Electronic Supplementary Information

Synthesis and characterization of a pair of O-fac/O-mer 12-P-6 alkyloxaphosphates with a P-O-C-C four-membered ring

Xin-Dong Jiang,^b Yuya Toya,^a Shiro Matsukawa,^a Satoshi Kojima,^a J. Oscar C. Jimenez-Halla,^c Rong Shang,^a Masaaki Nakamoto,^a and Yohsuke Yamamoto^a*

- ^{a.} Department of the Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, 7398526 Higashi-Hiroshima, Japan.
- ^{b.} College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, China.
- ^{c.} Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, campus Gto, Noria Alta s/n 36050 Guanajuato, Mexico

Synthesis of the -CF ₃ system		2
Scheme S1		2
Scheme S2		3
Figure S1		4
X-ray crystal structure determinations		5
Figure S2		5
Figure S3		6
Table S1		7
Table S2		9
Table S3		10
Computational Methodology	11	
Figure S4		12
Figure S5		12
Figure S6		13
Figure S7		14
Scheme S3		15
References		15
Appendix 1: Calculated atom coordinates		16
Appendix 2: NMR Spectra		33

Synthesis of the -CF₃ system

To compare with the properties, the corresponding spirophosphorane 11 with Martin ligand was also investigated (Scheme S1). O-equatorial spirophosphorane 10 with Martin ligand cannot be obtained because of fast Berry pseudorotation which cause isomerization from phosphorane 10 to its stereoisomer 9, and therefore the corresponding O-equatorial spirophosphorane 11 was not achieved.¹ The spirophosphorane 9 was further treated with benzophenone to provide the stable O-apical phosphorane 8 (Scheme S1), the spectral data of which were consistent with those of the identical compound described by Kawashima et al.²

Scheme S1. Synthesis of the pentacoordinate phosphorane bearing Martin ligand 8. Isomerization of 10 to 9 took place rapidly at ambient condition.

The deprotonation of **8** has also been reported by Kawashima *et al*, although the stereochemistry of isomers were proposed without structural confirmation. Here we include the isolation and structure confirmation of O-mer **7A**, which isomerises to **7B** in solution at room temperature.² Upon crystallization, **7B** readily converts back to **7A** in solution and precipitates out of the solution. Consequently, crystals of **7B** could not be obtained in our hands.

Scheme S2. Synthesis of hexacoordinate oxaphosphate O-mer 7 in -CF₃ system.

Isolation of 8 and 7A:

O-apical phosphorane 8: Under Ar, *n*-BuLi (1.67 M *n*-hexane solution, 0.15 mL, 0.25 mmol) was added to an *n*-hexane (5 mL) solution of phosphorane **9** (104 mg, 0.198 mmol) at 0 °C. The mixture was stirred for 5 min at 0 °C. Benzophenone (45.0 mg, 0.247 mmol) was added at 0 °C. The mixture was then stirred for 4 h at room temperature. The resulting solution was treated with aqueous NH₄Cl at 0 °C and the crude products were extracted with Et₂O (10 mL x 3). The combined organic layer was dried over MgSO₄ and filtered. After evaporation of the solvent, the residue was purified by TLC (silica gel, *n*-hexane/CH₂Cl₂ = 2/1) to give compound **8** (84.6 mg, 0.119 mmol, 60%) as white solids. The data of **8** is consistent with that in the reported paper.²

O-mer 7A: A THF solution of **8** (84 mg, 0.118 mmol) and 18-crown-6 (31 mg, 0.118 mmol) were added to a THF (5 mL) suspension of KH (75mg, 30% oil dispersion), then the mixture was stirred for 30 min at 0 °C. The supernatent was transfered to a new schrenck. After concentration in vacuo, a white solid of **O-mer 7** was obtained. **O-mer 7** was recrystallized from *n*-hexane/THF to yield colorless crystals (35 mg, 0.030 mmol, 26%). The data of **O-mer 7** is consistent with isomer A paper in the previously reported paper.²

Figure S1. NOE spectra of O-mer 5D.

X-ray crystal structure determinations

Crystals suitable for the X-ray structural determination were mounted on a Mac Science DIP2030 imaging plate diffractometer and irradiated with graphite monochromated Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) for the data collection. The unit cell parameters were determined by separately autoindexing several images in each data set using the DENZO program (MAC Science).³ For each data set, the rotation images were collected in 3° increments with a total rotation of 180° about the φ axis. The data were processed using SCALEPACK. The structures were solved by a direct method with the SHELX-97 program.⁴ Refinement on F^2 was carried out using the full-matrix least-squares by the SHELX-97 program.⁴ All non-hydrogen atoms were refined using the anisotropic thermal parameters. The hydrogen atoms were included in the refinement along with the isotropic thermal parameters.

CCDC reference number 1856674 for **3**, 1856675 for **4**, 1856676 for **5D**, 1856677 for **5B**, and 1856678 for **7**.

Solid-state structure of 5B with and without 18-crown-6:

Figure S2. ORTEP diagram of hexacoordinate oxaphosphoranes O-fac **5B**•**K**•**2THF** and O-fac **5B**(**K**•**18**-**crown-6**)•**2THF** showing thermal ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

The crystallographic analysis of O-fac **5B(K•18-crown-6)•2THF** is not publishable due to missing parameters of the old data set. Therefore we attach the cif file as independent supplementary material instead of submission to CCDC.

Figure S3. ORTEP diagram of hexacoordinate oxaphosphoranes O-mer 7(K•18-crown-6)•3THF showing thermal ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

Compound	3	$4 \cdot CH_2Cl_2$	5B·K·2THF
Formula	$C_{36}H_{21}F_{20}O_3P$	C ₃₇ H ₂₃ Cl ₂ F ₂₀ O ₃ P	$C_{44}H_{36}F_{20}KO_5P$
Mw	912.50	997.42	1094.80
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	C2/c	$P2_{1}/n$
Color	colorless	colorless	colorless
Habit	plate	plate	plate
Crystal dimensions, [mm]	$0.30 \times 0.20 \times 0.20$	$0.50 \times 0.50 \times 0.10$	$0.20 \times 0.10 \times 0.10$
<i>a</i> , [Å]	9.9730(2)	39.2730(6)	18.972(4)
<i>b</i> , [Å]	10.4830(2)	9.5530(1)	13.493(3)
<i>c</i> , [Å]	19.3940(5)	26.3550(7)	19.631(4)
<i>α</i> , [°]	88.696(1)	90	90
β, [°]	79.354(1)	127.505(5)	111.443(3)
γ, [°]	62.570(1)	90	90
<i>V</i> , [Å ³]	1764.13(7)	7843.9(5)	4677.6(17)
Ζ	2	8	4
D_{calcd} , [g cm ⁻³]	1.718	1.689	1.555
Abs. coeff., [mm ⁻¹]	0.223	0.340	0.272
<i>F</i> (000)	912	3984	2216
Radiation, λ , [Å]	Μο Κα, 0.71073	Μο Κα, 0.71073	Μο Κα, 0.71073
<i>T</i> , [K]	200(2)	200(2)	200(2)
Data collected	$+h, \pm k, \pm l$	$+h, +k, \pm l$	$+h, +k, \pm l$
Data/restrains/parameters	7683/0/671	8582/0/569	10440/0/639
$R_1 \left(I > 2\sigma \left(I \right) \right)$	0.0654	0.0645	0.0760
wR_2 (all data)	0.1644	0.1872	0.1995
GOF	1.237	1.101	1.049
CCDC No.	1856674	1856675	1856677

Table S1-1. Crystal and refinement data for 3, 4 CH₂Cl₂ and 5D·K·2THF.

Common d	5B(K•18-crown-	7(K•18-crown-
Compound	6)•2THF	6)•3THF
Formula	C ₅₆ H ₆₀ PF ₂₀ KO ₁₁	C ₅₆ H ₆₈ PF ₁₂ KO ₁₂
Molecular weight	1359.11	1231.17
Crystal system	Triclinic	monoclinic
Space group	<i>P</i> -1	<i>P</i> 21/c
Color	Colorless	colorless
Habit	Block	Block
<i>a</i> , Å	11.031(2)	15.552(3)
<i>b</i> , Å	12.806(2)	13.580(3)
<i>c</i> , Å	23.283(4)	28.022(6)
lpha, °	105.457(2)	90
<i>β</i> , °	92.077(3)	95.733(3)
γ, °	96.066(3)	90
<i>V</i> , Å ³	3143.3(10)	5889(2)
Ζ	1	4
D_{calcd} , g cm ⁻³	1.473	1.389
Abs. coeff., mm ⁻¹	0.225	0.214
<i>F</i> (000)	1396	2568
Radiation, λ , Å	Μο Κα, 0.71073	Μο Κα, 0.71073
<i>Т</i> , К	173(2)	173(2)
Data, collected	$+h, \pm k, \pm l$	$+h, \pm k, \pm l$
Data/restrains/parameters	10740/0/838	12833/0/739
$R_1[I > 2\sigma(I)]$	0.0646	0.0744
wR_2 (all data)	0.1660	0.1465
GOF	1.027	1.021
CCDC No.	1856676	1856678

Table S1-2. Crystal and refinement data for 5B(K•18-crown-6)•2THF and 7(K•18-crown-6)•3THF.

C_2F_5 C_2F_5 HO3 HO3 C_1 HO3 C_2F_5 M C_2F_5 M C_2F_5 M C_2F_5 M C_2F_5 M C_2F_5 M C_2F_5 M C_2F	C_2F_5 C_2F_5 C_1 C_2F_5	C3 C4 Ph	$F_{3}C$ CF_{3} 01 $C_{1_{M_{M_{enc}}}}$ P_{1} $F_{3}C$ C_{2} $F_{3}C$ C_{2} $F_{3}C$ C_{3}	Ph C4 Ph
	3	O-fac 5B	O-mer 6	
P101	1.794	1.835	1.783	
Р1-О2	1.662	1.806	1.788	
Р 1–ОЗ		1.741	1.731	
Р 1-С1	1.827	1.860	1.891	
Р1-С2	1.876	1.868	1.872	
Р1-С3	1.857	1.874	1.926	
C3–C4	1.794	1.526	1.533	
O1-P1-C2		168.04	170.94	
O2-P1-C3/O3 ^a		164.95	173.77	
C1-P1-O3/C3 ^a		166.60	164.24	
O3/C3 ^a -P1-C3/O3 ^a	ı	76.24	75.97	
P1-C3/O3 ^a -C4		88.8	95.90	
C3/O3 ^a -C4-O3/C3 ^a	ì	97.3	98.7	
C4-O3/C3 ^a -P1		96.8	85.36	

Table S2. Comparison of Bond Distances (Å) and angles (°) for 3, 5B and 6.

^a: Atoms in compound **6**.

	7(K•18-crown-6)•3THF
Р1-О1	1.816(3)
Р1-О2	1.795(3)
Р1-О3	1.746(3)
Р1-С1	1.875(4)
Р1-С2	1.884(4)
Р1-С3	1.843(4)
O3–C4	1.433(5)
C3–C4	1.514(5)
O1-P1-O2	174.31(14)
O1-P1-O3	97.17(13)
O1-P1-C1	85.33(15)
O1–P1–C2	91.17(14)
O1–P1–C3	87.76(16)
O2-P1-O3	87.31(12)
O2-P1-C1	91.36(15)
O2-P1-C2	85.21(14)
O2-P1-C3	96.80(16)
O3-P1-C1	87.80(15)
O3-P1-C2	165.34(15)
O3–P1–C3	75.31(15)
C1-P1-C2	104.95(17)
C1–P1–C3	160.80(17)
C2-P1-C3	93.07(16)
Р1-О3-С4	97.6(2)
Р1-С3-С4	90.8(2)
O3–C4–C3	96.2(3)

 Table S3. Selected bond lengths (Å) and angles (°) for O-mer 7(K•18-crown

 6)•3THF.

Computational Methodology

Gas-phase geometry optimizations were carried out by using the Gaussian16 computational package.⁵ Our theoretical calculations were performed within the framework of the Density Functional Theory (DFT). We set up the default Berny algorithm in order to proceed to minimize the energy described through the density-functional. We chose the long-range (empirically) corrected hybrid density-functional ω -B97XD,⁶ which has a remarkable accuracy for non-covalent interactions present in systems like our studied compounds, in combination with the Weigend-Ahlrichs' basis set def2-svp.⁷ Harmonic frequency calculations were also executed for a two-fold reason: 1) to be sure each optimized structure corresponds to a local minimum by verifying the number of negative values (imaginary frequencies) of the Hessian to be zero and only zero and 2) to get the thermal and entropy corrections adjusted to 298.15K and 1 atm as well as the zero-point energy (ZPE) correction that were summed up into the electronic energy in order to express it as enthalpy or Gibbs free-energy.

We also performed single-point calculations over the optimized structures (in gas phase) in order to incorporate solvation effects with the same level of theory as defined above. The SMD variant model of IEFPCM of Truhlar and coworkers⁸ was used as implemented in Gaussian16 program. Tetrahydrofuran ($\varepsilon = 7.4257$) was the solvent chosen as employed in our experiments. We have used the solvation free energy for K+ (-66.2 kcal/mol) as reported by Ziegler and co-workers⁹ in our calculations. And finally, we also carried out single-point calculations over the optimized structures with the same functional but a different, larger basis set, namely def2-tzvpp in order to improve the numerical accuracy in our final energies reported. Thus, we can define the enthalpy and Gibbs free energy values reported were calculated at the (SMD:thf) ω -B97XD/def2-tzvpp// ω -B97XD/def2-svp level.

Color code: P – dark blue, O – Palid Red, F – Green, C – Gray, K – magenta.

Figure S4. Selected bond distances (in Å) of the optimized geometries of 3 (O-equatorial) and 4 (O-apical) compounds calculated at the ω -B97XD/def2-svp level. Hydrogens were omitted for clarity.

Figure S5. Selected bond distances (in Å) of the optimized geometries of isomers of 5 in its anionic form calculated at the ω -B97XD/def2-svp level. Hydrogens were omitted for clarity.

Figure S6. Selected bond distances (in Å) of the optimized geometries of isomers of 5, including the potassium cation (solvated with two THF solvent molecules as it was obtained in our crystals), calculated at the ω -B97XD/def2-svp level. Hydrogens were omitted for clarity.

References

- 1 S. Matsukawa, S. Kojima, K. Kajiyama, Y. Yamamoto, K.-y. Akiba, S. Re, S. Nagase, *J. Am. Chem. Soc.* **2002**, *124*, 13154–13170.
- 2 T. Kawashima, K. Watanabe, R. Okazaki, *Tetrahedron Lett.* 1997, 38, 551–554.
- 3 Z. Otwinowski and W. Minor, *Methods Enzymol.*, 1997, 276, 307–326.
- 4 G. M. Sheldrick, SHELX-97, University of Göttingen, Göttingen, Germany, 1997.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
- 6. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
- 7. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 8. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, *J. Phys. Chem. B* **2009**, 113, 6378-6396.
- 9. M. J. Ziegler, J. D. Madura, J. Solution Chem. 2011, 40, 1383-1398.

Appendix 1 Cartesian coordinates (x-y-z format) of all the optimized structures calculated at the ω -B97XD/def2-svp level.

	Be	nzophenone	•		1,1-di	phenylethyl	ene
E(s	cf) = -576.0	22866595 a.u	u.	E(s	cf) = -540.1	34207189 a. [•]	u.
0	0.000026	-2.313949	0.000267	Н	-2.667412	-2.323497	-1.563485
С	0.000031	-1.101264	0.000180	С	-2.593906	-1.441081	-0.923932
С	-1.299427	-0.347941	0.027592	С	-3.699962	-1.017770	-0.186899
С	-2.428664	-0.971305	-0.518541	Н	-4.640717	-1.569921	-0.241463
Н	-2.312567	-1.959034	-0.968755	С	-3.594079	0.109045	0.626613
С	-3.667584	-0.340520	-0.481463	Н	-4.450620	0.440074	1.218138
Н	-4.540431	-0.827033	-0.921881	Н	-2.308037	1.680245	1.354251
С	-3.795908	0.909632	0.126444	С	-2.392311	0.810777	0.698284
Н	-4.769931	1.402788	0.161600	С	-1.276354	0.401720	-0.044191
С	-2.682730	1.525014	0.696701	С	-1.392350	-0.741797	-0.848687
Н	-2.784488	2.494507	1.188829	Н	-0.529358	-1.079795	-1.427151
С	-1.436875	0.902305	0.643430	С	0.000135	1.170898	-0.000310
Н	-0.571090	1.383278	1.103183	Н	0.528548	-1.080577	1.425751
Н	0.570677	1.383648	-1.102169	С	1.391878	-0.742391	0.847909
С	1.436654	0.902516	-0.642938	С	1.276299	0.401401	0.043709
С	2.428906	-0.971387	0.518179	С	2.392718	0.810905	-0.697829
С	1.299458	-0.347892	-0.027422	Н	2.308775	1.680733	-1.353355
Н	2.312946	-1.959241	0.968148	С	3.594490	0.109159	-0.625726
С	3.667774	-0.340558	0.480852	Н	4.451421	0.440595	-1.216460
Н	4.540802	-0.827130	0.920850	Н	4.640595	-1.570188	0.242210
С	3.795864	0.909775	-0.126779	С	3.699864	-1.018032	0.187268
Н	4.769879	1.402938	-0.162101	С	2.593340	-1.441732	0.923450
Н	2.784027	2.494918	-1.188375	Н	2.666546	-2.324455	1.562612
С	2.682497	1.525285	-0.696476	Н	-0.929998	3.080644	-0.078334
				С	0.000204	2.513148	0.000177

KOH_2thf

E(scf) = -1140.06815436 a.u.

Н	2.793984	2.218343	-1.604718
0	2.148612	1.972633	-0.939108
К	0.563096	1.763852	0.689488
0	-1.905564	0.699491	0.385724
С	-2.617204	0.801152	-0.843623
Н	-1.909141	0.680031	-1.683528
Н	-3.064607	1.804114	-0.919982
Н	-3.913799	-0.675206	-1.826300
Н	-4.581636	0.025565	-0.333866

K⁺_2thf

3.080644

0.078280

E(scf) = -1064.17368812 a.u.

H 0.930454

К	-0.006522	2.513167	-0.042733
0	1.693000	0.559624	0.101764
С	1.486956	-0.364703	1.180993
Н	0.426316	-0.668818	1.171874
Н	1.694485	0.140309	2.137445
Н	2.002632	-2.496766	1.260925
Н	3.382357	-1.395338	1.441734
С	2.424773	-1.542261	0.920239
С	2.629308	-1.472400	-0.593268

С	-3.655066	-0.318353	-0.820069
С	-2.961186	-1.371951	0.043748
Н	-2.232924	-1.942405	-0.553603
Н	-3.655302	-2.087566	0.505296
Н	-2.899106	-0.269213	1.926006
С	-2.239958	-0.505619	1.070563
Н	-1.311937	-0.959065	1.450393
0	1.051752	-0.958397	0.791846
С	0.815724	-1.395214	-0.538658
Н	-0.061589	-0.848143	-0.914897
Н	0.573111	-2.476496	-0.533220
С	2.101365	-1.097895	-1.321516
Н	2.004136	-0.125870	-1.827842
Н	2.334404	-1.900682	-2.035850
С	3.166551	-0.915483	-0.219268
Н	3.438304	0.151511	-0.229168
Н	4.057223	-1.546438	-0.350108
С	2.412760	-1.248572	1.069414
Н	2.717721	-0.642762	1.935705
н	2.516017	-2.317126	1.344177

Н	1.783670	-1.936845	-1.125572
Н	3.550756	-1.963980	-0.931568
Н	3.641551	0.459189	-0.622884
С	2.645352	0.029849	-0.827357
Н	2.341955	0.324912	-1.843085
0	-1.647618	0.506149	-0.111136
С	-1.383714	-0.504683	-1.091321
Н	-0.295821	-0.548507	-1.254180
Н	-1.873480	-0.231930	-2.042640
С	-1.967890	-1.785811	-0.515966
Н	-1.256201	-2.255614	0.181943
Н	-2.216912	-2.522524	-1.290936
С	-3.189529	-1.253687	0.233074
Н	-3.550047	-1.929749	1.019234
Н	-4.020503	-1.078438	-0.466872
С	-2.673619	0.068100	0.793450
Н	-2.227745	-0.061670	1.794813
Н	-3.451985	0.842979	0.857617

Water

E(scf) = -76.3370011263 a.u.

0	0.000000	0.000000	0.119092
Н	0.000000	0.754852	-0.476366
Н	0.000000	-0.754852	-0.476366

2 (O-apical)

E(scf) = -3368.52408819 a.u.

Ρ	0.065749	1.174652	-0.715451	С
F	2.118352	0.817789	1.982291	С
F	4.126572	0.149411	1.468168	Н
F	2.900677	-1.258952	3.354507	С
F	3.319155	-2.423448	1.598339	Н
F	1.294736	-1.796634	2.031546	С
F	4.284481	-1.345422	-0.756645	Н
F	3.246128	-0.349198	-2.378837	С
F	1.796276	-2.867997	-0.472913	Н
F	3.037959	-3.076078	-2.214052	С
F	1.224422	-1.925100	-2.324967	С
F	-3.148208	1.798240	-1.280841	С
F	-4.542916	1.127249	0.247920	С
F	-5.133717	0.472979	-2.272259	Н
F	-4.821907	-1.234867	-1.010171	С

3 (O-equatorial)

E(scf) = -3944.56853079 a.u.

С	-0.152399	0.551902	2.100756
С	-0.274664	-0.051900	3.356308
Н	-0.299463	-1.133675	3.458358
С	-0.348546	0.735709	4.500238
Н	-0.449776	0.258003	5.476483
С	-0.289361	2.126529	4.404642
Н	-0.356174	2.740588	5.304890
С	-0.118466	2.734690	3.165703
Н	-0.039546	3.818574	3.085122
С	-0.037405	1.937193	2.027263
С	0.237398	2.431174	0.610722
С	0.000117	-2.081365	1.038077
С	-0.835049	-2.810792	1.896884
Н	-1.695992	-2.343128	2.372783
С	-0.584915	-4.159892	2.139219

F	-3.331361	-0.678773	-2.479435	Н	-1.248809	-4.715551	2.804369
F	-3.805477	-1.035074	1.600948	С	0.499298	-4.800263	1.537163
F	-1.753007	-0.861969	2.281108	Н	0.690355	-5.856829	1.733450
F	-2.668376	-3.311300	1.357926	С	1.340788	-4.091998	0.686477
F	-0.840602	-2.524320	0.548454	Н	2.195400	-4.579034	0.217864
F	-2.625996	-2.532081	-0.645304	С	1.072720	-2.744451	0.450598
0	1.039846	-0.122425	-0.285578	С	1.868749	-1.824473	-0.455114
0	-1.264699	-0.008129	-0.584276	С	3.355818	-1.676343	-0.025012
С	-0.326013	1.392501	-2.487512	С	3.600618	-1.501889	1.506476
Н	0.529170	0.974588	-3.038641	С	1.698412	-2.316397	-1.933476
Н	-1.248773	0.883071	-2.772690	С	2.362998	-1.503360	-3.080590
Н	-0.383761	2.465135	-2.715120	С	-1.655517	-0.312560	-0.563000
С	1.631847	2.204877	-0.840852	Н	-2.089563	0.681050	-0.433277
С	1.766131	3.534918	-1.252851	Н	-1.237078	-0.303842	-1.581456
Н	0.883124	4.143254	-1.469837	С	-2.779486	-1.366978	-0.522042
С	3.034238	4.093970	-1.380746	С	-3.484277	-1.440148	0.838330
Н	3.141373	5.133757	-1.696824	С	-3.457413	-0.396962	1.768182
С	4.173368	3.326536	-1.116689	Н	-2.938753	0.537538	1.549629
Н	5.165545	3.767680	-1.229292	С	-4.077221	-0.535623	3.011444
С	4.050632	1.999335	-0.721606	Н	-4.028984	0.286037	3.729262
Н	4.935601	1.392049	-0.531002	С	-4.745052	-1.713600	3.334358
С	2.769979	1.462098	-0.587457	Н	-5.226561	-1.824263	4.308309
С	2.420056	0.034259	-0.189140	С	-4.802915	-2.748479	2.398444
С	2.818671	-0.121113	1.318544	Н	-5.336112	-3.671679	2.636533
С	2.564085	-1.446635	2.082746	С	-4.180909	-2.610379	1.161795
С	3.074023	-0.968870	-1.193491	Н	-4.207142	-3.422505	0.433509
С	2.246596	-2.244165	-1.545384	С	-3.790880	-0.924763	-1.593672
С	-0.742816	2.078874	0.654168	С	-4.605491	0.194195	-1.391354
С	-0.237109	3.192049	1.332275	Н	-4.561448	0.742441	-0.447519
Н	0.700742	3.653467	1.025312	С	-5.483397	0.620891	-2.383548
С	-0.927693	3.699097	2.428890	Н	-6.111107	1.497346	-2.208905
Н	-0.533875	4.567350	2.960466	С	-5.562888	-0.069533	-3.592701
С	-2.107643	3.091933	2.861667	Н	-6.253162	0.262879	-4.371048
Н	-2.637914	3.488228	3.729880	С	-4.755429	-1.185184	-3.798995
С	-2.605913	1.971729	2.203249	Н	-4.809230	-1.732791	-4.742681
Н	-3.516615	1.483058	2.549387	С	-3.871074	-1.610202	-2.807290
С	-1.911311	1.474239	1.105016	Н	-3.234537	-2.479838	-2.966823
С	-2.300077	0.261790	0.264932	0	0.116709	1.368753	-0.231868
С	-3.554283	0.723529	-0.568179	0	1.303770	-0.561938	-0.390667
С	-4.215341	-0.220448	-1.606206	0	-2.322160	-2.636771	-0.914551
С	-2.526378	-0.978916	1.186237	Н	-1.653993	-2.936377	-0.290234
С	-2.147845	-2.366103	0.578542	Р	-0.114887	-0.279849	0.461339
				F	3.883020	-0.604188	-0.623769
				F	4.054163	-2.764907	-0.398715

F	3.535869	-2.673502	2.127692
F	2.710352	-0.686982	2.058359
F	4.809099	-0.997909	1.695156
F	0.375616	-2.299759	-2.180717
F	2.125416	-3.582692	-2.061939
F	3.679897	-1.657378	-3.059810
F	2.068329	-0.220260	-3.006455
F	1.910423	-1.977783	-4.236452
С	-0.833215	3.498951	0.217431
С	-1.239627	3.581752	-1.292943
F	-0.460420	4.722814	0.620731
F	-1.991204	3.202537	0.854445
F	-2.112477	2.627234	-1.590007
F	-0.213287	3.480035	-2.114784
F	-1.829939	4.754224	-1.498034
С	2.392150	3.437597	-0.689356
F	1.854827	4.596406	-1.058177
F	2.285019	2.564887	-1.670759
F	3.682905	3.645692	-0.448886
С	1.731810	2.927905	0.616931
F	2.470436	1.874942	1.008893
F	1.901596	3.908451	1.525218

4 (O-apical)

E(scf) = -3944.59911096 a.u.

O-mer 5A (anion)

С	0.608708	-0.395577	1.534341	Р	0.093069	0.463689	0.852306
С	-0.178050	-0.238049	2.675815	F	2.647844	-2.037511	1.576488
Н	-1.240567	-0.040850	2.581120	F	4.485954	-1.644487	0.497904
С	0.418265	-0.298931	3.928612	F	3.454936	-4.123139	0.340470
Н	-0.193412	-0.158277	4.821218	F	3.709263	-3.119213	-1.539712
С	1.790988	-0.522041	4.046956	F	1.728393	-3.396959	-0.715195
Н	2.254104	-0.566456	5.034605	F	4.210535	-0.447987	-1.812715
С	2.579559	-0.674200	2.911901	F	2.980974	1.323427	-1.663435
Н	3.653945	-0.832990	3.001702	F	1.905937	-1.756508	-2.861593
С	1.978093	-0.598207	1.657768	F	2.785653	-0.110873	-3.916075
С	2.688570	-0.677979	0.311783	F	0.938787	0.166382	-2.856235
С	-0.402377	-1.516498	-1.379187	F	-3.264630	-0.022112	2.084501
С	0.412555	-1.984481	-2.408126	F	-3.991200	-2.035431	1.824778
Н	1.403311	-1.563231	-2.543293	F	-5.482774	-0.053207	0.815751
С	-0.056559	-2.988960	-3.249671	F	-4.830219	-1.483062	-0.644905
Н	0.581482	-3.355641	-4.055871	F	-3.945617	0.489914	-0.586881
С	-1.328735	-3.528519	-3.063000	F	-2.989813	-3.453591	-0.015190
Н	-1.687463	-4.323929	-3.719034	F	-0.832056	-3.437007	0.051147

С	-2.157840	-3.043881	-2.054684	F	-2.120168	-3.523405	-2.387085
Н	-3.164482	-3.440156	-1.927792	F	-0.625719	-2.019393	-2.102456
С	-1.689469	-2.024229	-1.230327	F	-2.708483	-1.475410	-2.138012
С	-2.486076	-1.295250	-0.163143	0	0.097486	1.547800	-0.505241
С	-3.812392	-0.708609	-0.740541	0	1.110105	-0.665127	-0.125695
С	-3.729483	-0.006985	-2.141750	0	-1.326759	-0.362528	0.080095
С	-2.770054	-2.294565	1.017319	С	-0.991293	1.902289	1.420933
С	-3.662559	-1.826443	2.207546	Н	-2.045304	1.634781	1.507259
С	-0.086955	1.514327	-0.839729	Н	-0.689650	2.444658	2.322631
Н	0.943426	1.849420	-0.984659	С	-0.652585	2.583873	0.079561
Н	-0.522498	1.404550	-1.841476	С	-1.874481	2.901470	-0.783577
С	-0.907957	2.611334	-0.095568	С	-1.892899	2.485518	-2.127255
С	-0.397253	2.852171	1.334136	Н	-1.030894	1.927618	-2.514746
С	0.957651	2.782998	1.669778	С	-2.999947	2.755716	-2.927887
Н	1.701632	2.534493	0.915078	Н	-3.005022	2.412901	-3.972460
С	1.384684	2.994265	2.977953	С	-4.098802	3.447261	-2.403054
Н	2.447759	2.916790	3.214208	Н	-4.972104	3.652309	-3.025669
С	0.457847	3.284391	3.977042	С	-4.084217	3.872002	-1.064457
Н	0.788867	3.445604	5.005349	Н	-4.945695	4.399053	-0.633267
С	-0.895109	3.363558	3.652498	С	-2.975772	3.589044	-0.259587
Н	-1.631338	3.593364	4.426207	Н	-2.989209	3.900996	0.791795
С	-1.318556	3.151557	2.341563	С	0.211523	3.846948	0.226092
Н	-2.376636	3.210411	2.084927	С	1.380988	3.963601	-0.529718
С	-0.767708	3.884458	-0.949443	Н	1.643265	3.140077	-1.193432
С	0.430780	4.603593	-1.007657	С	2.201832	5.082472	-0.396749
Н	1.288202	4.297168	-0.406546	Н	3.120013	5.142754	-0.985326
С	0.548565	5.724794	-1.825189	С	1.863926	6.100391	0.498528
Н	1.492322	6.273791	-1.854471	Н	2.518389	6.968755	0.609229
С	-0.532947	6.147495	-2.596856	С	0.694047	5.988719	1.251651
Н	-0.442474	7.029083	-3.235244	Н	0.421472	6.778678	1.957927
С	-1.729131	5.436115	-2.544266	С	-0.123544	4.872665	1.111753
Н	-2.584235	5.757760	-3.143282	Н	-1.027109	4.793902	1.721887
С	-1.846174	4.310615	-1.729143	С	1.740412	1.160228	1.488450
Н	-2.779375	3.750487	-1.686692	С	1.953254	2.173523	2.428025
0	1.773824	-0.323157	-0.651812	Н	1.121664	2.611457	2.970513
0	-1.702720	-0.261844	0.303588	С	3.234733	2.650216	2.678860
0	-2.270298	2.301866	-0.068701	Н	3.384428	3.452900	3.406592
Н	-2.354094	1.415015	0.310705	С	4.328607	2.129376	1.980438
Ρ	0.045904	-0.203051	-0.188689	Н	5.332535	2.521495	2.159427
F	-4.291262	0.196623	0.127448	С	4.136990	1.115127	1.055634
F	-4.730843	-1.683149	-0.868949	Н	4.977255	0.699395	0.504780
F	-3.944734	-0.893468	-3.105877	С	2.847088	0.632326	0.839004
F	-2.550307	0.557217	-2.361205	С	2.460463	-0.470577	-0.154388
F	-4.663284	0.925831	-2.217006	С	3.148775	-1.793639	0.354862

F	-1.573282	-2.618081	1.532816
F	-3.333121	-3.426578	0.561226
F	-4.941671	-1.842400	1.869141
F	-3.350550	-0.602281	2.619942
F	-3.487331	-2.662982	3.221597
С	3.880283	0.338251	0.280101
С	4.161579	1.013421	-1.098388
F	5.011806	-0.241055	0.709656
F	3.636544	1.369085	1.114143
F	3.264547	1.964739	-1.337814
F	4.141897	0.150538	-2.100651
F	5.359724	1.579642	-1.055428
С	3.973788	-2.671792	-1.081532
F	5.181613	-2.129291	-1.086946
F	3.384800	-2.409730	-2.240626
F	4.110378	-3.987652	-0.980412
С	3.131060	-2.184201	0.134860
F	1.993361	-2.900561	0.095177
F	3.830708	-2.578586	1.214695

O-fac 5B (anion)

E(scf) = -3944.05057075 a.u.

C	2 981376	-3 131662	-0 421190
c	2.001070	-0.021602	-1 582124
c	2.344031	0.021002	1.502124
С	2.096020	-0.448137	-2.816408
С	-0.138561	-0.788371	2.239641
С	0.601080	-0.885740	3.420181
Н	1.410860	-0.182972	3.620778
С	0.334941	-1.905388	4.332226
Н	0.923999	-1.979774	5.249962
С	-0.662136	-2.844505	4.068203
Н	-0.855548	-3.655956	4.774837
С	-1.412939	-2.745551	2.900939
Н	-2.196572	-3.471833	2.686978
С	-1.149308	-1.704141	2.011223
С	-1.920968	-1.416208	0.723468
С	-3.377435	-1.013836	1.184645
С	-4.412034	-0.497419	0.150218
С	-1.903908	-2.676217	-0.215411
С	-1.832830	-2.388358	-1.746312

O-mer 5C (anion) E(scf) = -3944.03473957 a.u.

Ρ	-0.097033	0.602115	0.525404	Р	-0.022939	-0.249198	-0.050620
F	3.188350	-0.296010	1.864157	F	2.519091	-0.235075	-2.462599
F	4.782601	0.788425	0.867977	F	4.114305	-1.650989	-2.114242
F	5.049650	-1.871062	1.077654	F	4.817395	0.834777	-2.729409
F	5.075134	-1.112480	-0.930057	F	5.552322	0.160704	-0.831163
F	3.360594	-2.205872	-0.205160	F	3.950227	1.610251	-0.927122
F	4.324782	1.449608	-1.639085	F	4.701697	-2.237209	0.277280
F	2.377931	2.363764	-1.900787	F	2.996821	-2.694240	1.519325
F	3.067569	-0.976648	-2.577809	F	4.394083	0.498135	1.420146
F	3.261377	0.733976	-3.858032	F	5.184861	-1.190756	2.486445
F	1.350865	0.251402	-3.008668	F	3.193003	-0.507833	2.879061
F	-3.002667	-1.218939	1.574949	F	-2.755670	1.076207	1.743711
F	-2.684919	-3.346349	1.803673	F	-4.425385	-0.262506	2.020283
F	-4.718051	-2.553113	0.215765	F	-5.013718	2.090822	0.918555
F	-3.251852	-3.809793	-0.721745	F	-5.461587	0.392400	-0.321773
F	-3.348506	-1.713035	-1.212166	F	-3.803329	1.682068	-0.808614
F	-0.813022	-4.414069	0.401144	F	-4.654591	-2.292247	0.548869
F	1.034342	-3.306207	0.574622	F	-2.852420	-3.167084	-0.237284
F	0.395954	-4.447503	-1.838158	F	-5.420342	-1.995742	-1.723406
F	0.870918	-2.355736	-1.841638	F	-3.569823	-2.733040	-2.505187
F	-1.163230	-2.995467	-2.113191	F	-3.833316	-0.630963	-2.195870

0	-1.629026	1.317405	1.006180	0	-0.149404	1.228039	0.872767
0	1.462835	-0.024468	-0.177958	0	1.808791	-0.202262	0.282443
0	-0.856025	-0.942349	-0.119939	0	-1.818800	-0.372306	-0.462876
С	-0.716021	1.406554	-1.045828	С	0.085702	1.114017	-1.346137
Н	-0.049698	2.186110	-1.430860	Н	0.996850	1.146978	-1.944878
Н	-0.944801	0.679843	-1.830643	Н	-0.802198	1.115193	-1.988868
С	-1.937817	1.900758	-0.254692	С	0.027160	2.137153	-0.197419
С	-2.070283	3.422645	-0.126272	С	1.308070	2.954660	0.000578
С	-2.668802	3.956414	1.020999	С	2.016014	2.859763	1.198644
Н	-2.983673	3.270808	1.810534	Н	1.669710	2.141341	1.941567
С	-2.833702	5.329705	1.168200	С	3.149570	3.641816	1.414093
Н	-3.293854	5.726667	2.076818	Н	3.700098	3.545596	2.353418
С	-2.409028	6.199846	0.162059	С	3.592535	4.527584	0.433957
Н	-2.532444	7.279545	0.277430	Н	4.484920	5.136126	0.601609
С	-1.826601	5.677798	-0.989817	С	2.892403	4.623143	-0.769092
Н	-1.488753	6.346981	-1.785123	Н	3.233867	5.307763	-1.549915
С	-1.661353	4.299098	-1.131914	С	1.758259	3.843601	-0.980325
Н	-1.197071	3.904895	-2.038273	Н	1.212629	3.929635	-1.923512
С	-3.286347	1.405079	-0.773522	С	-1.123345	3.139426	-0.261581
С	-4.274407	1.008958	0.129373	С	-1.684205	3.607782	0.929643
Н	-4.027076	0.984947	1.190434	Н	-1.322676	3.193485	1.871501
С	-5.529673	0.611153	-0.323270	С	-2.701097	4.557084	0.911362
Н	-6.284134	0.282340	0.395447	Н	-3.142551	4.895518	1.852034
С	-5.816980	0.608556	-1.687548	С	-3.165626	5.067792	-0.301404
Н	-6.798383	0.285747	-2.043900	Н	-3.968939	5.808663	-0.316143
С	-4.837896	1.011346	-2.594454	С	-2.600453	4.620202	-1.492815
Н	-5.048785	1.007516	-3.666933	Н	-2.958577	5.007752	-2.450050
С	-3.582677	1.408803	-2.138221	С	-1.588062	3.661151	-1.470321
Н	-2.818115	1.717911	-2.855505	Н	-1.166786	3.301677	-2.412202
С	0.940995	2.069879	1.092519	С	0.418136	-1.813603	-1.019990
С	0.504494	3.160441	1.847622	С	-0.436135	-2.589579	-1.799056
Н	-0.523667	3.174435	2.207304	Н	-1.434600	-2.227173	-2.012246
С	1.372442	4.210166	2.134849	С	-0.019141	-3.816398	-2.310440
Н	1.018889	5.062832	2.720198	Н	-0.712682	-4.414301	-2.907003
С	2.687046	4.181593	1.663481	С	1.268240	-4.285013	-2.048738
Н	3.364729	5.013027	1.872533	Н	1.588930	-5.259908	-2.423862
С	3.138735	3.091935	0.925091	С	2.160551	-3.487123	-1.337319
Н	4.162288	3.067567	0.551445	Н	3.187911	-3.816860	-1.178122
С	2.259677	2.038358	0.665492	С	1.731180	-2.251223	-0.856369
С	2.574897	0.765934	-0.129728	С	2.618204	-1.154650	-0.269355
С	3.701315	-0.000248	0.660277	С	3.424787	-0.633237	-1.550281
С	4.287689	-1.332100	0.121586	С	4.450277	0.528460	-1.481366
С	2.997569	1.205874	-1.578348	С	3.591165	-1.701919	0.829019
С	2.648073	0.262143	-2.764448	С	4.086557	-0.685403	1.916493

С	0.070325	-0.367716	2.125865	С	-0.517225	-1.212770	1.494243
С	0.602608	0.094986	3.331696	С	0.315648	-1.635525	2.527058
Н	0.965802	1.119684	3.415406	Н	1.366904	-1.388221	2.498443
С	0.696114	-0.753535	4.431917	С	-0.189606	-2.364075	3.600968
Н	1.117628	-0.379907	5.368639	Н	0.486211	-2.688982	4.396240
С	0.271232	-2.079621	4.338278	С	-1.546767	-2.677081	3.662612
Н	0.361968	-2.749800	5.196590	Н	-1.945387	-3.256240	4.499125
С	-0.267412	-2.549210	3.145033	С	-2.398639	-2.235919	2.655368
Н	-0.600424	-3.583873	3.057764	Н	-3.464552	-2.458376	2.699668
С	-0.372670	-1.679001	2.060358	С	-1.875589	-1.502067	1.590064
С	-0.979976	-2.021675	0.698712	С	-2.691483	-0.896123	0.447823
С	-2.507072	-2.301169	0.959254	С	-3.572405	0.243868	1.095737
С	-3.460063	-2.587010	-0.234708	С	-4.462892	1.125554	0.184061
С	-0.214243	-3.243327	0.081242	С	-3.568455	-2.030550	-0.208717
С	-0.031459	-3.233031	-1.464072	С	-4.102055	-1.820563	-1.690869

O-mer 5D (anion)

E(scf) = -3944.05327915 a.u.

O-mer 5A (K⁺_2thf)

E(scf) = -5008.38270062 a.u.

Ρ	-0.372088	-0.392689	0.014563	К	-1.328836	-0.388786	-1.562549
F	3.048506	0.440728	-1.022615	Р	1.378987	0.264619	0.650814
F	4.182355	-1.333484	-1.541276	0	2.341669	1.702990	0.550023
F	5.273244	0.318059	0.270712	0	-0.270806	1.135828	0.308724
F	4.939040	-1.688222	0.961725	0	0.323649	-1.272249	0.497840
F	3.700667	-0.073254	1.679530	С	1.751521	0.429117	-1.190002
F	3.440024	-3.566998	-0.425231	Н	2.358230	-0.406770	-1.549837
F	1.297880	-3.856840	-0.535944	Н	0.929512	0.607468	-1.888709
F	2.856114	-2.545122	2.286720	С	2.545058	1.700177	-0.862392
F	2.655125	-4.612797	1.746531	С	1.995350	2.969575	-1.508740
F	0.906894	-3.386726	1.951932	С	1.987329	4.165449	-0.790306
F	2.155919	2.083165	1.015600	Н	2.311374	4.153029	0.250227
F	1.262237	4.006984	1.462023	С	1.540979	5.343862	-1.382498
F	3.285745	3.981561	-0.299915	Н	1.523061	6.267713	-0.800247
F	1.440960	4.772386	-1.063857	С	1.103306	5.344345	-2.706109
F	2.139713	2.839505	-1.711756	Н	0.746490	6.267778	-3.167541
F	-0.941741	4.562895	0.205367	С	1.126275	4.157741	-3.436423
F	-2.389501	2.975546	0.404312	Н	0.792663	4.147133	-4.476799
F	-2.243731	4.362067	-1.962467	С	1.573176	2.979842	-2.840673
F	-2.156020	2.222015	-2.068496	Н	1.594439	2.057930	-3.428305
F	-0.383257	3.389167	-2.414890	С	4.036958	1.645888	-1.192769
0	-2.041046	-0.011012	-0.370449	С	4.943769	2.320137	-0.368323
0	1.272783	-0.957397	0.498494	Н	4.567377	2.831908	0.519750
0	0.086976	1.283807	-0.517812	С	6.304679	2.319319	-0.659860
С	-1.313976	-2.003328	0.360913	Н	7.000452	2.844014	-0.000911

Н	-1.061604	-2.781473	-0.369585	С	6.780863	1.650432	-1.788380
Н	-1.263627	-2.438576	1.362824	Н	7.848923	1.647105	-2.016835
С	-2.610298	-1.238811	0.041307	С	5.882809	0.989088	-2.622412
С	-3.470126	-1.812208	-1.082324	Н	6.243796	0.464000	-3.509763
С	-4.150407	-0.930550	-1.929299	С	4.519654	0.989288	-2.325653
Н	-4.008801	0.141866	-1.782838	Н	3.826738	0.466277	-2.989241
С	-4.965003	-1.413906	-2.949347	F	-2.894446	1.012535	0.093678
Н	-5.483501	-0.711656	-3.607211	F	-2.114773	-0.424754	1.515367
С	-5.115833	-2.788903	-3.137980	F	-4.523151	0.269199	2.008689
Н	-5.751750	-3.168839	-3.941488	F	-4.098450	2.369084	2.076567
С	-4.441964	-3.672970	-2.298268	F	-3.263664	1.047525	3.563110
Н	-4.544162	-4.751620	-2.442047	С	-0.984434	1.639615	1.360105
С	-3.623040	-3.185761	-1.278969	С	-0.201851	1.374667	2.648216
Н	-3.084258	-3.887035	-0.637075	С	-0.537404	1.834506	3.921954
С	-3.501200	-1.037291	1.273200	Н	-1.426391	2.439965	4.083949
С	-3.846743	0.251393	1.680071	С	0.287926	1.530816	4.999977
Н	-3.459654	1.093539	1.108488	Н	0.026663	1.886851	5.998583
С	-4.625860	0.448510	2.818846	С	1.445084	0.782858	4.798143
Н	-4.869369	1.466286	3.133510	Н	2.097182	0.542478	5.640670
С	-5.074347	-0.640838	3.563418	С	1.783306	0.349920	3.519294
Н	-5.677546	-0.485775	4.461623	Н	2.698077	-0.224332	3.379922
С	-4.740842	-1.933188	3.155767	С	0.958216	0.641219	2.431797
Н	-5.084523	-2.796143	3.732183	С	-2.366862	0.880359	1.349537
С	-3.961204	-2.127405	2.017926	С	-3.576916	1.172836	2.285541
Н	-3.695595	-3.142821	1.711607	С	-1.129556	3.181566	1.162913
С	0.124945	-0.896992	-1.714047	F	-1.895824	3.716520	2.145451
С	-0.641212	-0.750803	-2.869815	F	0.086156	3.717581	1.274383
Н	-1.595456	-0.227491	-2.812941	С	-1.739548	3.720364	-0.171005
С	-0.184039	-1.281065	-4.073492	F	-3.066780	3.595401	-0.162300
Н	-0.786307	-1.169192	-4.978763	F	-1.459260	5.012169	-0.273816
С	1.033918	-1.964008	-4.127404	F	-1.278062	3.102555	-1.248872
Н	1.383488	-2.389765	-5.071223	F	1.285293	-2.434770	-1.647537
С	1.807615	-2.103249	-2.978587	F	1.740738	-4.328978	-0.690242
Н	2.758962	-2.635009	-3.014067	F	-1.452369	-3.038187	-1.255903
С	1.344077	-1.551459	-1.783803	F	-0.226616	-4.260083	-2.526872
С	2.055233	-1.588955	-0.426536	F	-0.813129	-4.992870	-0.600462
С	3.389419	-0.778422	-0.592778	F	-1.179716	-3.340480	1.413634
С	4.325494	-0.552505	0.624714	F	0.579790	-4.580806	1.761599
С	2.259555	-3.080515	0.009478	F	-0.525908	-1.709212	3.386508
С	2.165688	-3.385030	1.537509	F	1.373706	-2.688636	3.696664
С	-0.494878	0.367682	1.726968	F	-0.461081	-3.774218	3.962846
С	-0.722432	-0.294387	2.933409	С	0.912157	-2.493219	0.681933
Н	-0.717181	-1.383666	2.973194	С	2.384888	-2.285485	1.041138
С	-0.972203	0.430322	4.095824	С	3.303697	-3.286265	1.367544

С	-0.996876	1.825425	4.063563	С	4.620057	-2.933637	1.646151
Н	-1.215213	2.393210	4.971228	Н	5.344816	-3.709736	1.900955
С	-0.727761	2.496195	2.873840	С	5.011224	-1.594364	1.601786
Н	-0.725089	3.586365	2.842416	Н	6.045948	-1.318859	1.817442
С	-0.458663	1.753270	1.725332	С	4.082398	-0.604601	1.293990
С	-0.075975	2.318415	0.353479	Н	4.374687	0.444727	1.285365
С	1.321434	3.016163	0.540009	С	2.758228	-0.946122	1.012398
С	2.048350	3.650047	-0.678780	С	0.878721	-3.300387	-0.691681
С	-1.202163	3.286117	-0.155022	С	-0.440507	-3.914855	-1.256649
С	-1.484414	3.291909	-1.688275	С	0.126341	-3.306801	1.752312
				С	0.140786	-2.836591	3.232834
				С	-4.705137	0.533496	-2.358614
				С	-4.646587	-1.411129	-1.039510
				С	-5.768790	0.668080	-1.274734
				Н	-5.156046	0.419219	-3.360788
				Н	-4.013380	1.389888	-2.388214
				С	-6.034972	-0.792994	-0.910307
				Н	-4.089278	-1.339063	-0.090406
				Н	-4.661960	-2.465708	-1.352038
				Н	-5.361956	1.212302	-0.411408
				Н	-6.662610	1.201070	-1.626014
				Н	-6.455355	-0.918643	0.096222
				Н	-6.730316	-1.250458	-1.631632
				0	-3.971184	-0.646557	-2.039069
				С	-2.125252	-1.444307	-4.798084
				С	0.194778	-1.588466	-4.716589
				С	-1.783818	-2.853107	-5.258982
				Н	-2.329477	-0.779765	-5.659929
				Н	-2.972349	-1.386674	-4.099492
				С	-0.310802	-2.700155	-5.653609
				Н	0.837001	-1.975922	-3.913895
				Н	0.755236	-0.811632	-5.263209
				Н	-1.890875	-3.554700	-4.418781
				Н	-2.419606	-3.202901	-6.083893
				Н	0.259471	-3.631338	-5.536780
				Н	-0.226689	-2.387870	-6.705364
				0	-0.960370	-1.012070	-4.110003
	O-fa	c 5B (K ⁺ _2tl	hf)		O-me	er 5C (K+_21	thf)
E(s	cf) = -5008.4	40235734 a.u	u.	E(s	cf) = -5008.	37330790 a. [•]	u.
К	-0.752112	1.649745	-0.694033	К	-1.485825	2.067416	-0.116269
Ρ	1.017906	-0.735824	1.159110	Р	0.519565	-0.904265	0.372004

H -1.164380 -0.098163 5.032705 H 2.998910 -4.331009 1.411031

0	1.299199	0.975555	0.854387	0	0.713976	0.849897	0.784123
0	-0.784701	-0.275666	1.080982	0	-1.329587	-0.570172	0.410681
0	0.798622	-0.941935	-0.640046	0	2.274309	-1.221229	0.212610
С	1.195555	0.011285	2.871394	С	0.746533	-0.857468	2.227253
Н	0.257210	-0.040073	3.424731	Н	-0.117839	-1.241209	2.771119
Н	1.998499	-0.374153	3.509038	Н	1.647012	-1.407329	2.521826
С	1.475634	1.372877	2.210960	С	0.898629	0.663346	2.192934
С	2.899774	1.873834	2.448386	С	2.256349	1.170971	2.675363
С	3.807722	1.973275	1.394272	С	2.859279	2.271483	2.066890
Н	3.484868	1.678241	0.396166	Н	2.385991	2.708288	1.190039
С	5.112391	2.409935	1.626474	С	4.060903	2.786706	2.544427
Н	5.815767	2.473795	0.792906	Н	4.525032	3.635589	2.037805
С	5.522010	2.751288	2.913161	С	4.677041	2.210098	3.653011
Н	6.544822	3.089151	3.094839	Н	5.622954	2.607490	4.027375
С	4.615721	2.657692	3.971001	С	4.076863	1.118342	4.278143
Η	4.926052	2.924963	4.983840	Н	4.549563	0.657213	5.148315
С	3.313501	2.224595	3.737755	С	2.874986	0.606265	3.793856
Η	2.606183	2.158317	4.569292	Н	2.414079	-0.246724	4.297509
С	0.489633	2.494423	2.532145	С	-0.153069	1.453744	2.981276
С	0.368922	3.544666	1.613304	С	-0.407331	2.787649	2.633222
Η	1.003242	3.548678	0.723984	Н	0.162299	3.247982	1.822629
С	-0.543856	4.574376	1.817037	С	-1.353972	3.546027	3.316168
Η	-0.633805	5.369252	1.072925	Н	-1.536601	4.580569	3.015369
С	-1.333944	4.588146	2.968465	С	-2.050855	2.989871	4.389898
Η	-2.052077	5.394121	3.134676	Н	-2.794578	3.579264	4.930288
С	-1.193297	3.569714	3.906636	С	-1.772102	1.682409	4.776882
Н	-1.803988	3.571448	4.812048	Н	-2.298070	1.238898	5.625049
С	-0.289720	2.527960	3.687899	С	-0.830153	0.924045	4.080537
Η	-0.210620	1.726449	4.424512	Н	-0.630135	-0.098539	4.402369
F	-2.911376	-0.177896	-0.432291	F	-3.436194	-0.314667	-1.062640
F	-1.687013	-1.898267	-0.923500	F	-2.297823	-2.012577	-1.823569
F	-4.173099	-2.242423	-1.452669	F	-4.757432	-2.247025	-2.315340
F	-4.829560	-1.843918	0.548640	F	-5.409841	-1.976756	-0.295259
F	-3.582517	-3.555078	0.145301	F	-4.239926	-3.706814	-0.825031
С	-1.736399	-1.221601	1.338729	С	-2.210327	-1.619993	0.498691
С	-1.025168	-2.501200	1.784178	С	-1.398849	-2.912475	0.577003
С	-1.632386	-3.650640	2.289415	С	-1.912886	-4.177185	0.867566
Н	-2.713459	-3.712341	2.399292	Н	-2.976033	-4.322444	1.044671
С	-0.841189	-4.731178	2.669834	С	-1.049619	-5.264509	0.956103
Н	-1.312173	-5.634118	3.063583	Н	-1.447747	-6.255593	1.183084
С	0.544806	-4.655003	2.550783	С	0.318570	-5.073982	0.782177
Н	1.166889	-5.502350	2.847550	Н	1.007203	-5.916379	0.878635
С	1.142774	-3.497974	2.057604	С	0.820741	-3.803672	0.512208
Н	2.228807	-3.453342	1.968883	Н	1.891470	-3.660386	0.442906

С	0.361046	-2.409593	1.666651	С	-0.031765	-2.707349	0.374709
С	-2.531093	-1.419352	-0.009896	С	-3.086126	-1.608364	-0.816861
С	-3.811309	-2.290029	-0.169589	С	-4.407184	-2.412333	-1.038036
С	-2.628535	-0.668391	2.497819	С	-3.068576	-1.437828	1.792874
F	-3.605266	-1.543839	2.820408	F	-4.019744	-2.396609	1.868568
F	-1.850116	-0.532405	3.583332	F	-2.269871	-1.589560	2.859084
С	-3.347285	0.712002	2.313346	С	-3.829784	-0.094386	2.029707
F	-4.466925	0.573243	1.611133	F	-4.863845	0.030295	1.205031
F	-3.673951	1.180970	3.510509	F	-4.289771	-0.083425	3.270899
F	-2.596411	1.623729	1.705671	F	-3.059807	0.978603	1.866418
F	2.367825	0.997195	-1.620752	F	2.704970	-3.279668	-1.610716
F	3.410548	-0.303292	-3.005956	F	4.341711	-2.221049	-2.526492
F	-0.003536	0.423151	-3.086111	F	4.025432	-3.307006	0.787816
F	1.622828	1.513117	-3.971433	F	5.130390	-4.096862	-0.877542
F	1.284109	-0.524042	-4.538713	F	5.639501	-2.173578	-0.062373
F	0.371374	-2.326809	-2.926973	F	4.331763	0.244861	0.455418
F	2.489376	-2.785405	-3.156643	F	5.101081	-0.091656	-1.539344
F	0.159900	-3.908450	-0.832177	F	2.326773	1.927464	-1.054873
F	2.290015	-4.242228	-0.734051	F	3.774340	1.718500	-2.620863
F	1.175073	-4.860081	-2.463649	F	4.371103	2.486749	-0.710438
С	1.874690	-1.300206	-1.403302	С	2.918675	-1.017906	-0.979385
С	3.080235	-1.518221	-0.489974	С	1.867548	-0.691159	-2.029236
С	4.348590	-1.934748	-0.898172	С	2.127880	-0.504320	-3.385614
Н	4.548480	-2.165392	-1.943569	Н	3.130436	-0.661533	-3.781559
С	5.358944	-2.059371	0.049204	С	1.099612	-0.093660	-4.226187
Н	6.355376	-2.382334	-0.259115	Н	1.287058	0.047096	-5.292374
С	5.095927	-1.770941	1.388013	С	-0.162867	0.147711	-3.691447
Н	5.889432	-1.858405	2.133184	Н	-0.976249	0.469907	-4.345711
С	3.822369	-1.369579	1.781425	С	-0.406531	-0.050222	-2.332466
Н	3.644586	-1.152519	2.834804	Н	-1.411284	0.124954	-1.960344
С	2.793915	-1.243212	0.843786	С	0.599405	-0.508136	-1.479079
С	2.235344	-0.104775	-2.382623	С	3.648751	-2.350998	-1.378317
С	1.253588	0.311708	-3.520434	С	4.632190	-2.983393	-0.346152
С	1.512856	-2.558529	-2.249895	С	3.980504	0.159270	-0.825705
С	1.279276	-3.916684	-1.529584	С	3.583609	1.598183	-1.308426
С	-4.156575	2.418030	-1.631311	С	-4.763537	2.258872	-1.820673
С	-3.239846	0.994895	-3.259352	С	-3.106811	2.357900	-3.402108
С	-5.209397	1.374636	-1.987494	С	-5.202412	1.313122	-2.958815
Н	-4.443520	3.423125	-1.990660	Н	-5.323355	3.210049	-1.847926
Н	-3.963653	2.482343	-0.549857	Н	-4.881241	1.817490	-0.822009
С	-4.759833	0.940024	-3.382926	С	-3.931600	1.144026	-3.809519
Н	-2.833959	0.034128	-2.902887	Н	-2.021542	2.235931	-3.523363
Н	-2.732983	1.256462	-4.200202	Н	-3.418321	3.261591	-3.962711
Н	-5.157798	0.530734	-1.285984	Н	-5.563610	0.350458	-2.576783

Н	-6.230119	1.779741	-1.962488	Н	-6.015780	1.764853	-3.544417
Н	-5.119326	-0.059391	-3.662396	Н	-3.401977	0.221554	-3.531961
Н	-5.113471	1.655445	-4.142140	Н	-4.134785	1.110819	-4.888398
0	-2.962805	2.006789	-2.291209	0	-3.378517	2.518600	-2.021992
С	-0.767930	4.539483	-2.814480	С	-0.946692	4.937854	-1.991388
С	1.412251	4.282435	-2.055379	С	0.907139	4.772756	-0.641442
С	0.099189	4.524588	-4.065058	С	0.178099	4.520002	-2.929007
Н	-1.034122	5.575111	-2.525133	Н	-1.090350	6.036035	-2.007822
Н	-1.687784	3.943143	-2.893481	Н	-1.917330	4.459532	-2.179262
С	1.484111	4.842364	-3.488571	С	1.416016	4.876500	-2.094482
Н	2.010527	3.369888	-1.925434	Н	1.368534	3.942198	-0.091435
Н	1.748440	5.021918	-1.308624	Н	1.085458	5.703402	-0.076538
Н	0.086231	3.519961	-4.512403	Н	0.133748	3.432864	-3.108271
Н	-0.228988	5.245570	-4.826577	Н	0.148314	5.029019	-3.902264
Н	2.298575	4.389361	-4.069278	Н	2.260596	4.204295	-2.288748
Н	1.652879	5.929529	-3.471113	Н	1.748287	5.901414	-2.315515
0	0.048051	3.944290	-1.819791	0	-0.492294	4.515976	-0.717999

O-mer 5D (K⁺_2thf)

3.388737 0.893198 -0.509521

E(scf) = -5008.36719136 a.u.

К

Compound analogue to the reported one by *Matsukawa et. al. (JACS, 2002)* (anion)

E(scf) = -3403.88327256 a.u.

Ρ	-0.601485	0.144978	0.628230				
0	1.163550	0.533498	0.743617	Р	0.286717	0.825234	-1.394454
0	-2.361679	-0.099036	0.718295	0	0.171297	0.733824	-2.887800
0	-0.231273	-0.828980	-0.891393	0	-1.213916	-0.180606	-1.096317
С	-0.413461	1.273222	2.138004	0	0.967759	-0.361406	-0.318301
Н	-0.831484	2.263093	1.942879	F	-1.771195	-1.925037	0.673857
Н	-0.821120	0.929724	3.094121	F	-1.054797	-0.220926	1.809608
С	1.112608	1.202004	2.001829	F	-2.825943	-1.541389	3.107188
С	1.746877	0.362633	3.110909	F	-4.271928	-1.509753	1.524666
С	2.436685	-0.814643	2.827005	F	-3.701720	0.324271	2.508303
Н	2.483789	-1.157561	1.793723	С	-2.153125	0.255786	-0.232936
С	2.995076	-1.577895	3.852842	С	-1.826844	1.706980	0.140305
Н	3.511474	-2.510261	3.611721	С	-2.624808	2.583401	0.873042
С	2.871827	-1.168964	5.177861	Н	-3.596106	2.265871	1.248029
Н	3.300139	-1.769698	5.983162	С	-2.171938	3.877620	1.114819
С	2.185167	0.011153	5.470555	Н	-2.793267	4.571297	1.686593
Н	2.078538	0.339401	6.506977	С	-0.928020	4.282765	0.632642
С	1.629118	0.769332	4.444226	Н	-0.565828	5.294481	0.831586
Н	1.090134	1.691106	4.680517	С	-0.142225	3.399160	-0.103488
С	1.867174	2.539436	1.859867	Н	0.835729	3.722935	-0.459559
С	3.224814	2.632927	2.202667	С	-0.594759	2.104814	-0.370791

Н	3.720104	1.781335	2.675458	С	-2.075006	-0.677928	1.053823
С	3.953560	3.802261	1.976984	С	-3.252824	-0.844981	2.053723
Н	5.006879	3.846334	2.263767	С	-3.504387	0.244664	-1.002188
С	3.333617	4.913867	1.409416	F	-4.548613	0.479253	-0.165120
Н	3.895356	5.835920	1.243952	F	-3.494251	1.242500	-1.901365
С	1.984338	4.837844	1.064663	С	-3.854477	-1.033303	-1.812624
Н	1.480860	5.701637	0.624445	F	-3.775091	-2.129057	-1.066765
С	1.263629	3.665506	1.284861	F	-5.124550	-0.925742	-2.230546
Н	0.213530	3.634881	0.994938	F	-3.091871	-1.175954	-2.873692
F	-4.637190	0.630056	1.973360	F	2.583025	-1.483260	-2.132162
F	-3.080726	2.131977	2.007410	F	4.237534	-1.702502	-0.743544
F	-5.667605	2.951447	2.033300	F	1.067540	-3.126802	-0.368189
F	-5.911720	2.314777	-0.004276	F	2.793467	-3.923856	-1.371799
F	-4.400866	3.763065	0.501530	F	2.905236	-3.441455	0.717400
С	-3.207415	0.774422	0.077426	F	1.713437	-1.425754	1.967109
С	-2.357096	1.722881	-0.771935	F	3.802625	-0.859325	1.736150
С	-2.829473	2.694423	-1.657875	F	1.174685	1.427993	1.922687
Н	-3.896558	2.853513	-1.800482	F	3.301813	1.648800	2.155295
С	-1.919863	3.456378	-2.382134	F	2.184882	0.478284	3.566647
Н	-2.281311	4.215855	-3.078280	С	2.320055	-0.390669	-0.079787
С	-0.551101	3.241770	-2.222326	С	2.957081	0.855755	-0.684410
Н	0.159207	3.839449	-2.796847	С	4.309017	1.208478	-0.653476
С	-0.091159	2.267045	-1.341053	Н	5.032917	0.600828	-0.109463
Н	0.979714	2.108662	-1.222229	С	4.712588	2.350890	-1.334444
С	-0.995049	1.501960	-0.604737	Н	5.763228	2.650768	-1.319040
С	-3.991085	1.529652	1.215421	С	3.778056	3.102338	-2.058138
С	-5.019440	2.659680	0.911454	Н	4.107785	3.982621	-2.616836
С	-4.110043	-0.082599	-0.876802	С	2.439844	2.723692	-2.085639
F	-4.832777	0.703864	-1.705684	Н	1.718374	3.284596	-2.685613
F	-3.280771	-0.794762	-1.645996	С	2.009662	1.607009	-1.359435
С	-5.147261	-1.075106	-0.260649	С	2.889825	-1.641170	-0.838791
F	-6.243929	-0.413350	0.102525	С	2.378471	-3.055799	-0.444281
F	-5.494589	-1.951388	-1.199081	С	2.529161	-0.493734	1.454898
F	-4.692956	-1.737515	0.783271	С	2.280771	0.804401	2.276992
F	2.448515	-1.589556	-0.455638				
F	2.078384	-3.530043	-1.303636				
F	1.829953	-0.336674	-2.696733				
F	3.253968	-1.917971	-2.967896				
F	1.239565	-2.166900	-3.673458				
F	-1.248267	-2.259385	-2.700793				
F	-0.139067	-4.059820	-2.240639				
F	-2.586125	-2.881238	-0.092056				
F	-1.712295	-4.813064	-0.436502				
F	-2.963563	-3.920206	-1.936528				

С	0.151863	-2.130958	-0.786895
С	0.106313	-2.529765	0.688345
С	0.449513	-3.774653	1.212122
Н	0.845638	-4.560289	0.567604
С	0.241105	-4.016959	2.568022
Н	0.502033	-4.988503	2.992850
С	-0.334659	-3.031489	3.368990
Н	-0.528735	-3.230832	4.425004
С	-0.655488	-1.786924	2.831517
Н	-1.097805	-1.026966	3.475861
С	-0.399741	-1.512653	1.489722
С	1.626933	-2.264035	-1.306215
С	1.964357	-1.663590	-2.701428
С	-0.804730	-3.014514	-1.693563
С	-2.050381	-3.658966	-1.009209
С	3.955004	3.931070	-2.105088
С	2.792837	2.698527	-3.712277
С	2.935431	4.878453	-2.714062
Н	4.967387	4.111663	-2.514012
Н	4.005747	3.985768	-1.007693
С	2.650445	4.189469	-4.051707
Н	1.820013	2.202715	-3.575089
Н	3.352096	2.145103	-4.483426
Н	2.035538	4.906703	-2.079356
Н	3.311411	5.904762	-2.823559
Н	1.660791	4.430171	-4.463991
Н	3.400145	4.490311	-4.799126
0	3.500119	2.636239	-2.471348
С	5.943455	-1.570856	-0.984008
С	5.641486	-1.307364	1.248668
С	5.498581	-2.961826	-0.499522
Н	7.044401	-1.507435	-1.064554
Н	5.510582	-1.280780	-1.950944
С	5.178761	-2.743482	0.995675
Н	5.044441	-0.770627	1.998392
Н	6.703590	-1.275816	1.558340
Н	4.610829	-3.304084	-1.045000
Н	6.291889	-3.705963	-0.654347
Н	4.097593	-2.831933	1.173016
Н	5.686727	-3.460978	1.654266
0	5.489593	-0.654679	-0.000711

Compound analogue to the reported one by *Matsukawa et. al. (JACS, 2002)*

 (K^+_2thf)

E(scf) = -4468.23668582 a.u.

К	0.117274	1.997049	-1.399936
Ρ	-0.496609	-1.199499	-1.446013
0	-0.512759	-0.280024	-2.647799
0	1.085202	-0.339962	-0.831747
0	-1.087878	-0.607135	0.065140
F	2.276395	0.627398	1.197518
F	1.305726	-1.238189	1.748091
F	3.401658	-0.714855	3.174562
F	4.697453	-0.508890	1.476625
F	3.806179	-2.419085	1.931069
С	2.141747	-1.084315	-0.437152
С	1.783613	-2.559408	-0.654289
С	2.614986	-3.655182	-0.431269
Н	3.622940	-3.520413	-0.046716
С	2.153662	-4.937678	-0.715104
Н	2.804243	-5.796515	-0.537781
С	0.868997	-5.122130	-1.219203
Н	0.501319	-6.127668	-1.433481
С	0.047356	-4.022736	-1.450877
Н	-0.961059	-4.185605	-1.827795
С	0.505150	-2.729122	-1.185524
С	2.349386	-0.721777	1.084172
С	3.600681	-1.107590	1.920002
С	3.341931	-0.774438	-1.389171
F	4.450243	-1.444616	-0.996450
F	3.010062	-1.209914	-2.613170
С	3.799500	0.694520	-1.601546
F	4.257338	1.241373	-0.483267
F	4.778565	0.710882	-2.495486
F	2.817064	1.469492	-2.067546
F	-2.940146	1.026036	-0.907266
F	-4.476570	0.403619	0.500677
F	-1.430270	1.938084	1.230499
F	-3.365983	2.813083	0.896425
F	-3.082844	1.467193	2.540226
F	-1.628048	-0.695054	2.640332
F	-3.679823	-1.371470	2.344524
F	-0.775234	-3.100928	1.459593
F	-2.831143	-3.742420	1.466137
F	-1.877660	-3.171192	3.305323
С	-2.407554	-0.836734	0.410882

С	-3.045270	-1.740954	-0.636843
С	-4.360206	-2.213591	-0.647611
Н	-5.033767	-2.019875	0.187171
С	-4.794624	-2.937547	-1.751204
Н	-5.816319	-3.321687	-1.778769
С	-3.934718	-3.157087	-2.833809
Н	-4.295440	-3.701410	-3.709629
С	-2.628716	-2.679817	-2.803668
Н	-1.963994	-2.835653	-3.656934
С	-2.165748	-1.993977	-1.676174
С	-3.153235	0.546587	0.337531
С	-2.738321	1.702621	1.289288
С	-2.426349	-1.425799	1.846259
С	-1.960325	-2.900144	2.007354
С	2.771083	4.112784	0.218916
С	1.146135	3.533058	1.801843
С	3.495613	3.799617	1.519359
Η	2.751794	5.202138	0.023656
Η	3.203033	3.612841	-0.657995
С	2.385189	4.037060	2.542900
Η	0.932602	2.480333	2.037348
Η	0.244636	4.127167	2.020924
Н	3.810478	2.746546	1.528534
Н	4.381333	4.429974	1.677436
Н	2.545906	3.505910	3.490702
Н	2.295317	5.111486	2.768048
0	1.445389	3.633228	0.406749
С	-0.983475	5.403203	-1.032244
С	-2.764877	4.283362	-1.999242
С	-2.193164	5.774007	-0.186725
Н	-0.757555	6.195656	-1.772852
Н	-0.073724	5.182592	-0.457105
С	-3.351354	5.408537	-1.123576
Н	-3.207552	3.301428	-1.784419
Н	-2.897261	4.492280	-3.074367
Н	-2.215947	5.151235	0.719650
Н	-2.199515	6.829337	0.119272
Н	-4.248542	5.085307	-0.579246
Н	-3.632750	6.273349	-1.742802
0	-1.376013	4.210503	-1.689746

¹H NMR (CDCl₃) of O-equatorial phosphorane **3**

¹⁹F NMR (CDCl₃) of O-equatorial phosphorane **3**

³¹P NMR (CDCl₃) of O-equatorial phosphorane **3**

¹³C NMR (CDCl₃) of O-equatorial phosphorane **3**

¹H NMR (CDCl₃) of O-apical phosphorane 4

¹⁹F NMR (CDCl₃) of O-apical phosphorane 4

³¹P NMR (CDCl₃) of O-apical phosphorane 4

 13 C NMR (CDCl₃) of O-apical phosphorane 4

¹H NMR (CD₃CN) of O-fac **5B**

¹⁹F NMR (CD₃CN) of O-fac 5B

³¹P NMR (CD₃CN) of O-fac **5B**

¹³C NMR (CD₃CN) of O-fac **5B**

¹H NMR (CD₃CN) of O-mer **5D**

¹⁹F NMR (CD₃CN) of O-mer **5D**

³¹P NMR (CD₃CN) of O-mer **5D**

¹³C NMR (CD₃CN) of O-mer **5D**

¹H NMR (CDCl₃) of phosphorane 8

¹⁹F NMR (CDCl₃) of phosphorane 8

