Electronic Supplementary Information (ESI)

Efficient solar cells sensitized by a promising new type of porphyrins: dye-aggregation suppressed by double strapping

Kaiwen Zeng,^a Yunyue Lu,^a Weiqiang Tang,^b Qingyun Liu^c, Weihong Zhu,^a He Tian,^a and Yongshu Xie^{*a, d} Zhao, Shuangliang ^b

^aKey Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong, Shanghai 200237, China.

^bSchool of Chemical Engineering and State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.

^cCollege of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, P. R. China.

^dCorresponding author: Yongshu Xie, E-mail: yshxie@ecust.edu.cn

Contents

1. Experimental Details ······Page S2
1.1 Materials and ReagentsPage S2
1.2 Equipment and Apparatus ·····Page S2
1.3 Fabrication of DSSCsPage S2
1.4 Photovoltaic Behavior Measurements ······Page S3
1.5 Theoretical Calculations ······Page S3
1.6 Measurement of the Dye Adsorption AmountsPage S3
1.7 Synthesis of DyesPage S3
2. Absorption and Emission Spectra ······Page S8
3. Cyclic Voltammetry Curves ·····Page S8
4. Crystal Structure of Compound 5 ·····Page S8
5. Performance of the DSSCs under the Optimized ConditionsPage S10
6. Photovoltaic Performance of the DSSCs Based on the Organic Dye Z1 ······Page S10
7. Characterization Data for the CompoundsPage S12
8. Cartesian coordinates of the optimized structures for XW40 and XW41 ···· Page S31

1. Experimental Details

1.1 Materials and Reagents

All reagents and solvents were purchased from commercial sources and used without further purification unless otherwise noted. THF was dried over 4 Å molecular sieves and distilled under nitrogen from sodium benzophenone prior to use. Tetrabutylammonium hexafluorophosphate (TBAPF₆) was vacuum-dried for 48 h. The transparent FTO conducting glass (fluorine-doped SnO₂, transmission >90% in the visible range, sheet resistance 15 Ω /square) was purchased from Geao Science and Educational Co. Ltd. TiO₂ paste (18NR-T and 18NR-AO) was purchased from Dyesol Ltd. The FTO conducting glass was washed with a detergent solution, deionized water, ethanol, and acetone successively under ultrasonication for 20 min before use.

1.2 Equipment and Apparatus

¹H NMR and ¹³C NMR spectra were obtained using a Bruker AM 400 spectrometer. HRMS measurements were performed using a Waters LCT Premier XE spectrometer. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was measured using a Shimadzu-Kratos model Axima CFR+ mass spectrometer using dithranol as the matrix. UV-Vis absorption spectra were recorded on a Varian Cary 100 spectrophotometer and fluorescence spectra were recorded on a Varian Cray Eclipse fluorescence spectrophotometer. The cyclic voltammograms of the dyes were obtained in acetonitrile with a Versastat II electrochemical workstation (Princeton Applied Research) using 0.1 M TBAPF₆ (Aldrich) as the supporting electrolyte, the sensitizer attached to a nanocrystalline TiO₂ film deposited on the conducting FTO glass as the working electrode, a platinum wire as the counter electrode, and a regular calomel electrode in saturated KCI solution as the reference electrode. The scan rate was 100 mV s⁻¹.

1.3 Fabrication of DSSCs

The procedures for preparation of TiO_2 electrodes and fabrication of the sealed cells for photovoltaic measurements were adapted from that reported by Grätzel and co-workers.¹ A screen-printed double layer of TiO_2 particles was used as the photoelectrode, and the detailed procedure was reported in our previous work.² However, the dyes examined in this report were not fully soluble in the solvent used before (Toluene : EtOH = 1 : 4). Therefore, the films were then immersed into a 0.2 mM solution of the porphyrin dyes in a mixture of chloroform and ethanol (volume ratio of 3 : 2) at 25°C for the indicated time. For coadsorption, the films were then immersed into a 0.2 mM solution of the dyes with various concentrations of CDCA in a mixture of chloroform and ethanol (volume ratio of 3 : 2) at 25°C for 12 h. For cosensitization, the films were immersed into a 0.2 mM solution of porphyrin dyes in a mixture of chloroform and ethanol (volume ratio of 3 : 2) at 25°C for 12 h. Then, the porphyrin-sensitized films were washed with ethanol, dried in air, and immersed in a solution containing Z1 (0.3 mM) in a mixture of chloroform and ethanol (volume ratio of 1 : 1) at 25°C for the indicated time. The counter electrode was also prepared according to the procedure reported in our previous work.^{3,} ⁴ The electrolyte solution contains 0.1 M Lil, 0.05 M I₂, 0.6 M 1-methyl-3-propyl-imidazolium iodide (PMII) and 0.5 M 4-tert-butylpyridine (TBP) in acetonitrile.

1.4 Photovoltaic Behavior Measurements

Photovoltaic measurements were performed by employing an AM 1.5 solar simulator equipped with a 300 W xenon lamp (model no. 91160, Oriel). The power of the simulated light was calibrated to 100 mW cm⁻² using a Newport Oriel PV reference cell system (model 91150 V). *J–V* curves were obtained by applying an external bias to the cell and measuring the generated photocurrent with a model 2400 source meter (Keithley Instruments, Inc. USA). The voltage step and delay time of the photocurrent were 10 mV and 40 ms, respectively. Action spectra of the incident monochromatic photon-to-electron conversion efficiency (IPCE) for the solar cells were obtained with a Newport-74125 system (Newport Instruments). The intensity of monochromatic light was measured with a Si detector (Newport-71640). The electrochemical impedance spectroscopy (EIS) measurements of all the DSSCs were performed using a Zahner IM6e Impedance Analyzer (ZAHNER-Elektrik GmbH & CoKG, Kronach, Germany), with the frequency range of 0.1 Hz–100 kHz and the alternative signal of 10 mV. The ZSimpWin software was used to fit the experimental EIS data of the DSSCs.

1.5 Theoretical Calculations

We employed density functional theory (DFT) calculations to optimize the ground state geometries of the sensitizers, using the hybrid B3LYP functional^{5, 6} and the 6-31G* basis set.⁷ For zinc atoms, the Los Alamos effective core potential basis set (LANL2DZ) was used.⁸ All calculations were carried out using the Gaussian09 program package.⁹

1.6 Measurement of the Dye Adsorption Amounts

The amounts of dye adsorption on the TiO_2 films were measured by a Varian Cary 100 spectrophotometer. The sensitized electrodes were immersed into a 0.1 M NaOH solution in a mixed solvent (H_2O : THF = 1 : 1), which resulted in desorption of each dye.

1.7 Synthesis of Dyes

Synthesis of compound 1. In a 250 mL three-necked flask, 2,6-dihydroxybenzaldehyde (4.00 g, 29.40 mmol), 6-bromo-1-hexene (14.38 g, 88.20 mmol), and K₂CO₃ (16.25 g, 117.60 mmol) were mixed in DMF (120 mL) under nitrogen. After the mixture was kept stirring at 80°C for 24 h, the resulting suspension was poured into water, extracted with CH₂Cl₂, and washed with water. The organic portions were combined and dried using anhydrous Na₂SO₄. After filtration, the solvent was removed by rotary evaporation. The residue was purified by column chromatography (silica gel, CH₂Cl₂ : PE = 1 : 2) to give **1** as a yellow oil (8.14 g, yield 92%). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.53 (s, 1H), 7.35 – 7.39 (t, *J* = 8.4 Hz, 1H), 6.51 – 6.53 (d, *J* = 8.4 Hz, 2H), 5.78 – 5.85 (m, 2 H), 4.95 – 5.05 (m, 4H), 4.01 – 4.05 (t, *J* = 6.4 Hz, 4 H), 2.09 – 2.15 (m, 4H), 1.82 – 1.87 (m, 4H), 1.56 – 1.62 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz): δ 25.24, 28.49, 33.35, 68.71, 104.57, 114.83, 135.58, 138.43, 161.62, 189.28. HRMS (ESI, *m/z*): [M+H]⁺ calcd for C₁₉H₂₇O₃, 303.1960; Found, 303.1966.

Synthesis of compound 2. To a solution of 1 (2.36 g, 7.80 mmol) and dipyrromethene (1.14 g, 7.80 mmol) in CH_2Cl_2 (1.5 L), was added trifluoroacetic acid (1.5 mL, 20 mmol) under nitrogen. The solution was stirred at room temperature for 4 h in dark. Then, DDQ (2,3-dichloro-5,6-dicyanobenzoquinone) (2.56 g, 11.61 mmol) was added and stirred at room temperature for

another 1 h. After the reaction was quenched by the addition of 3 mL triethylamine, the solvent was removed under reduced pressure, and the residue was purified by column chromatography (silica gel, CH_2Cl_2 : PE = 1 : 3) to give compound **2** as purple powders (0.87 g, yield 26%). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.15 (s, 2H), 9.27 – 9.28 (d, *J* = 4.8 Hz, 4 H), 8.97 – 8.98 (d, *J* = 4.4 Hz, 4H), 7.70 – 7.74 (t, *J* = 8.4 Hz, 2H), 7.02 – 7.04 (d, *J* = 8.4 Hz, 4H), 4.96 – 5.06 (m, 4 H), 4.31 – 4.40 (m, 4 H), 3.84 – 3.87 (t, *J* = 6.2 Hz, 8 H), 1.26 – 1.29 (m, 8 H), 0.92 – 0.96 (m, 8 H), 0.50 – 0.51 (m, 8 H), -3.02 (s, 1 H). ¹³C NMR (CDCl₃, 100 MHz): δ 24.56, 28.14, 32.70, 68.58, 104.12, 105.55, 111.58, 113.90, 120.18, 130.20, 130.51, 131.03, 138.26, 145.09, 147.74, 160.22. HRMS (ESI, *m/z*): [M+H]⁺ calcd for C₅₆H₆₃N₄O₄, 855.4849; Found, 855.4839.

Synthesis of compound 3. To a solution of porphyrin 1 (2.06 g, 2.41 mmol) in CH₂Cl₂ (800 mL) was added NBS (0.94 g, 5.30 mmol) in CH₂Cl₂ (300 mL) dropwise at room temperature. After 1 h, 100 mL water was added to quench the reaction and the raw product was extracted using CH₂Cl₂ and water. The organic layers were combined and dried using anhydrous Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, CH₂Cl₂ : PE = 2 : 3) to afford **3** as purple powders (2.09 g, yield 86%). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 9.55 – 9.56 (d, *J* = 4.8 Hz, 4 H), 8.82 – 8.83 (d, *J* = 4.4 Hz, 4H), 7.71 – 7.75 (t, *J* = 8.4 Hz, 2H), 7.00 – 7.03 (d, *J* = 8.4 Hz, 4H), 4.50 – 5.07 (m, 4 H), 4.30 – 4.43 (m, 4 H), 3.87 – 3.90 (t, *J* = 6.2 Hz, 8 H), 1.29 – 1.33 (m, 8 H), 0.98 – 1.02 (m, 8 H), 0.50 – 0.54 (m, 8 H), -2.55 (s, 2 H). ¹³C NMR (CDCl₃, 100 MHz): δ 24.49, 28.02, 32.57, 68.41, 102.36, 105.15, 113.85, 114.11, 119.96, 130.36, 138.01, 159.92. HRMS (ESI, *m*/*z*): [M+H]⁺ calcd for C₅₆H₆₁N₄O₄Br₂, 1011.3060; Found, 1011.3071.

Synthesis of compound 4. To a solution of porphyrin 3 (2.09 g, 2.06 mmol) in CH₂Cl₂ (350 mL) was added a CH₃OH (50 mL) solution of Zn(OAc)₂·2H₂O (18.12 g, 82.50 mmol). After reflux overnight, the solution was poured into water, extracted with CH₂Cl₂, and the combined organic extracts were dried over anhydrous Na₂SO₄. Then the solvent was removed under reduced pressure, and the residue was purified by column chromatography (silica gel, CH₂Cl₂ : PE = 1 : 1) to afford 4 as purple powders (2.20 g, yield 98%). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 9.63 – 9.64 (d, *J* = 4.8 Hz 4H), 8.87 – 8.89 (d, *J* = 4.4 Hz, 4H), 7.69 – 7.73 (t, *J* = 8.4 Hz, 2H), 7.00 – 7.02 (d, *J* = 8.4 Hz, 4H), 4.58 – 4.68 (m, 4 H), 3.88 – 3.93 (m, 8H), 3.84 – 3.87 (t, *J* = 6.2 Hz, 8 H), 0.10 – 1.05 (m, 8 H), 0.91 – 0.96 (m, 8 H), 0.25 – 0.32 (m, 8 H). ¹³C NMR (CDCl₃, 100 MHz): δ 24.37, 28.14, 32.45, 68.70, 103.93, 105.70, 113.65, 114.64, 121.31, 130.15, 132.70, 132.90, 138.11, 149.73, 151.36, 160.03. HRMS (FTICR-MS, *m/z*): [M]⁺ calcd For C₅₆H₅₈Br₂N₄O₄Zn, 1072.2116; Found, 1072.2093.

Synthesis of compound 5. A solution of **4** (600 mg, 0.56 mmol) and 2nd Generation Grubbs Catalyst (48 mg, 0.05 mmol) in CH₂Cl₂ (800 mL) were stirred at 40°C for 24 h under nitrogen. Then the solvent was removed under reduced pressure, and the residue was purified by column chromatography (silica gel, CH₂Cl₂ : PE = 2 : 3) to afford **5** as purple powders (249 mg, yield 45%). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 9.65 – 9.67 (d, *J* = 4.8 Hz, 4H), 8.89 – 8.90 (d, *J* = 4.4 Hz, 4H), 7.70 – 7.74 (t, *J* = 8.4 Hz, 2H), 7.10 – 7.12 (d, *J* = 8.4 Hz, 4H), 3.84 – 3.87 (t, *J* = 5.4 Hz, 8H), 2.04 – 2.06 (m, 4H), 0.82 – 0.88 (m, 8H), -0.66 – -0.62 (m, 8H), -1.02 – -0.96 (m, 8H). HRMS (FTICR-MS, *m/z*): [M+H]⁺ calcd for C₅₂H₅₁Br₂N₄O₄Zn, 1017.1563; Found, 1017.1575.

Synthesis of compound 6. In a three-neck 250 mL flask, compound 5 (200 mg, 0.19 mmol), 3-ethynyl-10-hexyl-7-(4-(hexyloxy)-phenyl)-10*H*-phenothiazine¹⁰ (114 mg, 0.24 mmol), $Pd_2(dba)_3$ (90 mg, 0.10 mmol), and AsPh₃ (121 mg, 0.39 mmol) were mixed in dry THF (100 mL) and Et₃N

(50 mL) under nitrogen. After the mixture was stirred at 55°C for 24 h, the solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, CH₂Cl₂ : PE = 4 : 3), followed by recrystallization from CH₂Cl₂/CH₃OH to afford the target compound as dark green powders (154 mg, yield 54%). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 9.70 (d, *J* = 4.4 Hz, 2H), 9.63 (d, *J* = 4.4 Hz, 2H), 8.90 (d, *J* = 4.4 Hz, 2H), 8.86 (d, *J* = 4.4 Hz, 2H), 7.78 – 7.81 (m, 2H), 7.72 (t, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.36 – 7.39 (m, 2H), 7.12 (d, *J* = 8.4 Hz, 4H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 3H), 3.97 – 4.01 (m, 4H), 3.85 (t, *J* = 5.3 Hz, 8H), 1.94 – 1.96 (m, 4H), 1.89 – 1.92 (m, 2H), 1.79 – 1.82 (m, 2H), 1.46 – 1.53 (m, 4H), 1.34 – 1.40 (m, 8H), 0.90 – 0.94 (m, 6H), 0.82 – 0.88 (m, 8H), -0.77 – -0.73 (m, 8H), -0.98 – -0.92 (m, 8H). ¹³C NMR (100 MHz, CDCl₃): δ 160.46, 158.72, 152.37, 151.47, 150.66, 149.19, 145.34, 143.45, 135.79, 132.72, 132.61, 132.48, 132.41, 130.97, 130.34, 130.26, 127.84, 127.65, 125.70, 125.63, 125.22, 124.82, 124.59, 118.24, 115.80, 115.38, 115.17, 114.97, 109.74, 105.00, 100.16, 95.39, 93.00, 71.36, 68.26, 47.92, 31.75, 31.65, 30.89, 29.61, 29.42, 27.03, 26.83, 25.89, 25.36, 22.79, 22.77, 14.19. HRMS (FTICR-MS, *m*/*z*): [M]⁺ calcd for C₈₄H₈₆BrN₅O₅SZn, 1419.4820; Found, 1419.4817.

Synthesis of compound 7a. In a three-neck 100 mL flask, 6 (66 mg, 0.046 mmol), methyl 4ethynylbenzoate (15 mg, 0.092 mmol), Pd₂(dba)₃ (21 mg, 0.023 mmol), and AsPh₃ (28 mg, 0.092 mmol) were mixed in dry THF (15 mL) and Et_3N (6 mL) under nitrogen. After the mixture was stirred at 55°C for 12 h, the solvent was removed under reduced pressure, and the residue was purified by column chromatography (silica gel, CH_2Cl_2 : PE = 2 : 1). Recrystallization from CH₂Cl₂/MeOH to afford the target compound as dark green powders (38 mg, yield 55%). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 9.68 – 9.69 (m, 4H), 8.88 – 8.90 (d, J = 4.4 Hz, 2H), 8.86 – 8.87 (d, J = 4.4 Hz, 2H), 8.22 – 8.24 (d, J = 8.4 Hz, 2H), 8.07 – 8.09 (d, J = 8.4 Hz, 2H), 7.71 – 7.81 (m, 4H), 7.48 – 7.50 (d, J = 8.4 Hz, 2H, phenyl), 7.36 – 7.39 (m, 2H), 7.13 – 7.15 (d, J = 8.4 Hz, 2H), 7.01 – 7.03 (d, J = 8.4 Hz, 1H), 6.95 – 6.97 (d, J = 8.8 Hz, 3H, phenyl), 3.95 – 4.02 (m, 7H), 3.86 – 3.89 (t, J = 6.4 Hz, 8H), 2.00 (m, 4H), 1.91 – 1.95 (m, 2H), 1.71 – 1.84 (m, 2H), 1.49 – 1.50 (m, 4H), 1.35 – 1.38 (m, 8H), 0.90 – 0.94 (m, 6H), 0.84 – 0.88 (m, 8H), -0.72 – -0.71 (m, 8H), -0.96 – -0.88 (m, 8H). ¹³C NMR (100 MHz, CDCl₃): δ 166.78, 160.33, 158.60, 151.77, 151.50, 150.74, 150.61, 145.33, 143.29, 135.69, 132.35, 132.27, 132.03, 131.37, 130.90, 130.84, 130.47, 130.25, 130.19, 129.89, 129.25, 127.64, 127.53, 125.59, 125.51, 125.13, 124.70, 124.44, 117.99, 115.70, 115.66, 115.27, 114.84, 109.80, 101.56, 99.10, 96.52, 95.77, 95.04, 92.88, 71.37, 68.13, 52.32, 47.80, 31.64, 31.54, 30.65, 29.73, 29.44, 29.30, 26.90, 26.71, 25.78, 25.30, 22.68, 22.65, 14.09. MS (MALDI-TOF): [M] calcd for C₉₄H₉₃N₅O₇SZn, 1499.6; Found, 1499.5.

Synthesis of compound 7b. It was prepared according to the procedure same as that for **7a**, except that methyl 4-(7-ethynylbenzo[*c*][1,2,5]thiadiazol-4-yl)benzoate (27 mg, 0.092 mmol) was used instead of methyl 4-ethynylbenzoate. Brown powders, 49 mg, yield: 66%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.06 (d, *J* = 4.4 Hz, 2H), 9.70 (d, *J* = 4.4 Hz, 2H), 8.98 (d, *J* = 4.4 Hz, 2H), 8.32 (d, *J* = 7.4 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 2H), 8.18 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 7.4 Hz, 1H), 7.79 – 7.83 (m, 2H), 7.74 (t, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.37 – 7.40 (m, 2H), 7.15 (d, *J* = 8.4 Hz, 4H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.97 (d, *J* = 8.6 Hz, 3H), 3.98 – 4.02 (m, 7H), 3.87 (t, *J* = 5.3 Hz, 8H), 1.91 – 1.97 (m, 2H), 1.83 – 1.85 (m, 4H), 1.78 – 1.81 (m, 2H), 1.47 – 1.55 (m, 4H), 1.35 – 1.40 (m, 8H), 0.91 – 0.94 (m, 6H), 0.86 – 0.88 (m, 8H), -0.93 – -0.83 (m, 16H). MS (MALDI-TOF): [M] calcd for C₁₀₀H₉₅N₇O₇S₂Zn, 1633.6; Found, 1633.5.

Synthesis of XW40. In a three-neck 100 mL flask, porphyrin carboxylate **7a** (37 mg, 0.025 mmol) and LiOH·H₂O (44 mg, 1.065 mmol) were mixed in THF (15 mL) and H₂O (2 mL) under

nitrogen. After the mixture was refluxed for 12 h, the solution was poured into water, extracted with CH_2Cl_2 , and the combined organic extracts were dried over anhydrous Na_2SO_4 . Then the solvent was removed under reduced pressure, and the residue was purified by column chromatography (silica gel, CH_2Cl_2 : MeOH = 15 : 1), followed by recrystallization from $CH_2Cl_2/MeOH$ to afford the product as a dark green powder (31 mg, yield 84%). ¹H NMR (CDCl₃ : DMSO- d_6 = 1 : 2, 400 MHz, ppm): δ 13.00 (s, 1H), 9.56 – 9.58 (m, 4H), 8.72 – 8.73 (d, *J* = 4.4 Hz, 2H), 8.69 – 8.70 (d, *J* = 4.4 Hz, 2H), 8.14 – 8.19 (m, 4H), 7.86 – 7.89 (m, 1H), 7.81 – 7.82 (m, 1H), 7.73 – 7.77 (t, *J* = 8.3 Hz, 2H), 7.54 – 7.56 (d, *J* = 8.8 Hz, 2H), 7.44 – 7.46 (m, 1H), 7.41 – 7.42 (m, 1H), 7.17 – 7.19 (d, *J* = 8.4 Hz, 5H), 7.09 – 7.11 (d, *J* = 8.4 Hz, 1H), 6.96 – 6.98 (d, *J* = 8.8 Hz, 2H), 3.98 – 4.01 (m, 4H), 3.90 – 3.93 (m, 8H), 1.82 – 1.85 (m, 2H), 1.73 – 1.77 (m, 2H), 1.44 – 1.51 (m, 4H), 1.34 – 1.35 (m, 8H), 1.24 – 1.25 (m, 4H), 0.85 – 0.92 (m, 14H), -0.03 – 0.01 (m, 8H), -1.02 – 0.94 (m, 8H). MS (MALDI-TOF): [M] calcd for $C_{93}H_{91}N_5O_7SZn$, 1485.6; Found, 1485.5.

Synthesis of XW41. It was prepared according to the procedure same as that for XW40, except that 7b (49 mg, 0.030 mmol) was used instead of 7a. Brown powders, 42 mg, yield: 86%. ¹H NMR (THF- d_8 , 400 MHz, ppm): δ 12.96 (s, 1H), 9.93 (d, J = 4.4 Hz, 2H), 9.52 (d, J = 4.4 Hz, 2H), 8.77 (d, J = 4.4 Hz, 2H), 8.70 (d, J = 4.4 Hz, 2H), 8.32 (d, J = 7.2 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 8.12 (d, J = 8.0 Hz, 2H), 8.04 (d, J = 7.2 Hz, 1H), 7.74 (dd, J = 8.4, 2.0 Hz, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.62 (t, J = 8.4 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.30 – 7.32 (m, 2H), 7.05 (d, J = 8.4 Hz, 5H), 6.96 (d, J = 8.6 Hz, 1H), 6.84 (d, J = 8.8 Hz, 2H), 3.95 (t, J = 7.2 Hz, 2H), 3.89 (t, J = 6.6 Hz, 2H), 3.83 (t, J = 5.3 Hz, 8H), 2.63 (t, J = 3.8 Hz, 4H), 1.92 – 1.97 (m, 2H), 1.79 – 1.83 (m, 2H), 1.40 – 1.47 (m, 4H), 1.26 – 1.29 (m, 8H), 0.77 – 0.84 (m, 14H), -0.09 – -0.04 (m, 8H), -0.90 – -0.80 (m, 8H). MS (MALDI-TOF): [M] calcd for C₉₉H₉₃N₇O₇S₂Zn, 1619.6; Found, 1619.6.

Scheme S1. Synthesis Routes for Sensitizers Z1. Reaction conditions: (i) NBS, acetone, 0°C; (ii) a: n-BuLi, THF, B(OMe)₃, -78°C; b: 4,7-dibromo-2-octyl-2H-benzo[d][1,2,3]triazole, Pd(PPh₃)₄, K₂CO₃, H₂O, THF, reflux; (iii) 5-formylthiophen-2-boronic acid, Pd(PPh₃)₄, 2 M K₂CO₃ aqueous solution, THF, 80°C; (iv) cyanoacetic acid, piperidine, acetonitrile, 80°C.

Synthesis of 9. To a cold solution of 8¹¹ (10.0 g, 34 mmol) in dry acetone at room temperature was added N-bromosuccinimide (6.11 g, 34 mmol). The reaction mixture was stirred at room temperature for 2 h under nitrogen atmosphere. then the mixture was poured into water, extracted with DCM and dried over anhydrous Na₂SO₄. The crude product was purified by recrystallization from CHCl₃ to obtain bromide 9 as white powder (11.58 g, yield 92%). ¹H NMR (DMSO-*d*₆, 400 MHz, ppm): δ 7.35 (d, *J* = 9.2 Hz, 1H), 7.23 (s, 1H), 7.17 (d, *J* = 8.6 Hz, 2H), 7.09 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.78 (d, *J* = 8.5 Hz, 1H), 4.78 – 4.82 (m, 1H), 3.75 – 3.80 (m, 1H), 1.56 – 2.01 (m, 6H), 1.27 (s, 9H). ¹³C NMR (DMSO-*d*₆, 100 MHz, ppm): δ 146.4, 144.0, 139.4, 137.3, 129.5, 127.2, 125.9, 118.9, 108.5, 108.3, 68.2, 44.5, 34.6, 33.9, 33.2, 31.2, 23.9. HRMS (ESI, *m/z*): [M + H]⁺ calcd for C₄₀H₄₇N₄OS 631.3471 found, 631.3479.

Synthesis of 10. To a solution of **9** (3.56 g, 9.60 mmol) in dry THF (40 mL) was added n-BuLi (4.41 mL, 10.56 mmol) dropwise at -78°C under argon in dark. After 30 min of stirring at -78°C,

 $B(OMe)_3$ (1.52 g, 14.4 mmol) was added. The reaction mixture was stirred at the same temperature for 4 h, then gradually warmed up to room temperature and used for the next Suzuki coupling reaction without purification. The unpurified mixture was used to react with 4,7dibromo-2-octyl-2H-benzo[d][1,2,3]triazole¹² (3.73 g, 9.60 mmol) through a Suzuki coupling reaction using $Pd(PPh_3)_4$ (221 mg, 0.19 mmol) and K_2CO_3 aqueous solution (5 mL, 2M) as catalysts in THF (40 mL) for 12 h. After cooling to room temperature, water was added and the reaction mixture was extracted with CH2Cl2. The combined organic layer was dried over anhydrous Na₂SO₄, evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, DCM : PE = 1 : 3) to obtain **10** as yellow oil (2.71 g, 47% for the two steps). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.74 – 7.78 (m, 2H), 7.58 (d, J = 7.7 Hz, 1H), 7.36 – 7.40 (m, 3H), 7.27 (d, J = 7.6 Hz, 2H), 7.08 (d, J = 8.4 Hz, 1H), 4.82 – 4.86 (m, 1H), 4.77 (t, J = 7.4 Hz, 2H), 3.90 - 3.95 (m, 1H), 2.09 - 2.19 (m, 3H), 1.94 - 1.99 (m, 2H), 1.80 - 1.89 (m, 1H), 1.66 - 1.71 (m, 1H), 1.52 – 1.57 (m, 1H), 1.34 (s, 9H), 1.25 – 1.30 (m, 10H), 0.85 – 0.87 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 148.2, 144.7, 144.5, 144.4, 142.9, 140.3, 135.6, 131.6, 129.4, 128.2, 126.7, 126.2, 126.1, 124.8, 123.2, 119.4, 118.0, 107.9, 107.1, 69.2, 57.1, 56.8, 45.6, 35.2, 34.4, 34.0, 31.8, 31.6, 30.3, 30.2, 29.2, 29.1, 26.7, 24.6, 22.7, 14.2, 14.2. HRMS (ESI, m/z): [M + H]⁺ calcd for C₃₅H₄₄N₄Br 599.2749; found, 599.2751.

Synthesis of **11.** A mixture of **10** (0.91 g, 1.52 mmol), 4-formylphenylboronic acid (0.26 g, 1.67 mmol), Pd(PPh₃)₄ (87.8 mg, 0.08 mmol), K₂CO₃ (315 mg, 2.28 mmol), THF (30 ml) and H₂O (3 ml) was refluxed for 12 h under argon. After cooling, water was added and the reaction mixture was extracted three times with CH₂Cl₂. The combined organic layer was washed with H₂O and brine, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by column chromatography (silica gel, CH₂Cl₂ / PE = 2 / 3) to yield compound **11** as a red solid (307 mg, 0.48 mmol, 32%). ¹H NMR (CDCl₃, 400 MHz, ppm) δ 9.94 (s, 1H), 8.15 (d, *J* = 4.0 Hz, 1H), 7.88 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.84 (s, 1H), 7.78 – 7.82 (m, 2H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 8.8 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 1H), 4.83 – 4.88 (m, 1H), 4.80 (t, *J* = 7.3 Hz, 2H), 3.92 – 3.96 (m, 1H), 2.15 – 2.23 (m, 2H), 2.07 – 2.13 (m, 1H), 1.95 – 1.99 (m, 2H), 1.81 – 1.89 (m, 1H), 1.66 – 1.72 (m, 1H), 1.53 – 1.59 (m, 1H), 1.40 – 1.43 (m, 4H), 1.35 (s, 9H), 1.26 – 1.29 (m, 6H), 0.86 – 0.88 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 182.9, 150.4, 148.4, 144.8, 143.2, 142.5, 142.0, 140.1, 137.4, 135.6, 133.1, 128.6, 126.9, 126.8, 126.1, 124.9, 124.8, 122.3, 119.5, 107.9, 69.2, 56.9, 45.5, 34.3, 31.9, 31.5, 30.2, 29.2, 29.1, 26.7, 24.6, 22.7, 14.2. HRMS (ESI, *m/z*): [M + H]⁺ calcd for C₄₀H₄₇N₄OS 631.3471 found, 631.3479.

Synthesis of Z1. A mixture of aldehyde 11 (75 mg, 0.12 mmol) and cyanoacetic acid (30 mg, 0.36 mmol) in acetonitrile (10 mL) was refluxed in the presence of piperidine (0.1 mL) for 7 h under argon. After cooling, water was added and the reaction mixture was extracted with CH_2CI_2 , dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by column chromatography (silica gel, CH_2CI_2 / methanol = 15 / 1), to yield Z1 as a deep red solid (61 mg, 73%). ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ 13.75 (s, 1H), 8.41 (s, 1 H), 8.19 (d, *J* = 3.7 Hz, 1 H), 7.92 – 8.01 (m, 4 H), 7.71 (d, J = 7.4 Hz, 1 H), 7.39 (d, *J* = 7.7 Hz, 2 H), 7.28 (d, *J* = 7.7 Hz, 2 H), 7.01 (d, *J* = 8.3 Hz, 1 H), 4.91 (m, 1 H), 4.84 (t, *J* = 7.2 Hz, 2 H), 3.91 (m, 1H), 2.10 (m, 3 H), 1.78 – 1.87 (m, 3 H), 1.64 (m, 1 H), 1.41 (m, 1 H), 1.29 (s, 9 H), 1.21 (m, 4 H), 1.32 (m, 6 H), 0.79 (t, *J* = 5.7 Hz, 3 H). HRMS (ESI, *m/z*): [M + H]⁺ calcd for C₄₃H₄₈N₅O₂S, 698.3529; found, 698.3531.

2. Absorption and Emission Spectra

Figure S1. Normalized UV-visible spectra of the porphyrins in THF and on the TiO₂ films (3 μ m).

Fig. S2 Emission spectra of **XW10**, **XW40**, **and XW41** in THF. The spectra were used to calculate the wavelength at the intersection (λ_{inter}) of normalized absorption and emission spectra, and the corresponding E₀₋₀ values. Excitation wavelengths: 459 nm (**XW10**), 461 nm (**XW40**), and 468 (**XW41**).

3. Cyclic Voltammetry Curves

Fig. S3 Cyclic voltammetry curves of the dyes adsorbed to a nanocrystalline TiO_2 film deposited on conducting FTO glass.

4. Crystal Structure of Compound 5

Single crystals **5** were obtained by slow diffusion of chloroform vapor to the corresponding CHCl₃/MeOH solutions. X-ray analyses of **5** were performed on a SMART APEX equipped with CCD detector (Bruker) using MoK α (graphite, monochromated, $\lambda = 0.71073$ Å) radiation and CuK α (graphite, monochromated, $\lambda = 1.54178$ Å) radiation. The structure was solved by the

direct method of SHELXS-97 and refined using the SHELXL-97 program.^{13, 14} The positional parameters and thermal parameters of non-hydrogen atoms were refined anisotropically on F² by the full-matrix least-squares method. Hydrogen atoms were placed at calculated positions and refined riding on their corresponding carbon atoms. Crystal data: $C_{52}H_{54}Br_2N_4O_4Zn$, Mr = 1024.18, triclinic, space group: *P-1*, *a* = 8.8126(19), *b* = 15.058(3), *c* = 16.556(4), *a* = 84.489(10)°, *b* = 89.590(12)°, $\gamma = 83.103(10)°$, V = 2170.9(8) Å³, Z = 2, $R_1 = 0.0680$, $wR_2 = 0.1940$ (all data), GOF = 1.000. CCDC 1867846 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Fig. S4 X-ray crystal structure for **5**. a) Top view, b) side view. (All hydrogen atoms are omitted for clarity)

Fig. S5 IPCE action spectra for the DSSCs based on Z1.

							Dye load	ding
							amou	nt
Dyes		Time (h)	Voc (V)	Jsc (mA/cm²)	Fill Factor	PCE	(×10⁻ ⁷ mol	∙cm⁻²)
							Porphyri	71
							n	21
XW40	/	12 h	730±3	18.67±0.75	0.68±0.02	9.31±0.12	1.99	١
		0.75 h	741±2	19.13±0.33	0.68±0.02	9.65±0.04	1.89	1.71
XW40 ^b	Z1	1.5 h	742±1	19.36±0.49	0.69±0.01	9.97±0.06	1.62	3.67
		2.25 h	718±2	17.25±0.26	0.73±0.01	8.98±0.02	1.43	4.69
		0.75 h	739±1	19.74±0.35	0.68±0.01	9.91±0.04	1.87	1.10
XW40/	Z1	1.5 h	748±2	19.59±0.21	0.72±0.01	10.55±0.11	1.64	2.73
ebert		2.25 h	725±3	19.31±0.14	0.69±0.01	9.58±0.22	1.40	4.64
XW41	/	12 h	695±2	16.77±0.31	0.70±0.01	8.16±0.10	2.78	١
		0.75 h	728±3	18.32±0.13	0.73±0.01	9.71±0.01	2.65	1.96
XW41 ^b	Z1	1.5 h	709±3	18.51±0.15	0.70±0.04	9.21±0.05	2.46	3.07
		2.25 h	704±1	16.76±0.10	0.74±0.04	8.78±0.03	2.11	4.61
		0.75 h	704±1	17.34±0.16	0.71±0.01	8.60±0.13	2.60	1.31
	Z1	1.5 h	726±2	19.63±0.31	0.72±0.01	10.19±0.21	2.39	3.06
		2.25 h	707±2	18.31±0.19	0.71±0.01	9.23±0.15	2.09	5.37

5. Performance of the DSSCs under the Optimized Conditions.

Table S1. The original photovoltaic data of the DSSCs based on **XW40** and **XW41** under the optimized conditions.^a

^a Under AM 1.5 illumination (power 100 mW cm⁻²) with an active area of 0.16 cm². The parameters were obtained from the average values of three devices.

^b The cosensitization was performed through an optimized stepwise approach: the TiO_2 electrode was first dipped in 0.2 mM of the porphyrin dye in chloroform/ethanol (v/v, 3/2) for 12 h, rinsed with ethanol, and then immersed in a 0.3 mM solution of **Z1** in chloroform/ethanol (v/v, 1/1) for 1.5 h (**XW40 + Z1**) or 0.75 h (**XW41 + Z1**).

^c The approach is similar to that of simple cosensitization approach, except that the TiO_2 electrode was first dipped in a cocktail solution of porphyrin (0.2 mM) and **Z1** (1.0 mM), then in **Z1** (0.3 mM) in chloroform/ethanol (v/v, 1/1) for 1.5 h for the optimized condition.

6. Photovoltaic Performance of the DSSCs Based on the Organic Dyes

Chart. S1 The conversion efficiencies improved by substitution of the metyl with the tert butyl group.Table S2. The photovoltaic performance of the DSSCs based on Z1.

Dyes	V_{oc}/V	J _{sc} /mA⋅cm ⁻²	Fill Factor	PCE (%)
WS5 ^a	0.78	13.18	0.78	8.02
Z1 ^b	0.79	13.30	0.78	8.20

^a The data were reported in previous work. ¹⁵

^b The measurement procedure is identical to that of **WS5**¹⁵.

References

- 1. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, *Thin Solid Films*, 2008, **516**, 4613-4619.
- Y. Wang, B. Chen, W. Wu, X. Li, W. Zhu, H. Tian and Y. Xie, *Angew. Chem., Int. Ed.*, 2014, 53, 10779-10783.
- 3. H. Song, J. Zhang, J. Jin, H. Wang and Y. Xie, J. Mater. Chem. C, 2018, 6, 3927-3936.
- 4. T. Wei, X. Sun, X. Li, H. Agren and Y. Xie, ACS Appl. Mater. Interfaces, 2015, 7, 21956-21965.
- 5. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 6. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 7. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- 8. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 9. M. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson, *Inc., Wallingford, CT*, 2009, **200**.
- 10. Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian and W.-H. Zhu, *J. Am. Chem. Soc.*, 2015, **137**, 14055-14058.
- 11. G. Li, M. Liang, H. Wang, Z. Sun, L. Wang, Z. Wang and S. Xue, *Chem. Mater.*, 2013, **25**, 1713-1722.
- 12. Y. Liu, H. Cao, J. Li, Z. Chen, S. Cao, L. Xiao, S. Xu and Q. Gong, *J. Polym. Sci., Part A: Polym. Chem.*, 2007, **45**, 4867-4878.
- 13. G. M. Sheldrick, SHELXS97 and SHELXL97 Programs for Crystal Structure Solution and Refinement, University of Göttigen, Germany, 1997.
- 14. G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.
- 15. Y. Cui, Y. Wu, X. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W. Zhu and Z.-S. Wang, *Chem. Mater.*, 2011, **23**, 4394-4401.

7. Characterization Data for the Compounds

Figure S7. The 13 C NMR spectrum of 1 in CDCl₃

Figure S8. The HRMS of 1

Figure S9. The ¹H NMR spectrum of 2 in CDCl₃

Figure S11. The HRMS of 2

Figure S13. The $^{\rm 13}C$ NMR spectrum of 3 in CDCl $_{\rm 3}$

Figure S15. The ¹H NMR spectrum of 4 in CDCl₃

Figure S17. The FTICR-MS of 4

Figure S18. The 1 H NMR spectrum of 5 in CDCl₃

Figure S19. The FTICR-MS of 5

Figure S21. The ¹³C NMR spectrum of 6 in CDCl₃

Figure S23. The ¹H NMR spectrum of 7a in CDCl₃

Figure S24. The ¹³C NMR spectrum of 7a in CDCl₃

Figure S25. The MALDI-TOF MS of compound 7a

Figure S27. The ¹³C NMR spectrum of 7b in CDCl₃

Figure S28. The MALDI-TOF MS of compound 7b

Figure S29. The ¹H NMR spectrum of **XW40** in $CDCl_3$: DMSO- d_6 (1 : 2)

Figure S31. The ¹H NMR spectrum of XW41 in THF- d_8

Figure S33. The ¹H NMR spectrum of 9 in CDCl₃

Figure S35. The ¹H NMR spectrum of **10** in CDCl₃

Figure S37. The HRMS of 10

Figure S39. The ¹³C NMR spectrum of **11** in CDCl₃

Elemental Composition Report

Page 1

1: TOF MS ES+ 1.73e+004

631.3479

Monoisotopic Mass, Even Electron Ions 20 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-40 H: 0-80 N: 0-4 O: 0-1 S: 0-1 YS-XIE XY-ZC-048 52 (0.581) Cm (49:52)

Figure S40. The HRMS of 11

Figure S41. The ¹H NMR spectrum of Z1 in CDCl₃

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 35 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-43 H: 0-80 N: 0-5 O: 0-2 S: 0-1 YS-XIE XY-ZC-049 35 (0.388) Cm (35:37) 1: TOF MS ES+ 1.23e+004 698.3531 100-699.3577 697.3479 %-700.3594 696.3287 701.3607 763.4563 776.3714 380 700 720 740 760 - 517.8369 680 Minimum: Maximum: -1.5 50.0 5.0 30.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 698.3531 698.3529 0.2 0.3 22.5 12.1 0.0 C43 H48 N5 O2 S

Figure S42. The HRMS of Z1

8. Cartesian coordinates of the optimized structures for XW40 and XW41

XW40 (the hexyloxy and hexyl chains in the phenothiazine moiety were replaced by methoxy and methyl groups, respectively)

Row	Symbol	Х	Y	Z
1	С	-0.55535037	3.48597534	0.26817254
2	С	0.58760101	4.18328599	0.53096696
3	С	1.6920827	3.25873336	0.39163359
4	Ν	1.19941462	2.01525111	0.06688
5	С	-0.16263322	2.12554331	-0.01288768
6	С	-0.93612976	-2.53075117	-0.76731375
7	С	-1.65963562	-1.37575338	-0.69235744
8	С	-0.71639007	-0.3042345	-0.47951802
9	Ν	0.55422083	-0.81127087	-0.44631323
10	С	0.45679024	-2.17172432	-0.61546242
11	С	-1.06511496	1.06328355	-0.29800175
12	С	5.15299969	-2.96295774	-0.51517521
13	С	4.00183769	-3.68564897	-0.6198299
14	С	2.90155894	-2.7452776	-0.57210666
15	Ν	3.40731151	-1.46930655	-0.43218609
16	С	4.76768861	-1.57537041	-0.3834721
17	С	1.537139	-3.0857428	-0.64534667
18	С	5.5395337	3.05766907	0.5237676
19	С	6.26791285	1.92919808	0.29151931
20	С	5.32336114	0.86250883	0.04621144
21	Ν	4.04946923	1.35340323	0.11258885
22	С	4.14136502	2.69539389	0.4127023
23	С	3.05768056	3.58498124	0.57160663
24	С	5.67496487	-0.49535958	-0.19089663
25	Zn	2.30251494	0.27045202	-0.17307674
26	С	1.18987223	-4.54723533	-0.67787557
27	С	3.38173411	4.98319443	1.01780596
28	С	0.7210141	-5.14959318	0.51644338
29	С	0.42825447	-6.51736457	0.56848539
30	С	0.60293203	-7.29906991	-0.57560919
31	С	1.06438119	-6.734429	-1.76029373
32	С	1.36420397	-5.36695741	-1.80891882
33	С	3.23191342	6.10983564	0.17580984
34	С	3.52827197	7.39706147	0.63613345
35	С	3.97883384	7.59059381	1.94029048
36	С	4.13728629	6.49816771	2.79129954
37	С	3.84238286	5.21068288	2.335495
38	0	4.06891099	4.1604025	3.2006212

39	0	2.71370686	6.00681219	-1.0943682
40	0	1.9321096	-4.89103932	-2.9688292
41	0	0.60183672	-4.30973758	1.58378739
42	С	1.17804882	-3.95314062	-3.76159144
43	С	2.15932162	-3.20260316	-4.65765874
44	С	1.57388989	-1.89105917	-5.19858762
45	С	2.62661102	-1.00465584	-5.91118653
46	С	2.23245132	0.45327807	-5.9025848
47	С	2.63053968	1.28853507	-4.93736093
48	С	2.15065346	2.69520927	-4.67516167
49	С	3.18016353	3.55131065	-3.90961113
50	С	2.53017578	4.67294546	-3.08768792
51	С	3.4935949	5.31966727	-2.09586443
52	С	2.90510174	3.56410058	3.80600548
53	С	3.35838633	2.38377001	4.65814125
54	С	2.18662912	1.46241668	5.02465704
55	С	2.57331481	0.34672076	6.01480811
56	С	1.47300046	-0.66651342	6.20051011
57	С	1.6265876	-1.99481603	6.17602138
58	С	0.52116119	-3.0029861	6.36502312
59	С	0.54602753	-4.15548658	5.3390449
60	С	0.47455233	-3.68715596	3.88004815
61	С	0.42024942	-4.85171594	2.89748131
62	С	-12.28344265	1.53135973	0.14776433
63	С	-12.08437019	0.15695536	-0.05325291
64	С	-10.85528078	-0.24046257	-0.60914038
65	С	-9.88903889	0.69263542	-0.97551455
66	С	-10.09367724	2.07089566	-0.76925511
67	С	-11.3072834	2.46851787	-0.18717179
68	S	-8.41477584	0.15030093	-1.82031452
69	С	-7.28194012	1.3722768	-1.18654946
70	С	-7.74163809	2.689893	-0.96211174
71	Ν	-9.0998486	3.00571754	-1.14364741
72	С	-5.94515346	1.03963096	-1.00965688
73	С	-4.99684911	2.01955387	-0.64345262
74	С	-5.45328257	3.33400248	-0.42723997
75	С	-6.79848728	3.65659527	-0.56753761
76	С	-13.11973696	-0.84071301	0.30988713
77	С	-3.62386183	1.68380982	-0.50398908
78	С	-14.4864441	-0.55810547	0.16685613
79	С	-15.47239461	-1.48672775	0.50780149
80	С	-15.10059351	-2.74222874	1.00487471
81	С	-13.7377491	-3.0452384	1.15418408
82	С	-12.77013585	-2.10997342	0.81296336

83	С	-2.44344464	1.39585005	-0.3967894
84	С	7.06069651	-0.80983924	-0.19836427
85	С	8.24984405	-1.08079357	-0.20215989
86	С	9.63434827	-1.39528651	-0.19556739
87	С	10.07309907	-2.71766104	-0.42423413
88	С	11.42769033	-3.02513439	-0.40093267
89	С	12.38444195	-2.02662046	-0.15393811
90	С	11.95246477	-0.70577912	0.0498582
91	С	10.60171068	-0.39152648	0.03888117
92	С	-9.47882424	4.41187435	-1.24064621
93	0	-15.97317002	-3.72561577	1.36730399
94	С	-17.36801134	-3.46891158	1.24145431
95	С	13.85386546	-2.28794834	-0.12796184
96	0	14.69079426	-1.41601037	-0.25104996
97	О	14.26164368	-3.57072333	0.04377454
98	н	-1.57266273	3.85126333	0.27359347
99	н	0.67542571	5.22877062	0.78777971
100	н	-1.30967021	-3.53396283	-0.91661663
101	н	-2.73162319	-1.2566956	-0.76350259
102	н	6.17002797	-3.32906478	-0.51288274
103	н	3.90325009	-4.75650355	-0.72334885
104	н	5.91215974	4.04645377	0.74983811
105	н	7.343295	1.82044674	0.29238818
106	н	0.07438871	-6.9721776	1.48597171
107	н	0.37488387	-8.36061931	-0.53520287
108	Н	1.21655839	-7.33131654	-2.65354635
109	Н	3.39516623	8.23043563	-0.04629417
110	н	4.208744	8.59224993	2.29229458
111	н	4.49079924	6.61897083	3.81034946
112	н	0.6548093	-3.25079709	-3.10567984
113	н	0.42304443	-4.50041412	-4.3434818
114	н	2.50540307	-3.85129001	-5.47279498
115	н	3.03842693	-2.9677134	-4.04419568
116	н	1.1735675	-1.32169686	-4.34988119
117	н	0.72498184	-2.08616919	-5.86790147
118	н	2.79215072	-1.36852705	-6.93379917
119	н	3.5817138	-1.11074856	-5.37949902
120	н	1.52615863	0.79250573	-6.66276274
121	н	3.32470568	0.8956988	-4.18880861
122	н	1.24428087	2.62946164	-4.05194871
123	Н	1.83788307	3.18580375	-5.60601297
124	Н	3.93450802	3.95258108	-4.59951462
125	Н	3.72192929	2.89402068	-3.21457512
126	н	1.70899167	4.24480983	-2.5000287

127	н	2.08631074	5.43604002	-3.74016382
128	н	4.16206458	6.04540434	-2.57914203
129	н	4.11464278	4.55583568	-1.61897634
130	н	2.38505669	4.31848765	4.41332927
131	н	2.21418976	3.22650881	3.02545878
132	Н	3.86063714	2.75047286	5.56296969
133	н	4.10467158	1.8156258	4.0880883
134	н	1.78984826	1.00952137	4.10542789
135	н	1.3643519	2.05182381	5.45548744
136	н	2.82220922	0.81440679	6.98057664
137	н	3.48628619	-0.1587165	5.67232608
138	н	0.47278119	-0.25714303	6.36383257
139	н	2.62715818	-2.40663878	6.01966961
140	н	-0.45066582	-2.4927372	6.32907854
141	н	0.5992731	-3.45025471	7.36796196
142	н	-0.28941291	-4.83482944	5.55663666
143	н	1.46499526	-4.74189472	5.48208685
144	н	1.35480736	-3.07751395	3.64401168
145	н	-0.40332042	-3.04558027	3.72809315
146	н	-0.54349625	-5.37466879	2.96266645
147	н	1.21725016	-5.57987431	3.10373639
148	н	-13.20179642	1.87999456	0.6106521
149	Н	-10.66242763	-1.29236329	-0.79830206
150	н	-11.49323967	3.51505769	0.0246488
151	Н	-5.6205999	0.01785605	-1.17958249
152	Н	-4.74709064	4.10343252	-0.13205961
153	Н	-7.11494004	4.67217082	-0.36162091
154	Н	-14.7956837	0.39964023	-0.24237728
155	Н	-16.51549081	-1.22571082	0.37134902
156	Н	-13.46036053	-4.01754858	1.5500859
157	Н	-11.72339621	-2.35958917	0.96227841
158	Н	9.34294745	-3.49489153	-0.62435216
159	Н	11.72528495	-4.04899682	-0.61301269
160	Н	12.69560568	0.06495177	0.22377417
161	Н	10.27740747	0.6297556	0.21067391
162	Н	-9.52896463	4.91723448	-0.26550601
163	Н	-8.75361851	4.93304607	-1.86885952
164	Н	-17.67722628	-2.62056162	1.86449687
165	Н	-17.64702391	-3.2734747	0.19864171
166	Н	13.51332545	-4.14949231	0.26631445
167	Н	-17.87072989	-4.37366414	1.58665328
168	н	-10.45652789	4.48129693	-1.72152096

XW41 (the hexyloxy and hexyl chains in the phenothiazine moiety were replaced by methoxy and

methyl groups, respectively)

Row	Symbol	Х	Y	Z
1	С	-2.05059359	3.46229521	0.15686885
2	С	-0.92748241	4.22949063	0.04938305
3	С	0.20197157	3.3264158	-0.00125906
4	Ν	-0.25378495	2.03088539	0.08772708
5	С	-1.61761645	2.08574891	0.19187074
6	С	-2.20212491	-2.61412841	0.84803012
7	С	-2.9768594	-1.49776254	0.71685642
8	С	-2.08000253	-0.39026043	0.49018968
9	Ν	-0.78842317	-0.84277759	0.46759806
10	С	-0.82591484	-2.19926519	0.68878653
11	С	-2.48295753	0.96748889	0.34983771
12	С	3.88022414	-2.83002659	0.31398409
13	С	2.77150996	-3.57968628	0.57503686
14	С	1.63282535	-2.68563259	0.53619644
15	Ν	2.0753096	-1.40743308	0.26300315
16	С	3.43242472	-1.4674355	0.13213932
17	С	0.29305663	-3.06437857	0.74680491
18	С	4.04078529	3.25263741	-0.35985778
19	С	4.79850748	2.11985688	-0.38602262
20	С	3.89276775	1.00858465	-0.19335
21	Ν	2.61302674	1.47136186	-0.07285259
22	С	2.66394277	2.8456476	-0.16441026
23	С	1.55856684	3.72005944	-0.10092338
24	С	4.28898414	-0.35615166	-0.11097777
25	Zn	0.91245573	0.31373125	0.19475242
26	С	0.0353899	-4.49048365	1.14583149
27	С	1.85629082	5.19309028	-0.08479489
28	С	-0.22144369	-4.76085856	2.51355805
29	С	-0.40553911	-6.07063731	2.9708941
30	С	-0.33440053	-7.12813756	2.06148545
31	С	-0.08596725	-6.89258013	0.71372067
32	С	0.10485565	-5.58119186	0.25717239
33	С	1.52646069	6.04798636	-1.16120595
34	С	1.81637044	7.41500053	-1.11347317
35	С	2.43705403	7.96076743	0.00850842
36	С	2.7685221	7.14268052	1.0871327
37	С	2.48134139	5.77574281	1.04221489
38	0	2.8809196	5.00679127	2.11482958
39	0	0.83809187	5.58650411	-2.26062558
40	0	0.46542623	-5.43604245	-1.0613662
41	0	-0.25154674	-3.66635309	3.32591898
42	С	-0.38775443	-4.67933487	-1.94468629

43	С	0.4940508	-3.92961887	-2.94017133
44	С	-0.24153442	-2.78201689	-3.64535201
45	С	0.71114272	-1.84343554	-4.41313296
46	С	0.17049503	-0.44287083	-4.56167198
47	С	0.46615509	0.45174435	-5.5104407
48	С	0.03149822	1.89470356	-5.4129835
49	С	1.11273159	2.78072698	-4.74160062
50	С	0.5255806	4.01508977	-4.04356138
51	С	1.55492949	4.75189926	-3.19227707
52	С	1.84280858	4.55935838	3.00845768
53	С	2.47713935	3.67691563	4.07767095
54	С	1.42577976	2.8551012	4.83634637
55	С	2.00718885	2.06563011	6.02492852
56	С	1.00778902	1.11296639	6.62925693
57	С	1.24206277	-0.16714936	6.93752575
58	С	0.23753698	-1.11292747	7.54629935
59	С	0.19545064	-2.49975685	6.87161143
60	С	-0.10190433	-2.44829497	5.36740578
61	С	-0.21113988	-3.83670128	4.74775481
62	С	-13.61533633	1.06187111	-1.04312363
63	С	-13.38243685	-0.31537487	-0.90846802
64	С	-12.19792903	-0.70691471	-0.25924994
65	С	-11.30944721	0.23205906	0.25812452
66	С	-11.54882344	1.61306712	0.11971813
67	С	-12.7147846	2.00718473	-0.55469847
68	S	-9.9007825	-0.31429888	1.20621622
69	С	-8.76381433	0.98588027	0.76389087
70	С	-9.2539854	2.29900168	0.58120707
71	Ν	-10.63501832	2.55424591	0.64983623
72	С	-7.40397051	0.71195801	0.69346271
73	С	-6.46673405	1.74634056	0.48081308
74	С	-6.95441793	3.05620122	0.30857068
75	С	-8.3185837	3.32240248	0.34213285
76	С	-14.3388382	-1.32050576	-1.43224947
77	С	-5.07445325	1.46906419	0.43812304
78	С	-15.72251828	-1.08962958	-1.41133273
79	С	-16.63517933	-2.02546832	-1.90315459
80	С	-16.17042576	-3.23604408	-2.43234247
81	С	-14.7892952	-3.48706774	-2.46104937
82	С	-13.89510112	-2.54498479	-1.97078499
83	С	-3.87783874	1.23543298	0.40095553
84	С	5.67322102	-0.62475806	-0.26260163
85	С	6.86754253	-0.8292967	-0.40605537
86	С	8.25375462	-1.02939082	-0.58094979

87	С	8.85323872	-2.28161303	-0.54417214
88	С	10.24734566	-2.46223605	-0.72073422
89	С	11.13830874	-1.42370046	-0.94349201
90	С	10.56156174	-0.10547255	-0.99020464
91	С	9.13283381	0.08907829	-0.81426839
92	Ν	11.2183731	1.04095748	-1.21377312
93	S	10.1040742	2.24561055	-1.18898687
94	Ν	8.74783392	1.36468035	-0.90139448
95	С	12.58441168	-1.67518747	-1.12534896
96	С	13.01910205	-2.84190918	-1.78318667
97	С	14.37340782	-3.12367504	-1.92815776
98	С	15.34037944	-2.24113506	-1.42336904
99	С	14.91569078	-1.06362562	-0.79071507
100	С	13.5629771	-0.785955	-0.63794481
101	С	-11.07948387	3.93657321	0.79769969
102	0	-16.9661951	-4.22200183	-2.9367952
103	С	-18.3749124	-4.0149853	-2.9422191
104	С	16.81001674	-2.47138301	-1.55715878
105	0	17.6382683	-1.58918427	-1.45434166
106	0	17.22569378	-3.73914446	-1.80418732
107	Н	-3.07759808	3.79331784	0.21984561
108	н	-0.86995513	5.30705338	0.00472741
109	н	-2.53154234	-3.62664583	1.03426632
110	н	-4.05368029	-1.42490498	0.77633722
111	н	4.90846245	-3.15941157	0.26043434
112	н	2.72475022	-4.64115088	0.77096573
113	н	4.38023558	4.27287566	-0.46750316
114	Н	5.86919642	2.03685575	-0.51569443
115	Н	-0.59581557	-6.26934025	4.01878513
116	Н	-0.47818164	-8.14546643	2.41497173
117	Н	-0.02066271	-7.70447175	-0.00309589
118	Н	1.54169859	8.03026502	-1.96437332
119	Н	2.66128613	9.02312743	0.0426602
120	Н	3.2524364	7.54083734	1.97330836
121	Н	-0.99089908	-3.97442513	-1.36626679
122	Н	-1.07274469	-5.37686578	-2.44598842
123	Н	0.92472695	-4.63020235	-3.66746698
124	Н	1.3330718	-3.51067268	-2.371453
125	Н	-0.76016526	-2.19076495	-2.8773049
126	Н	-1.02350396	-3.16583357	-4.31411034
127	н	0.98600704	-2.26584012	-5.3883476
128	н	1.64948372	-1.78069168	-3.83861119
129	н	-0.4728545	-0.11174471	-3.74131493
130	н	1.11882266	0.173317	-6.34010638

131	н	-0.88026085	1.94296247	-4.80285489
132	Н	-0.22722692	2.30216245	-6.3990761
133	Н	1.87758102	3.07027307	-5.47479717
134	Н	1.62507805	2.17369623	-3.98412192
135	Н	-0.27350151	3.68712681	-3.36677972
136	Н	0.06713416	4.70205751	-4.76664408
137	Н	2.22192803	5.37972381	-3.79980588
138	Н	2.17366713	4.03502962	-2.64233674
139	Н	1.34658423	5.4332095	3.45411353
140	н	1.08962617	3.9953021	2.44702373
141	Н	3.05949522	4.29625121	4.77244381
142	Н	3.18596314	2.99806048	3.5863182
143	н	0.94830873	2.1553049	4.13648178
144	Н	0.6258193	3.5141653	5.20392211
145	Н	2.34673784	2.7872963	6.7846983
146	н	2.89953276	1.51014068	5.70615013
147	Н	0.01333936	1.52427363	6.82014587
148	Н	2.23780186	-0.57930443	6.75398342
149	н	-0.76015021	-0.65456206	7.51898878
150	Н	0.47743481	-1.2687845	8.60944396
151	н	-0.55892439	-3.11366056	7.38245417
152	Н	1.15999267	-3.00360242	7.02885952
153	н	0.69677879	-1.90264573	4.85111194
154	н	-1.03241969	-1.89603297	5.18139936
155	Н	-1.11797431	-4.35070525	5.09407627
156	Н	0.65533959	-4.45791415	5.01495959
157	Н	-14.49714073	1.40922186	-1.57313359
158	Н	-11.98221443	-1.76184097	-0.11738942
159	Н	-12.92062614	3.05867556	-0.71822948
160	Н	-7.0556424	-0.30757489	0.82559072
161	Н	-6.25606547	3.86744336	0.12937788
162	Н	-8.65543507	4.33813653	0.17264207
163	Н	-16.10582295	-0.16924765	-0.97975336
164	Н	-17.69553221	-1.80565455	-1.85713026
165	Н	-14.43850535	-4.42406275	-2.88298029
166	Н	-12.83035072	-2.75265075	-2.02861922
167	Н	8.23465703	-3.15503045	-0.36568305
168	Н	10.63167138	-3.4749084	-0.65034744
169	Н	12.28992719	-3.52038138	-2.21409145
170	н	14.65795865	-4.01598228	-2.48010522
171	Н	15.66378188	-0.37574298	-0.4113757
172	Н	13.25838431	0.12253873	-0.13330885
173	Н	-10.43968344	4.43982977	1.52542161
174	Н	-11.05763498	4.50376139	-0.14386392

176H-18.64932007-3.1424048-3.5177H16.48895564-4.36879756-1.7	- 4701020
177 H 16.48895564 -4.36879756 -1.7	54791629
	73013678
178 H -12.10055455 3.9390189 1.1	8405345
179 H -18.80726492 -4.91346726 -3.3	38520519