Supporting Information

for

Location analysis of 8-oxo-7,8-dihydroguanine in DNA by polymerase-mediated

differential coding

Feng Tang,^{1,†} Shan Liu,^{1,†} Qiao-Ying Li,¹ Jun Yuan,² Lin Li,² Yinsheng Wang,² Bi-Feng

Yuan,^{1,*} Yu-Qi Feng¹

¹ Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education),

Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China

² Department of Chemistry and Environmental Toxicology Graduate Program, University of

California, Riverside, CA, 92521-0403, USA.

[†] These authors contributed equally to this work.

* To whom correspondence should be addressed. Tel.:+86-27-68755595; fax: +86-27-68755595. E-mail address: bfyuan@whu.edu.cn.

Page S3	Table S1. The sequences of the oligodeoxynucleotides used in this study.		
Page S4	Table S2. PCR primers used for the single-base resolution analysis of OG in HeLa genomic		
	DNA by sequencing.		
Page S5	Table S3. Steady-state kinetics for primer extension with dATP or dCTP opposite G- or OG-		
	containing DNA template using different DNA polymerases.		
Page S6	Figure S1. Steady-state kinetics for primer extension with dATP opposite G- or OG-containing		
	DNA template using different DNA polymerases.		
Page S7	Figure S2. Steady-state kinetics for primer extension with dATP or dCTP opposite G- or OG-		
	containing DNA template using different DNA polymerases.		
Page S8	Figure S3. Four DNA templates (DNA-A, DNA-T, DNA-G and DNA-C) with a single site		
	that has different nucleobases (A, T, G and C) were used to perform the primer extension assay		
	by Bsu polymerase using dATP as the substrate.		
Page S9	Figure S4. Four DNA templates (DNA-A, DNA-T, DNA-G and DNA-C) with a single site		
	that has different nucleobases (A, T, G and C) were used to perform the primer extension assay		
	by <i>Tth</i> polymerase using dATP as the substrate.		
Page S10	Figure S5. Single nucleotide primer extension reaction by <i>Tth</i> polymerase using the mixture		
	of DNA-G and DNA-T with the percentage of DNA-T ranging from 0% to 10%.		
Page S11	Figure S6 . The single nucleotide primer extension reaction by <i>Tth</i> polymerase using 5 μ g HeLa		
	DNA and different fluorophores-labeled primers (5 pmol for each) that target different		
	guanosine sites in telomeric DNA.		
Page S12	Figure S7. Single-base resolution analysis of multiple OG sites in DNA by sequencing. The		
	primer extension products by Bsu Pol with DNA templates of L-DNA-G, L-DNA-OG1 (one		
	OG site), L-DNA-OG2 (two OG sites), or L-DNA-OG3 (three OG sites).		
Page S13	Figure S8. Single-base resolution analysis of multiple OG sites in DNA by sequencing. The		
	primer extension products by Tth Pol with DNA templates of L-DNA-G, L-DNA-OG1 (one		
	OG site), L-DNA-OG2 (two OG sites), or L-DNA-OG3 (three OG sites).		
Page S14	Figure S9. Quantitative evaluation of the level of OG in DNA using various ratios of L-DNA-		
	OG1/L-DNA-G (0%, 0.1%. 1%, 10%, 20%) as the DNA template by high-throughput		
	sequencing.		
Page S15	Figure S10. Schematic illustration of the procedure for the library construction.		
Page S16	Figure S11. Schematic illustration of the analysis of OG in genomic DNA of HeLa cells.		

The Supporting Information includes following items:

ODNs	Sequence (from 5'to 3')			
FAM-primer-1	5'-FAM-CGCATAACCCTAACC-3'			
DNA-G	5'-GCGTATTGGGATTGGGATTGACACG-3'			
DNA-T	5'-GCGTATTGGGATTGGTATTGACACG-3'			
DNA-A	5'-GCGTATTGGGATTGGAATTGACACG-3'			
DNA-C	5'-GCGTATTGGGATTGGCATTGACACG-3'			
DNA-OG	5'-GCGTATTGGGATTGG(OG)ATTGACACG-3'			
Cy3-primer	5'-Cy3-TAACCCTAACC-3'			
Cy5-primer	5'-Cy5-CCTAACCCTAAC-3'			
FAM-primer-2	5'-FAM-CCCTAACCCTAA-3'			
T-DNA-1	5'-GTTAGGGTTAGGGTTAGGG-3'			
T-DNA-2	5'-GTTA(OG)GG TTAGGGTTAGGGTTAGGG-3'			
T-DNA-3	5'-GTTAG(OG)GTTAGGGTTAGGGTTAGGG-3'			
T-DNA-4	5'-GTTA GG(OG) TTAGGGTTAGGGTTAGGG-3'			
L-DNA-G	5'-			
	<i>GCCCAAGTGCTGAGGCTGATAA</i> TAATCGGGGCGGCGATCAGACAGCCCCGGTGTGGGAAAT			
	CGTCCGCCCGGTCTCCCTAAGTCCCCGAAGTCGCCTCCCACTTTTGGTGACTGCTTGTTTAT			
	TTACATGCAGinvertedT-3'			
L-DNA-OG1	5'-			
	<i>GCCCAAGTGCTGAGGCTGATAA</i> TAATCGGGGCGGCGATCAGACAGCCCCGGTGTGGGAAAT			
	CGTCCGCCCGGTCTCCCTAAGTCCCCGAAGTCGCCTCCCACTTTTGGT(O G)ACT <i>GCTTGTTT</i>			
	ATTTACATGCAGinvertedT-3'			
L-DNA-OG2	5'-			
	<i>GCCCAAGTGCTGAGGCTGATAA</i> TAATCGGGGGCGGCGATCAGACAGCCCCGGTGTGGGAAAT			
	CGTCCGCCCGGTCTCCCTAAGTCCCCGAAGTC(OG)CCTCCCACTTTTGGT(OG)ACT <i>GCTTG</i>			
	TTTATTTACATGCAGinvertedT-3'			
L-DNA-OG3	5'-			
	<i>GCCCAAGTGCTGAGGCTGATAA</i> TAATCGGGGCGGCGATCAGACAGCCCCGGTGTGGGAAAT			
	CGTCCGCCCGGTCTCCCTAAGTCCCC(OG)AAGTC(OG)CCTCCCACTTTTGGT(OG)ACT <i>GC</i>			
	TTGTTTATTTACATGCAGinvertedT-3'			
L-primer	5'-TGAGCAGATGTGTGACGGCTACACTGCATGTAAATAAACAAGC-3'			
PCR reverse primer	5'-GCCCAAGTGCTGAGGCTGATAA-3'			
PCR forward primer	5'-TGAGCAGATGTGTGACGGCTAC-3'			
NN-OG-NN	5'-CCAGATGACGACTGGCACTAATGNN(OG)NNTGCTGCGTGGATCGACATCGAGinvertedC-3'			
NN-L-Primer	5'-TGAGCAGATGTGTGACGGCTACGCTCGATGTCGATCCACG-3'			
NN-F-Primer	5'-CCAGATGACGACTGGCAC-3'			
NN-R-Primer	5'-TGAGCAGATGTGTGACGGCTAC-3'			

 Table S1. The sequences of the oligodeoxynucleotides used in this study.

Table S2. PCR primers used for the single-base resolution analysis of OG in HeLa genomic

Gene / Amplified	Sequence (from 5' to 3')				
region					
VEGFA / chr6:	VEGFA-L (Primer-L): TGAGCAGATGTGTGACCACCGCCACGACTTCTGACAGTGA				
43772151-	VEGFA-F: TCTCCAGACCCTACCTCTGC				
43772344	VEGFA-R: TGAGCAGATGTGTGACCACC				
TD52/ahr17	TP53-L (Primer-L): GAGCAGATGTGTGACGGCTAGCAGCTCACTATTCACCCGA				
<i>TP35 / CHIT/.</i>	TP53-F: TGGGGCACACCATTCAAAGA				
/080438 - /080041	TP53-R: GAGCAGATGTGTGACGGCTA				
KRAS / chr12:	KRAS-L (Primer-L): GGTTAGAGCAGATGTGACGCCCTCCCAGCCCATGATCTTC				
25248470 -	KRAS-F: GAGGGGTCGTTAAGGCCAAA				
25248719	KRAS-R: GGTTAGAGCAGATGTGACGC				

DNA by sequencing.

DNA polymerase	dNTP	DNA template	V _{max} (% min ⁻¹)	$K_{\rm M}(\mu{ m M})$	$\frac{V_{\rm max}/K_{\rm M}}{({\rm min}^{-1}\mu{\rm M}^{-1})}$
	dATP	DNA-G	14.5 ± 2.3	178.6 ± 4.9	0.8 × 10 ⁻³
Deres	dATP	DNA-OG	25.1 ± 2.4	9.2 ± 0.6	27.3×10^{-3}
BSU	dCTP	DNA-G	42.2 ± 0.6	1.8 ± 0.1	234.4×10^{-3}
	dCTP	DNA-OG	27.8 ± 2.3	107.5 ± 6.3	2.6×10^{-3}
	dATP	DNA-G	5.4 ± 0.5	228.3 ± 15.4	0.2×10^{-3}
T+l.	dATP	DNA-OG	6.2 ± 0.6	275.8 ± 18.2	0.2×10^{-3}
1111	dCTP	DNA-G	50.4 ± 2.6	2.5 ± 0.3	201.6×10^{-3}
	dCTP	DNA-OG	29.7 ± 1.4	174.3 ± 23.5	1.7×10^{-3}

Table S3. Steady-state kinetics for primer extension with dATP or dCTP opposite G- or OG

 containing DNA template using different DNA polymerases.

 V_{max} , the maximum rate of the enzyme reaction.

 $K_{\rm M}$, the Michaelis constant.

Figure S1. Steady-state kinetics for primer extension with dATP opposite G- or OG-containing DNA template using different DNA polymerases.

Figure S2. Steady-state kinetics for primer extension with dATP or dCTP opposite G- or OGcontaining DNA template using different DNA polymerases.

Figure S3. Four DNA templates (DNA-A, DNA-T, DNA-G and DNA-C, detailed sequence information can be found in Table S1 in Supporting Information) with a single site that has different nucleobases (A, T, G or C) were used to perform the primer extension assay by *Bsu* polymerase using dATP as the substrate. The reaction products were analyzed by 20% denaturing PAGE.

Figure S4. Four DNA templates (DNA-A, DNA-T, DNA-G and DNA-C, detailed sequence information can be found in Table S1 in Supporting Information) with a single site that has different nucleobases (A, T, G or C) were used to perform the primer extension assay by *Tth* polymerase using dATP as the substrate. The reaction products were analyzed by 20% denaturing PAGE.

Figure S5. Single nucleotide primer extension reaction by *Tth* polymerase using the mixture of DNA-G and DNA-T with the percentage of DNA-T ranging from 0% to 10%.

Figure S6. The single nucleotide primer extension reaction by *Tth* polymerase using 5 μ g HeLa DNA and different fluorophores-labeled primers (5 pmol for each) that target different guanosine sites in telomeric DNA.

Figure S7. Single-base resolution analysis of multiple OG sites in DNA by sequencing. The primer extension products by *Bsu* Pol with DNA templates of L-DNA-G, L-DNA-OG1 (one OG site), L-DNA-OG2 (two OG sites), or L-DNA-OG3 (three OG sites). The detailed sequence information of DNA templates can be found in Table S1 in Supporting Information.

Figure S8. Single-base resolution analysis of multiple OG sites in DNA by sequencing. The primer extension products by *Tth* Pol with DNA templates of L-DNA-G, L-DNA-OG1 (one OG site), L-DNA-OG2 (two OG sites), or L-DNA-OG3 (three OG sites). The detailed sequence information of DNA templates can be found in Table S1 in Supporting Information.

Figure S9. Quantitative evaluation of the level of OG in DNA using various ratios of L-DNA-OG1/L-DNA-G (0%, 0.1%. 1%, 10%, 20%) as the DNA template by high-throughput sequencing.

Figure S10. Schematic illustration of the procedure for the library construction.

Figure S11. Schematic illustration of the analysis of OG in genomic DNA of HeLa cells. HeLa genomic DNA was denatured and annealed with the corresponding extension primers (Primer-L, Table S2 in Supporting Information). *Bsu* Pol or *Tth* pol was added for the primer extension. The extension product was purified as template for PCR amplification and then subjected to Sanger sequencing.

