Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

for

A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions

Soundarrajan Chandrasekaran^{1, 4}, Nicolas Kaeffer^{1#}, Laurent Cagnon², Dmitry Aldakov³, Jennifer Fize,¹ Guillaume Nonglaton⁴, François Baleras⁴, Pascal Mailley⁴, Vincent Artero^{1*}

¹ Université Grenoble Alpes, CNRS, CEA, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France

² Université Grenoble Alpes, CNRS, Institut NEEL UPR2940, 25 rue des Martyrs BP 166, 38000 Grenoble, France

³ Université Grenoble Alpes, CNRS, CEA, INAC-SyMMES, 17 rue des Martyrs, 38000 Grenoble, France

⁴Université Grenoble Alpes, CEA-LETI/DTBS, Laboratoire Chimie, Capteurs et Biomatériaux, 17 rue des Martyrs, 38000 Grenoble, France

*to whom correspondence should be addressed. E-mail address: vincent.artero@cea.fr

[#] present address: Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg 1-5, ETH Zürich, CH-8093 Zürich, Switzerland.

Table S1: Selected silicon photocathodes interfaced with metals/metal sulphide catalysts under one Sun irradiation (100 mW.cm⁻²) (adapted with modification from reference ¹).

Photocathode	Electrolyte	pH	j (mA.cm ⁻²)	Onset potential	Reference	
construction			@ (0 V vs. RHE)	(V vs. RHE)		
p-Si Ti NiFe	1 M KOH	14	~ -7	~ 0.3	2	
p-Si Al ₂ O ₃ MoS ₂	1 M HClO ₄	0	~ -35.6	~ 0.4	3	
n ⁺ p-Si Ti FTO TiO ₂ Ir	0.1 M KOH	14	~ -35	~ 0.5	4	
n ⁺ p-Si Mo MoS ₂	0.5 M H ₂ SO ₄	0	~ -16	~ 0.35	5	
p-Si SrTiO ₃ Ti Pt	0.5 M H ₂ SO ₄	0	~ -15	~ 0.4	6	
p-Si a-CoMoS _x	Phosphate buffer	4.25	~ -17.5	~ 0.25	7	
p-Si Ti Ni	Borate buffer	9.2	~ -5	~ 0.2	8	
Nanostructured p-Si interfaced with metals/metal sulphide catalysts were detailed in our previous report						

Table S2: Semiconductor photocathodes without dyes interfaced with molecular catalysts/enzymes (adapted with modification from reference ¹⁰)

Photocathode	Electrolyte	pН	j (mA.cm ⁻²)	Onset potential	Illumination	References
construction			a	V vs. RHE	Intensity/source	
			0 V vs. RHE			
	1 M phosphate buffer	7.0	~ -2.70	~ 0.76	100 mW.cm ⁻²	11
	0.1 M acetate buffer	4.5	~ -1.10	~ 0.5	100 mW.cm ⁻²	12
n CaDlCabalavima	0.1 M phosphate buffer	7.0	~ -0.92	~ 0.72	100 mW.cm ⁻²	13
p-Gar Cobaloxinie	0.1 M phosphate buffer	7.0	~ -1.3	~ 0.61	100 mW.cm ⁻²	14
	0.1 M phosphate buffer	7.0	~ -0.89	~ 0.65	100 mW.cm ⁻²	15
p-GaP Cobalt-porpyrin	0.1 M phosphate buffer	7.0	~ -1.3	~ 0.55	100 mW.cm ⁻²	16
p-InGaP ₂ TiO ₂ Cobaloxime TiO ₂	0.1 M NaCl	13	~ -9	0.7	100 mW.cm ⁻²	17
NiO CdSe Cobaloxime	$0.1 \text{ M Na}_2 \text{SO}_4$	6.8	~0.1	n/a	300 W lamp	18
$Au InP Fe_2S_2(CO)_6$	0.1 M NaBF_4	7.0	0.045×10 ⁶	n/a	n/a	19
P3HT:PCBM Cobaloxime	0.1 M acetate	4.5	~ -0.002	n/a	100 mW.cm ⁻²	20
p-Si mesoTiO ₂ NiP	0.1 M acetate buffer	4.5	~ -0.340	~0.4	100 mW.cm ⁻²	10
p-Si TiO ₂ hydrogenase	0.05 M MES buffer	6	~ - 0.001	~ 0.25	10 mW.cm ⁻²	21
p-Si ALD-TiO ₂ SC-TiO ₂ Co _{C11} P ALD-TiO ₂	1 M phosphate buffer	7	~ -1.3	~ 0.47	100 mW.cm ⁻²	Our work

b)

Figure S1. a) CVs at $TiO_2/Co_{C_{11}P}$ (blue line) and blank TiO_2 (black line) screen printed electrodes on FTO substrate, respectively recorded at 10 mV·s⁻¹ in a NaCl 0.1 M aqueous electrolyte and b) anodic (purple) and cathodic (cyan) peak currents (dots) and associated linear fits (dotted lines) versus scan rate for CVs at $TiO_2/Co_{C_{11}P}$ recorded in a NaCl 0.1 M aqueous electrolyte (pH \approx 7).

Figure S2. LSV (10 mV.s⁻¹) of p-Si|ALD-TiO₂|SC-TiO₂| C_{10P} |ALD-TiO₂ electrode (green trace), p-Si|ALD-TiO₂|SC-TiO₂| $Co_{C_{11}P}$ electrode (black trace) and p-Si|ALD-TiO₂|SC-TiO₂| $Co_{C_{11}P}$ |ALD-TiO₂ electrode (red trace) in 1M phosphate buffer (pH 7) under one Sun irradiation.

Figure S3: Chronoamperometric profiles recorded at 0 V vs RHE in 1 M phosphate buffer (pH 7) under one sun AM1.5 irradiation, showing effects of: a) TiO₂ layers on p-Si; b) catalyst loading; c) anchorage shielding; d) Co catalytic core. Curves: p-Si (purple), p-Si|ALD-TiO₂ (gray), p-Si|ALD-TiO₂|SC-TiO₂ (cyan), p-Si|ALD-TiO₂|SC-TiO₂|ALD-TiO₂ (blue), p-Si|ALD-TiO₂ (blue), p-Si|ALD-TiO₂|SC-TiO₂|Co_{C11P}|ALD-TiO₂ (orange), p-Si|ALD-TiO₂|SC-TiO₂|Co_{C11P}|ALD-TiO₂ (red), p-Si|ALD-TiO₂|SC-TiO₂|SC-TiO₂|Co_{C11P} (black), p-Si|ALD-TiO₂|SC-TiO₂|Co_{C11P}|ALD-TiO₂ (green).

Figure S4: LSV (10 mV.s⁻¹) of p-Si|ALD-TiO₂|SC-TiO₂ (cyan trace) and p-Si|ALD-TiO₂|SC-TiO₂|Co_{C11}P|ALD-TiO₂ electrode (red trace) in 1M phosphate buffer (pH 7) under one Sun irradiation.

Figure S5: LSV (10 mV.s⁻¹) of p-Si|ALD-TiO₂|SC-TiO₂| C_{10P} |ALD-TiO₂ electrode (green trace) and p-Si|ALD-TiO₂|SC-TiO₂| $Co_{C_{11}P}$ |ALD-TiO₂ electrode (red trace) in 0.1 M NaOH (pH 13) under one Sun irradiation.

Figure S6: Chronoamperometic profile of p-Si|ALD-TiO₂|SC-TiO₂ $|Co_{C_{11}P}|ALD$ -TiO₂ electrode recorded at 0 V vs RHE in 0.1 M NaOH (pH 13) for 60 min run under one Sun irradiation.

Figure S7: Co 2p core region XPS spectrum of p-Si|ALD-TiO₂|SC-TiO₂ $|Co_{C_{11}P}|ALD$ -TiO₂ electrode analyzed after one hour of photoelectrolysis (0 V vs RHE) in 0.1 M NaOH.

Figure S8: Ellipsometry spectra and corresponding fits for the p-Si|*ALD-TiO*₂ *sample.*

- 1. J. Zhao, L. Cai, H. Li, X. Shi and X. Zheng, *ACS Energy Lett.*, 2017, **2**, 1939-1946.
- 2. E. Garcin, X. Vernede, E. C. Hatchikian, A. Volbeda, M. Frey and J. C. Fontecilla-Camps, *Structure*, 1999, **7**, 557-566.
- 3. R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng and M. Shen, ACS Appl. Mater. Interfaces, 2017, 9, 6123-6129.
- 4. M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah and S. W. Boettcher, ACS Appl. Mater. Interfaces, 2014, 6, 22830-22837.
- 5. J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair and T. F. Jaramillo, *Advanced Energy Materials*, 2014, **4**, 1400739.
- 6. L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt and E. T. Yu, *Nat. Nanotech.*, 2014, **10**, 84.
- 7. Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong and J. Barber, *ACS Nano*, 2015, **9**, 3829-3836.
- Y.-H. Lai, H. S. Park, J. Z. Zhang, P. D. Matthews, D. S. Wright and E. Reisner, *Chem. Eur. J.*, 2015, 21, 3919-3923.
- 9. S. Chandrasekaran, T. Nann and N. H. Voelcker, *Nano Energy*, 2015, **17**, 308-322.
- 10. J. J. Leung, J. Warnan, D. H. Nam, J. Z. Zhang, J. Willkomm and E. Reisner, *Chem. Sci.*, 2017, **8**, 5172-5180.
- 11. A. Krawicz, J. Yang, E. Anzenberg, J. Yano, I. D. Sharp and G. F. Moore, *J. Am. Chem. Soc.*, 2013, **135**, 11861-11868.
- 12. D. Cedeno, A. Krawicz, P. Doak, M. Yu, J. B. Neaton and G. F. Moore, *J. Phys. Chem. Lett.*, 2014, **5**, 3222-3226.
- 13. A. Krawicz, D. Cedeno and G. F. Moore, *Phys. Chem. Chem. Phys.*, 2014, **16**, 15818-15824.
- 14. A. M. Beiler, D. Khusnutdinova, S. I. Jacob and G. F. Moore, *Ind. Eng. Chem. Res.*, 2016, **55**, 5306-5314.
- 15. A. M. Beiler, D. Khusnutdinova, S. I. Jacob and G. F. Moore, *ACS Appl. Mater. Interfaces*, 2016, **8**, 10038-10047.
- 16. D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob and G. F. Moore, *Chem. Sci.*, 2017, **8**, 253-259.
- 17. J. Gu, Y. Yan, J. L. Young, K. X. Steirer, N. R. Neale and J. A. Turner, *Nat. Mater.*, 2016, **15**, 456-460.
- 18. P. Meng, M. Wang, Y. Yang, S. Zhang and L. Sun, *J. Mater. Chem. A*, 2015, **3**, 18852-18859.
- 19. T. Nann, S. K. Ibrahim, P.-M. Woi, S. Xu, J. Ziegler and C. J. Pickett, *Angew. Chem. Int. Ed.*, 2010, **49**, 1574-1577.
- 20. Y. Chen, H. Chen and H. Tian, *Chem. Commun.*, 2015, **51**, 11508-11511.
- D. H. Nam, J. Z. Zhang, V. Andrei, N. Kornienko, N. Heidary, A. Wagner, K. Nakanishi, K. P. Sokol, B. Slater, I. Zebger, S. Hofmann, J. C. Fontecilla-Camps, C. B. Park and E. Reisner, *Angew. Chem. Int. Ed.*, 2018, 57, 10595-10599.