, 3 H, one proton of =CH₂ and NCH₂), 5.22-5.16 (m, 2 H, OCH₂), 5.12-5.05 (m, 2 H, OCH₂), 5.01-4.93 (m, 1 H, one proton of =CH₂), 2.42 (s, 3 H, CH₃), 1.89 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.2, 139.5, 138.4, 136.6, 135.8, 134.8, 134.1, 128.9, 128.6, 128.1, 127.7, 127.45, 127.37, 123.2, 120.6, 116.3, 109.2, 101.1, 73.8, 73.0, 47.3, 23.2, 21.3; IR (KBr) v (cm⁻¹) 3073, 3028, 2965, 2909, 2832, 1508, 1485, 1474, 1437, 1390, 1371, 1345, 1333, 1301, 1256, 1227, 1180, 1132, 1059, 1029; MS (EI): m/z (%) 379 (M⁺, 77.0), 364 ((M-CH₃)⁺, 100.0); HRMS calcd. for C₂₇H₂₅NO [M⁺]: 379.1936, Found: 379.1937. The following signals are discernible for **6ad**: ¹H NMR (300 MHz, CDCl₃) δ 6.36 (s, 1 H, ArH), 5.44-5.41 (m, 3 H, NCH₂ and one proton of =CH₂), 2.45 (s, 3 H, CH₃).

This mixture may further be purified by recrystallization to afford the pure product **5ad**: m.p. 119.6-122.8 °C (DCM).

5. Synthesis of 1-((7-phenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl)methyl)-1*H*-indole-3-carbaldehyde (**5ae**). (zyc-1-79)

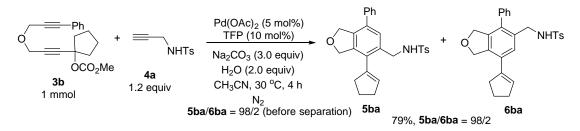


The reaction of Na₂CO₃ (318.8 mg, 3.0 mmol), Pd(OAc)₂ (11.5 mg, 0.05 mmol), TFP (24.2 mg, 0.1 mmol), **4e** (220.2 mg, 1.2 mmol), **3a** (285.9 mg, 1.0 mmol), and

H₂O (37.0 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ae** (268.9 mg, 68%, **5ae/6ae** > 99/1 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10/1 (880 mL) to 5/1 (1000 mL)) (**5ae/6ae** > 99/1 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ae: solid; m.p. 158.8-160.4 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 9.97 (s, 1 H, CHO), 8.35-8.26 (m, 1 H, ArH), 7.64 (s, 1 H, ArH), 7.45-7.22 (m, 8 H, ArH), 7.07 (s, 1 H, ArH), 5.38 (s, 2 H, NCH₂), 5.34-5.28 (m, 1 H, one proton of =CH₂), 5.25-5.19 (m, 2 H, OCH₂), 5.13-5.06 (m, 2 H, OCH₂), 4.98-4.91 (m, 1 H, one proton of =CH₂), 1.87 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 184.5, 141.7, 139.00, 138.96, 138.3, 137.7, 137.4, 136.2, 135.1, 131.6, 128.7, 127.9, 127.7, 127.6, 125.3, 124.0, 123.0, 122.0, 118.4, 116.7, 110.2, 73.7, 72.9, 48.0, 23.1; IR (KBr) v (cm⁻¹) 3111, 3080, 3059, 3019, 2962, 2938, 2911, 2836, 1659, 1615, 1577, 1531, 1466, 1435, 1406, 1388, 1352, 1259, 1157, 1136, 1057, 1046, 1013; MS (EI): *m/z* (%) 393 (M⁺, 100.0); HRMS calcd. for C₂₇H₂₃NO₂ [M⁺]: 393.1729, Found: 393.1728.

6. Synthesis of 6-bromo-1-((7-phenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl) methyl)-1*H*-indole (**5af**). (zyc-1-130)

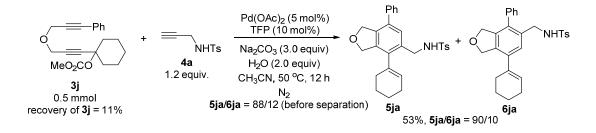

The reaction of Na₂CO₃ (317.5 mg, 3.0 mmol), Pd(OAc)₂ (11.6 mg, 0.05 mmol),

TFP (23.9 mg, 0.1 mmol), **4f** (281.7 mg, 1.2 mmol), **3a** (286.0 mg, 1.0 mmol), and H₂O (37.2 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5af** (304.3 mg, 68%, **5af/6af** > 99/1 as determined by ¹H NMR analysis of the isolated product) (The crude product was purified by column chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 40/1) to afford impure **5af** (365.9 mg), which was further purified with chromatography (petroleum ether (60-90 °C)/DCM = 1/1)) (**5af/6af** > 99/1 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5af: solid; m.p. 120.6-122.7 °C (DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.43 (m, 2 H, ArH), 7.42-7.22 (m, 5 H, ArH), 7.19 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz, 1 H, ArH), 7.03 (d, J = 3.3 Hz, 1 H, ArH), 6.91 (s, 1 H, ArH), 6.48 (d, J = 3.3 Hz, 1 H, ArH), 5.36-5.31 (m, 1 H, one proton of =CH₂), 5.28 (s, 2 H, NCH₂), 5.24-5.17 (m, 2 H, OCH₂), 5.14-5.06 (m, 2 H, OCH₂), 5.02-4.95 (m, 1 H, one proton of =CH₂), 1.88 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.0, 139.4, 138.6, 137.1, 136.9, 135.8, 134.9, 133.4, 128.7, 128.6, 127.7, 127.5, 127.4, 127.3, 122.8, 122.1, 116.5, 115.2, 112.6, 102.0, 73.7, 73.0, 47.3, 23.2; IR (KBr) v (cm⁻¹) 3072, 3025, 2964, 2938, 2898, 2854, 1637, 1602, 1561, 1504, 1461, 1439, 1391, 1366, 1332, 1319, 1241, 1205, 1187, 1130, 1094, 1057, 1043, 1031; MS (EI): m/z (%) 443 (M(⁸¹Br)⁺, 79.0), 445 (M(⁷⁹Br)⁺, 80.5), 428 (100); Anal. Calcd. for C₂₆H₂₂BrNO (%): C 70.28, H 4.99, N 3.15; Found: C 69.98, H 5.12, N 2.95.

7. Synthesis of N-((4-(cyclopentenyl)-7-phenyl-1,3-dihydroisobenzofuran-5-yl)meth-

yl)-4-methylbenzenesulfonamide (5ba). (wwt-2-130)

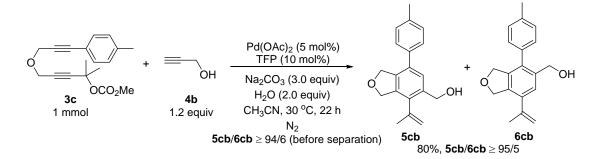

The reaction of Na₂CO₃ (318.2 mg, 3.0 mmol), Pd(OAc)₂ (11.3 mg, 0.05 mmol), TFP (23.4 mg, 0.1 mmol), **4a** (251.1 mg, 1.2 mmol), **3b** (311.7 mg, 1.0 mmol), and H₂O (36.0 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ba/6ba** (351.0 mg, 79%, **5ba/6ba** = 98/2 as determined by ¹H NMR analysis of the isolated product) (The crude product was purified by column chromatography on silica gel to afford a part of pure **5ba/6ba** (petroleum ether (60-90 °C)/ethyl acetate = 8/1 (450 mL) to 6/1 (490 mL)) and impure **5ba/6ba** (determined by TLC). The impure part was further purified by column chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 8/1) to afford another part of pure **5ba/6ba**) (**5ba/6ba** = 98/2 as determined by ¹H NMR analysis of the crude product using mesitylene (46 µL) as the internal standard).

5ba/6ba (98/2): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2 H, ArH), 7.42-7.27 (m, 3 H, ArH), 7.27-7.17 (m, 4 H, ArH), 7.15 (s, 1 H, ArH), 5.60-5.50 (m, 1 H, =CH), 5.29 (br s, 1 H, NH), 5.15-5.02 (m, 2 H, OCH₂), 5.02-4.85 (m, 2 H, OCH₂), 4.10 (d, J = 6.0 Hz, 2 H, NCH₂), 2.50-2.28 (m, 7 H, CH₂ × 2 and CH₃), 2.00-1.70 (m, 2 H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 143.1, 139.5, 139.1, 138.7, 136.6, 136.0, 134.2, 133.6, 131.5, 131.0, 129.3, 128.4, 127.4, 127.2, 126.8, 73.3, 73.0, 44.4, 36.2, 32.9, 23.6, 21.2; IR (neat) v (cm⁻¹) 3274, 3059, 3027, 2949, 2920, 2847, 1599, 1495, 1474, 1446, 1328, 1266, 1161, 1094, 1055; MS (EI): *m/z* (%)

290 ((M-Ts)⁺, 100); Anal. Calcd. for C₂₇H₂₇NO₃S (%): C 72.78, H 6.11, N 3.14; Found: C 72.58, H 6.31, N 3.06. The following signals are discernible for **6ba**: ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 2 H, ArH), 4.75-4.70 (m, 2 H, OCH₂), 3.95 (d, *J* = 6.3 Hz, 2 H, CH₂).

This mixture may further be purified by recystallization to afford the pure product **5ba**: m.p. 123.4-125.3 °C (*n*-hexane/DCM).

8. Synthesis of *N*-((4-(cyclohexenyl)-7-phenyl-1,3-dihydroisobenzofuran-5-yl)methyl)-4-methylbenzenesulfonamide (**5ja**). (zyc-3-38)

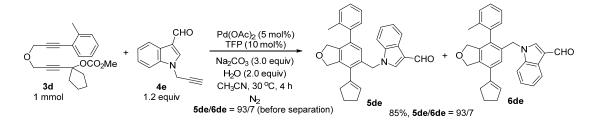


The reaction of Na₂CO₃ (159.0 mg, 1.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), TFP (11.6 mg, 0.05 mmol), **4a** (125.7 mg, 0.6 mmol), **3j** (163.4 mg, 0.5 mmol), and H₂O (18.1 mg, 1.0 mmol) in CH₃CN (5 mL) afforded **5ja/6ja** (121.1 mg, 53%, **5ja/6ja** = 90/10 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10/1 (1100 mL) to 5/1 (480 mL)) (**5ja/6ja** = 88/12 as determined by ¹H NMR analysis of the crude product using mesitylene (23 μ L) as the internal standard, recovery of **3j** = 11%).

5ja/6ja (90/10): solid; m.p. 152.2-153.8 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 8.1 Hz, 2 H, ArH), 7.44-7.29 (m, 3 H, ArH), 7.26 (d, *J* = 8.1 Hz, 4 H, ArH), 7.14 (s, 1 H, ArH), 5.57-5.44 (m, 1 H, =CH), 5.19-5.16 (m, 2 H,

OCH₂), 5.03-4.93 (m, 2 H, OCH₂), 4.88 (t, J = 6.0 Hz, 1 H, NH), 4.22-4.01 (m, 2 H, NCH₂), 2.39 (s, 3 H, CH₃), 2.13-1.91 (m, 4 H, CH₂ × 2), 1.70-1.50 (m, 4 H, CH₂ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 139.4, 138.9, 136.8, 136.7, 136.6, 135.1, 134.4, 133.3, 129.6, 128.6, 128.5, 127.6, 127.5, 127.4, 127.1, 73.7, 72.9, 44.4, 29.3, 25.1, 22.6, 21.7, 21.4; IR (neat) v (cm⁻¹) 3277, 2927, 2856, 1599, 1475, 1447, 1436, 1328, 1162, 1094, 1054; MS (EI): m/z (%) 459 (M⁺, 0.69), 304 ((M-Ts)⁺, 100); HRMS calcd. for C₂₈H₂₉NO₃S [M⁺]: 459.1868; Found: 459.1862. The following signals are discernible for **6ja**: ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2 H, ArH), 7.17 (d, J = 8.4 Hz, 2 H, ArH), 5.74-5.66 (m, 1 H, =CH), 4.75-4.70 (m, 2 H, OCH₂), 4.66 (t, J = 6.0 Hz, 1 H, NH), 4.97 (d, J = 6.3 Hz, 2 H, NCH₂), 2.15-2.25 (m, 4 H, CH₂ × 2), 1.82-1.77 (m, 4 H, CH₂ × 2).

Synthesis of (4-(propen-2-yl)-7-(p-tolyl)-1,3-dihydroisobenzofuran-5-yl)methanol
 (5cb). (cfsy-zy-138, wwt-2-23)

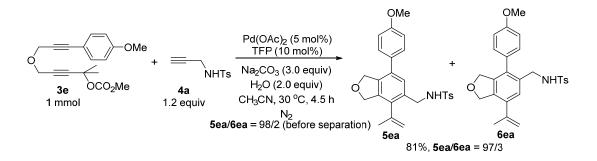


The reaction of Na₂CO₃ (317.5 mg, 3.0 mmol), Pd(OAc)₂ (11.3 mg, 0.05 mmol), TFP (23.4 mg, 0.1 mmol), **4b** (66.8 mg, 1.2 mmol), **3c** (300.7 mg, 1.0 mmol), and H₂O (36.0 μ L, d = 1.0 g/mL, 2.0 mmol) in CH₃CN (10 mL) afforded **5cb** (224.5 mg, 80%, **5cb/6cb** \geq 95/5 as determined by ¹H NMR analysis of the isolated product)

(eluent: petroleum ether (60-90 °C)/ethyl acetate = 20/1 (525 mL) to 5/1 (480 mL)) (**5cb/6cb** \geq 94/6 as determined by ¹H NMR analysis of the crude product using mesitylene (46 µL) as the internal standard).

5cb: liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1 H, ArH), 7.27 (d, J = 8.0 Hz, 2 H, ArH), 7.21 (d, J = 8.0 Hz, 2 H, ArH), 5.29-5.23 (m, 1 H, one proton of =CH₂), 5.21-5.14 (m, 2 H, OCH₂), 5.08-5.01 (m, 2 H, OCH₂), 4.91-4.85 (m, 1 H, one proton of =CH₂), 4.68 (s, 2 H, OCH₂), 2.38 (s, 3 H, CH₃), 2.23 (br s, 1 H, OH), 2.01 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 137.9, 137.5, 137.2, 136.8, 136.2, 135.3, 134.6, 129.3, 127.6, 115.9, 73.8, 72.9, 62.5, 23.7, 21.1; IR (neat) v (cm⁻¹) 3412, 3076, 3024, 2915, 2858, 1640, 1518, 1477, 1444, 1370, 1330, 1286, 1136, 1057; MS (EI): m/z (%) 280 (M⁺, 100); HRMS calcd. for C₁₉H₂₀O₂ [M⁺]: 280.1463; Found: 280.1465. The following signals are discernible for **6cb**: ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 8.0 Hz, 2 H, ArH), 5.01-4.98 (m, 1 H, one proton of =CH₂), 4.85-4.82 (m, 2 H, OCH₂), 4.49 (s, 2 H, OCH₂), 2.13 (s, 3 H, CH₃).

10. Synthesis of 1-((4-(cyclopentenyl)-7-(o-tolyl)-1,3-dihydroisobenzofuran-5-yl) methyl)-1*H*-indole-3-carbaldehyde (**5de**). (zyc-1-94)

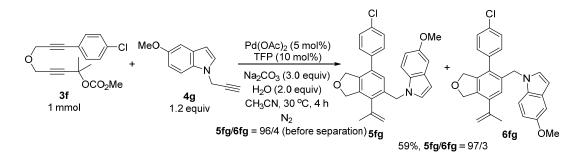

The reaction of **3d** (324.4 mg, 1.0 mmol), **4e** (219.8 mg, 1.2 mmol), Pd(OAc)₂ (11.1 mg, 0.05 mmol), TFP (23.7 mg, 0.1 mmol), Na₂CO₃ (317.8 mg, 3.0 mmol), and

H₂O (37.1 mg, 2.1 mmol) in CH₃CN (10 mL) afforded **5de/6de** (366.7 mg, 85%, **5de/6de** = 93/7 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10/1 (550 mL) to 5/1 (720 mL)) (**5de/6de** = 93/7 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5de/6de (93/7): solid; ¹H NMR (300 MHz, CDCl₃) δ 9.93 (s, 1 H, CHO), 8.36-8.15 (m, 1 H, ArH), 7.59 (s, 1 H, ArH), 7.40-6.95 (m, 7 H, ArH), 6.84 (s, 1 H, ArH), 5.72-5.58 (m, 1 H, =CH), 5.33 (s, 2 H, NCH₂), 5.14-5.01 (m, 2 H, OCH₂), 4.97-4.85 (m, 2 H, OCH₂), 2.52-2.25 (m, 4 H, CH₂ × 2), 2.00 (s, 3 H, CH₃), 1.96-1.79 (m, 2 H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 184.5, 139.6, 139.1, 138.6, 138.3, 137.3, 135.2, 134.7, 131.9, 131.7, 131.2, 130.3, 128.8, 128.6, 127.8, 125.7, 125.3, 123.9, 122.9, 122.0, 118.3, 110.2, 73.5, 73.4, 48.5, 36.1, 33.2, 23.6, 19.8; IR (KBr) v (cm⁻¹) 3045, 2951, 2925, 2846, 1655, 1617, 1577, 1560, 1530, 1466, 1401, 1387, 1362, 1332, 1164, 1134, 1081, 1051, 1040; MS (EI): *m/z* (%) 433 (M⁺, 100.0); Anal. Calcd. for C₃₀H₂₇NO₂ (%): C 83.11, H 6.28, N 3.23; Found: C 82.74, H 6.43, N 2.99. The following signals are discernible for **6de**: ¹H NMR (300 MHz, CDCl₃) δ 10.37 (s, 1 H, CHO), 8.64-8.55 (m, 1 H, ArH), 2.72-2.51 (m, 4 H, CH₂ × 2).

This mixture may further be purified by recrystallization to afford the pure product **5de**: m.p. 84.0-87.0 °C (DCM).

11. Synthesis of *N*-((7-(4-methoxyphenyl)-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl)methyl)-4-methylbenzenesulfonamide (**5ea**). (zyc-1-101)

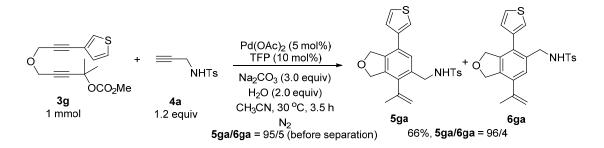


The reaction of **3e** (315.7 mg, 1.0 mmol), **4a** (252.2 mg, 1.2 mmol), Pd(OAc)₂ (11.4 mg, 0.05 mmol), TFP (23.9 mg, 0.1 mmol), Na₂CO₃ (318.4 mg, 3.0 mmol), and H₂O (37.0 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ea/6ea** (364.0 mg, 81%, **5ea/6ea** = 97/3 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 5/1 (360 mL) to 3/1 (600 mL)) (**5ea/6ea** = 98/2 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ea/6ea (97/3): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2 H, ArH), 7.24 (d, J = 7.8 Hz, 2 H, ArH), 7.19 (d, J = 9.0 Hz, 2 H, ArH), 7.14 (s, 1 H, ArH), 6.91 (d, J = 9.0 Hz, 2 H, ArH), 5.24-5.14 (m, 2 H, one proton of =CH₂ and NH), 5.14-5.09 (m, 2 H, OCH₂), 5.01-4.94 (m, 2 H, OCH₂), 4.83-4.75 (m, 1 H, one proton of =CH₂), 4.13 (d, J = 5.7 Hz, 2 H, NCH₂), 3.83 (s, 3 H, CH₃), 2.38 (s, 3 H, CH₃), 1.87 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 143.3, 142.0, 138.1, 136.9, 136.3, 135.5, 134.3, 132.8, 131.7, 129.5, 128.7, 128.1, 127.1, 116.5, 114.0, 73.7, 72.8, 55.2, 44.2, 23.4, 21.4; IR (KBr) v (cm⁻¹) 3265, 3005, 2963, 2927, 2895, 2834, 1654, 1643, 1610, 1519, 1482, 1450, 1438, 1412, 1348, 1325, 1290, 1251, 1211, 1179, 1159, 1117, 1093, 1054, 1036; MS (EI): *m*/*z* (%) 449 (M⁺, 0.2), 294 ((M-Ts)⁺, 100.0); Anal. Calcd. for C₂₆H₂₇NO₄S (%): C 69.46, H 6.05, N 3.12; Found: C 69.46, H 6.14, N 2.86. The following signals are discernible for **6ea**: ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, J = 8.1 Hz, 2 H, ArH), 4.93-4.91 (m, 2 H, OCH₂), 3.98 (d, J = 6.0 Hz, 2 H, NCH₂), 2.04 (s, 3 H, CH₃).

This mixture may further be purified by recrystallization to afford the pure product **5ea**: m.p. 152.4-154.1 °C (*n*-hexane/DCM).

12. Synthesis of 1-((7-(4-chlorophenyl)-4-(propen-2-yl)-1,3-dihydroisobenzofuran
-5-yl)methyl)-5-methoxy-1*H*-indole (5fg). (zyc-1-87)

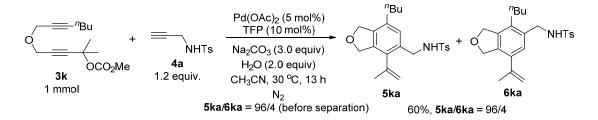

The reaction of Na₂CO₃ (318.2 mg, 3.0 mmol), Pd(OAc)₂ (11.5 mg, 0.05 mmol), TFP (24.8 mg, 0.1 mmol), **4g** (223.7 mg, 1.2 mmol), **3f** (320.8 mg, 1.0 mmol), and H₂O (36.8 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5fg/6fg** (252.3 mg, 59%, **5fg/6fg** = 97/3 as determined by ¹H NMR analysis of the isolated product) (The crude product was purified by column chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 20/1) to afford impure **5fg/6fg** (281.1 mg), which was further purified with chromatography (petroleum ether (60-90 °C)/ethyl acetate = 40/1 (1000 mL) to 20/1 (700 mL)) (**5fg/6fg** = 96/4 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5fg/6fg (97/3): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2 H,

ArH), 7.18-7.10 (m, 3 H, ArH), 7.08 (d, J = 2.4 Hz, 1 H, ArH), 7.04 (d, J = 3.0 Hz, 1 H, ArH), 6.87-6.77 (m, 2 H, ArH), 6.44 (dd, $J_1 = 3.3$ Hz, $J_2 = 0.6$ Hz, 1 H, ArH), 5.36-5.31 (m, 1 H, one proton of =CH₂), 5.29 (s, 2 H, NCH₂), 5.18-5.12 (m, 2 H, OCH₂), 5.12-5.06 (m, 2 H, OCH₂), 5.01-4.93 (m, 1 H, one proton of =CH₂), 3.83 (s, 3 H, OCH₃), 1.91 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 154.0, 142.0, 138.6, 137.9, 136.6, 136.0, 134.3, 133.58, 133.56, 131.6, 129.0, 128.9, 128.8, 128.6, 127.0, 116.4, 112.0, 110.3, 102.5, 101.3, 73.6, 73.0, 55.7, 47.4, 23.1; IR (KBr) v (cm⁻¹) 3101, 2986, 2964, 2903, 2830, 1619, 1577, 1487, 1449, 1385, 1366, 1342, 1295, 1255, 1239, 1187, 1150, 1131, 1092, 1054, 1026, 1014; MS (EI): m/z (%) 431 (M(³⁷Cl)⁺, 25.2), 429 (M(³⁵Cl)⁺, 69.1), 414 (100.0); HRMS calcd. for C₂₇H₂₄³⁵CINO₂ [M⁺]: 429.1496, Found: 429.1493. The following signals are discernible for **6fg**: ¹H NMR (300 MHz, CDCl₃) δ 6.38 (dd, $J_1 = 3.2$ Hz, $J_2 = 0.8$ Hz, 1 H, ArH), 5.22-5.18 (m, 2 H, OCH₂), 5.06-5.04 (m, 2 H, OCH₂), 4.93-4.91 (m, 1 H, one proton of =CH₂), 3.86 (s, 3 H, OCH₃), 1.97 (s, 3 H, CH₃).

This mixture may further be purified by recrystallization to afford the pure product **5fg**: m.p. 146.2-147.7 °C (*n*-hexane/DCM).

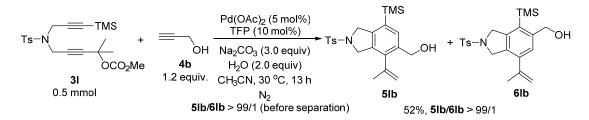
13. Synthesis of *N*-((4-(propen-2-yl)-7-(thiophen-3-yl)-1,3-dihydroisobenzofuran-5-yl)methyl)-4-methylbenzenesulfonamide (5ga). (zyc-1-131)



The reaction of Na₂CO₃ (318.2 mg, 3.0 mmol), Pd(OAc)₂ (11.4 mg, 0.05 mmol), TFP (24.1 mg, 0.1 mmol), **4a** (251.5 mg, 1.2 mmol), **3g** (292.1 mg, 1.0 mmol), and H₂O (37.0 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ga/6ga** (281.8 mg, 66%, **5ga/6ga** = 96/4 as determined by ¹H NMR analysis of the isolated product) (The crude product was purified by column chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 5/1 (500 mL) to 3/1 (300 mL)) to afford impure **5ga/6ga** (356.6 mg), which was further purified by recrystallization (*n*-hexane/DCM)) (**5ga/6ga** = 95/5 as determined by ¹H NMR analysis of the crude product using mesitylene (46 µL) as the internal standard).

5ga/6ga (96/4): solid; m.p. 146.2-148.3 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2 H, ArH), 7.35 (t, J = 3.9 Hz, 1 H, ArH), 7.26 (d, J = 3.6 Hz, 2 H, ArH), 7.23 (s, 1 H, ArH), 7.13 (d, J = 4.2 Hz, 2 H, ArH), 5.29 (t, J = 5.9 Hz, 1 H, NH), 5.22-5.10 (m, 3 H, one proton of =CH₂ and OCH₂), 5.03-4.93 (m, 2 H, OCH₂), 4.82-4.73 (m, 1 H, one proton of =CH₂), 4.12 (d, J = 5.7 Hz, 2 H, CH₂), 2.39 (s, 3 H, CH₃), 1.86 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 141.8, 139.7, 138.2, 136.7, 135.9, 135.7, 132.8, 129.6, 129.0, 127.5, 127.0, 126.7, 126.1, 121.9, 116.5, 74.1, 72.9, 44.1, 23.4, 21.4; IR (KBr) v (cm⁻¹) 3315, 3193, 2963, 2942, 2918, 2854, 1642, 1598, 1495, 1438, 1370, 1325, 1213, 1187, 1162, 1124, 1096, 1057, 1027; MS (EI): m/z (%) 425 (M⁺, 0.07), 270 ((M-Ts)⁺, 100.0); Anal. Calcd. for

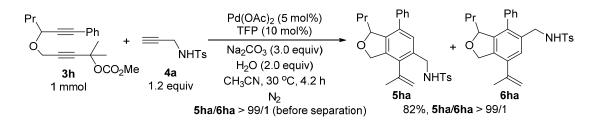
C₂₃H₂₃NO₃S₂ (%): C 64.92, H 5.45, N 3.29, Found: C 64.57, H 5.49, N 3.21. The following signals are discernible for **6ga**: ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 8.1 Hz, 2 H, ArH), 7.05-7.00 (m, 1 H, ArH), 6.88-6.83 (m, 1 H, ArH), 4.93-4.90 (m, 2 H, OCH₂), 4.02 (d, *J* = 5.7 Hz, 2 H, NCH₂), 2.03 (s, 3 H, CH₃).


14. Synthesis of *N*-((7-butyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl)methyl)-4-methylbenzenesulfonamide (5ka). (zyc-3-32)

The reaction of Na₂CO₃ (318.0 mg, 3.0 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol), TFP (23.3 mg, 0.1 mmol), **4a** (251.3 mg, 1.2 mmol), **3k** (266.2 mg, 1.0 mmol), and H₂O (36.1 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ka/6ka** (238.8 mg, 60%, **5ka/6ka** = 96/4 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10/1) (**5ka/6ka** = 96/4 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ka/6ka (96/4): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J* = 8.4 Hz, 2 H, ArH), 7.27 (d, *J* = 7.8 Hz, 2 H, ArH), 6.92 (s, 1 H, ArH), 5.37 (t, *J* = 5.3 Hz, 1 H, NH), 5.19-5.08 (m, 1 H, one proton of =CH₂), 5.08-4.96 (m, 2 H, OCH₂), 4.96-4.86 (m, 2 H, OCH₂), 4.75-4.65 (m, 1 H, one proton of =CH₂), 4.06 (d, *J* = 6.0 Hz, 2 H, NCH₂), 2.42 (s, 3 H, CH₃), 2.37 (t, *J* = 7.8 Hz, 2 H, CH₂), 1.82 (s, 3 H, CH₃), 1.55-1.38 (m, 2 H, CH₂), 1.38-1.21 (m, 2 H, CH₂), 0.90 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.1, 142.0, 137.0, 136.81, 136.76, 134.9, 134.3, 132.2, 129.4, 128.2, 127.0, 116.1, 73.0, 72.8, 44.0, 32.6, 31.9, 23.4, 22.4, 21.3, 13.7; IR (neat) v (cm⁻¹) 3277, 2956, 2930, 2859, 1639, 1598, 1444, 1329, 1161, 1094, 1056; MS (EI): *m/z* (%) 399 (M⁺, 0.04), 244 ((M-Ts)⁺, 100); HRMS calcd. for C₂₃H₂₉NO₃S [M⁺]: 399.1868; Found: 399.1864. The following signals are discernible for **6ka**: ¹H NMR (300 MHz, CDCl₃) δ 7.00 (s, 1 H, ArH), 4.85-4.80 (m, 1 H, one proton of =CH₂), 1.98 (s, 3 H, CH₃).

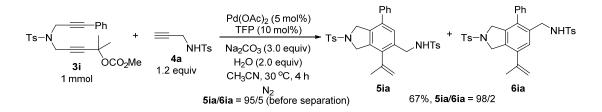
15. Synthesis of (4-(propen-2-yl)-2-tosyl-7-(trimethylsilyl)isoindolin-5-yl)methanol(5lb). (zyc-3-33)



The reaction of Na₂CO₃ (158.9 mg, 1.5 mmol), Pd(OAc)₂ (5.5 mg, 0.025 mmol), TFP (11.6 mg, 0.05 mmol), **4b** (33.7 mg, 0.6 mmol), **3l** (227.1 mg, 0.5 mmol), and H₂O (18.1 mg, 1.0 mmol) in CH₃CN (5 mL) afforded **5lb/6lb** (108.7 mg, 52%, **5lb/6lb** > 99/1 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10/1 (1000 mL) to 5/1 (600 mL)) (**5lb/6lb** > 99/1 as determined by ¹H NMR analysis of the crude product using mesitylene (23 μ L) as the internal standard).

5lb: solid; m.p. 112.9-114.2 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 2 H, ArH), 7.44 (s, 1 H, ArH), 7.32 (d, *J* = 7.8 Hz, 2 H, ArH),

5.31-5.21 (m, 1 H, one proton of =CH₂), 4.83-4.76 (m, 1 H, one proton of =CH₂), 4.71-4.63 (m, 2 H, NCH₂), 4.63-4.54 (m, 2 H, NCH₂), 4.49 (s, 2 H, OCH₂), 2.40 (s, 3 H, CH₃), 1.96 (s, 4 H, OH and CH₃), 0.27 (s, 9 H, CH₃ × 3); ¹³C NMR (75 MHz, CDCl₃) δ 143.7, 142.1, 140.6, 138.7, 136.0, 133.7, 133.3, 133.1, 129.8, 127.4, 116.1, 62.5, 54.4, 52.4, 23.6, 21.4, -1.0; IR (neat) v (cm⁻¹) 3527, 2954, 2908, 2856, 1637, 1597, 1383, 1347, 1251, 1163, 1098, 1066; MS (EI): *m/z* (%) 415 (M⁺, 18.08), 91 (100); HRMS calcd. for C₂₂H₂₉NO₃SSi [M⁺]: 415.1637; Found: 415.1635.

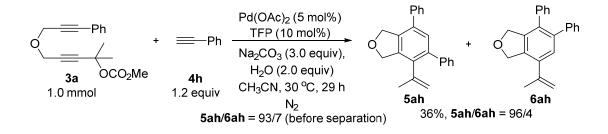

16. Synthesis of *N*-((7-phenyl-4-(propen-2-yl)-1-propyl-1,3-dihydroisobenzofuran-5yl)methyl)-4-methylbenzenesulfonamide (**5ha**). (zyc-1-71, wwt-2-132)

The reaction of **3h** (329.1 mg, 1.0 mmol), **4a** (251.5 mg, 1.2 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol), TFP (23.8 mg, 0.1 mmol), Na₂CO₃ (318.7 mg, 3.0 mmol), and H₂O (35.8 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ha** (378.7 mg, 82%, **5ha/6ha** > 99/1 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10/1 (500 mL) to 5/1 (500 mL)) (**5ha/6ha** > 99/1 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ha: solid; m.p. 127.4-130.2 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 2 H, ArH), 7.44-7.33 (m, 3 H, ArH), 7.28-7.20 (m, 4 H, ArH), 7.02 (s, 1 H, ArH), 5.66-5.56 (m, 1 H, OCH), 5.23-5.16 (m, 1 H, one proton of =CH₂), 5.04-4.92 (m, 2 H, OCH₂), 4.86-4.78 (m, 1 H, one proton of =CH₂), 4.75 (t, J = 6.0 Hz, 1 H, NH), 4.15 (d, J = 6.3 Hz, 2 H, NCH₂), 2.39 (s, 3 H, CH₃), 1.91 (s, 3 H, CH₃), 1.33-1.02 (m, 4 H, CH₂ × 2), 0.67 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 141.9, 139.4, 139.2, 138.2, 136.8, 135.9, 135.4, 132.6, 129.5, 129.3, 128.4, 128.0, 127.4, 127.1, 116.5, 84.0, 71.6, 44.2, 35.9, 23.4, 21.4, 18.1, 13.6; IR (neat) v (cm⁻¹) 3280, 3061, 3030, 2957, 2929, 2871, 1641, 1599, 1495, 1446, 1329, 1289, 1160, 1094, 1072; MS (EI): *m*/*z* (%): 461 (M⁺, 0.07), 418 ((M-C₃H₇)⁺, 20.6), 306 (100); Anal. Calcd. for C₂₈H₃₁NO₃S (%): C 72.85, H 6.77, N 3.03; Found: C 72.49, H 6.64, N 2.62.

17. Synthesis of *N*-((7-phenyl-4-(propen-2-yl)-2-(p-tosyl)isoindolin-5-yl)methyl)-4methylbenzenesulfonamide (**5ia**). (wwt-2-31, zyc-1-143)

The reaction of Na₂CO₃ (318.6 mg, 3.0 mmol), Pd(OAc)₂ (11.4 mg, 0.05 mmol), TFP (23.1 mg, 0.1 mmol), **4a** (251.2 mg, 1.2 mmol), **3i** (440.8 mg, 1.0 mmol), and H₂O (36.2 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ia/6ia** (382.8 mg, 67%, **5ia/6ia** = 98/2 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 7/1 to 5/1 to petroleum ether (60-90 °C)/ethyl acetate/DCM = 6/1/1) (**5ia/6ia** = 95/5 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).


5ia/6ia (98/2): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.77-7.64 (m, 4 H, ArH), 7.46-7.16 (m, 9 H, ArH), 7.08 (s, 1 H, ArH), 5.26-5.18 (m, 1 H, one proton of =CH₂), 4.79-4.74 (m, 1 H, one proton of =CH₂), 4.70 (t, *J* = 5.7 Hz, 1 H, NH), 4.64-4.57 (m, 2 H, NCH₂), 4.52-4.45 (m, 2 H, NCH₂), 4.08 (d, *J* = 6.0 Hz, 2 H, NCH₂), 2.40 (s, 3 H, CH₃), 2.38 (s, 3 H, CH₃), 1.87 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.7, 143.5, 141.4, 138.8, 137.2, 136.7, 136.1, 135.0, 133.6, 133.41, 133.37, 129.8, 129.6, 129.0, 128.6, 127.8, 127.7, 127.5, 127.0, 117.0, 53.6, 52.9, 44.1, 23.4, 21.4; IR (neat) v (cm⁻¹) 3301, 2968, 2923, 2847, 1597, 1493, 1477, 1426, 1344, 1329, 1157, 1095, 1067; MS (EI): *m/z* (%) 572 (M⁺, 2.87), 417 (100); Anal. Calcd. for C₃₂H₃₂N₂O₄S₂ (%): C 67.11, H 5.63, N 4.89; Found: C 66.97, H 5.86, N 4.81. The following signals are discernible for **6ia**: ¹H NMR (300 MHz, CDCl₃) δ 4.24-4.21 (m, 2 H, NCH₂), 3.89 (d, *J* = 6.3 Hz, 2 H, CH₂), 1.75 (s, 3 H, CH₃).

This mixture may further be purified by recrystallization to afford the pure product **5ia**: m.p. 160.7-163.0 °C (*n*-hexane/DCM).

Control experiments

1. Synthesis of 5,7-diphenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran (5ah).

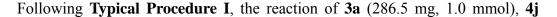
(zyc-1-113)

Following **Typical Procedure I**, the reaction of **3a** (286.1 mg, 1.0 mmol), **4h** (122.8 mg, 1.2 mmol), Pd(OAc)₂ (11.1 mg, 0.05 mmol), TFP (24.0 mg, 0.1 mmol), Na₂CO₃ (317.4 mg, 3.0 mmol), and H₂O (36.1 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ah/6ah** (119.7 mg, purity = 93%, 36%, **5ah/6ah** = 96/4 as determined by ¹H NMR analysis of the isolated product) (The crude product was purified by column chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 60/1) to afford pure **5ah/6ah** (determined by TLC). The impure **5ah/6ah** were purified by column chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 100/1) to afford pure **5ah/6ah** and impure **5ah/6ah** (determined by TLC). The impure part was further purified by chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 100/1) to afford another part of pure **5ah/6ah**.) (**5ah/6ah** = 93/7 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ah/6ah (96/4): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.27 (m, 11 H, ArH), 5.34-5.26 (m, 2 H, OCH₂), 5.25-5.19 (m, 1 H, one proton of =CH₂), 5.19-5.14 (m, 2 H, OCH₂), 5.07-5.02 (m, 1 H, one proton of =CH₂), 1.61 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 141.1, 139.8, 138.7, 136.2, 135.3, 134.5, 129.8, 129.1, 128.7, 128.0, 127.8, 127.5, 127.0, 116.9, 74.0, 73.8, 23.1; IR (KBr) v (cm⁻¹) 3075, 3054, 3022, 2966, 2942, 2899, 2826, 1654, 1633, 1598, 1561, 1497, 1464, 1442, 1388, 1367, 1356, 1259, 1144, 1061, 1024; MS (EI): *m/z* (%) 312 (M⁺, 65.83), 267 (100). The following signals are discernible for **6ah**: ¹H NMR (300 MHz, CDCl₃) δ 5.40-5.36 (m, 2 H, OCH₂), 4.93-4.91 (m, 1 H, one proton of OCH₂).

This mixture may further be purified by recrystallization to afford the pure product **5ah**: m.p. 87.2-89.2 °C (CHCl₃); Anal. Calcd. for $C_{23}H_{20}O$ (%): C 88.43, H 6.45; Found: C 88.20, H 6.51.

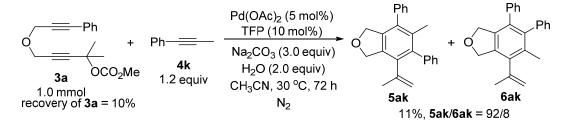
Synthesis of 5-butyl-7-phenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran (5ai).
 (zyc-2-28)


Following **Typical Procedure I**, the reaction of **3a** (285.9 mg, 1.0 mmol), **4i** (99.1 mg, 1.2 mmol), $Pd(OAc)_2$ (11.7 mg, 0.05 mmol), TFP (24.3 mg, 0.1 mmol), Na_2CO_3 (319.0 mg, 3.0 mmol), and H_2O (35.7 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ai/6ai** (98.4 mg, purity = 95%, 32%, **5ai/6ai** = 95/5 as determined by ¹H NMR of the isolated product) (The crude product was purified by column chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 100/1) to afford impure **5ai/6ai** (163.4 mg), which was further purified by column

chromatography on silica gel (petroleum ether (60-90 °C)/ethyl acetate = 100/1)) (**5ai/6ai** = 94/6 as determined by ¹H NMR analysis of the crude product using mesitylene (46 μ L) as the internal standard).

5ai/6ai (95/5): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.27 (m, 5 H, ArH), 7.20 (s, 1 H, ArH), 5.28-5.23 (m, 1 H, one proton of =CH₂), 5.23-5.18 (m, 2 H, OCH₂), 5.10-5.03 (m, 2 H, OCH₂), 4.92-4.85 (m, 1 H, one proton of =CH₂), 2.63 (t, *J* = 8.0 Hz, 2 H, CH₂), 2.02 (t, *J* = 1.2 Hz, 3 H, CH₃), 1.64-1.52 (m, 2 H, CH₂), 1.47-1.31 (m, 2 H, CH₂), 0.93 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.1, 140.2, 139.6, 137.8, 136.1, 134.20, 134.18, 128.6, 128.5, 127.7, 127.2, 115.5, 73.9, 73.3, 34.3, 32.0, 23.8, 22.8, 14.0; IR (neat) v (cm⁻¹) 3076, 3028, 2956, 2925, 2858, 1640, 1601, 1569, 1500, 1475, 1446, 1373, 1363, 1338, 1287, 1136, 1103, 1089, 1058, 1032; MS (EI): *m/z* (%) 292 (M⁺, 100); HRMS calcd. for C₂₁H₂₄O [M⁺]: 292.1827, Found: 292.1826. The following signals are discernible for **6ai**: ¹H NMR (300 MHz, CDCl₃) δ 7.12 (s, 1 H, ArH), 4.84-4.79 (m, 1 H, one proton of =CH₂), 2.47 (t, *J* = 7.0 Hz, 2 H, CH₂), 2.16-2.13 (m, 3 H, CH₃), 0.77 (t, *J* = 7.2 Hz, 3 H, CH₃).

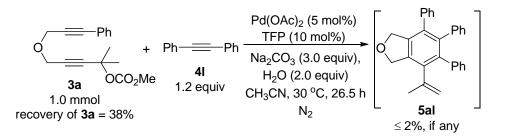
3. Synthesis of (4,6-diphenyl-7-(propen-2-yl)-1,3-dihydroisobenzofuran-5-yl)meth -anol (5aj). (zyc-2-35)



(159.4 mg, 1.2 mmol), Pd(OAc)₂ (11.9 mg, 0.05 mmol), TFP (23.4 mg, 0.1 mmol), Na₂CO₃ (318.7 mg, 3.0 mmol), and H₂O (36.1 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5aj** (75.4 mg, 22%, **5aj/6aj** > 99/1 as determined by ¹H NMR of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10/1) (**5aj/6aj** > 99/1 as determined by ¹H NMR of the crude product using mesitylene (46 μ L) as the internal standard, recovery of **3a** = 3%).

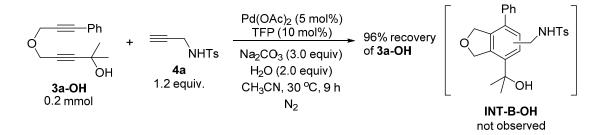
5aj: solid; m.p. 146.6-148.5 °C (DCM/hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.28 (m, 10 H, ArH), 5.18-5.12 (m, 2 H, OCH₂), 5.08-5.02 (m, 1 H, one proton of =CH₂), 4.97-4.91 (m, 2 H, OCH₂), 4.88-4.81 (m, 1 H, one proton of =CH₂), 4.22 (d, J = 6.0 Hz, 2 H, OCH₂), 1.58 (t, J = 1.1 Hz, 3 H, CH₃), 1.32 (t, J = 6.0 Hz, 1 H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 140.3, 138.9, 138.5, 137.8, 136.8, 136.5, 135.8, 135.2, 130.2, 128.8, 128.4, 127.7, 127.5, 127.1, 116.5, 74.1, 74.0, 59.5, 23.2; IR (KBr) v (cm⁻¹) 3447, 3074, 3060, 3028, 2951, 2911, 2860, 1639, 1598, 1497, 1469, 1441, 1364, 1310, 1272, 1205, 1177, 1049, 1024, 1001; MS (EI): m/z (%) 342 (M⁺, 19.42), 279 (100); HRMS calcd. for C₂₄H₂₂O₂ [M⁺]: 342.1620, Found: 342.1620.

4. Synthesis of 5-methyl-4,6-diphenyl-7-(propen-2-yl)-1,3-dihydroisobenzofuran
(5ak). (zyc-2-51, zyc-2-60)

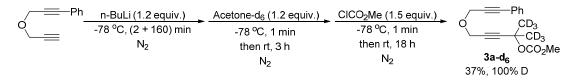

Following Typical Procedure I, the reaction of 3a (286.2 mg, 1.0 mmol), 4k

(143.4 mg, 1.2 mmol), Pd(OAc)₂ (11.3 mg, 0.05 mmol), TFP (23.8 mg, 0.1 mmol), Na₂CO₃ (318.3 mg, 3.0 mmol), and H₂O (36.1 mg, 2.0 mmol) in CH₃CN (10 mL) afforded **5ak/6ak** (36.0 mg, 11%, **5ak/6ak** = 92/8 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 100/1) (Recovery of **3a** = 10% as determined by ¹H NMR of the crude product using mesitylene (46 μ L) as the internal standard).

5ak/6ak (92/8): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.18 (m, 10 H, ArH), 5.17-5.09 (m, 2 H, OCH₂), 5.05-4.99 (m, 1 H, one proton of =CH₂), 4.95-4.89 (m, 2 H, OCH₂), 4.87-4.81 (m, 1 H, one proton of =CH₂), 1.85 (s, 3 H, CH₃), 1.57 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.9, 140.5, 139.8, 139.7, 137.3, 136.2, 134.7, 134.2, 133.3, 130.1, 128.7, 128.5, 127.8, 127.2, 126.7, 116.2, 74.3, 74.1, 23.3, 18.4; IR (KBr) v (cm⁻¹) 3075, 3045, 3019, 2959, 2899, 2850, 1493, 1439, 1371, 1358, 1330, 1289, 1261, 1220, 1177, 1056, 1027; GC-MS (GC condition: injector: 280 °C; column: DB-5, temperature: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min)) (EI) *m/z* (%) for **5ak**: T_R 5.6 min: 326 (M⁺, 100), 311 ((M-CH₃)⁺, 29.97); for **6ak**: T_R 5.4 min: 326 (M⁺, 100), 311 ((M-CH₃)⁺, 18.14); HRMS calcd. for C₂₄H₂₂O [M⁺]: 326.1671, Found: 326.1672. The following signals are discernible for **6ak**: ¹H NMR (300 MHz, CDCl₃) δ 7.19-7.06 (m, 6 H, ArH), 7.03-6.96 (m, 4 H, ArH), 5.30-5.25 (m, 1 H, one proton of =CH₂), 4.98-4.95 (m, 2 H, OCH₂), 2.05 (s, 6 H, CH₃ × 2).

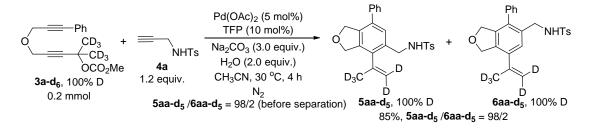

This mixture may further be purified by recrystallization to afford the pure product **5ak**: m.p. 146.8-148.3 °C (DCM/*n*-hexane).

5. The reaction of **3a** and **4l** under the standard conditions. (zyc-2-138)


Following **Typical Procedure I**, the reaction of **3a** (286.1 mg, 1.0 mmol), **4l** (213.8 mg, 1.2 mmol), Pd(OAc)₂ (11.1 mg, 0.05 mmol), TFP (23.8 mg, 0.1 mmol), Na₂CO₃ (317.9 mg, 3.0 mmol), and H₂O (35.9 mg, 2.0 mmol) in CH₃CN (10 mL) afforded 7.3 mg of a complicated mixture (**5al**, $\leq 2\%$, if any) with 38% recovery of **3a** as determined by ¹H NMR analysis of the crude residue using mesitylene (46 µL) as the internal standard.

6. The reaction of **3a-OH** and **4a** under the standard conditions. (zyc-3-31)

Following **Typical Procedure I**, the reaction of **3a-OH** (45.5 mg, 0.2 mmol), **4a** (50.3 mg, 0.24 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), TFP (4.7 mg, 0.02 mmol), Na₂CO₃ (63.7 mg, 0.6 mmol), and H₂O (7.2 μ L, d = 1.0 g/mL, 7.2 mg, 0.4 mmol) in CH₃CN (2 mL) afforded 96% recovery of **3a-OH** as determined by ¹H NMR analysis of the crude residue using mesitylene (9.2 μ L) as the internal standard.

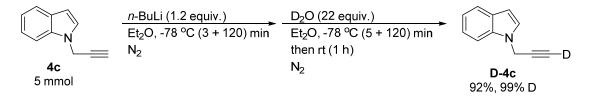

7. Synthesis of starting material **3a-d**₆. (zyc-2-74)

To a solution of 3-(propargyloxy)-phenyl-1-propyne (942.7 mg, 5.54 mmol) in THF (13 mL) were added dropwise n-BuLi (2.5 M in hexane, 2.64 mL, 6.6 mmol) at -78 °C within 2 minutes under N₂ atmosphere. After lithiation for 160 minutes at -78 ^oC, acetone-d₆ (0.5 mL, d = 0.852 g/mL, 426.0 mg, 6.64 mmol, 99.8% D) was added dropwise with an addition funnel at -78 °C within 1 minute. After the cooling bath was removed, the reaction mixture was warmed up to room temperature and stirred for 3 h. Then methyl chloroformate (0.64 mL, d = 1.22 g/mL, 780.8 mg, 8.26 mmol) was added dropwise at -78 °C within 1 minute. After the cooling bath was removed, the reaction mixture was warmed up to room temperature and stirred for 18 h. After the reaction was complete as monitored by TLC (eluent: petroleum ether/ ethyl acetate = 10/1), it was quenched with an aqueous solution of saturated NH₄Cl (10 mL). The resulting mixture was extracted with ethyl acetate (10 mL \times 3) and the combined organic phase was dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the crude residue was purified by chromatography on silica gel (eluent: petroleum ether (60-90 °C)/ ethyl acetate = 100/1 (500 mL), and then petroleum ether/ ethyl acetate/diethyl ether = 100/1/1 (1500 mL) to 100/4/1 (800 mL)) to afford **3a-d_6** (594.3 mg, 37%, 100% D) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.41 (m, 2 H, ArH), 7.36-7.27 (m, 3 H, ArH), 4.47 (s, 2 H, OCH₂), 4.36 (s, 2 H, OCH₂), 3.76 (s, 3 H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.5, 131.7, 128.5, 128.2, 122.5, 87.3,

86.7, 84.3, 80.0, 73.8, 57.2, 56.8, 54.3, 27.8 (septet); IR (neat) v (cm⁻¹) 3054, 3022,
2955, 2898, 2852, 1755, 1599, 1490, 1442, 1383, 1351, 1271, 1233, 1194, 1119, 1083,
1013; MS (EI): *m/z* (%) 292 (M⁺, 1.39), 115 (100); HRMS calcd. for C₁₇H₁₂D₆O₄[M⁺]:
292.1582, Found: 292.1582.

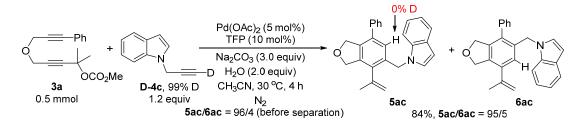
8. Synthesis of *N*-((7-phenyl-4-(propen-2-yl-*d*₅)-1,3-dihydroisobenzofuran-5-yl)methyl)-4-methylbenzenesulfonamide (**5aa-d**₅). (zyc-2-76)

Following **Typical Procedure I**, the reaction of **3a-d**₆ (58.6 mg, 0.2 mmol), **4a** (50.4 mg, 0.24 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), TFP (4.8 mg, 0.02 mmol), Na₂CO₃ (63.6 mg, 0.4 mmol), and H₂O (7.2 μ L, d = 1.00 g/mL, 7.2 mg, 0.4 mmol) in CH₃CN (2 mL) afforded **5aa-d**₅/**6aa-d**₅ (72.4 mg, 85%, 100% D, **5aa-d**₅/**6aa-d**₅ = 98/2 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 5/1) (**5aa-d**₅/**6aa-d**₅ = 98/2 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum analysis of the crude product using mesitylene (9.2 μ L) as the internal standard).


5aa-d₅/**6aa-d**₅ (98/2): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 2 H, ArH), 7.42-7.10 (m, 8 H, ArH), 5.36-5.20 (t, *J* = 6.0 Hz, 1 H, NH), 5.15-5.04 (m, 2 H, OCH₂), 5.03-4.90 (m, 2 H, OCH₂), 4.14 (d, *J* = 5.7 Hz, 2 H, NCH₂), 2.36 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 141.6, 139.3, 138.1, 136.9, 136.5, 135.9, 134.6, 133.0, 129.5, 128.5, 128.4, 127.6, 127.4, 127.0, 116.0 (pentet), 73.6, 72.8, 44.1,

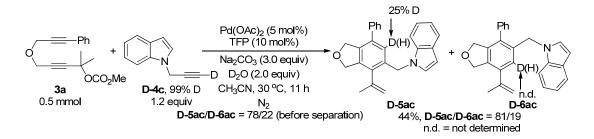
22.3 (septet); IR (KBr) v (cm⁻¹) 3259, 3054, 2901, 2830, 1598, 1495, 1470, 1453, 1330, 1306, 1153, 1114, 1096, 1073, 1050; MS (EI): m/z (%) 424 (M⁺, 0.14), 269 ((M-Ts)⁺, 100); HRMS calcd. for C₂₅H₂₀D₅NO₃S [M⁺]: 424.1869, Found: 424.1870. The following signals are discernible for **6aa**: ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2 H, ArH), 4.74-4.70 (m, 2 H, CH₂), 3.96 (d, J = 5.7 Hz, 2 H, NCH₂).

This mixture may further be purified by recrystallization to afford the pure product **5aa-d**₅: m.p. 150.4-152.0 $^{\circ}$ C (*n*-hexane/DCM).


Deuterium labelling experiments

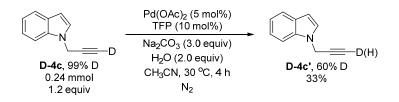
1. Synthesis of starting material **D-4c**. (zyc-3-35)

To a solution of 4c (776.1 mg, 5.0 mmol) in Et₂O (30 mL) were added dropwise *n*-BuLi (2.5 M in hexane, 2.4 mL, 6.0 mmol) at -78 °C within 3 minutes under N₂ atmosphere. After lithiation for 120 minutes at -78 °C, D₂O (2.2 mL, d = 1.0 g/mL, 2200 mg, 110 mmol, 99.9% D) was added dropwise at -78 °C within 5 minutes. The resulting mixture was stirred for 2 hours. After the cooling bath was removed, the reaction mixture was warmed up to room temperature and stirred for 1 h. The resulting mixture was dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the crude residue was purified by chromatography on silica gel (eluent: petroleum ether (60-90 °C)/ ethyl acetate = 10/1) to afford **D-4c** (719.6 mg, 92%, 99%) D) as a solid: m.p. 41.9-42.5 °C (*n*-hexane/Et₂O, -20 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, J = 7.8 Hz, 1 H, ArH), 7.40 (d, J = 8.1 Hz, 1 H, ArH), 7.30-7.21 (m, 1 H, ArH), 7.20 (d, J = 3.3 Hz, 1 H, ArH), 7.18-7.09 (m, 1 H, ArH), 6.57-6.51 (m, 1 H, ArH), 4.86 (s, 2 H, NCH₂); ¹³C NMR (75 MHz, CDCl₃) δ 135.7, 128.8, 127.2, 121.8, 121.1, 119.8, 109.3, 102.0, 77.2 (t, J = 7.6 Hz), 73.2 (t, J = 38.5 Hz), 35.7; IR (neat) v (cm⁻¹) 3055, 2589, 1986, 1612, 1514, 1484, 1463, 1397, 1363, 1335, 1315, 1259, 1189, 1012; MS (EI): m/z (%) 156 (M⁺, 61.71), 155 (100); HRMS calcd. for C₁₁H₈DN $[M^+]$: 156.0798, Found: 156.0795. The following signal is discernible for 4c: 2.32 (s, 1 H, ≡CH).

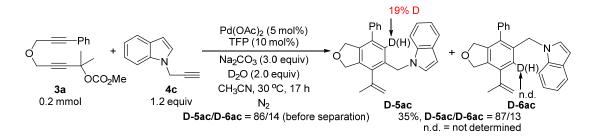

2. Synthesis of 5ac. (zyc-3-36)

Following **Typical Procedure I**, the reaction of Na₂CO₃ (159.0 mg, 1.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), TFP (11.7 mg, 0.05 mmol), **D-4c** (93.8 mg, 0.6 mmol, 100% D), **3a** (143.0 mg, 0.5 mmol), and H₂O (18.1 mg, 1.0 mmol) in CH₃CN (5 mL) afforded **5ac/6ac** (153.4 mg, 84%, 0% D, **5ac/6ac** = 95/5 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 30/1) (**5ac/6ac** = 96/4 as determined by ¹H NMR analysis of the crude product using mesitylene (23 μ L) as the internal standard).

5ac/6ac (95/5): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 7.8 Hz, 1 H, ArH), 7.45-7.03 (m, 9 H, ArH), 6.93 (s, 1 H, ArH), 6.56-6.47 (m, 1 H, ArH), 5.37-5.28 (m, 3 H, one proton of =CH₂ and NCH₂), 5.23-5.17 (m, 2 H, OCH₂), 5.13-5.06 (m, 2 H, OCH₂), 5.02-4.95 (m, 1 H, one proton of =CH₂), 1.89 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.1, 139.4, 138.4, 136.6, 136.3, 135.8, 134.8, 134.0, 128.6, 128.0, 127.6, 127.5, 127.3, 121.5, 120.9, 119.4, 116.3, 109.5, 101.7, 73.7, 73.0, 47.2, 23.1. The following signals are discernible for **6ac**: ¹H NMR (300 MHz, CDCl₃) δ 6.48-6.44 (m, 1 H, ArH), 5.46-5.38 (m, 3 H, one proton of =CH₂ and NCH₂), 5.15 (s, 2 H, OCH₂).


3. Synthesis of **D-5ac**. (zyc-3-46)

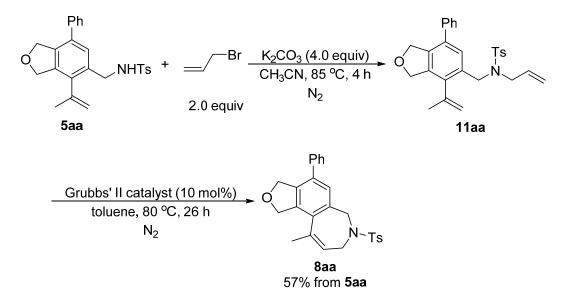
Following **Typical Procedure I**, the reaction of Na₂CO₃ (158.9 mg, 1.5 mmol), Pd(OAc)₂ (5.5 mg, 0.025 mmol), TFP (11.5 mg, 0.05 mmol), **D-4c** (93.7 mg, 0.6 mmol, 100% D), **3a** (143.0 mg, 0.5 mmol), and D₂O (20.1 mg, 1.0 mmol) in CH₃CN (5 mL) afforded **D-5ac/D-6ac** (81.1 mg, 44%, 25% D, **D-5ac/D-6ac** = 81/19 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 30/1) (**D-5ac/D-6ac** = 78/22 as determined by ¹H NMR analysis of the crude product using mesitylene (23 μ L) as the internal standard).


D-5ac/D-6ac (81/19): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 7.8 Hz, 1 H, ArH), 7.45-7.01 (m, 9 H, ArH), 6.51 (d, *J* = 3.0 Hz, 1 H, ArH), 5.34-5.25 (m, 3 H, one proton of =CH₂ and NCH₂), 5.23-5.15 (m, 2 H, OCH₂), 5.12-5.04 (m, 2 H, OCH₂), 5.01-4.93 (m, 1 H, one proton of =CH₂), 1.88 (s, 3 H, CH₃); IR (neat) v (cm⁻¹) 3056, 2912, 2852, 1640, 1611, 1512, 1475, 1462, 1362, 1317, 1191, 1060; MS (EI): *m/z* (%) 366 ((M(D))⁺, 34.62), 365 ((M(H))⁺, 67.29), 350 (100); HRMS calcd. for C₂₆H₂₂DNO [M⁺]: 366.1842, Found: 366.1836. The following signals are discernible for **D-6ac**: ¹H NMR (300 MHz, CDCl₃) δ 6.47-6.43 (m, 1 H, ArH), 5.45-5.39 (m, 2 H, NCH₂), 5.14 (s, 2 H, OCH₂). The following signal is discernible for **5ac**: 6.93 (s, 1 H, ArH).

4. Synthesis of **D-4c'**. (zyc-3-48)

Following **Typical Procedure I**, the reaction of Na₂CO₃ (63.6 mg, 0.6 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), TFP (4.6 mg, 0.02 mmol), **D-4c** (37.6 mg, 0.24 mmol), and H₂O (7.2 μ L, d = 1.0 g/mL, 7.2 mg, 0.4 mmol) in CH₃CN (2 mL) afforded **D-4c'** (12.5 mg, 33%, 60% D) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 20/1) as a solid: ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6 Hz, 1 H, ArH), 7.40 (d, *J* = 8.4 Hz, 1 H, ArH), 7.28-7.21 (m, 1 H, ArH), 7.19 (d, *J* = 3.2 Hz, 1 H, ArH), 7.17-7.09 (m, 1 H, ArH), 6.53 (d, *J* = 3.2 Hz, 1 H, ArH), 4.88-4.82 (m, 2 H, NCH₂). The following signal is discernible for **4c**: 2.38 (t, *J* = 2.0 Hz, 1 H, =CH).

5. Synthesis of **D-5ac**. (zyc-3-41)


Following **Typical Procedure I**, the reaction of Na₂CO₃ (63.6 mg, 0.6 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), TFP (4.6 mg, 0.02 mmol), **4c** (37.2 mg, 0.24 mmol), **3a** (57.4 mg, 0.2 mmol), and D₂O (8.0 μ L, d = 1.0 g/mL, 8.0 mg, 0.4 mmol) in CH₃CN (2 mL) afforded **D-5ac/D-6ac** (25.9 mg, 35%, 19% D, **D-5ac/D-6ac** = 87/13 as determined by ¹H NMR analysis of the isolated product) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 30/1) (**D-5ac/D-6ac** = 86/14 as determined by ¹H NMR

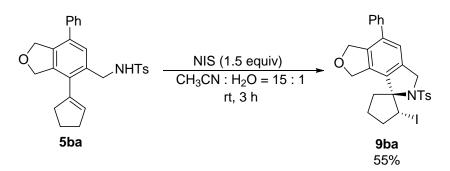
analysis of the crude product using mesitylene (9.2 µL) as the internal standard).

D-5ac/D-6ac (87/13): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 7.8 Hz, 1 H, ArH), 7.48-7.04 (m, 9 H, ArH), 6.52 (d, *J* = 3.0 Hz, 1 H, ArH), 5.38-5.28 (m, 3 H, one proton of =CH₂ and NCH₂), 5.24-5.17 (m, 2 H, OCH₂), 5.13-5.07 (m, 2 H, OCH₂), 5.02-4.95 (m, 1 H, one proton of =CH₂), 1.90 (s, 3 H, CH₃). The following signals are discernible for **D-6ac**: ¹H NMR (300 MHz, CDCl₃) δ 6.48-6.44 (m, 1 H, ArH), 5.46-5.42 (m, 2 H, NCH₂), 5.15 (s, 2 H, OCH₂). The following signal is discernible for **5ac**: 6.93 (s, 1 H, ArH).

Synthetic applications

1. Synthesis of 10-methyl-4-phenyl-7-(p-tosyl)-1,3,6,8-tetrahydro-1H-isobenzofuro-

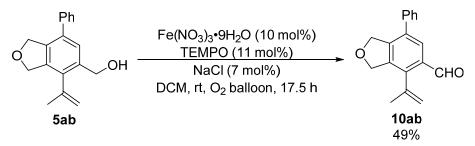
[5,4-*c*]azepine (8aa).^{5,6} (zyc-1-148, zyc-1-164)


To a flame-dried Schlenk tube were added K₂CO₃ (429.6 mg, 3.12 mmol), **5aa** (327.1 mg, 0.78 mmol), and allyl bromide (188.6 mg, 1.56 mmol)/CH₃CN (2 mL) sequentially under N₂ atmosphere. Then the Schlenk tube was equipped with an internal condenser pipe and the resulting mixture was stirred with an oil bath pre-heated at 85 °C. The reaction was complete after being stirred for 4 hours as monitored by TLC. The reaction mixture was filtrated through a short column of silica gel eluted with ethyl acetate (5 mL × 3). After evaporation, the residue was purified by chromatography on silica gel to afford **11aa** (296.1 mg) (eluent: petroleum ether (60-90 °C)/ethyl acetate/DCM = 20/1/1): solid; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 2 H, ArH), 7.45-7.25 (m, 8 H, ArH), 5.63-5.45 (m, 1 H, =CH), 5.30-5.10 (m, 3 H, one proton of =CH₂), 4.44 (s, 2 H, NCH₂), 3.82 (d, *J* = 6.6 Hz, 2

H, NCH₂), 2.39 (s, 3 H, CH₃), 1.95 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 141.8, 139.5, 138.1, 137.3, 136.1, 135.7, 134.5, 132.7, 132.4, 129.7, 128.5, 127.6, 127.4, 127.2, 127.1, 119.1, 116.3, 73.7, 72.9, 49.9, 47.0, 23.3, 21.4. which was used directly in the next step without further characterization.

To a flame-dried Schlenk tube were added Grubbs' II catalyst (17.1 mg, 0.02 mmol), **11aa** (94.9 mg, 0.21 mmol), and toluene (10 mL) sequentially under N₂ atmosphere. Then the Schlenk tube was equipped with an internal condenser pipe and the resulting mixture was stirred in an oil bath pre-heated at 80 °C. The reaction was complete after being stirred for 26 hours as monitored by TLC (eluent: petroleum ether (60-90 °C)/ethyl acetate/DCM = 20/1/1). The resulting mixture was filtrated through a short column of silica gel eluted with ethyl acetate (10 mL × 3). After evaporation, the residue was purified by chromatography on silica gel to afford **8aa** (61.1 mg, 57% from **5aa**) (eluent: petroleum ether (60-90 °C)/ethyl acetate/DCM = 20/1/1 to 10/1/1).

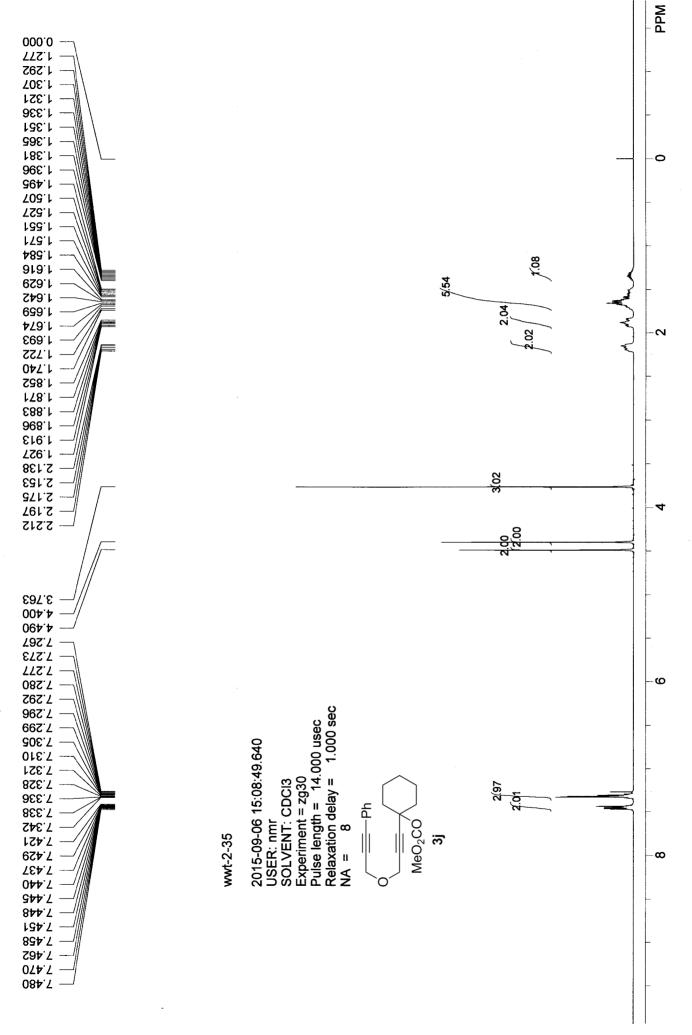
8aa: solid; m.p. 162.6-164.6 °C (DCM/hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2 H, ArH), 7.49-7.34 (m, 3 H, ArH), 7.33-7.18 (m, 4 H, ArH), 6.95 (s, 1 H, ArH), 5.86 (tq, $J_1 = 7.4$ Hz, $J_2 = 1.4$ Hz, 1 H, =CH), 5.11 (s, 4 H, OCH₂ × 2), 4.22 (s, 2 H, NCH₂), 3.52 (brs, 2 H, NCH₂), 2.37 (s, 3 H, CH₃), 2.00 (d, J = 1.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 141.0, 139.1, 137.9, 137.4, 136.2, 135.2, 133.5, 132.7, 129.6, 129.3, 128.6, 127.65, 127.56, 127.4, 122.3, 73.3, 72.8, 49.1, 42.9, 21.3, 21.2; IR (neat) v (cm⁻¹) 3054, 3028, 2963, 2917, 2857, 1631, 1597, 1493, 1457, 1446, 1400, 1378, 1362, 1325, 1307, 1292, 1164, 1112, 1089, 1072, 1059; MS (EI): *m/z* (%) 431 (M⁺, 11.94), 276 ((M-Ts)⁺, 100); HRMS calcd. for C₂₆H₂₅NO₃S [M⁺]: 431.1555, Found: 431.1558.

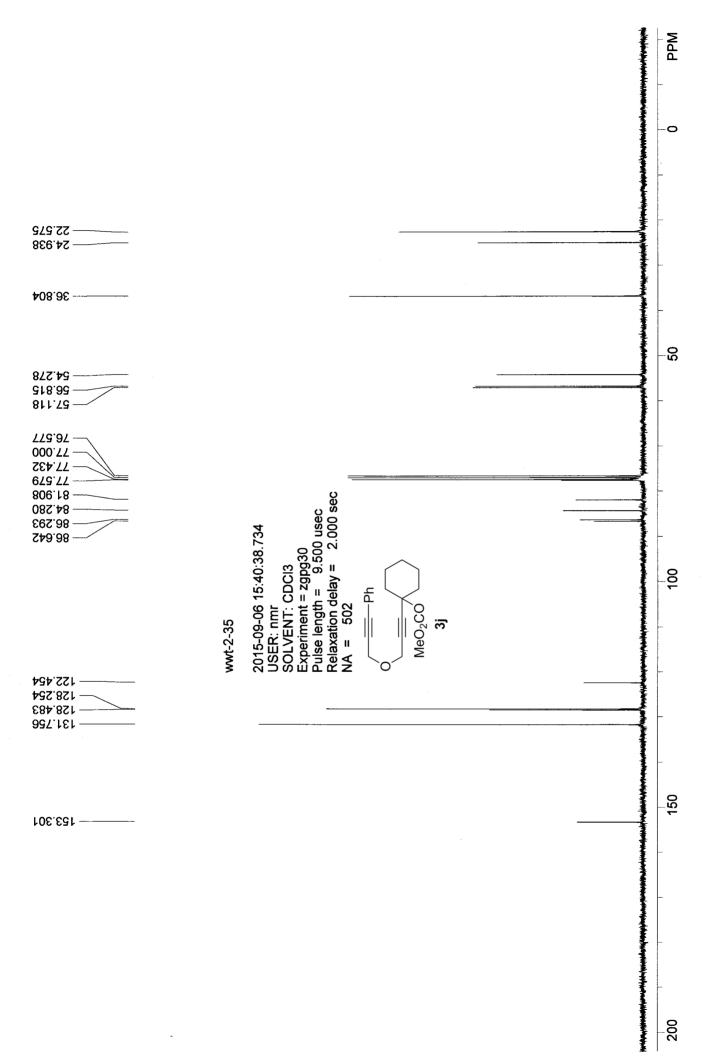

2. Synthesis of *trans*-2-iodo-4'-phenyl-7'-(p-tosyl)-1',3',6'-trihydrospiro[cyclopentane-1,8'-[7*H*]-furo[3,4-e]isoindole] (**9ba**).⁷ (wwt-3-51)

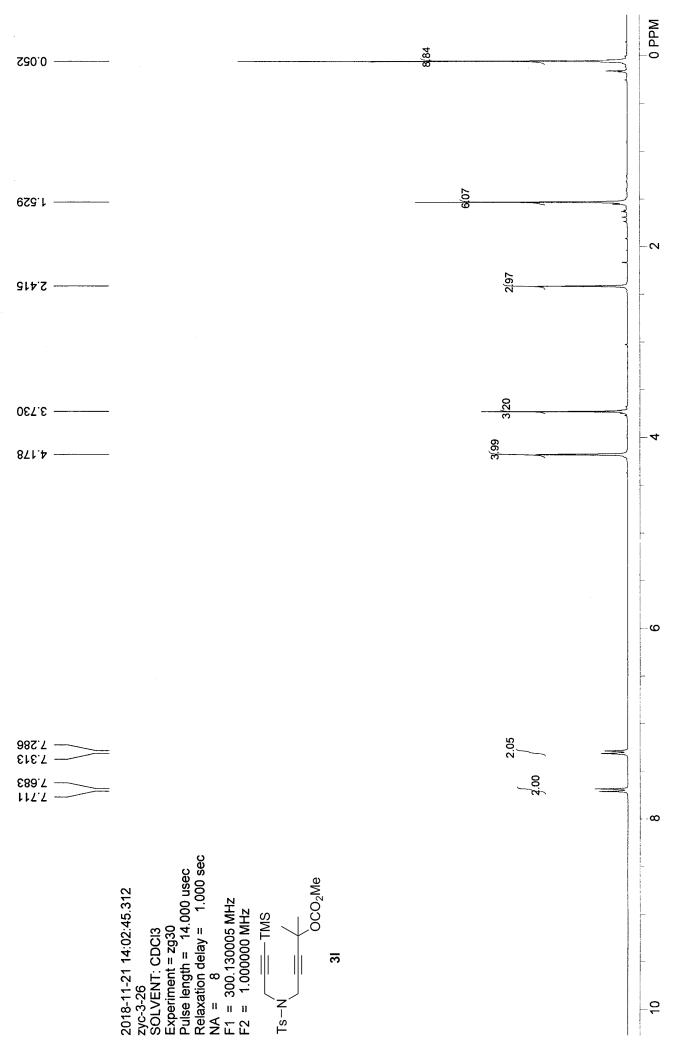
To a dry Schlenk tube were added **5ba** (89.1 mg, 0.2 mmol), CH₃CN (2.0 mL), water (0.14 mL), and NIS (67.8 mg, 0.3 mmol) sequentially. The reaction was complete after being stirred at room temperature for 3 hours as monitored by TLC. It was then quenched with an aqueous solution of saturated Na₂S₂O₃ (5 mL). The resulting mixture was extracted with ethyl ether (10 mL \times 3), and the combined organic phase was dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the crude residue was purified by chromatography on silica gel to afford **9ba** (62.3 mg, 55%) (eluent: petroleum ether (60-90 °C)/ethyl acetate = 15/1).

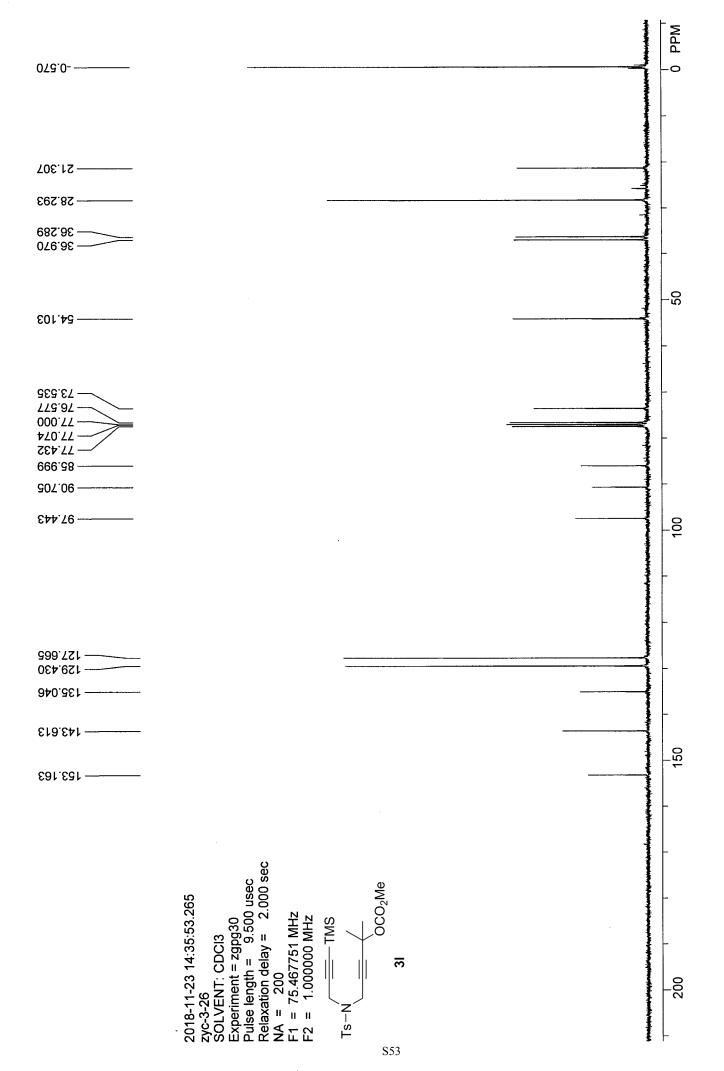
9ba: solid; m.p. 135.0-137.2 °C (DCM/hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 8.1 Hz, 2 H, ArH), 7.50-7.28 (m, 7 H, ArH), 7.12 (s, 1 H, ArH), 5.33 (dd, $J_1 = 12.9$ Hz, $J_2 = 7.2$ Hz, 1 H, CH), 5.27-5.14 (m, 3 H, OCH₂ and one proton of OCH₂), 5.07 (d, J = 12.3 Hz, 1 H, one proton of CH₂), 4.64 (d, J = 12.9 Hz, 1 H, one proton of NCH₂), 4.59 (d, J = 12.9 Hz, 1 H, one proton of NCH₂), 2.95-2.75 (m, 1 H, one proton of CH₂), 2.60-2.45 (m, 1 H, one proton of CH₂), 2.43 (s, 3 H, CH₃), 2.41-2.24 (m, 2 H, CH₂), 2.24-2.05 (m, 1 H, one proton of CH₂), 1.98-1.80 (m, 1 H, one proton of CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 143.7, 140.3, 139.4, 138.3, 137.3, 136.1, 134.9, 133.9, 129.8, 128.7, 127.8, 127.7, 127.2, 121.5, 83.4, 73.0, 72.5, 53.3, 39.1, 36.8, 35.3, 26.3, 21.5; IR (KBr) v (cm⁻¹) 2952, 2926, 2852, 1654, 1317, 1598, 1560, 1466, 1450, 1345, 1161, 1130, 1096, 1065; MS (EI): *m*/*z* (%) 289 ((M-Ts-I)⁺, 1.79), 258 (100); Anal. Calcd. for C₂₇H₂₆INO₃S (%): C 56.75, H 4.59, N 2.45, Found: C 56.99, H 4.89, N 2.12.

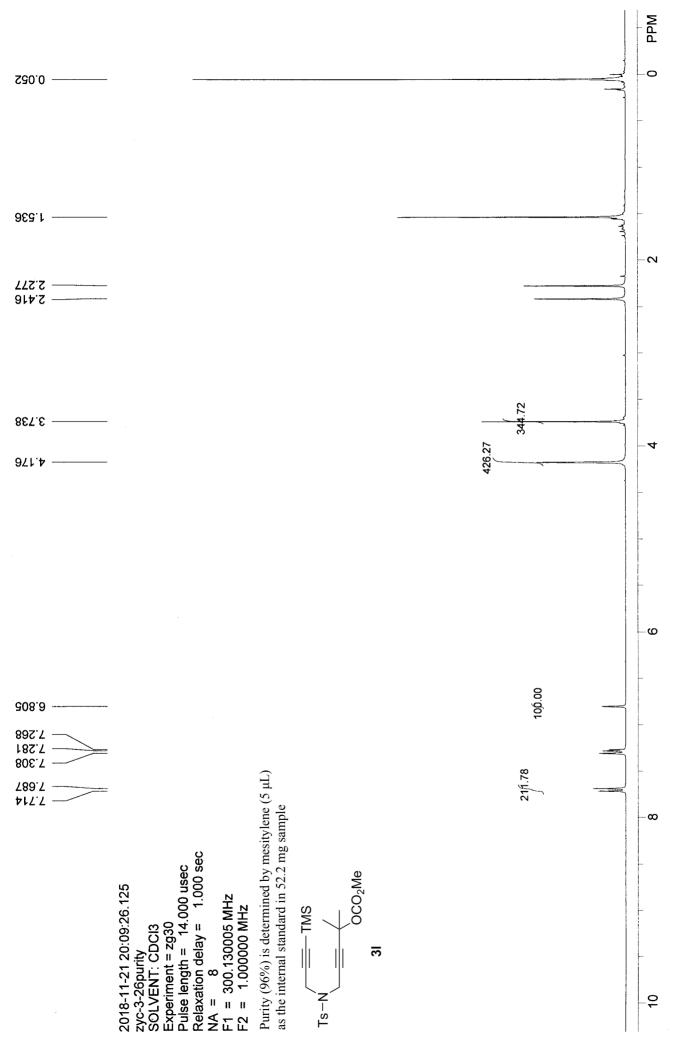
Synthesis of 7-phenyl-4-(propen-2-yl)-1,3-dihydroisobenzofuran-5-carbaldehyde (10ab).⁸ (zyc-2-34)




To a dry Schlenk tube were added Fe(NO₃)₃•9H₂O (16.8 mg, 0.04 mmol), TEMPO (6.9 mg, 0.044 mmol), NaCl (1.6 mg, 0.028 mmol), DCM (2.0 mL), and **5ab** (106.3 mg, 0.4 mmol)/DCM (0.5 mL) sequentially. After being equipped with an O₂ balloon, the reaction was stirred at room temperature for 17.5 hours as monitored by TLC. The resulting reaction mixture was then filtrated through a short column of silica gel eluted with ethyl acetate (10 mL \times 3). After evaporation, the residue was purified by chromatography on silica gel to afford **10ab** (51.2 mg, 49%) (eluent: petroleum ether (60-90 °C)/ethyl acetate= 20/1).


10ab: solid; m.p. 83.0-83.7 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 10.22 (s, 1 H, CHO), 7.93 (s, 1 H, ArH), 7.52-7.36 (m, 5 H, ArH), 5.52-5.44 (m, 1 H, one proton of =CH₂), 5.29-5.23 (m, 2 H, OCH₂), 5.19-5.13 (m, 2 H, OCH₂), 5.07-4.98 (m, 1 H, one proton of =CH₂), 2.13 (t, *J* = 1.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 191.3, 143.3, 140.1, 140.0, 139.0, 138.5, 135.2, 133.2, 128.8, 127.9, 127.8, 127.7, 118.3, 73.8, 72.6, 24.4; IR (KBr) v (cm⁻¹) 3079, 2965, 2915, 2869, 2837, 2754, 1685, 1630, 1596, 1560, 1502, 1468, 1450, 1393, 1384, 1332, 1313, 1294, 1211, 1178, 1135, 1083, 1057, 1030, 1009; MS (EI): *m*/*z* (%) 264 (M⁺, 100); Anal. Calcd. for C₁₈H₁₆O₂ (%): C 81.79, H 6.10, Found: C 81.82, H 6.10.


References


- [1] X. Huang, W. Wu, C. Fu, Y. Yu, S. Ma, Chem. Eur. J. 2015, 21, 15540.
- [2] S. Song, C. Fu, X. Huang, S. Ma, Adv. Synth. Catal. 2018, 360, 1019.
- [3] N. Haider, J. Kaferbock, Tetrahedron, 2004, 60, 6495.
- [4] N. Haider, T. Kabicher, J. Kaferbock, A. Plenk, *Molecules*, 2007, 12, 1900.
- [5] X. Dong, R. Sang, Q. Wang, X. Tang, M. Shi, Chem. Eur. J. 2013, 19, 16910.
- [6] B. Bradshaw, P. Evans, J. Fletcher, A. Lee, P. Mwashimba, D. Oehlrich, E.
- Thomas, R. Davies, B. Allen, K. Broadley, A. Hamrounic, C. Escargueil, *Org. Biomol. Chem.* 2008, **6**, 2138.
- [7] Y. Morino, I. Hidaka, Y. Oderaotoshi, M. Komatsu and S. Minakata, *Tetrahedron*, 2006, 62, 12247.
- [8] S. Ma, J. Liu, S. Li, B. Chen, J. Cheng, J. Kuang, Y. Liu, B. Wan, Y. Wang, J. Ye,
- Q. Yu, W. Yuan, S. Yu, Adv. Synth. Catal., 2011, 353, 1005.

