ELECTRONIC SUPPLEMENTARY INFORMATION

Aromatic C–H Amination in Hexafluoroisopropanol

Erica M. D'Amato,^a Jonas Börgel^b and Tobias Ritter*^{ab}

^aDepartment of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States

^bMax-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany

*E-mail: ritter@mpi-muelheim.mpg.de

TABLE OF CONTENTS

TABLE OF CONTENTS	1
MATERIALS AND METHODS	6
EXPERIMENTAL DATA	8
General procedure for amination	8
Preparation of reagent 1	8
<i>N</i> -Boc- <i>O</i> -Mesylhydroxylamine (S1)	8
[MsO–NH ₃]OTf (1)	9
Preparation of substrates for amination	9
Moclebomide (S2)	9
4-(Trifluoromethyl)phenyl-2-nitrobenzenesulfonate (S3)	10
Amination of arenes	11
3-Nitroaniline (2a), 2-nitroaniline (2b), and 4-nitroaniline (2c)	11
3-(Methylsulfonyl)aniline (3a), 2-(methylsulfonyl)aniline (3b), and 4-(methylsulfonyl)aniline (3c)	12
3-Aminobenzonitrile (4a), 4-aminobenzonitrile (4b), and 2-aminobenzonitrile (4c)	13
2,5-Dibromoaniline (5)	14
Ethyl 5-aminothiophene-2-carboxylate (6a), ethyl 4-aminothiophene-2-carboxylate (6b), and ethy	/l 3-
aminothiophene-2-carboxylate (6c)	15
5-Amino-6-methoxy-2-methylquinoline (7a) and 8-amino-6-methoxy-2-methylquinoline (7b)	16
3-Amino-4-methoxybenzenesulfonamide (8).	1/
metnyi 4-amino-1 <i>H</i> -benzimidazole-o-carboxylate (9a), metnyi 7-amino-1 <i>H</i> -benzimidazole-o-	10
3-Amino-2 6-dichlorobenzonitrile (10a) and 4-amino-2 6-dichlorobenzonitrile (10b)	10
3-Aminomoclehomide (11a) and 2-Aminomoclehomide (11b)	20
2-Amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12)	
(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b)	21
3-Aminorufinamide (13a) and 4-aminorufinamide (13b)	23
Gram-scale amination reaction	24
Comparison to other amination methods	24
4-Bromoaniline (S4a), 2-bromoaniline (S4b), and 3-bromoaniline (S4c)	25
4-Methoxyaniline (S5a), 2-methoxyaniline (S5b), and 3-methoxyaniline (S5c)	27
Effect of iron source, oxygen, and light on the amination reaction	29
Effect of iron and oxygen	29

Effect of iron source	
Effect of light	31
Trace metal analysis	31
Consumption studies of reagent 1	32
Synthesis of reagent 1 with other counterions	
[MsO–NH ₃]ONf (S6)	33
Electrochemical data	34
General methods	
[MsO–NH₃]OTf (1) in HFIP	34
[MsO–NH₃]OTf (1) in MeCN	35
Comparison of electrochemical data	35
Failed substrates	
DFT CALCULATIONS	
DFT results for 1 in HFIP	
DFT results for 1 in MeCN	
DFT results for HFIP	
DFT results for 1 ·HFIP (OMs)	40
DFT results for 1 HFIP (OTf)	42
DFT results for 1 ·2HFIP	44
DFT results for [NH ₃] ⁺ (OTf) (S7)	46
DFT results for MsO ⁻ (S8)	47
Calculation of homolysis energy	47
Comparison of LUMO energy differences and reduction potentials	48
X-RAY CRYSTALLOGRAPHIC ANALYSIS	49
[MsO–NH ₃]OTf (1) (CCDC 1545194)	49
REFERENCES	51
SPECTROSCOPIC DATA	53
¹ H NMR of <i>N</i> -Boc-O-mesylhydroxylamine (S1)	53
¹³ C NMR of <i>N</i> -Boc-O-mesylhydroxylamine (S1)	
¹ H NMR of $[MsO-NH_a]OTf(1)$	
¹³ C NMR of [MsO–NH ₃]OTf (1)	56
¹⁹ F NMR of [MsO–NH ₃]OTf (1)	57

¹ H NMR of moclebomide (S2)	58
¹³ C NMR of moclebomide (S2)	59
¹ H NMR of 4-(trifluoromethyl)phenyl-2-nitrobenzenesulfonate (S3)	60
¹³ C NMR of 4-(trifluoromethyl)phenyl-2-nitrobenzenesulfonate (S3)	61
¹⁹ F NMR of 4-(trifluoromethyl)phenyl-2-nitrobenzenesulfonate (S3)	62
¹ H NMR of 3-nitroaniline (2a)	63
¹³ C NMR of 3-nitroaniline (2a)	64
¹ H NMR of 2-nitroaniline (2b)	65
¹³ C NMR of 2-nitroaniline (2b)	66
¹ H NMR of 4-nitroaniline (2c)	67
¹³ C NMR of 4-nitroaniline (2c)	68
¹ H NMR of 3-(methylsulfonyl)aniline (3a)	69
¹³ C NMR of 3-(methylsulfonyl)aniline (3a)	70
¹ H NMR of 2-(methylsulfonyl)aniline (3b)	71
¹³ C NMR of 2-(methylsulfonyl)aniline (3b)	72
¹ H NMR of 4-(methylsulfonyl)aniline (3c)	73
¹³ C NMR of 4-(methylsulfonyl)aniline (3c)	74
¹ H NMR of 3-aminobenzonitrile (4a)	75
¹³ C NMR of 3-aminobenzonitrile (4a)	76
¹ H NMR of 4-aminobenzonitrile (4b)	77
¹³ C NMR of 4-aminobenzonitrile (4b)	78
¹ H NMR of 2-aminobenzonitrile (4c)	79
¹³ C NMR of 2-aminobenzonitrile (4c)	80
¹ H NMR of 2,5-dibromoaniline (5)	81
¹³ C NMR of 2,5-dibromoaniline (5)	82
¹ H NMR of ethyl 5-aminothiophene-2-carboxylate (6a)	83
¹³ C NMR of ethyl 5-aminothiophene-2-carboxylate (6a)	84
¹ H NMR of ethyl 4-aminothiophene-2-carboxylate (6b)	85
¹³ C NMR of ethyl 4-aminothiophene-2-carboxylate (6b)	86

¹ H NMR of ethyl 3-aminothiophene-2-carboxylate (6c)	87
¹³ C NMR of ethyl 3-aminothiophene-2-carboxylate (6c)	88
¹ H NMR of 5-amino-6-methoxy-2-methylquinoline (7a)	89
¹³ C NMR of 5-amino-6-methoxy-2-methylquinoline (7a)	90
¹ H NMR of 8-amino-6-methoxy-2-methylquinoline (7b)	91
¹³ C NMR of 8-amino-6-methoxy-2-methylquinoline (7b)	92
¹ H NMR of 3-amino-4-methoxybenzenesulfonamide (8)	93
¹³ C NMR of 3-amino-4-methoxybenzenesulfonamide (8)	94
¹ H NMR of methyl 4-amino-1 <i>H</i> -benzimidazole-6-carboxylate (9a) and methyl 5-amino-1 <i>H</i> -ben: 6-carboxylate (9c)	zimidazole- 95
¹³ C NMR of methyl 4-amino-1 <i>H</i> -benzimidazole-6-carboxylate (9a) and methyl 5-amino-1 <i>H</i> -ber 6-carboxylate (9c).	ızimidazole- 96
¹ H NMR of methyl 7-amino-1 <i>H</i> -benzimidazole-6-carboxylate (9b)	97
¹³ C NMR of methyl 7-amino-1 <i>H</i> -benzimidazole-6-carboxylate (9b)	98
¹ H NMR of 3-amino-2,6-dichlorobenzonitrile (10a)	99
¹³ C NMR of 3-amino-2,6-dichlorobenzonitrile (10a)	100
¹ H NMR of 4-amino-2,6-dichlorobenzonitrile (10b)	101
¹³ C NMR of 4-amino-2,6-dichlorobenzonitrile (10b)	102
¹ H NMR of 3-aminomoclebomide (11a)	103
¹³ C NMR of 3-aminomoclebomide (11a)	104
¹ H NMR of 2-aminomoclebomide (11b)	105
¹³ C NMR of 2-aminomoclebomide (11b)	106
¹ H NMR of 2-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12a)	107
¹³ C NMR of 2-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12a)	108
¹⁹ F NMR of 2-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12a)	109
¹ H NMR of 3-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b)	110
¹³ C NMR of 3-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b)	111
¹⁹ F NMR of 3-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b)	112
¹ H NMR of 3-aminorufinamide (13a) and 4-aminorufinamide (13b)	113

¹³ C NMR of 3-aminorufinamide (13a) and 4-aminorufinamide (13b)	114
¹⁹ F NMR of 3-aminorufinamide (13a) and 4-aminorufinamide (13b)	115
¹ H NMR of 4-bromoaniline (S4a)	116
¹³ C NMR of 4-bromoaniline (S4a)	117
¹ H NMR of 2-bromoaniline (S4b)	118
¹³ C NMR of 2-bromoaniline (S4b)	119
¹ H NMR of 3-bromoaniline (S4c)	120
¹³ C NMR of 3-bromoaniline (S4c)	121
¹ H NMR of 4-methoxyaniline (S5a)	122
¹³ C NMR of 4-methoxyaniline (S5a)	123
¹ H NMR of 2-methoxyaniline (S5b)	124
¹³ C NMR of 2-methoxyaniline (S5b)	125
¹ H NMR of 3-methoxyaniline (S5c)	126
¹³ C NMR of 3-methoxyaniline (S5c)	127
¹ H NMR of [MsO–NH ₃]ONf (S6)	128
¹³ C NMR of [MsO–NH ₃]ONf (S6)	129
¹⁹ F NMR of [MsO–NH ₃]ONf (S6)	130

MATERIALS AND METHODS

All manipulations were carried out under ambient atmosphere unless otherwise noted.

Solvents

HFIP was purchased from Oakwood Chemicals and used as received except where noted. Where it is noted that HFIP was distilled and degassed, HFIP was distilled from 3Å molecular sieves and degassed by the freeze-pump-thaw method. Anhydrous diethyl ether, tetrahydrofuran, dichloromethane and acetonitrile were obtained by filtration through drying columns on an mBraun system.¹

Chromatography

Thin layer chromatography (TLC) was performed using EMD TLC silica gel 60 F_{254} plates pre-coated with 250 μ m thickness silica gel and visualized by fluorescence quenching under UV light and KMnO₄ stain. Preparative TLC was performed using Analtech Uniplates pre-coated with 1000 μ m thickness silica gel GF with a volume of the mobile phase of ~100 mL. Flash chromatography was performed using silica gel (230-400 mesh) purchased from Silicycle Inc. Detailed flash column chromatography specifications are given for amination of the substrate ethyl 2-thiophenecarboxylate as a representative example.

Spectroscopy and Instruments

NMR spectra were recorded on either a Varian Unity/Inova 600 spectrometer operating at 600 MHz for ¹H acquisitions or a Varian Unity/Inova 500 spectrometer operating at 500 MHz, 470 MHz and 125 MHz for ¹H, ¹⁹F and ¹³C acquisitions, respectively or a Varian Mercury 400 spectrometer operating at 400 MHz and 375 MHz for ¹H and ¹⁹F acquisitions, respectively. Chemical shifts are reported in ppm with the solvent resonance as the internal standard. For ¹H NMR: CDCl₃, δ 7.26; CD₃CN, δ 1.94; (CD₃)₂CO, δ 2.05; (CD₃)₂SO, δ 2.50; CD₂Cl₂, δ 5.32; CD₃OD, δ 3.31. For ¹³C NMR: CDCl₃, δ 77.16; CD₃CN, δ 1.32; (CD₃)₂CO, δ 29.84; (CD₃)₂SO, δ 39.52; CD₂Cl₂, δ 53.84; CD₃OD, δ 49.00.² Chemical shifts for ¹⁹F acquisitions were externally referenced to 3-nitro-1-fluorobenzene (δ –112.0). Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants in Hz; integration. High resolution mass spectra were obtained using an Agilent ESI-TOF (6220) mass spectrometer. ICP-MS analysis was performed by Robertson Microlit Laboratories. Electrochemical measurements were made using a CH Instruments Model 600E Series Electrochemical Analyzer/Workstation.

Computational details

Density functional theory (DFT) calculations were performed using Gaussian09³ at the computer cluster at the Max-Planck Institute für Kohlenforschung. Basis set I (BS I) includes 6-31G(d,p)⁴ on H and 6-311G(d)⁸ on C, N, O, F, S.

Geometry optimizations and frequency calculations were carried out at the ω B97XD⁵/BS I level using the atomic coordinates of the crystal structure of **1**. Explicit solvent molecules have been added using

GaussView5. The conductor-like polarizable continuum model (CPCM) has been used to simulate solvent effects (1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), acetonitrile).^{6,7} Ground state energies are given with respect to the thermal free energy correction at 298.15 K. Time-dependent DFT (TD-DFT) calculations have been carried out using the coordinates of the optimized ground state structures. Images of molecular structures and orbital plots were generated using GaussView5 and Chem3D.

Starting materials

All substrates were used as received from commercial suppliers, unless otherwise stated. FeSO₄·7H₂O was ground into a fine powder before use.

EXPERIMENTAL DATA

General procedure for amination

Reagent **1** (1.05–3.00 equiv), FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv), and the arene (if solid) (0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and the arene (if liquid). The reaction mixture was stirred at 60 °C for 15–120 min, or until judged complete by the color and/or TLC. The reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography and/or preparative TLC.

Preparation of reagent 1

N-Boc-*O*-Mesylhydroxylamine (S1)

N-Boc-hydroxylamine (5.00 g, 37.6 mmol, 1.00 equiv) and triethylamine (3.81 g, 5.24 mL, 37.6 mmol, 1.00 equiv) were dissolved in anhydrous diethyl ether (190 mL, c = 0.2 M) in a flame-dried round bottom flask. The reaction mixture was cooled in a water-ice bath. Methanesulfonyl chloride (4.31 g, 2.91 mL, 37.6 mmol, 1.00 equiv) was then added slowly over 1 minute. The mixture was stirred at 0 °C for 2 h, then allowed to warm to room temperature. The mixture was filtered over Celite, and the filtrate was concentrated. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate/hexane (15:85 (v/v)) to afford 4.43 g of the title compound as a colorless solid (56% yield). Spectroscopic data matched those previously reported.⁸

 $\mathbf{R}_{f} = 0.92$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.83 (br s, 1H), 3.18 (s, 3H), 1.52 (s, 9H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 154.9, 84.8, 36.3, 28.1.

HRMS-FIA(m/z) calc'd for C₆H₁₇N₂O₅S [M+NH₄]⁺, 229.0858; found, 229.0860.

[MsO-NH₃]OTf (1)

BocHN-OMs
$$\frac{\text{TfOH}}{\text{Et}_2\text{O}, 0 \text{ °C to } 23 \text{ °C}, 2 \text{ h}} \text{MsO-} \text{NH}_3 \text{OTf}$$

$$75\% \text{ yield}$$
S1 1

Reagent **1** was synthesized by the method of Morandi^{9a} and Fagnou^{9b}. Compound **S1** (1.50 g, 7.10 mmol, 1.00 equiv) was dissolved in anhydrous diethyl ether (36 mL, c = 0.2 M) in a flame-dried two-neck round bottom flask. The flask was evacuated and backfilled with nitrogen, then cooled in a water-ice bath. Triflic acid (1.07 g, 627 µL, 7.10 mmol, 1.00 equiv) was added using a plastic pipettor. The reaction mixture was stirred at 23 °C for 2 h, during which time a colorless precipitate formed. Pentane (20 mL) was added to the flask. The colorless solid was collected on a Buchner funnel, rinsed with pentane (20 mL) and dried under high vacuum to give 1.39 g of the title compound as a colorless solid (75% yield). Spectroscopic data matched those previously reported.^{9a}

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 23 °C, δ): 8.01–7.82 (br s, 3H), 3.36 (s, 3H).

¹³**C NMR** (125 MHz, CD₃CN, 23 °C, δ): 121.4 (q, *J* = 317 Hz), 39.9.

¹⁹**F NMR** (375 MHz, CD₃CN, 23 °C, δ): –79.8.

HRMS-FIA(m/z) calc'd for CH₆NO₃S [M]⁺, 112.0068; found, 112.0069.

Preparation of substrates for amination

Moclebomide (S2)

Moclebomide (**S2**) was synthesized by the method of Ahn.¹⁰ 4-Chlorobenzoyl chloride (1.33 g, 977 µL, 7.62 mmol, 1.00 equiv) was dissolved in anhydrous tetrahydrofuran (35 mL, c = 0.2 M) in a flame-dried round bottom flask. The solution was cooled in a water-ice bath. Triethylamine (771 mg, 1.06 mL, 7.62 mmol, 1.00 equiv) and *N*-2-(aminoethyl)morpholine (992 mg, 1.00 mL, 7.62 mmol, 1.00 equiv) were then added. The reaction mixture was allowed to warm to room temperature and stir for 16 h at 23 °C. The reaction mixture was poured into a separatory funnel containing EtOAc (100 mL) and water (200 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (1 × 100 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was recrystallized from a mixture of EtOAc and hexanes at -5 °C. The solid was collected on a Buchner funnel and washed with pentane (100 mL) to give 1.19 g of the title compound as a tan solid (58% yield).

 $\mathbf{R}_{f} = 0.13$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.72 (d, *J* = 7.9 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 6.72 (br s, 1H), 3.74 (br s, 4H), 3.56 (br s, 2H), 2.62 (br s, 2H), 2.52 (br s, 4H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 166.4, 137.7, 133.1, 128.9, 128.4, 67.1, 56.9, 53.4, 36.2.

HRMS-FIA(m/z) calc'd for C₁₃H₁₈CIN₂O₂ [M+H]⁺, 269.1051; found, 269.1047.

4-(Trifluoromethyl)phenyl-2-nitrobenzenesulfonate (S3)

The title compound was synthesized by the method of Williams.¹¹ 4-(Trifluoromethyl)phenol (400. mg, 2.47 mmol, 1.00 equiv) was dissolved in anhydrous dichloromethane (12 mL, c = 0.2 M) in a flame-dried round bottom two neck flask. Triethylamine (250 mg, 344 μ L, 2.47 mmol, 1.00 equiv) was added and the mixture was cooled in a water-ice bath. 2-Nitrobenzenesulfonyl chloride (547 mg, 2.47 mmol, 1.00 equiv) was then added. The reaction mixture was stirred at 23 °C for 16 h. The reaction mixture was then poured into a separatory funnel containing 1M HCl (aq) (25 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (2 × 15 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on a short plug of silica gel eluting with a solvent mixture of ethyl acetate/pentane (30:70 (v/v)). Purification afforded 747 mg of the title compound as a colorless solid (87% yield).

 $\mathbf{R}_{f} = 0.54$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.00 (d, *J* = 7.6 Hz, 1H), 7.90–7.84 (m, 2H), 7.76–7.70 (m, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 151.4, 148.8, 135.9, 132.4, 132.2, 130.1 (q, *J* = 32.9 Hz), 128.2, 127.5 (q, *J* = 3.7 Hz), 125.2, 123.6 (q, *J* = 271 Hz), 122.9.

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –62.5.

HRMS-FIA(m/z) calc'd for C₆H₁₇N₂O₅S [M+NH₄]⁺, 365.0414; found, 365.0410.

Amination of arenes

3-Nitroaniline (2a), 2-nitroaniline (2b), and 4-nitroaniline (2c)

Reagent **1** (141 mg, 0.540 mmol, 1.80 equiv) and FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and nitrobenzene (36.9 mg, 30.8 µL, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 60 °C for 45 min. The orange reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **2a**:2**b**:2**c** = 2.3:1.1:1.0 by integrating the signal of **2a** at 6.94 ppm, the signal of **2b** at 6.76 ppm, and the signal of **2c** at 6.62 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (20:80 (v/v)) and finishing with diethyl ether/pentane (50:50 (v/v)). Purification afforded 2-nitroaniline (**2b**) in one fraction (8.1 mg) and 3-nitroaniline (**2a**) and 4-nitroaniline (**2c**) in a second fraction (27.8 mg) for a combined yield of 35.9 mg (87% yield). The second fraction was further purified by preparative TLC using a solvent system of diethyl ether/pentane (20:80 (v/v)) to give **2a** (14.9 mg) and **2c** (9.7 mg) as separate samples. Characterization data matched previously reported data for **2a**, **2b**, and **2c**.¹²

3-Nitroaniline (2a):

 $\mathbf{R}_{f} = 0.50$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.57 (ddd, *J* = 8.2, 2.1, 0.9 Hz, 1H), 7.49 (dd, *J* = 2.2, 2.2 Hz, 1H), 7.27 (dd, *J* = 8.1, 8.1 Hz, 1H), 6.94 (ddd, *J* = 8.0, 2.3, 0.8 Hz, 1H), 4.00 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 149.4, 147.6, 130.0, 120.7, 113.3, 109.2.

HRMS-FIA(m/z) calc'd for C₆H₇N₂O₂ [M+H]⁺, 139.0502; found, 139.0506.

2-Nitroaniline (2b):

 $\mathbf{R}_{f} = 0.35$ (diethyl ether/pentanes, 30:70 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.12 (d, *J* = 8.6 Hz, 1H), 7.36 (dd, *J* = 7.7, 7.7 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.71 (dd, *J* = 7.8, 7.8 Hz, 1H), 6.05 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 144.8, 135.8, 132.3, 126.2, 118.9, 117.0.

HRMS-FIA(m/z) calc'd for C₆H₇N₂O₂ [M+H]⁺, 139.0502; found, 139.0505.

4-Nitroaniline (2c):

 $\mathbf{R}_{f} = 0.36$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.06 (d, *J* = 9.1 Hz, 2H), 6.62 (d, *J* = 9.1 Hz, 2H), 4.38 (br s, 2H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 152.6, 139.3, 126.5, 113.5.

HRMS-FIA(m/z) calc'd for C₆H₇N₂O₂ [M+H]⁺, 139.0502; found, 139.0500.

3-(Methylsulfonyl)aniline (3a), 2-(methylsulfonyl)aniline (3b), and 4-(methylsulfonyl)aniline (3c)

Reagent **1** (141 mg, 0.540 mmol, 1.80 equiv), $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv), and phenyl methylsulfone (46.9 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M). The reaction mixture was stirred at 60 °C for 90 min. The orange reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **3a**:3**b**:3**c** = 4.7:1.7:1.0 by integrating the signal of **3a** at 6.87 ppm, the signal of **3b** at 6.76 ppm, and the signal of **3c** at 6.68 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (50:50 (v/v)) and finishing with diethyl ether. Purification afforded 2-(methylsulfonyl)aniline (**3b**) in one fraction (10.5 mg) and 3-(methylsulfonyl)aniline (**3a**) and 4-(methylsulfonyl)aniline (**3c**) in a second fraction (29.2 mg) for a combined yield of 39.7 mg (77% yield). The second fraction was further purified by preparative TLC using a solvent system of ethyl acetate/pentane (30:70 (v/v)) to give **3a** (14.6 mg) and **3c** (3.6 mg) as separate samples. Characterization data matched previously reported data for **3b**^{13a} and **3c**^{13b}.

3-(Methylsulfonyl)aniline (3a)

 $\mathbf{R}_{f} = 0.17$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 23 °C, δ): 7.31 (dd, *J* = 7.9, 7.9 Hz, 1H), 7.26 (ddd, *J* = 7.8, 1.4, 1.4 Hz, 1H),

7.20 (dd, J = 2.0, 2.0 Hz, 1H), 6.89 (ddd, J = 8.0, 2.4, 1.0 Hz, 1H), 4.01 (br s, 2H), 3.02 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 147.6, 141.5, 130.4, 119.8, 116.8, 112.9, 44.5.

HRMS-FIA(m/z) calc'd for C₇H₁₃N₂O₂S [M+NH₄]⁺, 172.0427; found, 172.0418.

2-(Methylsulfonyl)aniline (3b):

 $\mathbf{R}_{f} = 0.57$ (diethyl ether/pentanes, 80:20 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.74 (d, *J* = 8.0 Hz, 1H), 7.37 (dd, *J* = 7.7, 7.7 Hz, 1H), 6.83 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.76, (d, *J* = 8.2 Hz, 1H), 5.00 (br s, 2H), 3.06 (s, 3H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 146.3, 135.3, 129.6, 122.2, 118.2, 117.7, 42.4.

HRMS-FIA(m/z) calc'd for C₇H₁₀NO₂S [M+H]⁺, 172.0427; found, 172.0422.

4-(Methylsulfonyl)aniline (3c):

 $\mathbf{R}_{f} = 0.13$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 23 °C, δ): 7.69 (d, *J* = 8.8 Hz, 2H), 6.71 (d, *J* = 8.8 Hz, 2H), 4.20 (br s, 2H), 3.00 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 151.4, 129.6, 129.1, 114.2, 45.1.

HRMS-FIA(m/z) calc'd for C₇H₁₃N₂O₂S [M+NH₄]⁺, 172.0427; found, 172.0422.

3-Aminobenzonitrile (4a), 4-aminobenzonitrile (4b), and 2-aminobenzonitrile (4c)

Reagent **1** (141 mg, 0.540 mmol, 1.80 equiv) and FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and benzonitrile (31.0 mg, 31.0 µL, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 60 °C for 30 min. The red reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **4a**:**4b**:**4c** = 2.0:1.6:1.0 by integrating the signal of **4a** at 7.00 ppm, the signal of **4b** at 6.64 ppm, and the signal of **4c** at 6.76 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent

mixture of diethyl ether/pentane (20:80 (v/v)) and finishing with diethyl ether/pentane (50:50 (v/v)). Purification afforded 2-aminobenzonitrile (**4c**) in one fraction (6.4 mg) and 3-aminobenzonitrile (**4a**) and 4-aminobenzonitrile (**4b**) in a second fraction (25.2 mg) for a combined yield of 31.6 mg (89% yield). The second fraction was further purified by preparative TLC using a solvent system of acetone/pentane (10:90 (v/v)) to give **4a** (10.0 mg) and **4b** (9.1 mg) as separate samples. Characterization data matched previously reported data for **4a**, **4b**, and **4c**.¹⁴

3-Aminobenzonitrile (4a):

 $\mathbf{R}_{f} = 0.50$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.22 (dd, *J* = 7.9, 7.9 Hz, 1H), 7.01 (ddd, *J* = 7.6, 1.4, 1.0 Hz, 1H), 6.90 (dd, *J* = 1.7, 1.7, 1H), 6.86 (ddd, *J* = 8.2, 2.4, 1.0 Hz, 1H), 3.87 (br s, 2H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 147.0, 130.2, 122.1, 119.3, 119.3, 117.6, 113.1.

HRMS-FIA(m/z) calc'd for C₇H₇N₂ [M+H]⁺, 119.0604; found, 119.0608.

4-Aminobenzonitrile (4b):

 $\mathbf{R}_{f} = 0.38$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.41 (d, *J* = 8.8 Hz, 2H), 6.64 (d, *J* = 8.8 Hz, 2H), 4.14 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 150.5, 134.0, 120.2, 114.6, 100.5.

HRMS-FIA(m/z) calc'd for C₇H₇N₂ [M+H]⁺, 119.0604; found, 119.0601.

2-Aminobenzonitrile (4c):

 $\mathbf{R}_{f} = 0.38$ (diethyl ether/pentanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 23 °C, δ): 7.39 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.33 (dd, *J* = 7.9, 7.9 Hz, 1H), 6.76–6.72 (m, 2H), 4.39 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 149.7, 134.1, 132.5, 118.2, 117.7, 115.3, 96.3.

HRMS-FIA(m/z) calc'd for C₇H₇N₂ [M+H]⁺, 119.0604; found, 119.0604.

2,5-Dibromoaniline (5)

1.05 equiv MsO-NH₃ OTf 1.00 mol% FeSO₄·7H₂O HFIP, 60 °C, 15 min 85% vield

Reagent **1** (82.3 mg, 0.315 mmol, 1.05 equiv), $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv), and 1,4dibromobenzene (70.8 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M). The reaction mixture was stirred at 60 °C for 15 min. The red reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography on silica gel eluting with a solvent system of ethyl acetate/hexane (5:95 (v/v)). Purification afforded 64.2 mg of the title compound as a light orange solid (85% yield). Characterization data matched a commercial sample.

 $\mathbf{R}_{f} = 0.85$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 23 °C, δ): 7.25 (d, *J* = 8.5 Hz, 1H), 6.91 (d, *J* = 2.0 Hz, 1H), 6.74 (dd, *J* = 8.5, 2.2 Hz, 1H), 4.23 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 145.4, 133.7, 122.3, 121.8, 118.2, 107.9.

HRMS-FIA(m/z) calc'd for $C_6H_5Br_2N [M+H]^+$, 251.8841; found, 251.8839.

Ethyl 5-aminothiophene-2-carboxylate (6a), ethyl 4-aminothiophene-2-carboxylate (6b), and ethyl 3aminothiophene-2-carboxylate (6c)

Reagent **1** (118 mg, 0.450 mmol, 1.50 equiv) and FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and ethyl 2-thiophenecarboxylate (46.9 mg, 40.3 µL, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 40 °C for 15 min. The red reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **6a**:**6b**:**6c** = 5.9:1.8:1.0 by integrating the signal of **6a** at 6.09 ppm, the signal of **6b** at 6.39 ppm, and the signal of **6c** at 6.55 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (5:95 (v/v)) and finishing with diethyl ether/pentane (50:50 (v/v)).* Purification afforded ethyl 3-aminothiophene-2-carboxylate (**6c**) in one fraction (2.9 mg), ethyl 5-aminothiophene-2-carboxylate (**6a**) in a second fraction (18.0 mg), and ethyl 4-aminothiophene-2-carboxylate (**6b**) in a third fraction (6.6 mg) for a combined yield of 30.5 mg (59% yield).

*Column specifications: diameter = 3 cm, packing height = 7 cm; total amount of silica used: 18 g; total

amount of eluent mixture to collect all products: 610 mL.

Characterization data matched previously reported data for 6a.15

Ethyl 5-aminothiophene-2-carboxylate (6a):

 $\mathbf{R}_{f} = 0.40$ (diethyl ether/pentanes, 50:50 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 23 °C, δ): 7.41 (d, *J* = 4.0 Hz, 1H), 6.09 (d, *J* = 4.0 Hz, 1H), 4.45 (br s, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz, CD₂Cl₂, 23 °C, δ): 162.8, 159.5, 134.9, 118.2, 107.9, 60.8, 14.6.

HRMS-FIA(m/z) calc'd for C₁H₁₀NO₂S [M+H]⁺, 172.0427; found, 172.0422.

Ethyl 4-aminothiophene-2-carboxylate (6b):

 $\mathbf{R}_{f} = 0.24$ (diethyl ether/pentanes, 50:50 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 23 °C, δ): 7.28 (d, *J* = 1.9 Hz, 1H), 6.39 (d, *J* = 1.8 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 3H), 3.70 (br s, 2H), 1.33 (t, *J* = 7.1 Hz, 2H).

 $^{13}\textbf{C}$ NMR (125 MHz, CD_2Cl_2, 23 °C, δ): 162.4, 146.3, 133.3, 126.1, 107.4, 61.4, 14.5.

HRMS-FIA(m/z) calc'd for C₁H₁₀NO₂S [M+H]⁺, 172.0427; found, 172.0422.

Ethyl 3-aminothiophene-2-carboxylate (6c):

 $\mathbf{R}_{f} = 0.56$ (diethyl ether/pentanes, 50:50 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 23 °C, δ): 7.28 (d, *J* = 5.4 Hz, 1H), 6.55 (d, *J* = 5.4 Hz, 1H), 5.45 (br s, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz, CD₂Cl₂, 23 °C, δ): 164.9, 154.3, 131.6, 120.3, 101.7, 60.4, 14.7.

HRMS-FIA(m/z) calc'd for C₁H₁₀NO₂S [M+H]⁺, 172.0427; found, 172.0421.

5-Amino-6-methoxy-2-methylquinoline (7a) and 8-amino-6-methoxy-2-methylquinoline (7b)

Reagent **1** (235 mg, 0.900 mmol, 3.00 equiv), $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv), and 6-methoxy-2-methylquinoline (52.0 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c =

0.2 M). The reaction mixture was stirred at 60 °C for 15 min under an atmosphere of oxygen. The dark green reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate ($2 \times 10 \text{ mL}$). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **7a**:**7b** = 5.2:1.0 by integrating the signal of **7a** at 8.01 ppm and the signal of **7b** at 7.84 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (10:90 (v/v)) and finishing with diethyl ether. Purification afforded 5-amino-6-methoxy-2-methylquinoline (**7a**) in one fraction (13.5 mg) and 8-amino-6-methoxy-2-methylquinoline (**7b**) in a second fraction (26.2 mg) for a combined yield of 39.7 mg (70% yield).

5-Amino-6-methoxy-2-methylquinoline (7a):

 $\mathbf{R}_{f} = 0.14$ (ethyl acetate/hexanes, 50:50 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.01 (d, *J* = 9.0 Hz, 1H), 7.50 (d, *J* = 9.1 Hz, 1H), 7.38 (d, *J* = 9.1 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 4.23 (br s, 2H), 3.95 (s, 3H), 2.69 (s, 3H).

¹³**C NMR** (125 MHz, (CD₃)₂CO, 23 °C, δ): 156.7, 145.0, 142.2, 132.1, 130.7, 120.5, 118.0, 117.3, 117.3, 57.0, 25.0.

HRMS-FIA(m/z) calc'd for C₁₁H₁₃N₂O [M+H]⁺, 189.1022; found, 189.1014.

8-Amino-6-methoxy-2-methylquinoline (7b):

 $\mathbf{R}_{f} = 0.61$ (ethyl acetate/hexanes, 50:50 (v/v)).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 23 °C, δ): 7.84 (d, *J* = 8.3 Hz, 1H), 7.20 (d, *J* = 8.3 Hz, 1H), 6.55 (d, *J* = 2.6 Hz, 1H), 6.45 (d, *J* = 2.6 Hz, 1H), 5.00 (br s, 2H), 3.86 (s, 3H), 2.66 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 158.2, 153.7, 144.6, 135.1, 134.9, 127.8, 122.7, 101.6, 94.8, 55.4, 25.0.

HRMS-FIA(m/z) calc'd for C₁₁H₁₃N₂O [M+H]⁺, 189.1022; found, 189.1022.

3-Amino-4-methoxybenzenesulfonamide (8)

Reagent 1 (118 mg, 0.450 mmol, 1.50 equiv), FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv), and 4-

methoxybenzenesulfonamide (56.2 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M). The reaction mixture was stirred at 60 °C for 15 min. The dark green reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate ($2 \times 10 \text{ mL}$). The combined organic layers were dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (70:30 (v/v)) and finishing with diethyl ether. Purification afforded 44.4 mg of the title compound (73% yield).

 $\mathbf{R}_{f} = 0.15$ (ethyl acetate/hexanes, 50:50 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃OD, 23 °C, δ): 7.24–7.20 (m, 2H), 6.91 (d, *J* = 8.1 Hz, 1H), 3.90 (s, 3H).

¹³C NMR (125 MHz, CD₃OD, 23 °C, δ): 151.5, 138.7, 136.7, 117.3, 112.8, 110.6, 56.3.

HRMS-FIA(m/z) calc'd for $C_7H_{11}N_2O_3S$ [M+H]⁺, 203.0485; found, 203.0477.

Methyl 4-amino-1*H*-benzimidazole-6-carboxylate (9a), methyl 7-amino-1*H*-benzimidazole-6-carboxylate (9b) and methyl 5-amino-1*H*-benzimidazole-6-carboxylate (9c)

FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv) and methyl 1*H*-benzimidazole-6-carboxylate (52.9 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and TfOH (26.5 µL, 0.300 mmol, 1.00 equiv). Reagent **1** (196 mg, 0.750 mmol, 2.50 equiv) was then added to the vial. The reaction mixture was stirred at 60 °C for 45 min. The brown reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **9a**:**9b**:**9c** = 5.7:2.4:1.0 by integrating the signal of **9a** at 7.22 ppm, the signal of **9b** at 6.76 ppm, and the signal of **9c** at 6.85 ppm. The residue was purified by column chromatography on basified silica gel (NH₄OH) eluting with a gradient solvent system, starting with a solvent mixture of methanol/dichloromethane (2:98 (v/v)) and finishing with methanol/dichloromethane (5:95 (v/v)). Purification afforded methyl 7-amino-1*H*-benzimidazole-6-carboxylate (**9b**) and a small amount of unreacted starting material in one fraction and methyl 4-amino-1*H*-benzimidazole-6-carboxylate (**9b**) and methyl 5-amino-1*H*-benzimidazole-6-carboxylate (**9c**) in a second fraction (31.7 mg). The first fraction was further purified by preparative TLC using a solvent system of methanol/dichloromethane

(2:98 (v/v)) to give **9b** (4.3 mg). The second fraction was characterized as a mixture. A combined yield of 36.0 mg (63% yield) was obtained. Characterization data matched previously reported data for **9c**.¹⁶

Methyl 4-amino-1*H*-benzimidazole-6-carboxylate (**9a**) and methyl 5-amino-1*H*-benzimidazole-6-carboxylate (**9c**):

 $\mathbf{R}_{f} = 0.19$ (methanol/dichloromethane, 5:95 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃OD, 23 °C, δ): 8.16 (s, 1H), 8.15* (s, 1H), 8.03* (s, 1H), 7.61 (s, 1H), 7.22 (s, 1H), 6.85* (s, 1H), 3.87 (s, 3H), 3.87* (s, 3H).

¹³**C NMR** (125 MHz, CD₃OD/CD₂Cl₂, 23 °C, δ): 170.1*, 169.7, 148.8*, 144.1*, 143.0*, 143.0, 138.6, 136.4, 135.2*, 134.0, 126.8, 121.0*, 109.9*, 108.1, 106.2, 99.2*, 52.6, 52.1*.

*Denotes signals of minor isomer (9c).

HRMS-FIA(m/z) calc'd for $C_9H_{10}N_3O_2$ [M+H]⁺, 192.0768; found, 192.0762.

Methyl 7-amino-1H-benzimidazole-6-carboxylate (9b):

 $\mathbf{R}_{f} = 0.54$ (methanol/dichloromethane, 5:95 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃OD, 23 °C, δ): 8.05 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 6.76 (d, *J* = 8.3 Hz, 1H), 3.86 (s, 3H).

¹³**C NMR** (125 MHz, CD₃OD, 23 °C, δ): 170.6, 145.1, 141.0, 138.5, 131.2, 127.3, 103.7, 101.6, 51.7. **HRMS-FIA(m/z)** calc'd for C₉H₁₀N₃O₂ [M+H]⁺, 192.0768; found, 192.0760.

3-Amino-2,6-dichlorobenzonitrile (10a) and 4-amino-2,6-dichlorobenzonitrile (10b)

Reagent **1** (235 mg, 0.900 mmol, 3.00 equiv), $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv), and 2,6dichlorobenzonitrile (51.6 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M). The reaction mixture was stirred at 60 °C for 120 min under an atmosphere of oxygen. The orange reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **10a**:**10b** = 6.7:1.0 by integrating the signal of **10a** at 6.86 ppm and the signal of **10b** at 6.68 ppm. The residue was purified by column chromatography on silica gel eluting with a solvent system of ethyl acetate/pentane (20:80 (v/v)). Purification afforded 3-amino-2,6-dichlorobenzonitrile (**10a**) and 4-amino-2,6-dichlorobenzonitrile (**10b**) in one fraction for a combined yield of 43.4 mg (77% yield). The fraction was further purified by preparative TLC using a solvent system of dichloromethane/pentane (50:50 (v/v)) to give **10a** (32.4 mg) and **10b** (3.9 mg).

3-Amino-2,6-dichlorobenzonitrile (10a):

 $\mathbf{R}_{f} = 0.50$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCI₃/CD₃OD, 23 °C, δ): 6.86 (d, *J* = 8.9 Hz, 1H), 6.67 (d, *J* = 8.9 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃/CD₃OD, 23 °C, δ): 143.7, 128.1, 124.1, 119.9, 119.6, 113.6, 112.8.

HRMS-FIA(m/z) calc'd for C₇H₅Cl₂N₂ [M+H]⁺, 186.9824; found, 186.9818.

4-Amino-2,6-dichlorobenzonitrile (10b):

 $\mathbf{R}_{f} = 0.46$ (ethyl acetate/hexanes, 40:60 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃OD, 23 °C, δ): 6.68 (s, 2H).

¹³C NMR (125 MHz, CD₃OD, 23 °C, δ): 156.6, 139.7, 116.0, 113.5, 99.2.

HRMS-FIA(m/z) calc'd for C₇H₅Cl₂N₂ [M+H]⁺, 186.9824; found, 186.9828.

3-Aminomoclebomide (11a) and 2-Aminomoclebomide (11b)

FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv) and moclebomide (**S2**) (80.6 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and TfOH (26.5 µL, 0.300 mmol, 1.00 equiv). Reagent **1** (235 mg, 0.900 mmol, 3.00 equiv) was then added to the vial. The reaction mixture was stirred at 60 °C for 45 min. The red brown reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **11a:11b** = 10:1.0 by integrating the

signal of **11a** at 7.25 ppm and the signal of **11b** at 6.63 ppm. The residue was purified by column chromatography on basified silica gel (NH₄OH) eluting with a gradient solvent system, starting with a solvent mixture of methanol/dichloromethane (1:99 (v/v)) and finishing with methanol/dichloromethane (5:95 (v/v)). Purification afforded 2-aminomoclebomide (**11b**) in one fraction and 3-aminomoclebomide (**11a**) in a second fraction (42.6 mg). The first fraction was further purified by preparative TLC using a solvent system of methanol/dichloromethane (2:98 (v/v)) to give **11b** (3.8 mg). A combined yield of 46.4 mg (55% yield) was obtained.

3-Aminomoclebomide (11a):

 $\mathbf{R}_{f} = 0.18$ (methanol/dichloromethane, 5:95 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.28 (d, *J* = 8.2 Hz, 1H), 7.25 (d, *J* = 2.0 Hz, 1H), 6.97 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.69 (br s, 1H), 4.21 (br s, 2H), 3.72 (t, *J* = 4.6 Hz, 4H), 3.51 (dt, *J* = 5.7, 5.7 Hz, 2H), 2.58 (t, *J* = 6.1 Hz, 2H), 2.49 (br s, 4H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 166.9, 143.4, 134.4, 129.5, 122.2, 116.5, 114.8, 67.1, 57.0, 53.5, 36.2.

HRMS-FIA(m/z) calc'd for $C_{13}H_{19}CIN_3O_2$ [M+H]⁺, 284.1160; found, 284.1163.

2-Aminomoclebomide (11b):

 $\mathbf{R}_{f} = 0.25$ (methanol/dichloromethane, 5:95 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.25 (d, J = 7.7 Hz, 1H), 6.67 (d, J = 1.9 Hz, 1H), 6.63 (dd, J = 8.4, 2.0 Hz, 1H), 5.67 (br s, 1H), 3.74 (br s, 4H), 3.51 (dt, J = 5.7, 5.7 Hz, 2H), 2.61 (t, J = 5.7 Hz, 2H), 2.52 (br s, 4H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 168.7, 150.0, 138.2, 128.6, 116.9, 116.7, 114.5, 67.0, 57.0, 53.5, 35.8.

 $\label{eq:HRMS-FIA(m/z)} \text{ calc'd for } C_{13}H_{19}\text{CIN}_3O_2 \ [\text{M+H}]^+, \ 284.1160; \ \text{found}, \ 284.1158.$

2-Amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12a) and 3-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b)

Reagent **1** (235 mg, 0.900 mmol, 3.00 equiv), $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv), and 4- (trifluoromethyl)phenyl 2-nitrobenzenesulfonate (**S3**) (104 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL

vial, followed by HFIP (1.5 mL, c = 0.2 M). The reaction mixture was stirred at 60 °C for 120 min. The orange reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate ($2 \times 10 \text{ mL}$). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **12a**:**12b** = 3.3:1.0 by integrating the signal of **12a** at 6.91 ppm and the signal of **12b** at 6.58 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (20:80 (v/v)) and finishing with diethyl ether. Purification afforded 2-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (**12a**) and 3-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (**12b**) in one fraction for a combined yield of 71.0 mg (65% yield). The fraction was further purified by preparative TLC using a solvent system of acetone/pentane (10:90 (v/v)) to give **12a** (47.3 mg) and **12b** (11.1 mg) as separate samples.

2-Amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12a):

 $\mathbf{R}_{f} = 0.14$ (ethyl acetate/hexanes, 20:80 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.93 (d, *J* = 8.0 Hz, 1H), 7.89–7.83 (m, 2H), 7.71 (ddd, *J* = 7.9, 6.4, 2.5 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 6.93 (dd, *J* = 8.6, 1.8 Hz, 1H), 6.91 (d, *J* = 1.9 Hz, 1H), 4.27 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 148.7, 140.2, 137.9, 136.0, 132.5, 132.3, 130.7 (q, *J* = 32.6 Hz), 128.5, 125.2, 124.1, 123.7 (q, *J* = 270.9 Hz), 114.9 (q, *J* = 3.8 Hz), 113.7 (q, *J* = 3.8 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –63.2.

HRMS-FIA(m/z) calc'd for $C_{13}H_{10}F_3N_2O_5S$ [M+H]⁺, 363.0257; found, 363.0246.

3-Amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b):

 $\mathbf{R}_{f} = 0.10$ (ethyl acetate/hexanes, 20:80 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.02 (d, *J* = 8.0 Hz, 1H), 7.88–7.82 (m, 2H), 7.72 (ddd, *J* = 8.0, 6.0, 2.7 Hz, 1H), 7.37 (d, *J* = 8.7 Hz, 1H), 6.65 (d, *J* = 1.9 Hz, 1H), 6.58 (ddd, *J* = 8.7, 1.5, 0.8 Hz, 1H), 4.32 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 152.3, 148.8, 146.4, 135.7, 132.3, 132.3, 128.6 (q, *J* = 5.2), 128.5, 125.1, 124.5 (q, *J* = 272 Hz), 113.0 (q, *J* = 30.7 Hz), 110.8, 110.3.

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): –63.2.

HRMS-FIA(m/z) calc'd for $C_{13}H_{10}F_3N_2O_5S$ [M+H]⁺, 363.0257; found, 363.0528.

3-Aminorufinamide (13a) and 4-aminorufinamide (13b)

Reagent **1** (235 mg, 0.900 mmol, 3.00 equiv), FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv), and rufinamide (71.5 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M). The reaction mixture was stirred at 60 °C for 120 min. The red reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **13a**:**13b** = 14:1.0 by integrating the signal of **13a** at 8.47 ppm and the signal of **13b** at 8.37 ppm. The residue was purified by column chromatography on silica gel basified with NH₄OH eluting with a gradient solvent system, starting with a solvent mixture of methanol/dichloromethane (1:99 (v/v)) and finishing with methanol/dichloromethane (2:98 (v/v)). Purification afforded 3-aminorufinamide and 4-aminorufinamide in one fraction for a combined yield of 51.0 mg (67% yield). The two isomers were characterized as a mixture.

 $\mathbf{R}_{f} = 0.10$ (methanol/dichloromethane, 2:98 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, (CD₃)₂SO, 23 °C, δ): 8.47 (s, 1H), 8.37* (s, 1H), 7.85 (s, 1H), 7.46 (s, 1H), 6.90–6.84 (m, 1H), 6.83–6.76 (m, 1H), 6.23* (d, *J* = 10.4, 2H), 5.65 (s, 2H), 5.47* (s, 2H).

¹³**C NMR** (125 MHz, (CD₃)₂SO, 23 °C, δ): 161.8* (dd, J = 242.4, 11.2 Hz), 161.3, 161.2*, 151.3 (dd, J = 235.5, 5.7 Hz), 148.2 (dd, J = 242.0, 6.9 Hz), 151.9* (d, J = 14.5 Hz), 142.8, 142.7*, 133.1 (d, J = 12.8 Hz), 116.3 (dd, J = 6.4, 6.4 Hz), 111.0 (dd, J = 21.7, 3.5 Hz), 110.5 (dd, J = 19.8, 16.4 Hz), 96.5* (m), 96.1–95.8* (m), 41.6 (dd, J = 3.7, 3.7 Hz), 41.2* (t, 3.7 Hz).

¹⁹**F NMR** (470 MHz, CDCl₃, 23 °C, δ): -120.6*, -134.5, -141.1.

*Denotes signals of minor isomer (13b).

HRMS-FIA(m/z) calc'd for C₁₀H₁₀F₂N₅O [M+H]⁺, 254.0848; found, 254.0842.

Gram-scale amination reaction

Reagent 1 (7.64 g, 29.2 mmol, 1.80 equiv) and FeSO₄·7H₂O (450. mg, 1.62 mmol, 0.0100 equiv) were added to a round bottom flask equipped with a reflux condenser, followed by HFIP (80 mL, c = 0.2 M) and nitrobenzene (1.99 g, 1.67 mL, 16.2 mmol, 1.00 equiv). The reaction mixture was stirred at 60 °C for 45 min. The orange reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 200 mL ethyl acetate and poured into a separatory funnel containing 200 mL sat. aq. Na_2CO_3 . The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 200 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of 2a:2b:2c = 2.4:1.0:1.0 by integrating the signal of 2a at 6.94 ppm, the signal of **2b** at 6.76 ppm, and the signal of **2c** at 6.62 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (10:90 (v/v)) and finishing with diethyl ether/pentane (60:40 (v/v)). Purification afforded 2-nitroaniline (2b) in one fraction (472 mg), 3-nitroaniline (2a) in a second fraction (479 mg) and 4-nitroaniline (2c) in a third fraction (139 mg). A fourth fraction was collected that contained both 2a and 2c. The fourth fraction was further purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (10:90 (v/v)) and finishing with diethyl ether/pentane (60:40 (v/v)), to afford one fraction containing 2a (507 mg) and a second fraction containing 2c (338 mg). A combined yield of 1.94 g (86% yield) was obtained.

Comparison to other amination methods

In comparison to other reported modern amination methods that use an ammoniumyl radical precursor, our method is applicable to a much broader electronic scope of aromatic substrates. The most relevant conditions are compared in Table S1.

conditions	Ph–OMe	Ph–Br	Ph–CN
this work			
[MsO–NH ₃]OTf (1.5–1.8 equiv), FeSO ₄ ·7H ₂ O (0.01 equiv), HFIP, 60 °C	57%	66%	89%
ref 9a	65%	77%	n.r.

Table S1. Comparison of modern amination methods.

[MsO–NH ₃]OTf (1.5–4.0			
equiv), FeSO₄·7H₂O			
(0.05 equiv), MeCN/H ₂ O			
(degassed), 23 °C			
ref 17			
HOSA (1.0 equiv), FeSO ₄ ·7H ₂ O (0.03 equiv), AcOH/H ₂ O, 40 °C	60%	30%	5%

Our method also works in the absence of an iron salt, albeit with longer reaction times. When other reported methods are used in the absence of an iron salt, essentially no reaction is observed. Bromobenzene was used to compare reactivity in the absence of iron (Table S2).

conditions	NMR yield of S4
this work [MsO–NH₃]OTf (1.5 equiv), HFIP, 60 °C	83%
ref 9a [MsO–NH ₃]OTf (4.0 equiv), MeCN/H ₂ O (degassed), 23 °C	0%
ref 17 HOSA (1.0 equiv), AcOH/H ₂ O, 40 °C	3%

4-Bromoaniline (S4a), 2-bromoaniline (S4b), and 3-bromoaniline (S4c)

Standard procedure (Table S1). Reagent **1** (82.3 mg, 0.315 mmol, 1.05 equiv) and $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and bromobenzene (47.1 mg, 31.5 µL, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 60 °C for 30 min. The purple

reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2×10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **S4a**:**S4b**:**S4c** = 1.7:1.5:1.0 by integrating the signal of **S4a** at 7.40 ppm, the signal of **S4b** at 7.22 ppm, and the signal of **S4c** at 7.00 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (5:95 (v/v)) and finishing with a solvent mixture of diethyl ether/pentane (30:70 (v/v)). Purification afforded 2-bromoaniline (**S4b**), 3-bromoaniline (**S4c**) and 4-bromoaniline (**S4a**) in one fraction for a combined yield of 34.3 mg (66%yield). Further purification by column chromatography eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (5:95 (v/v)) and finishing with a solvent mixture of diethyl ether/pentane (30:70 (v/v)) gave **S4b** (10.0 mg), **S4c** (3.7 mg), and **S4a** (12.8 mg) in separate fractions. Characterization data matched previously reported data for **S4a**, **S4b**, and **S4c**.^{9a}

This work (Table S2). Reagent 1 (86.2 mg, 0.330 mmol, 1.10 equiv) was added to a flame-dried Schlenk tube, followed by HFIP (1.5 mL, c = 0.2 M) and bromobenzene (47.1 mg, 31.5 μ L, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 60 °C for 16 h. The brown reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. An ethyl acetate solution containing 1,3,5-trimethoxybenzene (0.1 mmol) was added as an internal standard, and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue was taken, and yield was determined based on integration against the internal standard to be 83%.

Ref 9a (Table S2). Reagent **1** (313 mg, 1.20 mmol, 4.00 equiv) was added to a flame-dried Schlenk tube, followed by degassed MeCN/H₂O (2:1, 900 μ L, c = 0.33 M) and bromobenzene (47.1 mg, 31.5 μ L, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 23 °C for 16 h. The colorless reaction mixture was diluted with 1.0 M NaOH (aq) (10 ml) and was poured into a separatory funnel. An ethyl acetate solution containing 1,3,5-trimethoxybenzene (0.1 mmol) was added as an internal standard, and the aqueous layer was extracted with dichloromethane (3 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue was taken, and yield was determined based on integration against the internal standard to be 0%.

Ref 17 (Table S2). Hydroxylamine-*O*-sulfonic acid (33.9 mg, 0.300 mmol, 1.00 equiv) was added to a flamedried Schlenk tube, followed by AcOH/H₂O (2:1, 500 μ L, c = 0.60 M) and bromobenzene (47.1 mg, 31.5 μ L, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 40 °C for 16 h. The colorless reaction mixture was basified with 1.0 M NaOH (aq) (~10 ml) and was poured into a separatory funnel. An ethyl acetate solution containing 1,3,5-trimethoxybenzene (0.1 mmol) was added as an internal standard, and the aqueous layer was extracted with diethyl ether (3 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue was taken, and yield was determined based on integration against the internal standard to be 3%.

4-Bromoaniline (S4a):

 $\mathbf{R}_{f} = 0.28$ (ethyl acetate/hexanes, 20:80 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 23 °C, δ): 7.22 (d, *J* = 8.8 Hz, 2H), 6.57 (d, *J* = 8.8 Hz, 2H), 3.74 (br s, 2H).

¹³C NMR (125 MHz, CD₂Cl₂, 23 °C, δ): 146.4, 132.3, 116.9, 109.9.

HRMS-FIA(m/z) calc'd for C₆H₇NBr [M+H]⁺, 171.9756; found, 171.9751.

2-Bromoaniline (S4b):

 $\mathbf{R}_{f} = 0.61$ (ethyl acetate/hexanes, 20:80 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.40 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.10 (dd, *J* = 7.7, 7.7 Hz, 1H), 6.77 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.62 (dd, *J* = 7.0, 7.0 Hz, 1H), 4.09 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 144.2, 132.7, 128.5, 119.5, 115.9, 109.5.

HRMS-FIA(m/z) calc'd for C₆H₇NBr [M+H]⁺, 171.9756; found, 171.9758.

3-Bromoaniline (S4c):

 $\mathbf{R}_{f} = 0.38$ (ethyl acetate/hexanes, 20:80 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 23 °C, δ): 7.00 (dd, *J* = 8.0, 8.0 Hz, 1H), 6.85–6.80 (m, 2H), 6.62–6.57 (m, 1H), 3.78 (br s, 2H).

¹³**C NMR** (125 MHz, CD₂Cl₂, 23 °C, δ): 148.7, 131.0, 123.2, 121.3, 117.8, 113.9.

HRMS-FIA(m/z) calc'd for C₆H₇NBr [M+H]⁺, 171.9756; found, 171.9754.

4-Methoxyaniline (S5a), 2-methoxyaniline (S5b), and 3-methoxyaniline (S5c)

Reagent **1** (137 mg, 0.525 mmol, 1.05 equiv) and $FeSO_4 \cdot 7H_2O$ (1.4 mg, 5.0 µmol, 0.010 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and anisole (54.1 mg, 54.3 µL, 0.500 mmol, 1.00 equiv). The reaction mixture was stirred at 40 °C for 15 min. The blue reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 15 mL ethyl acetate and poured into a

separatory funnel containing 15 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 15 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **S5a**:**S5b**:**S5c** = 4.2:1.8:1.0 by integrating the signal of **S5a** at 6.72 ppm, the signal of **S5b** at 6.79 ppm and the signal of **S5c** at 7.06 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (10:90 (v/v)) and finishing with a solvent mixture of diethyl ether/pentane (40:60 (v/v)). Purification afforded 2-methoxyaniline (**S5b**), 3-methoxyaniline (**S5c**) and 4-methoxyaniline (**S5a**) in one fraction for a combined yield of 35.3 mg (57% yield). Further purification by column chromatography eluting with a solvent mixture of diethyl ether/pentane (10:90 (v/v)) and finishing with a solvent mixture of diethyl ether/pentane (10:90 (v/v)). Further purification by column chromatography eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (10:90 (v/v)) and finishing with a solvent mixture of diethyl ether/pentane (40:60 (v/v)) and finishing with a solvent mixture of diethyl ether/pentane (10:90 (v/v)) and finishing with a solvent mixture of diethyl ether/pentane (40:60 (v/v)) gave **S5b** (5.9 mg), **S5c** (3.0 mg), and **S5a** (14.9 mg) in separate fractions. Characterization data matched previously reported data for **S5a**, **S5b**, and **S5c**.^{9a}

4-Methoxyaniline (S5a):

 $\mathbf{R}_{f} = 0.14$ (ethyl acetate/hexanes, 20:80 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD_2CI_2 , 23 °C, δ): 6.72 (d, J = 8.9 Hz, 2H), 6.62 (d, J = 9.0 Hz, 2H), 3.71 (s, 3H), 3.45 (br s, 2H).

¹³**C NMR** (125 MHz, CD₂Cl₂, 23 °C, δ): 153.0, 140.8, 116.4, 115.1, 56.0.

HRMS-FIA(m/z) calc'd for C₇H₁₀NO [M+H]⁺, 124.0757; found, 124.0758.

2-Methoxyaniline (S5b):

 $\mathbf{R}_{f} = 0.63$ (ethyl acetate/pentanes, 30:70 (v/v)).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 6.79 (m, 2H), 6.73 (m, 2H), 3.85 (s, 3H), 3.78 (br s, 2H).

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 147.5, 136.3, 121.2, 118.6, 115.2, 110.6, 55.6.

HRMS-FIA(m/z) calc'd for C₇H₁₀NO [M+H]⁺, 124.0757; found, 124.0755.

3-Methoxyaniline (S5c):

 $\mathbf{R}_{f} = 0.43$ (ethyl acetate/pentanes, 30:70 (v/v)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.06 (dd, *J* = 8.1, 8.1 Hz, 1H), 6.33 (ddd, *J* = 8.2, 2.3, 0.8 Hz, 1H), 6.30 (ddd, *J* = 7.9, 2.1, 0.8 Hz, 1H), 6.25 (dd, *J* = 2.3, 2.3 Hz, 1H), 3.76 (s, 3H), 3.66 (br s, 2H).

¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 160.9, 147.9, 130.3, 108.1, 104.1, 101.2, 55.2.

HRMS-FIA(m/z) calc'd for C₇H₁₀NO [M+H]⁺, 124.0757; found, 124.0755.

Effect of iron source, oxygen, and light on the amination reaction

Effect of iron and oxygen

The presence of both iron and oxygen has an effect on the reaction time with the shortest reaction times being observed when both are present. 1,4-Dibromobenzene was used to show the effect of iron and oxygen. See below (pg. S31) for a description of reaction setup and trace metal analysis for metal-free experiments.

Table S3. Effect of iron and oxygen on reaction time.

conditions	NMR yield of 2,5-dibromoaniline (5)	time
no [Fe], under N ₂	88%	7 h
no [Fe], under air	89%	5 h
under N_2	89%	20 min
under air	90%	13 min

Under nitrogen. Reagent **1** (118 mg, 0.450 mmol, 1.50 equiv), $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv), and 1,4-dibromobenzene (70.8 mg, 0.300 mmol, 1.00 equiv) were added to a flame-dried Schlenk tube. The vessel was evacuated and backfilled with nitrogen three times. Distilled, degassed HFIP (1.5 mL, c = 0.2 M) was then added. The reaction mixture was stirred at 60 °C until judged complete. The red reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. An ethyl acetate solution containing 1,3,5-trimethoxybenzene (0.1 mmol) was added as an internal standard, and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue was taken, and yield was determined based on integration against the internal standard.

Under air. Reagent **1** (118 mg, 0.450 mmol, 1.50 equiv), $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv), and 1,4dibromobenzene (70.8 mg, 0.300 mmol, 1.00 equiv) were added to a flame-dried Schlenk tube. Distilled HFIP (1.5 mL, c = 0.2 M) that had been vigorously stirred under air for >20 min was then added. The reaction mixture was stirred at 60 °C until judged complete. The red reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. An ethyl acetate solution containing 1,3,5trimethoxybenzene (0.1 mmol) was added as an internal standard, and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue was taken, and yield was determined based on integration against the internal standard.

Effect of iron source

Multiple iron(II) and iron(III) sources were observed to promote the amination reaction effectively, and the reaction also works in the absence of iron for multiple substrates. Nitrobenzene was used to show the effect of the iron source.

With ferrocene. Reagent 1 (141 mg, 0.540 mmol, 1.80 equiv) and ferrocene (0.6 mg, 3.0 µmol, 0.010 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M) and nitrobenzene (36.9 mg, 30.8 µL, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 60 °C for 45 min. The orange reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **2a**:2**b**:2**c** = 1.7:1.0:1.0 by integrating the signal of **2a** at 6.94 ppm, the signal of **2b** at 6.76 ppm, and the signal of **2c** at 6.62 ppm. The residue was purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (20:80 (v/v)) and finishing with diethyl ether/pentane (40:60 (v/v)). Purification afforded 2-nitroaniline (**2b**), 3-nitroaniline (**2a**) and 4-nitroaniline (**2c**) in separate fractions for a combined yield of 39.0 mg (94% yield).

No iron source. Reagent **1** (141 mg, 0.540 mmol, 1.80 equiv) was added to an oven-dried Schlenk tube, followed by HFIP (1.5 mL, c = 0.2 M) and nitrobenzene (36.9 mg, 30.8 µL, 0.300 mmol, 1.00 equiv). The reaction mixture was stirred at 60 °C for 16 h. The orange reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue indicated a ratio of **2a**:2**b**:2**c** = 2.0:1.0:1.0 by integrating the signal of **2a** at 6.94 ppm, the signal of **2b** at 6.76 ppm, and the signal of **2c** at 6.62 ppm. The residue was

purified by column chromatography on silica gel eluting with a gradient solvent system, starting with a solvent mixture of diethyl ether/pentane (20:80 (v/v)) and finishing with diethyl ether/pentane (40:60 (v/v)). Purification afforded 2-nitroaniline (**2b**), 3-nitroaniline (**2a**) and 4-nitroaniline (**2c**) in separate fractions for a combined yield of 31.1 mg (75% yield).

Effect of light

Ambient light was found to have no effect on the results of the amination reaction. A reaction run in the dark (wrapped in foil) gave similar results to the standard reaction conditions.

Reagent **1** (118 mg, 0.450 mmol, 1.50 equiv), $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv), and 1,4dibromobenzene (70.8 mg, 0.300 mmol, 1.00 equiv) were added to a 4-mL vial, followed by HFIP (1.5 mL, c = 0.2 M). The reaction mixture was stirred at 60 °C for 18 min. The red reaction mixture was allowed to cool to room temperature and was concentrated. The residue was dissolved in 10 mL ethyl acetate and poured into a separatory funnel containing 10 mL sat. aq. Na₂CO₃. An ethyl acetate solution containing 1,3,5trimethoxybenzene (0.1 mmol) was added as an internal standard, and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. A ¹H NMR spectrum of the residue was taken, and yield was determined based on integration against the internal standard.

Trace metal analysis

Reactions performed in the absence of $FeSO_4 \cdot 7H_2O$ were conducted with the following precautions: All glassware and stirbars were washed with aqua regia solution, rinsed with deionized water and dried in an oven. Solids were handled with glass pipettes. Solvents were distilled before use.

ICP-MS analysis was performed by Robertson Microlit Laboratories, 1705 U.S. Highway 46, Suite 1D, Ledgewood, NJ 07852. Samples were prepared and sent out for analysis in the following way:

Reagent 1 (82.3 mg, 0.315 mmol, 1.05 equiv), FeSO₄·7H₂O (0.8 mg, 3 µmol, 0.01 equiv), and 1,4-

dibromobenzene (70.8 mg, 0.300 mmol, 1.00 equiv) were added to a flame-dried Schlenk tube. The vessel was evacuated and backfilled with nitrogen three times. Distilled, degassed HFIP (1.5 mL, c = 0.2 M) was then added. The reaction mixture was stirred at 60 °C for 17 hr. The red reaction mixture was allowed to cool to room temperature. A small aliquot was taken to determine conversion, which was always >90% as judged by ¹H NMR. The bulk of the reaction mixture was transferred to a glass vial, sealed and sent out for ICP-MS analysis. Duplicate samples were analyzed in this manner. One contained <1 ppb Fe and 60 ppb Cu, while the other contained <1 ppb Fe and <1 ppb Cu.

Consumption studies of reagent 1

Reagent **1** is consumed to generate methanesulfonic acid (MsOH) even when an arene substrate is not added to the reaction. MsOH is formed faster in the presence of $FeSO_4 \cdot 7H_2O$ and/or residual moisture.

$$MsO - \dot{N}H_3 OTf \qquad \frac{1.00 \text{ mol\% FeSO}_4.7H_2O}{HFIP, 60 °C} MsOH$$

change from reaction conditions	NMR yield of MsOH
no [Fe], under N_2 , 16h	5%
no [Fe], under air, 16h	33%
under N ₂ , 4h	33%
under air, 4h	52%
under N ₂ , 16h	100%
under air, 16h	100%

Table S4. Consumption of reagent 1 in the absence of arene.

Under nitrogen. Reagent **1** (78.4 mg, 0.300 mmol, 1.00 equiv) and $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv) were added to a flame-dried Schlenk tube. The vessel was evacuated and backfilled with nitrogen three times. Distilled, degassed HFIP (1.5 mL, c = 0.2 M) was then added. The reaction mixture was stirred at 60 °C for the designated time. The reaction mixture was allowed to cool to room temperature and was concentrated. A solution containing nitromethane (0.1 mmol) in CD₃CN was added as an internal standard. A ¹H NMR spectrum of the residue was taken, and yield was determined based on integration against the internal standard.

Under air. Reagent **1** (78.4 mg, 0.300 mmol, 1.00 equiv) and $FeSO_4 \cdot 7H_2O$ (0.8 mg, 3 µmol, 0.01 equiv) were added to a flame-dried Schlenk tube. Distilled HFIP (1.5 mL, c = 0.2 M) that had been vigorously stirred under air for >20 min was then added. The reaction mixture was stirred at 60 °C for the designated time. The reaction mixture was allowed to cool to room temperature and was concentrated. A solution containing

nitromethane (0.1 mmol) in CD₃CN was added as an internal standard. A ¹H NMR spectrum of the residue was taken, and yield was determined based on integration against the internal standard.

Synthesis of reagent 1 with other counterions

Attempts to synthesize [MsO–NH₃]⁺ with counterions less capable of hydrogen bonding were unsuccessful:

BocHN-OMs
$$\frac{HBF_{4} \cdot Et_{2}O}{Et_{2}O, 0 \circ C \text{ to } 23 \circ C, 2 \text{ h}} MsO - \dot{N}H_{3} \ BF_{4}$$
S1
BocHN-OMs
$$\frac{HPF_{6 (aq)}}{Et_{2}O, 0 \circ C \text{ to } 23 \circ C, 2 \text{ h}} MsO - \dot{N}H_{3} \ PF_{6}$$
S1
MsO- $\dot{N}H_{3} \ OTf \qquad \frac{NH_{4}PF_{6}}{H_{2}O, 23 \circ C, 2 \text{ h}} MsO - \dot{N}H_{3} \ PF_{6}$

Synthesis of the reagent with a nonaflate counterion was successful, as might be expected due to its similar hydrogen bond donating ability as compared to triflate:

[MsO-NH₃]ONf (S6)

BocHN-OMs
$$\frac{\text{NfOH}}{\text{Et}_2\text{O}, 0 \ ^{\circ}\text{C} \text{ to } 23 \ ^{\circ}\text{C}, 2 \text{ h}} MsO-\text{NH}_3 ONf$$
S1 88% yield S6

Compound **S1** (1.00 g, 4.73 mmol, 1.00 equiv) was dissolved in anhydrous diethyl ether (24 mL) in a flamedried round bottom flask. The flask was evacuated and backfilled with nitrogen, then cooled in a water-ice bath. Nonafluorobutanesulfonic acid (1.42 g, 784 μ L, 4.73 mmol, 1.00 equiv) was added. The reaction mixture was allowed to stir at room temperature for 2 h, during which time a colorless precipitate formed. Heptane (15 mL) was added to the flask. The colorless solid was collected on a Buchner funnel, rinsed with heptane (10 mL) and dried under high vacuum to give 1.72 g of the title compound as a colorless solid (88% yield). ¹³C NMR peaks for the nonaflate counterion were not observed due to the complex C–F splitting. The presence of a nonaflate counterion was confirmed by ¹⁹F NMR spectroscopy.

NMR Spectroscopy:

¹H NMR (500 MHz, (CD₃)₂CO, 23 °C, δ): 3.15 (s, 3H).

¹³C NMR (125 MHz, (CD₃)₂CO, 23 °C, δ): 36.6.

¹⁹**F NMR** (470 MHz, CD₃CN, 23 °C, δ): -82.1 (tt, *J* = 10.1, 2.8 Hz, 3F), -116.0 (m, 2F), -122.6 (m, 2F), -127.0 (m, 2F).

HRMS-FIA(m/z) calc'd for CH₆NO₃S [M]⁺, 112.0068; found, 112.0049.

Electrochemical data

General methods

Cyclic voltammetry (CV) was performed in a nitrogen-filled glovebox using a solution of approximately 2 mg/mL of reagent [MsO–NH₃]OTf (**1**) in 0.1 M Bu₄NOTf in either HFIP or MeCN. HFIP and MeCN were distilled and degassed. Bu₄NOTf was recrystallized from DCM/Et₂O at –10 °C and dried under high vacuum at 65 °C for 24 h. Cyclic voltammetry was measured using a three-electrode setup with a glassy carbon working electrode, a platinum wire counter electrode and a Ag⁰ quasi-reference electrode. Ferrocene was used as an external standard, and potentials are reported vs. Fc/Fc⁺. For each solvent, the CV of reagent **1** was measured at five different scan rates (25, 50, 100, 200 and 400 mV/s). The irreversible reduction events are assigned a reduction potential that corresponds to the potential at half the maximum current ($E_{p/2}$).¹⁸

[MsO–NH₃]OTf (1) in HFIP

Figure S1. CV of [MsO–NH₃]OTf (1) in HFIP referenced to Fc/Fc⁺.

Figure S2. CV of [MsO-NH₃]OTf (1) in MeCN referenced to Fc/Fc⁺.

Comparison of electrochemical data

Table S5. Dependence of the reduction potential of [MsO–NH₃]OTf (1) on scan rate in HFIP and MeCN.

Scan rate (mV/s)	E _{p/2} (HFIP)	E _{p/2} (MeCN)
25	–0.74 V	–1.12 V
50	–0.74 V	–1.25 V
100	–0.77 V	–1.28 V
200	–0.81 V	–1.35 V
400	–0.86 V	–1.43 V

In both HFIP and MeCN, the reduction potential of $[MsO-NH_3]OTf(1)$ is scan rate dependent, as is summarized in Table S5. However, there is a clear difference in reduction potential between the two solvents despite the scan rate, with the reduction potential being ~0.5 V less negative in HFIP than MeCN. Therefore, $[MsO-NH_3]OTf(1)$ is a stronger oxidant in HFIP than in MeCN.
Failed substrates

All reactions have been carried out according to the general procedure for substrate amination. In case of low conversion, the reaction has not been further investigated with respect to products.

Table S6: Substrates that have failed in the described amination react

Substrate	Reaction Outcome
Me Me CO ₂ Et	0% conversion
CI NHAC	~5% conversion
H Me F₃C、 ∧ ∧ ↓	only hydrolysis of amide
O ₂ N O Me	to the aniline is observed
F H ₂ N CO ₂ Me	~20% conversion
H N CF ₃	0% conversion
NO ₂	0% conversion

DFT CALCULATIONS

DFT results for 1 in HFIP

Figure S3. Optimized structure of 1.

Table S7. Cartesian coordinates (Å) of optimized structure of 1 with ω B97XD/BS I.

Atom	X	Y	Z
3	1.790119	-0.004910	-0.200701
F	3.233472	0.913433	1.094697
0	1.334813	-1.387044	1.004446
0	0.697022	-0.643827	-1.234329
F	2.655681	1.609426	-0.867493
F	1.201110	1.548177	0.729083
0	3.028937	-1.381853	-0.790420
С	2.250219	0.926183	0.198942
S	-2.693440	0.317373	-0.287657
0	-2.713364	-0.775045	-1.229209
0	-2.222457	1.624092	-0.631403
0	-1.621029	-0.178356	0.938170
Ν	-1.257345	-1.527771	0.895352
С	-4.210494	0.407179	0.617176

Н	-1.764932	-2.035396	1.622092
Н	-0.186057	-1.544840	1.044402
Н	-1.470844	-1.919339	-0.033632
Н	-4.963931	0.769301	-0.081610
Н	-4.075160	1.110424	1.435881
Н	-4.462625	-0.588301	0.975089

DFT results for 1 in MeCN

Figure S4. Optimized structure of 1.

Table S8. Cartesian coordinates (Å) of optimized structure of 1 with ω B97XD/BS I.

Atom S	X 1.800599	Y -0.804773	Z -0.288553
F	3.232280	0.904859	1.109498
0	1.329137	-1.385153	0.998805
0	0.711034	-0.637109	-1.245728
F	2.686222	1.601880	-0.861530
F	1.209946	1.554982	0.715742
0	3.034840	-1.387158	-0.783772
С	2.261007	0.923572	0.200738

S	-2.704718	0.316999	-0.288489
0	-2.722171	-0.777341	-1.227877
0	-2.237715	1.624202	-0.636971
0	-1.623723	-0.169575	0.932908
Ν	-1.268377	-1.521772	0.904108
С	-4.219560	0.403721	0.619703
н	-1.769899	-2.016751	1.643961
н	-0.197729	-1.542517	1.042738
н	-1.495674	-1.925443	-0.016270
н	-4.976867	0.755550	-0.079961
н	-4.086409	1.114135	1.432451
Н	-4.464816	-0.590362	0.986057

The hydrogen bond length between the triflate anion and the [MsO–NH₃]⁺ cation in the optimized structures in continuum HFIP and continuum acetonitrile is found to be 1.53 Å, which is 0.40 Å shorter than in the crystal structure. Significantly shorter ion-pair distances in calculated structures have been observed previously and were attributed to steric effects.¹⁹

DFT results for HFIP

Figure S5. Optimized structure of HFIP.

Table S9. Cartesian coordinates (Å) of optimized structure of HFIP with ω B97XD/BS I.

Atom H	X -0.000233	Y 1.962522	Z 0.779924
С	0.00008	0.533793	-0.530643
н	0.000092	0.471179	-1.619331
С	-1.284463	-0.150012	-0.042764
С	1.284507	-0.149938	-0.042746
0	-0.000104	1.879411	-0.179037
F	-2.345488	0.456622	-0.580588
F	-1.406670	-0.064486	1.290796
F	-1.336208	-1.440603	-0.378578
F	1.336619	-1.440255	-0.379610
F	2.345565	0.457321	-0.579751
F	1.406255	-0.065493	1.290911

DFT results for 1·HFIP (OMs)

Figure S6. Optimized structure of 1·HFIP (OMs).

Table S10. Cartesian coordinates (Å) of optimized structure of 1·HFIP (OMs) with ω B97XD/BS I.

Atom	X	Y	Z
S	-3.473665	-0.641749	-0.038481
F	-2.574829	-2.856120	1.065888

0	-3.541288	0.019003	1.295876
0	-2.926154	0.251969	-1.055774
F	-1.843894	-2.498932	-0.936160
F	-1.060129	-1.356094	0.722125
0	-4.661430	-1.397788	-0.388175
С	-2.153618	-1.919969	0.220176
S	-0.276784	2.473025	-0.641640
0	-1.333915	3.166014	-1.332130
0	-0.986649	1.842275	0.761408
Ν	-2.292756	2.277462	1.011275
С	0.900786	3.591360	0.058247
Н	-2.273532	2.963178	1.768576
Н	-2.853405	1.383948	1.258724
Н	-2.691716	2.696947	0.158643
Н	1.490352	3.978178	-0.772333
Н	1.527575	3.030140	0.747831
Н	0.363456	4.391875	0.561755
0	0.386066	1.338785	-1.222309
Н	2.134488	0.684036	-1.354443
С	3.457469	-0.369143	-0.389210
Н	4.538516	-0.508081	-0.441072
С	2.823083	-1.746074	-0.632998
С	3.162000	0.202023	1.005038
0	3.089296	0.521854	-1.385669
F	3.289880	-2.254832	-1.777404
F	1.492084	-1.660210	-0.746800
F	3.097532	-2.616680	0.342911
F	3.641742	-0.566592	1.982893

F	3.722684	1.410987	1.120870
F	1.843264	0.359701	1.217009

1.HFIP (OMs) is found to be 5.9 kcal/mol higher in energy than 1 and a free HFIP molecule.

DFT results for 1·HFIP (OTf)

Figure S7. Optimized structure of 1·HFIP (OTf).

Table S11. Cartesian coordinates (Å) of optimized structure of 1·HFIP (OTf) with ωB97XD/BS I.

Atom S	X 2.086636	Y -1.472640	Z 0.603406
F	4.555115	-1.821527	-0.218333
0	2.580400	-0.658431	1.737944
0	0.918230	-0.842606	-0.037118
F	3.071290	-1.915007	-1.786489
F	3.629124	-0.007237	-0.938678
0	1.985760	-2.894410	0.859339
С	3.423813	-1.290519	-0.668777
S	0.626680	2.711856	-0.566268
0	1.724792	2.175883	0.618847
Ν	1.151856	1.550538	1.730173
С	0.582973	4.448615	-0.236207

н	1.150055	2.199820	2.519533
н	1.760740	0.689616	1.903854
Н	0.191275	1.235679	1.516733
Н	-0.056960	4.886772	-1.001518
Н	1.596659	4.834943	-0.313492
Н	0.160892	4.606189	0.753422
0	1.305962	2.435150	-1.794070
0	-0.627927	2.090055	-0.216739
С	-2.293283	-0.651059	-0.221455
Н	-1.732267	0.154097	-0.706153
Н	-0.635401	-1.616283	-0.125543
0	-1.584436	-1.838152	-0.125014
С	-3.523163	-0.918606	-1.089343
С	-2.644023	-0.139804	1.181565
F	-3.135920	-1.235620	-2.329318
F	-4.262545	-1.931611	-0.627063
F	-4.316238	0.157937	-1.175353
F	-3.403903	-0.989740	1.872302
F	-3.260502	1.043952	1.160304
F	-1.499886	0.020663	1.887910

1. HFIP (OTf) is found to be 0.8 kcal/mol higher in energy than 1 and a free HFIP molecule.

DFT results for 1.2HFIP

Figure S8. Optimized structure of 1.2HFIP.

Table S12. Cartesian coordinates (Å) of optimized structure of 1·2HFIP with ω B97XD/BS I.

Atom S	X -0.789858	Y 2.765024	Z -0.382283
F	1.350688	4.225629	0.037819
0	-0.587276	2.820805	-1.849649
0	-1.154309	1.405516	0.053830
F	0.919508	2.804574	1.607809
F	1.754361	2.125630	-0.265841
0	-1.576337	3.846210	0.173573
С	0.922983	2.994238	0.293868
S	0.102062	-1.586078	-1.233650
0	0.354402	-0.181709	-2.146124
Ν	-0.794228	0.364108	-2.729221
С	0.843838	-2.804323	-2.276980
Н	-0.784355	0.161335	-3.730895
н	-0.741221	1.414859	-2.517723
Н	-1.644264	-0.027467	-2.292000

н	0.794787	-3.745324	-1.729728
Н	1.877642	-2.516411	-2.455727
Н	0.273082	-2.861408	-3.201632
0	0.887191	-1.371342	-0.051360
Н	2.509902	-2.007067	0.605562
С	4.404047	-1.587500	0.772822
Н	5.309608	-2.141903	1.024597
С	4.252244	-0.481106	1.827313
С	4.615699	-1.041186	-0.647408
0	3.332933	-2.465519	0.830827
F	4.304487	-1.017002	3.050420
F	3.073605	0.145254	1.715358
F	5.216458	0.440855	1.742608
F	5.780160	-0.398135	-0.764798
F	4.617828	-2.053340	-1.521813
F	3.642567	-0.196697	-1.020417
0	-1.329689	-1.741122	-1.166780
С	-3.658520	-0.537915	0.720610
Н	-2.701307	-1.041782	0.556025
Н	-2.663683	1.100543	0.861950
0	-3.526258	0.766717	1.169224
С	-4.389542	-1.325952	1.808287
С	-4.384917	-0.552353	-0.630426
F	-3.641799	-1.358899	2.916458
F	-5.565217	-0.777456	2.131911
F	-4.619441	-2.592765	1.436937
F	-5.604591	-0.017121	-0.570563
F	-4.495458	-1.780281	-1.143229

F -3.678278 0.186739 -1.516858

1.2HFIP is found to be 6.6 kcal/mol higher in energy than **1** and two free HFIP molecules, which suggests HFIP destabilizes reagent **1**. The sum of the individual effects of one HFIP hydrogen bonding to [MsO–NH₃]⁺ (5.9 kcal/mol) and one HFIP hydrogen bonding to the triflate counterion (0.8 kcal/mol) is 6.7 kcal/mol, which is consistent with the results of the calculation with two HFIP hydrogen bonding interactions.

DFT results for [NH₃]⁺⁻(OTf) (S7)

Figure S9. Optimized structure of [NH₃]⁺⁻(OTf).

Table S13. Cartesian coordinates (Å) of optimized structure of [NH₃]⁺(OTf) with ωB97XD/BS I.

Atom	Х	Y	Z
S	-0.088001	0.824335	0.019420
F	1.473110	-0.886948	-1.239373
0	-1.198631	0.352257	-0.856073
0	-0.475925	0.959109	1.415595
F	2.120072	-0.394575	0.761894
F	0.434535	-1.714799	0.465358
0	0.679733	1.907240	-0.568632
С	1.057172	-0.634100	-0.001692
Ν	-3.324336	-0.817477	-0.011555
Н	-4.037069	-1.124406	-0.669113
Н	-2.414690	-0.323134	-0.342151

H -3.503772 -0.996815 0.973541		2 502770	0.000045	0.072544	
	н	-3.503772	-0.996815	0.973541	

DFT results for MsO⁻ (S8)

Figure S10. Optimized structure of MsO⁻.

Table S14. Cartesian coordinates (Å) of optimized structure of MsO^{\cdot} with ω B97XD/BS I.

Atom S	X -0.100444	Y 0.072405	Z 0.000071
0	-0.373948	1.488671	0.000135
0	-0.700174	-0.694735	-1.136201
0	-0.700326	-0.695102	1.135911
С	1.644592	-0.200872	0.000029
Н	2.055581	0.264806	-0.894046
Н	1.823804	-1.273744	0.000077
Н	2.055743	0.265026	0.893903

Calculation of homolysis energy

The homolysis energy $E_{homolysis}$ of **1** has been calculated using the following equation:

$$E_{homolysis} = E(S7) + E(S8) - E(1) = 35.6 \ kcal * mol^{-1}$$

(1)

The homolysis energy of $35.6 \ kcal \ mol^{-1}$ implies that homolysis is a feasible mechanistic step to generate ammoniumyl and mesyloxyl radicals.

Comparison of LUMO energy differences and reduction potentials

The LUMO energies of **1**, **1**·**HFIP(OMs)**, **1**·**HFIP(OTf)** and **1**·**2HFIP** have been calculated by addition of the corresponding HOMO energies to the transition energy ΔE^1 to the first excited state determined by TD-DFT calculations.²⁰

$$\Delta E^{1} = E(LUMO) - E(HOMO) \leftrightarrow E(LUMO) = \Delta E^{1} + E(HOMO)$$
⁽²⁾

The LUMO of **1**•**2HFIP** is 7.7 kcal·mol⁻¹ lower in energy than the LUMO of **1** in HFIP and 8.3 kcal·mol⁻¹ lower than the LUMO of **1** in acetonitrile. The LUMO of **1**•**HFIP(OMs)** is 4.8 kcal·mol⁻¹ lower in energy than the LUMO of **1** and the LUMO of **1**•**HFIP(OTf)** is 3.2 kcal·mol⁻¹ lower than the LUMO of **1**. Their sum (8.0 kcal·mol⁻¹) is consistent with the value calculated from **1**•**2HFIP**.

The energy difference of 8.3 kcal mol⁻¹ would correspond to a difference in the reduction potential of $\Delta E = 0.4$ V between **1** in MeCN and **1·2HFIP** coordination. This value is consistent with our experimentally measured CV data, which show ~0.5 V difference between the reduction potential of **1** in MeCN and HFIP (see Table S5).

$$\Delta E = \frac{34.7 \, J}{96.5 \, C} = 0.4 \, V$$

The LUMO of 1.2 HFIP shows large contributions of the $\sigma^*(N-O)$ orbital.

Figure S11. LUMO of 1.2HFIP plotted with an isosurface value of 0.05.

X-RAY CRYSTALLOGRAPHIC ANALYSIS

[MsO-NH₃]OTf (1) (CCDC 1545194)

Reagent **1** was crystallized from HFIP (~20 mg in 2 mL) at –10 °C. A crystal was mounted on a nylon loop using Paratone-N oil, and transferred to a Bruker APEX II CCD diffractometer (MoK α radiation, λ = 0.71073 Å) equipped with an Oxford Cryosystems nitrogen flow apparatus. The sample was held at 100 K during the experiment. The collection method involved 0.5° scans in ω at 28° in 20. Data integration down to 0.82 Å resolution was carried out using SAINT V8.34 C (Bruker diffractometer, 2014) with reflection spot size optimization. Absorption corrections were made with the programs SADABS (Bruker diffractometer, 2014). The structure was solved by the direct methods procedure and refined by least-squares methods against F2 using SHELXT-2014 and SHELXL-2014 (Sheldrick, 2015). Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table S14 below.

Figure S12. X-ray crystal structure of $[MsO-NH_3]OTf(1)$. Thermal ellipsoids are drawn at 50% probability level. Red = oxygen, blue = nitrogen, yellow = sulfur, green = fluorine.

 Table S15. Experimental details for [MsO–NH₃]OTf (1).

Empirical formula	$C_2H_6F_3NO_6S_2$	
Formula weight	261.20	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	orthorhombic	
Space group	Pna2 ₁	
Unit cell dimensions	a = 8.9227(15) Å	$\alpha = 90^{\circ}$
	b = 18.531(3) Å	$\beta = 90^{\circ}$
	c = 5.5268(9) Å	γ = 90°
Volume	913.8(3) Å ³	
Z	4	
Density (calculated)	1.899 Mg/m ³	

Absorption coefficient	0.639 mm ⁻¹
F(000)	528.0
Crystal size	0.82 × 0.13 × 0.08 mm ³
θ range for data collection	2.198 to 25.013°
Index ranges	$-10 \le h \le 10, -22 \le k \le 22, -6 \le l \le 6$
Reflections collected	12755
Independent reflections	1623 [R _{int} = 0.0221]
Reflections with I> $2\sigma(I)$	1597
Max. and min. transmission	0.7772 and 0.8620
Data / restraints / parameters	1623 / 1 / 129
Goodness-of-fit on F ²	1.080
Final R indices [I>2o(I)]	R ₁ = 0.0228, wR ² = 0.0557
R indices (all data)	R ₁ = 0.0232, wR ² = 0.0560
Largest diff. peak and hole	0.356 and -0.289 e·Å⁻³

REFERENCES

- 1 A. B Pangborn, M. A. Giardello, R. H Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics,* 1996, **15**, 1518–1520.
- G. R. Fulmer, A. J. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg *Organometallics*, 2010, 29, 2176–2179.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V. N. Staroverov, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adam, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09(Revision D.01), Gaussian Inc., Wallingford, CT, 2013.
- 4. P. C. Harihara and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213–222.
- 5. J. D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620.
- D.-P. Hong, M. Hoshino, R. Kuboi and Y. Goto, *J. Am. Chem. Soc.*, 1999, **121**, 8427–8433; b.
 V. Barone and M. Cossi, *J. Phys. Chem. A*, 1998, **102**, 1995–2001.
- 7. J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999–3094.
- J. A. Stafford, S. S. Gonzales, D. G. Barrett, E. M. Suh and P. L. Feldman, *J. Org. Chem.*, 1998, 63, 10040–10044.
- a. L. Legnani, G. Prina Cerai and B. Morandi, ACS Catal., 2016, 6, 8162–8165; b. N. Guimond, S. I.
 Gorelsky and K. Fagnou, J. Am. Chem. Soc., 2011, 133, 6449–6457.
- 10. D. Kim, S. Sambasivan, H. Nam, K. H: Kim, J. Y. Kim, T. Joo, K.-H. Lee, K.-T. Kim and K. H. Ahn, *Chem. Commun.*, 2012, **48**, 6833–6835.
- 11. S. Thea, G. Guanti, A. R. Hopkins and A. Williams, *J. Org. Chem.*, 1985, **50**, 3336–3341.
- 12. X. Gao, H. Fu, R. Qiao, Y. Jiang and Y. Zhao, *J. Org. Chem.*, 2008, **73**, 6864–6866.
- a. K. K. Anderson, S. Chumpradit and D. J. McIntyre, *J. Org. Chem.*, 1988, **53**, 4667–4675; b. A. Courtin, *Helv. Chim. Acta*, 1983, **66**, 1046–1052.
- 14. R. J. Rahaim Jr. and R. E. Maleczka Jr., *Org. Lett.*, 2005, **7**, 5087–5090.
- 15. A. Robin, J.-C. Meslin and D. Deniaud, *Synthesis*, 2004, 1633–1640.

- 16. E. A. Meyer, N. Donati, M. Guillot, W. B. Schweizer, F. Diederich, B. Stengl, R. Brenk, K. Reuter and G. Klebe, *Helv. Chim. Acta*, 2006, **89**, 573–597.
- 17. A. Citterio, A. Gentile, F. Minisci, V. Navarrini, M. Serravalle and S.Ventura, *J. Org. Chem.*, 1984, **49**, 4479–4482.
- 18. H. G. Roth, N. A. Romero and D. A. Nicewicz, *Synlett*, 2016, **27**, 714–723.
- 19. S. Zhang, Z. Chen, Y. Lu, Z. Xu, W. Wu, W. Zhu, C. Peng and H. Liu, *RSC Adv.*, 2015, **5**, 74284–74294.
- 20. G. Zhang and C. B. Musgrave, J. Phys. Chem. A, 2007, **111**, 1554–1561.

SPECTROSCOPIC DATA

¹H NMR of *N*-Boc-*O*-mesylhydroxylamine (S1)

CDCI₃, 23 °C

BocHN-OMs

S1

ดรามในปฏิหญาต่างสูงในการแน่นสูงสมมณะพระไหนได้เป็นสมการแห่งที่สุดภูมิตั้งในประกูลแบบประสุญณ์หน้าสูงการแห่งการสาร

¹³C NMR of *N*-Boc-*O*-mesylhydroxylamine (S1)

CDCl₃, 23 °C

nang Vanneeraan ang kananana ay kananana kananana kananana kananana kananana kanana kanana kanana kanana kanana

MHaNI1e

MININ NY WARMAN AND A LANA MANA PANA

ปการการแหล่มสูงสรรมผู้ผู้สุดพูปสรรมหว่างหนึ่งการสูงที่สาวบริสุดภูมิสาวสีสุดภูมิสาวสีสุดภูมิสาวสีสุดภูมิสาวสีสุด

¹⁹F NMR of [MsO–NH₃]OTf (1)

CD₃CN, 23 °C

MsO-NH₃OTf

1

																	· · ·	· · ·				
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-2
										p	pm											

¹H NMR of moclebomide (S2)

¹³C NMR of moclebomide (S2)

CDCl₃, 23 °C

230

S59

¹⁹F NMR of 4-(trifluoromethyl)phenyl-2-nitrobenzenesulfonate (S3)

			1	· · · ·							' ' '				1 1		· I			1 1		1 1	- 1
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20
											pp	om											

¹H NMR of 2-nitroaniline (2b)

¹³C NMR of 2-nitroaniline (2b)

¹³C NMR of 4-nitroaniline (2c)

¹H NMR of 3-(methylsulfonyl)aniline (3a)

¹³C NMR of 3-(methylsulfonyl)aniline (3a)

CDCl₃, 23 °C

3a

hayNonghanDelyn,DM	1.04%+htyliptur()+	ะอมู่ปฏาสังส่วงสุบไป	dayonurukutha	uby/TranjlePlaten	s (Incomentation	her Uszulvegelegiken	nhandunkanlunya	leal WY Tripp Body	hemator and an and a second and a	internal participation	HOR4CAY WH	window ta contact and	HERLYHHINAN DI WHANNYN	y wheel and a feature of the	nyarinikan'	In Mathematic International International International International International International International	vuhoší uvačel do	hansanahanning	" (EANOLDHAJPA	an san farihi shikara	getter in public and	¢nikusukusikusikusik	alifek Marting Af Ver	cibyloura Dividia dar
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

ppm

¹H NMR of 2-(methylsulfonyl)aniline (3b)

CDCl₃, 23 °C

3b

¹³C NMR of 2-(methylsulfonyl)aniline (3b)

- I - I	1 1			- I - I		·		- I I		1 1	- I I		- I - I	·		·					·			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												ppm												

¹H NMR of 4-(methylsulfonyl)aniline (3c)

¹³C NMR of 4-(methylsulfonyl)aniline (3c)

¹H NMR of 3-aminobenzonitrile (4a)

CDCl₃, 23 °C

4a

¹³C NMR of 3-aminobenzonitrile (4a)

CDCl₃, 23 °C

4a

¹H NMR of 4-aminobenzonitrile (4b)

¹³C NMR of 4-aminobenzonitrile (4b)

¹H NMR of 2-aminobenzonitrile (4c)

CDCl₃, 23 °C

4c

¹³C NMR of 2-aminobenzonitrile (4c)

CDCI₃, 23 °C

4c

¹H NMR of 2,5-dibromoaniline (5)

¹³C NMR of 2,5-dibromoaniline (5)

CD₂Cl₂, 23 °C

6a

¹³C NMR of ethyl 5-aminothiophene-2-carboxylate (6a)

CD₂Cl₂, 23 °C

¹H NMR of ethyl 4-aminothiophene-2-carboxylate (6b)

H₂N

¹³C NMR of ethyl 4-aminothiophene-2-carboxylate (6b)

CD₂Cl₂, 23 °C

S86

CD₂Cl₂, 23 °C

6c

NH₂

CO₂Et

¹³C NMR of ethyl 3-aminothiophene-2-carboxylate (6c)

CD₂Cl₂, 23 °C

6c

-10 ppm

¹H NMR of 5-amino-6-methoxy-2-methylquinoline (7a)

).O

 NH_2

(CD₃)₂CO, 23 °C

 NH_2

¹H NMR of 8-amino-6-methoxy-2-methylquinoline (7b)

¹³C NMR of 8-amino-6-methoxy-2-methylquinoline (7b)

¹H NMR of 3-amino-4-methoxybenzenesulfonamide (8)

CD₃OD, 23 °C

SO₂NH₂

¹³C NMR of 3-amino-4-methoxybenzenesulfonamide (8)

CD₃OD, 23 °C

230

220

¹H NMR of methyl 4-amino-1*H*-benzimidazole-6-carboxylate (9a) and methyl 5-amino-1*H*-benzimidazole-6-carboxylate (9c)

CD₃OD, 23 °C

).0

¹³C NMR of methyl 4-amino-1*H*-benzimidazole-6-carboxylate (9a) and methyl 5-amino-1*H*-benzimidazole-6-carboxylate (9c)

CD₃OD/CD₂Cl₂, 23 °C

ppm -10

¹H NMR of 3-amino-2,6-dichlorobenzonitrile (10a)

CDCl₃/CD₃OD, 23 °C

¹³C NMR of 3-amino-2,6-dichlorobenzonitrile (10a)

CDCl₃/CD₃OD, 23 °C

¹H NMR of 4-amino-2,6-dichlorobenzonitrile (10b)

CD₃OD, 23 °C

).O

ÇN

CI

¹³C NMR of 4-amino-2,6-dichlorobenzonitrile (10b)

CD₃OD, 23 °C

CN

¹H NMR of 3-aminomoclebomide (11a)

¹³C NMR of 3-aminomoclebomide (11a)

¹H NMR of 2-aminomoclebomide (11b)

¹³C NMR of 2-aminomoclebomide (11b)

CDCl₃, 23 °C

220

230

¹³C NMR of 2-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12a)

¹⁹F NMR of 2-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12a)

		1 1		1 1	1			· · ·		- I I		1 1	· · ·	- I I	1 1	1 1		1 1	1 '				
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20
											рр	m											

¹H NMR of 3-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b)

¹³C NMR of 3-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b)

¹⁹F NMR of 3-amino-4-(trifluoromethyl)phenyl 2-nitrobenzenesulfonate (12b)

	1		1									1							· · ·		·		
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20
											pp	om											

(CD₃)₂SO, 23 °C

).O

าในการบานสามหนังประกับสมบัติเป็นสุดที่เป็นหนังสามประกับในสมบัติเป็นหนึ่งสุดที่สุดที

(CD₃)₂SO, 23 °C

	·			·	·	· · ·	·	·	·			1	· · · ·	·	'	'	'		·	· · ·			1	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												ppm												

¹⁹F NMR of 3-aminorufinamide (13a) and 4-aminorufinamide (13b)

CDCI₃, 23 °C

20

10

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

ppm

-100

-110

-120

-130

-140

-150

-160

-170

-180

-190

-200

¹H NMR of 4-bromoaniline (S4a)

¹³C NMR of 4-bromoaniline (S4a)

n de en stannen stannen in stannen en stannen in stannen en stannen de stannen de stannen verste de stannen de stan Die stannen de stannen	halah manjahan an ana an	na wana perioda na kana na kana Ma wana perioda na kana	ntenni lanan andaktar anganan lanakan mahangi protonoka perinakan perinakan perinakan perinakan perinakan perin Antenni lanan angan perinakan perinakan perinakan perinakan perinakan perinakan perinakan perinakan perinakan pe

¹H NMR of 2-bromoaniline (S4b)

¹H NMR of 3-bromoaniline (S4c)

¹³C NMR of 3-bromoaniline (S4c)

CD₂Cl₂, 23 °C

S4c

¹H NMR of 4-methoxyaniline (S5a)

¹³C NMR of 4-methoxyaniline (S5a)

CD₂Cl₂, 23 °C

ppm

-10

¹H NMR of 2-methoxyaniline (S5b)

¹³C NMR of 2-methoxyaniline (S5b)

		1 1	1 1		1 1	1 1		1 1	1 1	1 1	1 1	1 1				1 1		1 1	1 1					
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												ppm												

¹H NMR of 3-methoxyaniline (S5c)

¹³C NMR of 3-methoxyaniline (S5c)

หม่)ให้สามสนักษณะแนนนายายพระสุขายหรือสามหรือสามหรือสามหรือสามหรือสามหรือมายหลักหนับเพียงกับแห่งคนสามสนักษณะการจ เหม่)ให้สามสนักษณะแนนนายายพระสุขายพระสุขายหรือสามหรือสามหรือสามหรือมายหลักหนับเพียงกับเพียงกับเพียงการจากใจจาก	n finalin human human fina	Nadulian lan provinsi kana kana kana kana kana kana kana kan	WHI (PHILIPPINE) AND	rivin dikaran manan kanan manan kanan manan kanan k	nyn Mantanan a land mangar Jan (Mangar J

	·	·	· · ·						1		·	·	· · ·						'					· · · · ·
230	220	210	200	190	180	170	160	150	140	130	120	110 ppm	100	90	80	70	60	50	40	30	20	10	0	-10

MsO−ŇH₃ ONf ¹H NMR of [MsO–NH₃]ONf (S6) **S**6 (CD₃)₂CO, 23 °C 3.00-0.0 9.5 8.5 8.0 7.5 7.0 6.5 5.5 5.0 ppm 3.5 3.0 2.0 1.5 1.0 9.0 6.0 4.0 2.5 0.5 4.5 0

¹³C NMR of [MsO–NH₃]ONf (S6)

(CD₃)₂CO, 23 °C

MsO−ŇH₃ ONf

uninantai UNUN Numbu	NAMAN MANAMANANA	ninininininininininininininininininini	NWUNION NIN NIN N	www.cww.pdv/how	ning (hilang) (hind) (a	wwwwww	NADIAN ANA ANA ANA ANA ANA ANA ANA ANA ANA	illi thi line an	MANNAMANA	WUNDUNNUUN	namananan	hannanan	hannan na fiainn an fi	ininana anto	infananin <mark>enan</mark> ian	nvilleville leven bervi	narundin bandandin	inn na minin managang sa	annonnon	num Intropo	lownownownown	(wanananana)	WWWWWWW	hyddiad (nam ar
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

¹⁹F NMR of [MsO–NH₃]ONf (S6) CD₃CN, 23 °C

	1	' '	' '	' '		' '		' '			'	' '	' ' '				1	1 1	1 1	1 1	- I I		
30	20	10	0	-10	0 -20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-2(
											р	pm											

MsO−ŇH₃ ONf

S6