Supporting Information

Templating Metastable Pd $_{2}$ Carboxylate Aggregates

Chen-Hao Wang, a Wen-Yang Gao, a Qing Ma, band David C. Powers, a,*
${ }^{a}$ Department of Chemistry, Texas A\&M University, College Station, Texas 77843, United States. ${ }^{b}$ DND CAT - Synchrotron Research Center, Northwestern University, Evanston, Illinois 60208, United States

Email: david.powers@chem.tamu.edu

Table of Contents

A. General Considerations S3
B. Synthesis and Characterization S5
C. Supporting Data S15
C.1. Coordinates of Optimized Structures S15
C.2. Optimization of Transmetalation Chemistry S20
C.3. Characterization of Exchanged Materials S22
C.4. Single-Crystal X-Ray Diffraction S28
C. 5 EXAFS Analysis S30
C.6. Additional Data S38
D. References S42

A. General Considerations

Materials Solvents were obtained as ACS reagent grade. Unless otherwise noted, all chemicals and solvents were used as received. Ethyl acetate, magnesium sulfate, and dimethyl sulfoxide were obtained from EMD Millipore. Thionyl chloride, potassium iodide, triphenylphosphine, triethylamine, hydrazine monohydrate, dimethyl-5hydroxyisophthalate, and 5-aminoisophthalic acid were obtained from Alfa Aesar. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), bis(triphenylphosphine)palladium(II) dichloride, 5-nitroisophthalic acid, 1,3,5-benzenetricarbonyl trichloride, copper(II) nitrate trihydrate, tetrafluoroboric acid solution ($48 \% \mathrm{w} / \mathrm{w}$), glucose, methanol, tetrahydrofuran (THF), N-methyl-2-pyrrolidone (NMP), peracetic acid solution (39% in acetic acid) and hexanes were obtained from Sigma Aldrich. Silica gel ($0.060-0.200 \mathrm{~mm}, 60 \AA$ for column chromatography), benzene, and $N, N-$ dimethylformamide (DMF) were obtained from Acros Organics. Palladium(II) acetate, palladium(II) chloride, zinc nitrate hexahydrate, and copper(I) iodide were obtained from Strem Chemicals. (Trimethylsilyl)acetylene was obtained from Chem Impex. Diisopropylamine, glacial acetic acid, cesium fluoride, 1,3,5-tris(bromomethyl)benzene, and tribromobenzene were obtained from Beantown Chemical. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, acetonitrile (MeCN), potassium carbonate, and chloroform (CHCl_{3}) were obtained from Fisher Scientific. Ethanol was obtained from Koptec. Potassium hydroxide and sodium hydroxide were obtained from BDH Analytical Chemicals. N, N-dimethylacetamide (DMA) was obtained from TCI. Sodium nitrite and hydrochloric acid were obtained from Macron Chemicals. Sodium bicarbonate was obtained from Aqua Solutions. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}{ }^{1}$ and 2-tertbutylsulfonyl iodosylbenzene ($\mathbf{S 1 1}$) were prepared according to literature methods. ${ }^{2}$ NMR solvents was purchased from Cambridge Isotope Laboratories and were used as received. UHP-grade $\mathrm{N}_{2}, \mathrm{CO}_{2}$, Ar, and He , used in gas adsorption and thermogravimetric measurements, were obtained from Airgas. All reactions were carried out under ambient atmosphere unless otherwise noted.

Characterization Details NMR spectra were recorded on Mercury 300 at 299.92 MHz for ${ }^{1} \mathrm{H}$ and at 74.98 MHz for ${ }^{13} \mathrm{C}$ acquisitions and were referenced against solvent signals: CDCl_{3} (7.26 ppm, $\left.{ }^{1} \mathrm{H} ; 77.16 \mathrm{ppm},{ }^{13} \mathrm{C}\right)$ and DMSO- $d_{6}\left(2.50 \mathrm{ppm},{ }^{1} \mathrm{H}\right) .{ }^{3}{ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift (δ, ppm), (multiplicity: s (singlet), d (doublet), t (triplet), m (multiplet), br (broad), integration). IR spectra were recorded on ATI Mattson Genesis Series FTIR with ATR spectrometer. Spectra were blanked against air and were determined as the average of 64 scans. IR data are reported as follows: wavenumber (cm^{-1}), (peak intensity: s, strong; m, medium; w, weak). Elemental analyses were performed by Atlantic Microlab (Norcross, GA). TGA-MS analyses were performed at a temperature ramp of 20 ${ }^{\circ} \mathrm{C} / \mathrm{min}$ on Mettler-Toledo TGA/ DSC 1 with an attached Pfeiffer Vacuum ThermoStar Mass Spectrometer under Ar flow.

X-ray Absorption Details X-ray absorption spectroscopy (XAS) data were collected at the Pd K-edge ($\sim 24.3 \mathrm{keV}$) using the bending magnet beamline of the DuPont-Northwestern-Dow Collaborative Access Team (5-BM-D) at the Advanced Photon Source of Argonne National Laboratory. X-ray energy scans were performed using a Si(111) double-crystal monochromator detuned to 65% of the maximum intensity to reject harmonics. During these measurements, the APS storage ring was run in the top-up mode with the electron beam current at 102 mA . The
vertical size of the beam entering the monochromator was 0.3 mm for maximum energy resolution. The vertical beam size that irradiated the samples was 0.6 mm due to natural beam divergence. The horizontal beam size was set to 10 mm . Samples were prepared by finely dispersing powdered material on Scotch ${ }^{\circledR}$ tape. The XAS data were collected in fluorescence mode using three identical ionization chambers (Oxford Danfysik) operating in their linear regimes. The first ion chamber (I_{0}) is used to monitor the incident beam intensity. The samples of interest were placed in between the first and second ion chambers (I_{T}). A Ru metal foil was placed in between the second and third ion chambers ($I_{\mathrm{T} 2}$) for energy verification. Each ionization chamber was filled with gas mixtures that absorbed given percentages of the incident beam in order to optimize signal-to-noise ratio, i.e., 10% and 25% absorption in I_{0} and I_{T} respectively ($94 \% \mathrm{~N}_{2} / 6 \%$ Ar in both chambers), and 65% absorption in $I_{\mathrm{T} 2}(100 \%$ Ar). XAS data were analyzed using Demeter 0.9.26.

Powder X-ray Diffraction Details Powder X-ray diffraction (PXRD) measurements were carried out on a Bruker D8 Advance Eco X-ray diffractometer (Cu K $\alpha, 1.5418$ Å; $40 \mathrm{kV}, 25$ mA) fitted with LynxEye detector. The angular range was measured from 5.00 to 40.00° (2 2) with steps of 0.020° and a measurement time of 0.5 second per step. Simulated PXRD patterns were calculated with Mercury 3.9.

Gas Adsorption Details Gas adsorption isotherms for pressures in the range 0-1.0 bar were measured volumetrically using a Micromeritics ASAP 2020 instrument. Samples were transferred under an N_{2} atmosphere to pre-weighed analysis tubes. The samples were evacuated at room temperature until the outgas rate was $<10 \mu \mathrm{bar} / \mathrm{min}$ and further maintained for 16 h . Then the tube was weighed to determine the mass of the activated sample. The tube was transferred to the analysis port of the instrument. UHP-grade (99.999% purity) N_{2} and He were used for all adsorption measurements. For all isotherms, both warm and cold free-space measurements were carried out with $\mathrm{He} ; \mathrm{N}_{2}$ isotherms were measured at 77 K .

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Details ICP-MS

 measurements were carried out on a PerkinElmer NexION 300D Quadruple in pulse mode with ASX-520 AutoSampler. The collected data were analyzed by NexIon software Version 1.3. ${ }^{108} \mathrm{Pd},{ }^{64} \mathrm{Zn}$ and ${ }^{63} \mathrm{Cu}$ concentrations were measured five times to yield the average with ${ }^{103} \mathrm{Rh}$ as the internal standard. Calibration curves were made by five different concentrations between 10 and 200 ppb or 5 and 100 ppb (for leaching experiment) with $\mathrm{R}^{2}>0.9995$; standards were prepared by dilution of analytical standards obtained from BDH Chemicals. Analysis of ion-metathesis samples was accomplished by washing M_{3} btei $(2.0 \mathrm{mg})$ with $\mathrm{MeCN}(1.0 \mathrm{~mL} \times 3)$ and $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL} \times 3)$. The solids were digested in conc. HNO_{3} by sonication and diluted with ultrapure water to make $2 \% \mathrm{HNO}_{3}$ solution.
B. Synthesis and Characterization

Synthesis of Diethyl 5-Aminoisophthalate (S1)

Compound $\mathbf{S 1}$ was prepared according to the following modification of literature methods. ${ }^{4}$ A $500-\mathrm{mL}$ round-bottom flask was charged with 5 -aminoisophthalic acid ($10.0 \mathrm{~g}, 55.2$ $\mathrm{mmol}, 1.00$ equiv) and EtOH (100 mL). The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and SOCl_{2} ($12.0 \mathrm{~mL}, 165 \mathrm{mmol}, 3.00$ equiv) was added dropwise to the reaction vessel. The resulting mixture was heated at reflux for 5 h . Volatiles were removed in vacuo and EtOAc (100 mL) was added to the residue. A saturated aqueous solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added and the resulting suspension was stirred until the precipitate dissolved. The organic layer was separated and the aqueous layer was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed in vacuo to afford 12.0 g of title compound as a white solid (92% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\delta, 23{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right.$): $8.06(\mathrm{t}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.91(\mathrm{bs}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{IR}$ (cm^{-1}): 3053 (w), 2918 (w), 1639 (w), 1599 (m), 1464 (s), 1395 (s), 1175 (m), 1070 (m), 1026 (m), 845 (m), 685 (s). Recorded ${ }^{1} \mathrm{H}$ NMR data was identical to that reported in the literature. ${ }^{4}$

Synthesis of Diethyl 5-Iodoisophthalate (S2)

Compound $\mathbf{S 2}$ was prepared according to the following modification of literature methods. ${ }^{4}$ A $500-\mathrm{mL}$ round-bottom flask was charged with compound $\mathbf{S} \mathbf{1}(10.0 \mathrm{~g}, 42.2 \mathrm{mmol}, 1.00$ equiv) and $2 \mathrm{M} \mathrm{HCl}(45.0 \mathrm{~mL}, 90.0 \mathrm{mmol}, 2.14$ equiv). Sodium nitrite ($3.50 \mathrm{~g}, 50.7 \mathrm{mmol}$, 1.20 equiv) in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 45 min , a solution of potassium iodide ($10.5 \mathrm{~g}, 63.3 \mathrm{mmol}, 1.50$ equiv) in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added dropwise. Dichloromethane (150 mL) was added to the dark-red mixture and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 4 h . The layers were separated, the aqueous layer was extracted with dichloromethane ($30 \mathrm{~mL} \times 4$), and the combined organic layers were dried over MgSO_{4}. Solvent was removed in vacuo and the orange residue was purified by SiO_{2} chromatography (hexanes/ethyl acetate $=9 / 1$) to afford 10.2 g of title compound as a white solid (70% yield). ${ }^{1} \mathrm{H}$ NMR ($\delta, 23{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$): $8.63(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$. Recorded ${ }^{1} \mathrm{H}$ NMR data was identical to that reported in the literature. ${ }^{4}$

Synthesis of Diethyl 5-((Trimethylsilyl)ethynyl)isophthalate (S3)

Compound $\mathbf{S 3}$ was prepared according to the following modification of literature methods. ${ }^{5}$ A $250-\mathrm{mL}$ Schlenk flask was charged with compound $\mathbf{S} 2$ ($9.00 \mathrm{~g}, 25.9 \mathrm{mmol}, 1.00$ equiv), tetrakis(triphenylphosphine)palladium(0) ($0.900 \mathrm{~g}, 0.779 \mathrm{mmol}, 0.0301$ equiv), copper(I) iodide ($0.300 \mathrm{~g}, 1.58 \mathrm{mmol}, 0.0610$ equiv), THF (45.0 mL), and diisopropylamine (45.0 mL). The resulting mixture was degassed by three freeze-pump-thaw cycles and was then cooled to $0^{\circ} \mathrm{C}$. A $25-\mathrm{mL}$ Schlenk flask was charged with (trimethylsilyl)acetylene (9.90 mL , $71.5 \mathrm{mmol}, 2.76$ equiv). The (trimethylsilyl)acetylene was degassed by three freeze-pumpthaw cycles and was transferred to the reaction mixture $\left(0^{\circ} \mathrm{C}\right)$ via cannula. The reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$ at which temperature it was stirred for 15 h . At this time, solids were removed by filtration and were washed with hexanes (90 mL). The filtrate was concentrated to give dark-yellow oil, which was purified by SiO_{2} chromatography (hexanes/ethyl acetate $=8 / 2$) to afford 7.01 g of title compound as a lightyellow solid (85% yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, 23^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right.$): $8.60(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H})$. Recorded ${ }^{1} \mathrm{H}$ NMR data was identical to that reported in the literature. ${ }^{4}$

Synthesis of Hexaethyl 5,5',5'-(Benzene-1,3,5-triyltris(ethyne-2,1-diyl))triisophthalate (S4)

Compound S4 was prepared according to the following modification of literature methods. ${ }^{5-6}$ A 100-mL round-bottom flask was charged with compound $\mathbf{S 3}$ ($2.07 \mathrm{~g}, 6.52$ $\mathrm{mmol}, 1.00$ equiv), THF (25 mL), and EtOH (12.5 mL). Cesium fluoride ($1.00 \mathrm{~g}, 6.58 \mathrm{mmol}$, 1.01 equiv) was added to the reaction mixture and the reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h . At the time, the solids were removed by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The filtrate was concentrated in vacuo in a $100-\mathrm{mL}$ Schlenk flask. To this reaction vessel was added tribromobenzene $\left(\begin{array}{llllll}0.430 & \mathrm{~g}, & 1.37 \mathrm{mmol}, 0.208 & \text { equiv }) \text {, }\end{array}\right.$
bis(triphenylphosphine)palladium(II) dichloride ($0.100 \mathrm{~g}, 0.142 \mathrm{mmol}, 0.0216$ equiv), triphenylphosphine ($0.0765 \mathrm{~g}, 0.292 \mathrm{mmol}, 0.0448$ equiv), and triethylamine (50 mL). The resulting mixture was degassed by three freeze-pump-thaw cycles before CuI (0.0550 g , 0.289 mmol, 0.0443 equiv) was added. The reaction vessel was sealed under an N_{2} atmosphere and heated to reflux for 16 h . At this time, volatiles were removed in vacuo, the dark-yellow residue was taken up in chloroform (100 mL) and washed with water (75 mL). The layers were separated, the aqueous layer was extracted with chloroform ($30 \mathrm{~mL} \times 4$), the combined organic layer was dried over MgSO_{4}, and solvent was removed in vacuo to afford dark-yellow solids. The crude solids were purified by SiO_{2} chromatography (hexanes/ethyl acetate $=8 / 2$) to afford 0.851 g of title compound as a light-yellow solid (77% yield based on tribromobenzene). ${ }^{1} \mathrm{H}$ NMR ($\delta, 23{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$): $8.66(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$, $8.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.74(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 12 \mathrm{H}), 1.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 18 \mathrm{H})$. Recorded ${ }^{1} \mathrm{H}$ NMR data was identical to that reported in the literature. ${ }^{4}$

Synthesis of 5,5',5'-(Benzene-1,3,5-triyltris(ethyne-2,1-diyl))triisophthalic Acid (H6btei)

H_{6} btei was prepared according to the following modification of literature methods. ${ }^{6}$ A 100mL round-bottom flask was charged with compound $\mathbf{S 4}$ ($0.600 \mathrm{~g}, 0.740 \mathrm{mmol}, 1.00$ equiv), THF (12 mL), and 1 M KOH solution (18 mL). The resulting solution was heated to reflux for 4 h . After this time, 12 M HCl was added until $\mathrm{pH}=1$ and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h . Solids were collected and washed with $\mathrm{H}_{2} \mathrm{O}$ to afford 0.418 g of title compound as an amber solid (88% yield). ${ }^{1} \mathrm{H}$ NMR ($\delta, 23^{\circ} \mathrm{C}, d_{6}$-DMSO): 13.64 (bs, 6H), 8.48 ($\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$), $8.32\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H}\right.$), $8.01(\mathrm{~s}, 3 \mathrm{H})$. Recorded ${ }^{1} \mathrm{H}$ NMR data was identical to that reported in the literature. ${ }^{6}$

Synthesis of H_{4} abtc (S5)

Compound S5 ($\mathrm{H}_{4} \mathrm{abtc}$) was prepared according to literature methods. ${ }^{7}$ A $250-\mathrm{mL}$ roundbottom flask was charged with 5-nitroisophthalic acid ($4.75 \mathrm{~g}, 22.5 \mathrm{mmol}, 1.00$ equiv), $\mathrm{NaOH}\left(12.5 \mathrm{~g}, 313 \mathrm{mmol}, 13.9\right.$ equiv), and $\mathrm{H}_{2} \mathrm{O}(63 \mathrm{~mL})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . A solution of glucose ($25.0 \mathrm{~g}, 139 \mathrm{~mol}, 6.18$ equiv) in $\mathrm{H}_{2} \mathrm{O}(37 \mathrm{~mL})$ was prepared at $60{ }^{\circ} \mathrm{C}$ and was slowly added to the reaction mixture. The brown mixture was cooled to $23^{\circ} \mathrm{C}$ and air was bubbled through the reaction mixture for 16 h . At this time, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and solids were isolated by filtration. The solids were dissolved in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the aqueous solution was acidified with conc. HCl to $\mathrm{pH}<1$. The resulting solids were isolated by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried at $120{ }^{\circ} \mathrm{C}$ to afford 3.09 g of title compound as an orange solid (77% yield). ${ }^{1} \mathrm{H}$ NMR ($\delta, 23^{\circ} \mathrm{C}, d_{6}$-DMSO): $8.64(\mathrm{~s}, 2 \mathrm{H}), 8.63(\mathrm{~s}, 4 \mathrm{H})$. Recorded ${ }^{1} \mathrm{H}$ NMR data was identical to that reported in the literature. ${ }^{8}$

Synthesis of 5,5',5"-((Benzene-1,3,5-tricarbonyl)tris(azanediyl))triisophthalic Acid (S6)

Compound $\mathbf{S 6}$ was prepared according to the following modification of literature methods. ${ }^{9}$ A $250-\mathrm{mL}$ round-bottom flask was charged with 5 -aminoisophthalic acid ($2.08 \mathrm{~g}, 11.5$ mmol, 3.05 equiv), triethylamine ($1.68 \mathrm{~mL}, 12.1 \mathrm{mmol}, 3.21$ equiv), and DMA (25 mL) under an N_{2} atmosphere. 1,3,5-Benzenetricarbonyl trichloride ($1.00 \mathrm{~g}, 3.77 \mathrm{mmol}, 1.00$ equiv) was added dropwise and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h . At this time, $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added and the solids were collected by filtration and washed with acetone, $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ to afford 2.42 g of title compound as a yellow solid (92% yield). ${ }^{1} \mathrm{H}$ NMR ($\delta, 23{ }^{\circ} \mathrm{C}$, d_{6}-DMSO): 13.33 (bs, 6H), 8.84 (s, 3H), 8.73 (d, $J=1.4 \mathrm{~Hz}, 6 \mathrm{H}$), 8.26 $(\mathrm{t}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$. Recorded ${ }^{1} \mathrm{H}$ NMR data was identical to that reported in the literature. ${ }^{9}$

Synthesis of 5,5',5'-((Benzene-1,3,5-triyltris(methylene))tris(oxy))triisophthalic Acid (S7)

Compound S7 was prepared according to the following modification of literature methods. ${ }^{10}$ A 1-L round-bottom flask was charged with dimethyl-5-hydroxyisophthalate ($6.35 \mathrm{~g}, 30.2 \mathrm{mmol}, 7.49$ equiv), potassium carbonate ($13.0 \mathrm{~g}, 94.1 \mathrm{mmol}, 23.4$ equiv), and DMF (125 mL) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h . At this time, 1,3,5tris(bromomethyl)benzene ($1.44 \mathrm{~g}, 4.03 \mathrm{mmol}, 1.00$ equiv) and DMF (5 mL) was added and the reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 1 h . At this time, $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$ was added to the reaction mixture and the resulting white solids were isolated by filtration and washed with cold water. The solids were taken up in $\mathrm{MeOH}(125 \mathrm{~mL})$ and a sodium hydroxide was added as a 2.0 M aqueous solution ($30.0 \mathrm{~mL}, 60.0 \mathrm{mmol}, 14.9$ equiv). The reaction mixture was heated to $50^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was cooled to the mixture was acidified by conc. HCl until $\mathrm{pH}<1$. The solids were filtered and washed with cold $\mathrm{H}_{2} \mathrm{O}$ to afford 2.25 g of the title compound (85% yield). ${ }^{1} \mathrm{H}$ NMR ($\delta, 23^{\circ} \mathrm{C}, d_{6}$-DMSO): $8.10(\mathrm{~s}, 3 \mathrm{H}), 7.75(\mathrm{~s}, 6 \mathrm{H})$, $7.60(\mathrm{~s}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 6 \mathrm{H})$. Recorded ${ }^{1} \mathrm{H}$ NMR data was identical to that reported in the literature. ${ }^{10}$

Synthesis of $\mathrm{PdZn}(\mathrm{OAc})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

$\mathrm{PdZn}(\mathrm{OAc})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ was prepared according to literature methods. ${ }^{11} \mathrm{~A} 10-\mathrm{mL}$ round-bottom flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(0.100 \mathrm{~g}, 0.445 \mathrm{mmol}, 1.00$ equiv), zinc acetate hexahydrate ($0.135 \mathrm{~g}, 0.454 \mathrm{mmol}, 1.02$ equiv), and glacial acetic acid (3 mL). The resulting mixture was heated to reflux for 1 h . After this time, the reaction mixture was allowed to stand at $23^{\circ} \mathrm{C}$ for 16 h and brown crystals formed. Solids were collected and washed with cold benzene and hexanes to afford 0.087 g of title compound as yellow crystals (46% yield). The PXRD pattern obtained for $\mathrm{PdZn}(\mathrm{OAc})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ matched the pattern simulated for single-crystal X-ray diffraction (Figure S13).

Synthesis of $\mathrm{Cu}_{3} \mathbf{b t c} \mathbf{c}_{2}$

H_{3} btc
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$ was prepared according to literature methods. ${ }^{12}$ A $150-\mathrm{mL}$ thick-walled vessel was charged with $\mathrm{H}_{3} \mathrm{btc}(1.50 \mathrm{~g}, 7.14 \mathrm{mmol}, 1.00$ equiv), copper(II) nitrate trihydrate (3.00 g , $12.4 \mathrm{mmol}, 1.74$ equiv), DMF (25 mL), EtOH (25 mL), and water (25 mL). The resulting mixture was sonicated until a homogeneous solution was obtained and the reaction solution was allowed to stand at $85{ }^{\circ} \mathrm{C}$ for 1 d . At this time, the hot mother liquor was decanted and the obtained crystalline solids were washed with DMF ($20 \mathrm{~mL} \times 2$) and dichloromethane ($20 \mathrm{~mL} \times 2$). The solids were soaked in dichloromethane for 6 d and the solvent was refreshed two times per day. Solvent was removed in vacuo to afford 2.53 g of the title compound as a purple solid. The PXRD pattern of synthesized $\mathrm{Cu}_{3} \mathrm{btc}_{2}$ was consistent with reported data. ${ }^{12}$

Synthesis of $\mathbf{Z n}_{3} \mathbf{b t c}_{2}$

Zn_{3} btc. 2 was prepared according to literature methods. ${ }^{13}$ A $48-m L$ thick-walled vessel was charged with H_{3} btc ($0.316 \mathrm{~g}, 1.50 \mathrm{mmol}, 1.00$ equiv), zinc nitrate hexahydrate (0.682 g , $2.29 \mathrm{mmol}, 1.53$ equiv), and DMF (40 mL). The resulting mixture was sonicated until a homogeneous solution was obtained and the reaction solution was allowed to stand at 85 ${ }^{\circ} \mathrm{C}$ for 16 h . At this time, the reaction was cooled to $23{ }^{\circ} \mathrm{C}$ and solvent was decanted. The crystalline solids were washed with DMF ($20 \mathrm{~mL} \times 2$) to afford 74.0 mg of title compound as a white solid. The PXRD pattern of synthesized $\mathrm{Zn}_{3} \mathrm{btc}_{2}$ was consistent with reported data. ${ }^{13}$

Synthesis of Cu3btei

$$
\mathrm{H}_{6} \text { btei } \xrightarrow[\substack{\mathrm{HBF}_{4}, \text { DMF } \\ 75^{\circ} \mathrm{C}, 3 \mathrm{~d}}]{\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}} \mathrm{Cu}_{3} \text { btei }
$$

Cu_{3} btei was prepared according to literature methods. ${ }^{6}$ A 1-dram vial was charged with H_{6} btei ($10.0 \mathrm{mg}, 0.0156 \mathrm{mmol}, 1.00$ equiv), copper(II) nitrate trihydrate ($30.0 \mathrm{mg}, 0.124$ mmol, 7.95 equiv), one drop of HBF_{4} solution ($48 \% \mathrm{w} / \mathrm{w}$), and DMF (1.5 mL). The reaction mixture was sonicated until a homogeneous solution was obtained and the reaction solution was allowed to stand at $75^{\circ} \mathrm{C}$ for 3 d . At this time, the reaction was cooled to $23^{\circ} \mathrm{C}$ and solvent was decanted. The crystalline solids were washed with DMF ($0.5 \mathrm{~mL} \times 3$) to afford 19.2 mg of title compound as a blue solid. The PXRD pattern of synthesized Cu_{3} btei was consistent with reported literature data. ${ }^{6}$

Synthesis of $\mathbf{Z n}_{2}$ abtc (S8)

$$
\mathrm{H}_{4} \text { abtc } \underset{\text { DMF, } 100^{\circ} \mathrm{C}, 1 \mathrm{~d}}{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}} \mathrm{Zn}_{2} \text { abtc }
$$

Zn_{2} abtc was prepared according to the following modification of literature methods. ${ }^{14} \mathrm{~A}$ vial was charged with $\mathrm{H}_{4} \mathrm{abtc}$ ($35.8 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv), zinc nitrate hexahydrate ($89.2 \mathrm{mg}, 0.300 \mathrm{mmol}, 3.00$ equiv), and DMF (2.5 mL). The reaction mixture was sonicated until a homogeneous solution was obtained and the reaction solution was allowed to stand at $100^{\circ} \mathrm{C}$ for 1 d . At this time, the reaction was cooled to $23^{\circ} \mathrm{C}$ and solvent was decanted. The crystalline solids were washed with DMF ($1.0 \mathrm{~mL} \times 3$) to afford title compound as an orange solid. The PXRD pattern of synthesized Zn_{2} abtc was consistent with reported literature data. ${ }^{14}$

Synthesis of $\mathbf{Z n}_{3}(\mathbf{S 6)}$ (S9)

$$
\mathrm{S} 6 \xrightarrow[\text { DMA, } 85^{\circ} \mathrm{C}, 3 \mathrm{~d}]{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}} \mathrm{~S} 9
$$

Compound S9 was prepared according to literature methods. ${ }^{15}$ A vial was charged with compound S6 ($50.0 \mathrm{mg}, 0.0715 \mathrm{mmol}, 1.00$ equiv), zinc nitrate hexahydrate ($170 \mathrm{mg}, 0.571$ mmol, 7.99 equiv), and DMA (3.5 mL). The reaction mixture was sonicated until a homogeneous solution was obtained and the reaction solution was allowed to stand at 85 ${ }^{\circ} \mathrm{C}$ for 3 d . At this time, the reaction was cooled to $23{ }^{\circ} \mathrm{C}$ and solvent was decanted. The crystalline solids were washed with DMA ($1.0 \mathrm{~mL} \times 3$) to afford title compound as a colorless solid. The PXRD pattern of synthesized $\mathbf{S 9}$ was consistent with reported literature data. ${ }^{15}$

Synthesis of $\mathbf{Z n}_{3}(\mathbf{S 7)}$ (S10)

Compound S10 was prepared according to the following modification of literature methods. ${ }^{10}$ A vial was charged with compound $\mathbf{S 7}$ ($18.0 \mathrm{mg}, 0.0273 \mathrm{mmol}, 1.00$ equiv), zinc nitrate hexahydrate ($12.0 \mathrm{mg}, 0.0403 \mathrm{mmol}, 1.48$ equiv), NMP (1.0 mL), and DMF (1.0 mL). The reaction mixture was sonicated until a homogeneous solution was obtained and the reaction solution was allowed to stand at $85^{\circ} \mathrm{C}$ for 12 h and then $105^{\circ} \mathrm{C}$ for 24 h . At this time, the reaction was cooled to $23{ }^{\circ} \mathrm{C}$ and solvent was decanted. The crystalline solids were washed with DMF ($1.0 \mathrm{~mL} \times 3$) to afford title compound as a colorless solid. The PXRD pattern of synthesized $\mathbf{S 1 0}$ was consistent with reported literature data. ${ }^{10}$

Synthesis of $\mathbf{Z n}_{3}$ btei

Microcrystalline Zn_{3} btei was prepared according to the following modification of literature methods. ${ }^{17}$ A 1-dram vial was charged with H_{6} btei ($8.00 \mathrm{mg}, 0.0125 \mathrm{mmol}, 1.00$ equiv), zinc nitrate hexahydrate ($12.0 \mathrm{mg}, 0.0403 \mathrm{mmol}, 3.22$ equiv), and DMF (0.5 mL). The reaction mixture was sonicated until a homogeneous solution was obtained and the reaction solution was allowed to stand at $75^{\circ} \mathrm{C}$ for 2 d . At this time, the reaction was cooled to $23^{\circ} \mathrm{C}$ and solvent was decanted. The crystalline solids were washed with DMF ($0.5 \mathrm{~mL} \times 3$) to afford 7.90 mg of title compound as an amber solid. The PXRD pattern of synthesized Zn_{3} btei was consistent with reported literature data. ${ }^{16}$

Crystalline Zn_{3} btei was prepared according to literature methods. ${ }^{6}$ A 2-dram vial was charged with H_{6} btei ($10.0 \mathrm{mg}, 0.0156 \mathrm{mmol}, 1.00$ equiv), zinc bromide ($30.0 \mathrm{mg}, 0.133$ mmol, 8.53 equiv), and DMF (1.5 mL). The reaction mixture was sonicated until a homogeneous solution was obtained and the reaction solution was allowed to stand at 75 ${ }^{\circ} \mathrm{C}$ for 3 d . At this time, the reaction was cooled to $23{ }^{\circ} \mathrm{C}$ and solvent was decanted. The crystalline solids were washed with DMF $(1.5 \mathrm{~mL} \times 3)$ to afford 7.40 mg of title compound as amber solids. Elemental Analysis (EA) for $\left[\mathrm{Zn}_{3}(\right.$ btei $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{1.7}\left(\mathrm{CHCl}_{3}\right)_{1.35}\right]$: calcd. C, 39.83; H, 3.41; N, 1.86; Cl, 11.22; found C, $39.25 ; \mathrm{H}, 2.78$; $\mathrm{N}, 1.86$; Cl, 11.14. The PXRD pattern of synthesized Zn_{3} btei was consistent with reported literature data. ${ }^{6}$

Transmetalation of $\mathbf{Z n}_{3}$ btei

$$
\mathrm{Zn}_{3} \text { btei } \xrightarrow[\mathrm{CHCl}_{3}, 23^{\circ} \mathrm{C}]{\mathrm{Pd}(\mathrm{OAc})_{2}} \mathrm{Pd}_{3} \text { btei }
$$

Zn_{3} btei was soaked in CHCl_{3} for 3 d or 28 d and the solvent was refreshed three times per day. $\mathrm{Pd}(\mathrm{OAc})_{2}$ was purified prior to use. $\mathrm{Pd}(\mathrm{OAc})_{2}$ was dissolved in CHCl_{3}, filtered through Celite, and CHCl_{3} was removed under vacuum. A 0.5 -dram vial was charged with Zn_{3} btei $(7.4 \mathrm{mg}), \mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{mg})$, and chloroform $(0.5 \mathrm{~mL})$ and the Pd solution was refreshed weekly. Elemental Analysis (EA) for $\left[\mathrm{Pd}_{2.25} \mathrm{Zn}_{0.75}(\right.$ btei $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{13}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{0.6}\left(\mathrm{CHCl}_{3}\right)_{0.4}\right]$: calcd. C, 38.18; H, 3.57; N, 0.70; Cl, 3.57; found C, 37.03; H, 2.64; N, 0.71; Cl, 3.47.
Transmetalation reactions between other MOFs and $\mathrm{Pd}(\mathrm{OAc})_{2}$ were conducted using similar procedures.

Back-Exchange of Pd ${ }_{3}$ btei with Zn (II)

$$
\text { Pd }{ }_{3} \text { btei } \xrightarrow[M e C N, 23^{\circ} \mathrm{C}]{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O},} \mathrm{Zn}_{3} \text { btei }
$$

A 0.5 -dram vial was charged with Pd_{3} btei (7.40 mg), zinc nitrate hexahydrate (50.0 mg) and $\mathrm{MeCN}(0.5 \mathrm{~mL})$ and the mixture was allowed to stand for 7 d .

Digestion of Pd ${ }_{3}$ btei with AcOH

A 1-dram vial was charged with Pd_{3} btei $(5.0 \mathrm{mg})$ and $\mathrm{AcOH}(1.0 \mathrm{~mL})$. After sonication at 23 ${ }^{\circ} \mathrm{C}$ for 3 min , the solution was discarded. The solids were washed with $\mathrm{MeOH}(0.5 \mathrm{~mL} \times 3)$ and the volatiles were removed in vacuo. ${ }^{1} \mathrm{H}$ NMR of the solids corresponded to that of H_{6} btei.

Treatment of Pd_{3} btei with BnOH

An NMR tube was charged with Pd_{3} btei ($6.30 \mathrm{mg}, 0.00677 \mathrm{mmol}, 1.00$ equiv), benzyl alcohol ($2.00 \mu \mathrm{~L}, 0.0192 \mathrm{mmol}, 2.84$ equiv), mesitylene ($2.00 \mu \mathrm{~L}, 0.0145 \mathrm{mmol}, 2.14$ equiv), and $\mathrm{CDCl}_{3}(0.45 \mathrm{~mL})$. The reaction mixture was agitated using a mechanical shaker for 24 h at $23^{\circ} \mathrm{C}$. At this time, benzaldehyde was detected by ${ }^{1} \mathrm{H}$ NMR and the yield was determined to be 21% by integration against the resonances of mesitylene.

General Procedure for Oxidation with Peracetic Acid

A one-dram vial was charged with Pd_{3} btei ($0.00445 \mathrm{mmol}, 1.00$ equiv), peracetic acid (39% in acetic acid, $8.08 \mu \mathrm{~L}, 0.0472 \mathrm{mmol}, 10.6$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL})$. After stirring at 23 ${ }^{\circ} \mathrm{C}$ for 16 h , solution turned light yellow and most of the solids dissolved. Water (0.30 mL) was added and the aqueous layer was collected and filtered. $\left[\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{6}\right]^{-}$was observed by mass spectrometry (ESI negative, calc: 209.0081; expt m/z: 209.0087). Similar experiments were conducted with Zn_{3} btei and H_{6} btei using peracetic acid. $\left[\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{6}\right]^{-}$was observed by mass spectrometry in each of these experiments.

General Procedure for Oxidation with 2-Tert-butylsulfonyl Iodosylbenzene (S11)

A one-dram vial was charged with Pd_{3} btei ($0.00445 \mathrm{mmol}, 1.00$ equiv), hypervalent iodine reagent $\mathbf{S 1 1}$ ($15.0 \mathrm{mg}, 0.0441 \mathrm{mmol}, 9.90$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL})$. After stirring at 23 ${ }^{\circ} \mathrm{C}$ for 16 h , solution turned light yellow and some of the solids remained undissolved. DCM was decanted and water (0.30 mL) was added and the solution was filtered. [$\left.\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{6}\right]^{-}$was observed by mass spectrometry (ESI negative, calc: 209.0085; expt m/z: 209.0087). Similar experiments were conducted with Zn_{3} btei and H_{6} btei using S11. [$\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{6}$] ${ }^{-}$was observed by mass spectrometry in each of these experiments.

General Procedure for $\mathbf{C S}_{2}$ Experiment

A one-dram vial was charged with Pd_{3} btei (2.0 mg), $\mathrm{CS}_{2}(0.01 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The reaction mixture was allowed to sit for 1 h at $23^{\circ} \mathrm{C}$. At this time, the reaction solvent was decanted and IR spectra were recorded for the remaining solids. Similar experiments were conducted with Zn_{3} btei and $\mathrm{Pd}(\mathrm{OAc})_{2}$ using CS_{2}. For $\mathrm{Pd}(\mathrm{OAc})_{2}$, the reaction was allowed to air dry prior to acquisition of the IR spectrum.

Attempt to Directly Synthesize Pd 3 btei under Cation Exchange Conditions

A $20-\mathrm{mL}$ vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}\left(60.0 \mathrm{mg}, 0.267 \mathrm{mmol}, 4.01\right.$ equiv), H_{3} btc (14.0 $\mathrm{mg}, 0.0666 \mathrm{mmol}, 1.00$ equiv), and $\mathrm{CHCl}_{3}(15.0 \mathrm{~mL})$. After standing at $23{ }^{\circ} \mathrm{C}$ for 24 h , solvent was removed in vacuo to afford white and orange solids. PXRD analysis of the solids did not display any of the signals attributable to M_{3} btei frameworks.

C. Supporting Data

C. 1 Coordinates of Optimized Structures

Table S1. Coordinates for optimized geometry of $\mathrm{Pd}(\mathrm{OAc})_{2}$.

Atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
O	1.756794	1.087321	0.019089
O	-1.756708	-1.087420	-0.019125
C	2.430258	-0.000395	0.018232
C	-2.430303	0.000161	-0.018173
0	1.756668	-1.087876	0.019087
C	-1.756838	1.087754	-0.019085
H	3.926593	0.000022	-0.014726
H	4.261525	0.020976	-1.058672
C	4.313085	0.889949	0.487586
H	4.313509	-0.907879	0.453627
H	-3.926666	-0.000140	0.014902
P	-4.261542	-0.005236	1.059062
d	-4.313646	0.901003	-0.466402
	-4.313223	-0.897111	-0.474553
0.000036	0.000047	-0.000039	

Table S2. Coordinates for optimized geometry of $\mathrm{Pd}_{2}(\mathrm{OAc})_{4}$.

Atom	X	Y	Z
0	-1.456793	1.432494	-1.147017
0	1.455459	-1.447963	-1.142675
0	-1.438447	-1.463812	-1.144355
0	1.442007	1.448162	-1.144394
C	-1.853951	1.828375	-0.002515
C	-1.834874	-1.859626	0.000712
C	1.856609	-1.838020	0.002689
C	1.832426	1.850038	0.000600
0	-1.458304	1.432559	1.142832
0	-1.438991	-1.463457	1.145610
0	1.455278	-1.446397	1.147295
0	1.440523	1.449852	1.145462
C	-2.930161	-2.905455	-0.001983
H	-3.898581	-2.398783	-0.087877
H	-2.816829	-3.568131	-0.862644
H	-2.917012	-3.473802	0.929734
C	-2.901375	2.922323	0.000154
H	-2.398032	3.890144	0.108973
H	-3.456259	2.922075	-0.939658
H	-3.576293	2.795439	0.849480
C	2.965438	-2.869471	0.001071
H	3.927498	-2.349662	-0.077670
H	2.955336	-3.441608	0.930524
H	2.865164	-3.530128	-0.862725
C	2.864652	2.958321	-0.001990
H	2.345843	3.920708	-0.083297
H	3.435762	2.949774	0.928117
H	3.526140	2.856121	-0.864943
Pd	-0.000448	-0.006211	1.309424
Pd	0.000640	-0.007323	-1.309043

Table S3. Coordinates for optimized geometry of $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$.

Atom	X	Y	Z
Pd	1.619339	-0.929252	0.014006
C	-0.063527	-2.607519	1.868932
0	1.046467	-2.409266	1.293111
0	-1.174028	-2.047058	1.620059
C	-2.270779	1.267057	-1.892147
0	-1.528187	2.119232	-1.320660
0	-2.364702	0.027496	-1.640214
C	-3.178158	1.797375	-2.984445
H	-3.445016	0.997916	-3.678150
H	-4.097632	2.174483	-2.521305
H	-2.696088	2.623911	-3.510415
C	-0.077932	-3.658332	2.961265
H	0.912599	-3.758400	3.408479
H	-0.821832	-3.403082	3.719043
H	-0.361423	-4.620238	2.518104
Pd	-0.000013	1.867439	-0.000017
C	-2.277021	1.349145	1.834966
0	-2.651907	0.290927	1.246865
0	-1.243670	2.042684	1.594708
C	0.063702	-2.607749	-1.868759
0	1.174224	-2.047313	-1.619923
0	-1.046320	-2.409312	-1.293058
C	0.078015	-3.658857	-2.960809
H	-0.911720	-3.756345	-3.410385
H	0.824469	-3.405920	-3.716824
H	0.357531	-4.621458	-2.516624
C	-3.159641	1.823424	2.972363
H	-2.972965	1.191910	3.848399
H	-2.939589	2.861650	3.225049
H	-4.211469	1.708379	2.698582
Pd	-1.619309	-0.929275	-0.014030
C	2.276994	1.349213	-1.835011
0	2.651813	0.290911	-1.247027
0	1.243674	2.042783	-1.594697
C	3.159490	1.823504	-2.972499
H	2.970243	1.194055	-3.849485
H	2.941442	2.862654	-3.223146
H	4.211357	1.705552	-2.700179
C	2.270730	1.267241	1.892075
0	2.364612	0.027680	1.640159
0	1.528161	2.119436	1.320574
C	3.178091	1.797565	2.984386
H	4.097347	2.175156	2.521209
H	2.695803	2.623787	3.510655
H	3.445334	0.998013	3.677832

Table S4. Coordinates for optimized geometry of $\mathrm{Pd}_{4}(\mathrm{OAc})_{8}$.

Atom	X	Y	Z
Pd	1.643894	-0.726051	0.128975
Pd	-0.725647	-1.642710	-0.128703
Pd	-1.643790	0.726026	0.128793
Pd	0.725698	1.642585	-0.129296
0	2.199496	-2.944158	0.075640
0	0.092868	-3.525427	-0.532630
C	1.340545	-3.761549	-0.336568
C	1.782990	-5.173964	-0.677347
0	1.339982	-0.922483	2.127993
0	-0.598143	-2.046739	1.846620
C	0.375170	-1.633647	2.549387
C	0.395146	-2.040605	4.001783
0	-2.943249	-2.199346	-0.073016
0	-3.526350	-0.092614	0.532529
C	-3.761316	-1.340595	0.337805
C	-5.173848	-1.784247	0.676451
0	-0.923277	-1.339405	-2.127671
0	-2.048761	0.597931	-1.846353
C	-1.635613	-0.375424	-2.548849
C	-2.043237	-0.396502	-4.001006
0	-2.198990	2.944228	0.075132
0	-0.092521	3.525349	-0.533871
C	-1.339934	3.761728	-0.337071
C	-1.783936	5.173694	-0.677711
0	-1.339834	0.923139	2.127728
0	0.598198	2.047376	1.845869
C	-0.375115	1.634578	2.548758
C	-0.394969	2.041926	4.001035
0	2.943264	2.199337	-0.073843
0	3.526381	0.092845	0.532471
C	3.761353	1.340724	0.337106
C	5.173617	1.784709	0.676411
0	0.923190	1.338644	-2.128160
0	2.048909	-0.598401	-1.846209
C	1.635827	0.374746	-2.548964
C	2.042833	0.395228	-4.001298
H	2.648444	-5.451693	-0.071525
H	0.965270	-5.883195	-0.531376
H	2.077761	-5.199939	-1.732946
H	-0.623503	-2.155149	4.377749
H	0.906786	-3.006735	4.082960
H	0.950199	-1.309207	4.592756
H	-5.459815	-2.632143	0.049787
H	-5.193613	-2.108635	1.723475
H	-5.880214	-0.959918	0.557107
H	-2.165488	0.621470	-4.376231

H	-1.308548	-0.946286	-4.592853
H	-3.005486	-0.915541	-4.081841
H	-0.956626	5.878793	-0.572620
H	-2.123464	5.188501	-1.719946
H	-2.622415	5.465116	-0.040828
H	0.623681	2.157116	4.376798
H	-0.906954	3.007916	4.081828
H	-0.949578	1.310536	4.592420
H	5.880258	0.960555	0.557465
H	5.459727	2.632630	0.049840
H	5.192710	2.109167	1.723420
	1.304457	0.939098	-4.594051
	3.001797	0.920093	-4.083542

C. 2 Optimization of Transmetalation Chemistry

Table S5. Examination of cation metathesis in btc-supported networks.

Template Network	Pd Source	Temp / ${ }^{\circ} \mathrm{C}$	Solvent	Result
$\mathrm{Zn}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$	23	CHCl_{3}	Pd black after 5 d
$\mathrm{Zn}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	55	CHCl_{3}	Pd black after 2 d
$\mathrm{Zn}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	80	MeCN	Pd black after 1 d
$\mathrm{Zn}_{3} \mathrm{btc}_{2}$	PdCl_{2}	80	MeCN	Pd black after 1 d
$\mathrm{Zn}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(\mathrm{DMSO})_{2}$	23	CHCl_{3}	Pd black after 3 d
$\mathrm{Zn}_{3} \mathrm{btc}_{2}$	$\left[\mathrm{Pd}(\mathrm{MeCN})_{4}\right]\left[\left(\mathrm{BF}_{4}\right)_{2}\right]$	23	CHCl_{3}	Pd black after 4 d
$\mathrm{Zn}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	CHCl_{3}	35\% exchange after 20 d
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	CHCl_{3}	$<1 \%$ exchange after 150 d
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	MeOH	Pd black after 3 h
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	EtOH	Pd black after 3 h
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	DMF	Pd black after 5 h
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	75	DMF	Pd black after 1 h
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	80	MeCN	Pd black after 2 d
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	PdCl_{2}	23	MeOH	Pd black after 5 h
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	PdCl_{2}	23	EtOH	Pd black after 7 h
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	PdCl_{2}	23	DMF	Pd black after 7 h
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	PdCl_{2}	75	DMF	Pd black after 1 h
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$	23	CHCl_{3}	Pd black after 5 d
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	55	CHCl_{3}	Pd black after 2 d
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	80	MeCN	Pd black after 1 d
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	PdCl_{2}	80	MeCN	Pd black after 1 d
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(\mathrm{DMSO})_{2}$	23	CHCl_{3}	Pd black after 3 d
$\mathrm{Cu}_{3} \mathrm{btc}_{2}$	$\left[\mathrm{Pd}(\mathrm{MeCN})_{4}\right]\left[\left(\mathrm{BF}_{4}\right)_{2}\right]$	23	CHCl_{3}	Pd black after 4 d

Table S6. Examination of cation metathesis in btei-supported networks.

Template Network	Pd Source	Temp $/{ }^{\circ} \mathbf{C}$	Solvent	Result
Zn_{3} btei (crystalline)	$\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$	23	CHCl_{3}	Pd black after 5 d
Zn b bei (microcrystalline)	$\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$	23	CHCl_{3}	Pd black after 5 d
Cu_{3} btei	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	CHCl_{3}	20% exchange after 56 d

Table S7. Examination of cation metathesis in other networks.

Template Network	Pd Source	Temp / ${ }^{\circ} \mathbf{C}$	Solvent	Result
Zn_{3} abtc $(\mathbf{S 8})$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	CHCl_{3}	$54 \% 161 \mathrm{~d}$
$\mathbf{S 9}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	CHCl_{3}	$46 \% 161 \mathrm{~d}$
$\mathbf{S 1 0}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	23	CHCl_{3}	$29 \% 161 \mathrm{~d}$

C.3. Characterization of Exchanged Materials

Figure S1. (a) PXRD patterns for $\mathrm{Zn}_{3} \mathrm{btc}_{2}$ (-) and for Pd-exchanged material (-). (b) Simulated PXRD of Pd substituted MIL-101 structure (trigonal prismatic Pd_{3} nodes, -), simulated PXRD of MIL-100 $\left(\mathrm{Cr}_{3}(\mathrm{btc})_{2},-\right)$, simulated PXRD of $\mathrm{Cu}_{3}(\mathrm{btc})_{2}(-)$, and simulated PXRD of $\mathrm{Zn}_{3}(\mathrm{btc})_{2}(-)$.

Figure S2. IR spectra of Zn_{3} btei in DMF (-), Zn_{3} btei in CHCl_{3} for 1 hour (-), Zn_{3} btei in CHCl_{3} for 1 day (-), and Zn_{3} btei in CHCl_{3} for 3 days (-).

Figure S3. TGA-MS spectra (-) of Zn_{3} btei exchanged in CHCl_{3} for (a) 1 h ; (b) 1 d ; and (c) 28 d . Mass loss was attributed to $\mathrm{CHCl}_{3}(-)$, DMF (-), and $\mathrm{CO}_{2}(-)$.

Figures S4a and S4b. (a) Plot of $\mathrm{Pd}(\mathrm{OAc})_{2}$ exchange into Zn_{3} btei that was pre-soaked in CHCl_{3} for 28 d . (b) Plot of $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}$ exchange into Zn_{3} btei that was pre-soaked in CHCl_{3} for 28 d .

Figure S4c. PXRD pattern of material obtained following $\operatorname{Pd}\left(\mathrm{NO}_{3}\right)_{2}$ exchange with Zn_{3} btei.

Figure S5. N_{2} adsorption isotherms for Zn_{3} btei and Pd_{3} btei at different conditions. Supercritical CO_{2} activation and heating ($45^{\circ} \mathrm{C}$) were incapable of access higher gas uptake capacity. N_{2} adsorption isotherms collected at 77 K (a) for Zn_{3} btei that was activated by vacuum twice at $23^{\circ} \mathrm{C}$ (adsorption (\bullet; \bullet), desorption ($\mathrm{O} ; \mathrm{O}$)) and by supercritical CO_{2} (adsorption (•), desorption (O)); (b) for Pd_{3} btei that was activated at $45{ }^{\circ} \mathrm{C}$ for 16 h (absorption (•), desorption (O)); and, for Pd_{3} btei that was activated by supercritical CO_{2} (absorption (\bullet), desorption (○)).

Samples	BET surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Langmuir surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$
Zn_{3} btei $/ 23^{\circ} \mathrm{C}-1$	348	386
Zn_{3} btei $/ 23^{\circ} \mathrm{C}-2$	$\mathrm{~N} / \mathrm{A}$	175
Zn_{3} btei $/$ supercritical CO_{2}	290	325
$\mathrm{Pd}{ }_{3}$ btei $/ 45^{\circ} \mathrm{C}$	741	858
Pd_{3} btei $/$ supercritical CO_{2}	425	493

C.4. Single-Crystal X-Ray Diffraction

The single crystal X-ray diffraction experiment was conducted using synchrotron radiation ($\lambda=0.41328 \AA$) equipped with a Pilatus 3 X CdTe 1 M detector and an Oxford cryostream cooling device operating at 100 K at NSF's ChemMatCARS Sector 15 of Advanced Photon Source (APS) housed at Argonne National Laboratory (ANL). Data were collected as a series of phi scans. Indexing was performed using Bruker APEX3. Data integration and reduction were performed using SaintPlus. Absorption correction was performed by multi-scan method implemented in SADABS. Space group was determined using XPREP implemented in APEX3. Structures were solved using SHELXT and refined using SHELXL-2017 (fullmatrix least-squares on F^{2}) with OLEX2 interface program. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at idealized positions and refined using a riding model. Despite using synchrotron radiation, the best crystal sample diffracted only up to $1.12 \AA$ resolution after many attempts. EXYZ and EADP commands were used to refine the partially exchanged Zn site. Considering that large accessible voids with this structure accommodate heavily disordered solvent molecules, solvent mask in OLOEX2 was thus employed to process the refinement. Crystal data and structure refinement conditions are shown in Table S8.

Table S8. Crystal data and structure refinement for Pd $\mathbf{P b}_{3}$ bei.

Crystal data	
Chemical formula	$0.02\left(\mathrm{C}_{1152} \mathrm{H}_{384} \mathrm{O}_{460.8} \mathrm{Pd}_{19.41} \mathrm{Zn}_{76.59}\right)$
Fw (g/mol)	597.24
Temperature (K)	100(2)
Crystal system, space group	Cubic, Fm-3m
$a, b, c(A ̊)$	43.149(5), 43.149(5), 43.149(5)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90
$V\left(\AA^{3}\right)$	80337(27)
Z	48
Radiation type	Synchrotron, $\lambda=0.41328 \AA$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.268
Crystal size (mm)	$0.02 \times 0.02 \times 0.02$
Data collection	
Diffractometer	Pilatus3 X CdTe 1M
Absorption correction	Multi-scan, SADABS
No. of measured, independent and observed [I>2 σ (I)] reflections	139206, 1544, 1121
$R_{\text {int }}$	0.128
$\sin (\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	1.12
Refinement	
$R\left[\mathrm{~F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right], w R\left(\mathrm{~F}^{2}\right), S$	0.043, 0.134, 1.06
No. of reflections	1544
No. of parameters	99
H-atom treatment	H-atom parameters constrained $\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0638 P)^{2}+222.7243 P\right] \\ & \text { where } P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
$\mathrm{r}_{\text {max }}, \mathrm{r}_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.26, -0.19

C.5. EXAFS Analysis

Figure S6. EXAFS Pd K-edge data (window range $1.0 \AA$ - $3.3 \AA$) for Pd_{3} btei; experimental data (-) and fit (-) using the FEFF9 code. Fourier transforms (FT) of the Pd K-edge EXAFS data measured on the sample following 86% Pd exchange. Left: the FT moduli; right: real parts of the FTs. The metal-metal interaction around Pd is dominated by the Pd-Pd ones at 2.72 ± 0.03 Å.

Table S9. EXAFS data analysis of Pd_{3} btei. N , coordination number. $\mathrm{S}_{0}{ }^{2}$, amplitude reduction factor. R, the distance between absorber and scatterer; σ^{2}, the Debye-Waller factor; $\Delta \mathrm{E}_{0}$, the energy shift. R-factor is 0.008 .

Path	\mathbf{N}	$\mathbf{S}_{\mathbf{0}}{ }^{\mathbf{2}}$	\mathbf{R} / \AA	$\mathbf{\sigma}^{\mathbf{2}} / \mathbf{\AA}^{\mathbf{2}}$	$\mathbf{\Delta} \mathbf{E}_{\mathbf{0}} / \mathbf{e V}$
Pd-O	4.00	1.018	2.01 ± 0.01	0.0051	8.45 ± 1.25
$\mathrm{Pd}-\mathrm{Pd}$	1.00	1.018	2.72 ± 0.03	0.0103	8.45 ± 1.25
$\mathrm{Pd}-\mathrm{C}$	4.00	1.018	2.94 ± 0.03	0.0034	8.45 ± 1.25
$\mathrm{Pd}-0$	4.00	1.018	3.14 ± 0.04	0.0088	8.45 ± 1.25

Figure S7. EXAFS Pd K-edge data (window range $1.0 \AA$ - $3.0 \AA$) for $\operatorname{PdZn}(\mathrm{OAc})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$; experiment data (-) and fit (-) using the FEFF9 code. Left: the FT moduli; right: real parts of the FTs.

Table S10. EXAFS data analysis of $\operatorname{PdZn}(\mathrm{OAc})_{4} \cdot \mathrm{H}_{2} \mathrm{O} . \mathrm{N}$, coordination number. $\mathrm{S}_{0}{ }^{2}$, amplitude reduction factor. R , the distance between absorber and scatterer; σ^{2}, the DebyeWaller factor; $\Delta \mathrm{E}_{0}$, the energy shift. R -factor is 0.005 .

Path	N	So^{2}	R / Å	σ^{2} / \AA^{2}	$\Delta E_{0} / \mathrm{eV}$
Pd-0	4.00	1.022	2.01 ± 0.01	0.0024	9.21 ± 1.27
$\mathrm{Pd}-\mathrm{Zn}$	1.00	1.022	2.61 ± 0.05	0.0107	9.21 ± 1.27
Pd-C	2.00	1.022	2.92 ± 0.03	0.0015	9.21 ± 1.27
Pd-C	2.00	1.022	2.98 ± 0.03	0.0015	9.21 ± 1.27
Pd-0	2.00	1.022	3.07 ± 0.04	0.0086	9.21 ± 1.27
Pd-0	2.00	1.022	3.13 ± 0.04	0.0086	9.21 ± 1.27

Figure S8. EXAFS Zn K-edge data (window range $1.0 \AA-3.3 \AA$) for $\mathrm{PdZn}(\mathrm{OAc})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$; experiment data (-) and fit (-) using the FEFF9 code. Left: the FT moduli; right: real parts of the FTs.

Table S11. EXAFS data analysis of $\operatorname{PdZn}(\mathrm{OAc})_{4} \cdot \mathrm{H}_{2} \mathrm{O} . \mathrm{N}$, coordination number. $\mathrm{S}_{0}{ }^{2}$, amplitude reduction factor. R, the distance between absorber and scatterer; σ^{2}, the DebyeWaller factor; $\Delta \mathrm{E}_{0}$, the energy shift. R -factor is 0.014 .

Path	N	$\mathrm{S}_{0}{ }^{2}$	R / \AA	σ^{2} / \AA^{2}	$\Delta \mathrm{E}_{0} / \mathrm{eV}$
$\mathrm{Zn}-0$	2.00	0.976	2.05 ± 0.03	0.0074	8.97 ± 2.38
$\mathrm{Zn}-0$	2.00	0.976	2.08 ± 0.03	0.0074	8.97 ± 2.38
$\mathrm{Zn}-\mathrm{Pd}$	1.00	0.976	2.61 ± 0.07	0.0055	8.97 ± 2.38
$\mathrm{Zn}-\mathrm{C}$	4.00	0.976	3.03 ± 0.09	0.0032	8.97 ± 2.38
$\mathrm{Zn}-0$	4.00	0.976	3.23 ± 0.08	0.0035	8.97 ± 2.38

Figure S9. EXAFS Pd K-edge data (window range $1.0 \AA$ - $3.3 \AA$) for (PdZn) 1.5 btei; experiment data (-) and fit (-) using the FEFF9 code. Fourier transforms (FT) of the Pd Kedge EXAFS data measured on the sample following 50% Pd exchange. Left: the FT moduli; right: real parts of the FTs.

Table S12. EXAFS data analysis of (PdZn) 1.5 $^{\text {b }}$ btei. N , coordination number. $\mathrm{S}_{0}{ }^{2}$, amplitude reduction factor. R, the distance between absorber and scatterer; σ^{2}, the Debye-Waller factor; $\Delta \mathrm{E}_{0}$, the energy shift. R-factor is 0.016 .

Path	\mathbf{N}	$\mathbf{S o}^{\mathbf{2}}$	$\mathbf{R} / \AA \mathbf{A}^{2}$	$\boldsymbol{\sigma}^{\mathbf{2}} / \mathbf{\AA}^{\mathbf{2}}$	$\Delta \mathbf{E}_{\mathbf{0}} / \mathbf{e V}$
$\mathrm{Pd}-0$	4.00	1.037	2.01 ± 0.01	0.0034	6.11 ± 1.50
$\mathrm{Pd}-\mathrm{Zn}$	0.50	1.037	2.65 ± 0.07	0.0097	6.11 ± 1.50
$\mathrm{Pd}-\mathrm{Pd}$	0.50	1.037	2.70 ± 0.07	0.0097	6.11 ± 1.50
$\mathrm{Pd}-\mathrm{C}$	4.00	1.037	2.96 ± 0.03	0.0052	6.11 ± 1.50
$\mathrm{Pd}-\mathrm{O}$	4.00	1.037	3.16 ± 0.07	0.0149	6.11 ± 1.50

Figure S10. EXAFS Zn K-edge data (window range $1.0 \AA$ - $3.8 \AA$) for (PdZn) 1.5 btei; experiment data (-) and fit (-) using the FEFF9 code. Fourier transforms (FT) of the Pd Kedge EXAFS data measured on the sample following 50% Pd exchange. Left: the FT moduli; right: real parts of the FTs.

Table S13. EXAFS data analysis of $(\mathrm{PdZn})_{1.5}$ btei. N , coordination number. $\mathrm{S}_{0}{ }^{2}$, amplitude reduction factor. R, the distance between absorber and scatterer; σ^{2}, the Debye-Waller factor; $\Delta \mathrm{E}_{0}$, the energy shift. R -factor is 0.020 .

Path	\mathbf{N}	$\mathbf{S o}^{\mathbf{2}}$	\mathbf{R} / \AA	$\boldsymbol{\sigma}^{\mathbf{2}} / \mathbf{\AA}^{\mathbf{2}}$	$\mathbf{\Delta} \mathbf{E}_{\mathbf{0}} / \mathbf{e V}$
$\mathrm{Zn}-\mathbf{0}$	4.00	1.019	2.01 ± 0.01	0.0063	8.05 ± 1.14
$\mathrm{Zn}-0$	1.00	1.019	2.18 ± 0.01	0.0063	8.05 ± 1.14
$\mathrm{Zn}-\mathrm{Pd}$	0.50	1.019	2.60 ± 0.06	0.0072	8.05 ± 1.14
$\mathrm{Zn}-\mathrm{Zn}$	0.50	1.019	2.90 ± 0.06	0.0051	8.05 ± 1.14
$\mathrm{Zn}-\mathrm{C}$	4.00	1.019	3.11 ± 0.06	0.0228	8.05 ± 1.14

Figure S11. XANES spectra of Pd_{3} btei (-), $\mathrm{Pd}(\mathrm{OAc})_{2}(-), \mathrm{PdZn}(\mathrm{OAc})_{4} \cdot \mathrm{H}_{2} \mathrm{O}(-)$, and $\mathrm{Pd}(0)$ (一). The edge energy in $\operatorname{Pd}(I I)$ species is higher than that in $\operatorname{Pd}(0)$, which is inconsistent with reduction of the Pd_{2} sites upon transmetalation.

Figures S12a and S12b. IR spectra of (a) $\mathrm{CS}_{2}(-), \mathrm{Pd}_{3} b t e i(-)$, and Pd_{3} btei treated with $\mathrm{CS}_{2}(-)$; (b) $\mathrm{CS}_{2}(-), \mathrm{Zn}_{3}$ btei (-), and Zn_{3} btei treated with $\mathrm{CS}_{2}(-)$.

Figure S12c. IR spectra of $\mathrm{CS}_{2}(-), \mathrm{Pd}(\mathrm{OAc})_{2}(-)$, and $\mathrm{Pd}(\mathrm{OAc})_{2}$ treated with $\mathrm{CS}_{2}($ (一).

C.6. Additional Data

Figure S13. Calculated (-) and Experimental (-) PXRD pattern of $\mathrm{PdZn}(\mathrm{OAc})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$.

Figure S14. PXRD patterns of calculated $\mathbf{S 8}(-)$, as-synthesized $\mathbf{S 8}(-)$, and Pd-exchanged S8 (-).

Figure S15. PXRD pattern of calculated $\mathbf{S 9}$ (—), as-synthesized $\mathbf{S 9}$ (—), and Pd-exchanged S9 (一).

Figure S16. PXRD pattern of calculated S10 (-), as-synthesized S10 (-), and Pdexchanged S10 (—).

E. References

1. Malpass, J. R.; Hemmings, D. A.; Wallis, A. L.; Fletcher, S. R.; Patel, S. J. Chem. Soc., Perkin Trans. 1 2001, 1044-1050.
2. Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. J. Am. Chem. Soc. 1999, 121, 7164-7165.
3. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176-2179.
4. Aujard, I.; Baltaze, J.-P.; Baudin, J.-B.; Cogné, E.; Ferrage, F.; Jullien, L.; Perez, É.; Prévost, V.; Qian, L. M.; Ruel, O. J. Am. Chem. Soc. 2001, 123, 8177-8188.
5. Farha, O. K.; Özgür Yazaydın, A.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944-948.
6. Zhao, D.; Yuan, D.; Sun, D.; Zhou, H.-C. J. Am. Chem. Soc. 2009, 131, 9186-9188.
7. Dhakshinamoorthy, A.; Alvaro, M.; Chevreau, H.; Horcajada, P.; Devic, T.; Serre, C.; Garcia, H. Catal. Sci. Technol. 2012, 2, 324-330.
8. Goel, N.; Kumar, N. RSC Advances 2018, 8, 10746-10755.
9. Hu, D.; Kluger, R. Org. Biomol. Chem. 2008, 6, 151-156.
10. Eubank, J. F.; Nouar, F.; Luebke, R.; Cairns, A. J.; Wojtas, L.; Alkordi, M.; Bousquet, T.; Hight, M. R.; Eckert, J.; Embs, J. P.; Georgiev, P. A.; Eddaoudi, M. Angew. Chem. Int. Ed. 2012, 51, 10099-10103.
11. Akhmadullina, N. S.; Cherkashina, N. V.; Kozitsyna, N. Y.; Stolarov, I. P.; Perova, E. V.; Gekhman, A. E.; Nefedov, S. E.; Vargaftik, M. N.; Moiseev, I. I. Inorg. Chim. Acta 2009, 362, 1943-1951.
12. Liu, J.; Wang, Y.; Benin, A. I.; Jakubczak, P.; Willis, R. R.; LeVan, M. D. Langmuir 2010, 26, 14301-14307.
13. Bhunia, M. K.; Hughes, J. T.; Fettinger, J. C.; Navrotsky, A. Langmuir 2013, 29, 81408145.
14. Zhang, S.; Ma, J.; Zhang, X.; Duan, E.; Cheng, P. Inorg. Chem. 2015, 54, 586-595.
15. Zou, Y.; Park, M.; Hong, S.; Lah, M. S. Chem. Commun. 2008, 2340-2342.
16. Hong, S.; Oh, M.; Park, M.; Yoon, J. W.; Chang, J.-S.; Lah, M. S. Chem. Commun. 2009, 5397-5399.
