S1

# Heterolytic Bond Activation at Gold: Evidence for Gold(III) H-B, H-Si Complexes, H-H and H-C Cleavage

Luca Rocchigiani,<sup>a\*</sup> Peter H. M. Budzelaar,<sup>b\*</sup> Manfred Bochmann<sup>a\*</sup>

# Supporting Information

## 1. Experimental.

When required, manipulations were performed using standard Schlenk techniques under dry argon or using a nitrogen-filled MBraun Unilab glovebox equipped with a high capacity recirculator (<1.0 ppm O<sub>2</sub> and H<sub>2</sub>O). Argon was purified by passing through columns of supported P<sub>2</sub>O<sub>5</sub> with moisture indicator and of activated 4 Å molecular sieves. Anhydrous solvents were freshly distilled from the appropriate drying agents and degassed. Triethylsilane (99%), pinacolborane (97%), 1,4cyclohexadiene (97%), diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (95%), 1benzyl-1,4-dihydronicotinamide (97%) and cycloheptatriene (95%) were obtained by Sigma Aldrich and dried, when necessary. CD<sub>2</sub>Cl<sub>2</sub> (Apollo Scientific), was freeze-pump-thaw degassed over CaH<sub>2</sub>, distilled and stored over activated 4Å molecular sieves. (C^N^C)AuC<sub>6</sub>F<sub>5</sub><sup>S1</sup> and [H(OEt<sub>2</sub>)<sub>2</sub>][H<sub>2</sub>N{B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>}<sup>2</sup>]<sup>S2</sup> were synthesized according to literature procedures.

Experiments with  $H_2$  were performed on a dedicated Schlenk line interfaced with a Parker Domnic Hunter hydrogen generator ( $H_2$  purity >99.9995%) at 1 atmosphere.

<sup>1</sup>H, <sup>1</sup>H{<sup>19</sup>F} <sup>1</sup>H PGSE, <sup>19</sup>F, <sup>19</sup>F{<sup>1</sup>H}, <sup>13</sup>C{<sup>1</sup>H}, <sup>1</sup>H COSY, <sup>1</sup>H NOESY, <sup>1</sup>H, <sup>13</sup>C HMQC, and <sup>1</sup>H, <sup>13</sup>C HMBC NMR experiments have been recorded on a Bruker DPX–300 spectrometer equipped with a <sup>1</sup>H,BB smartprobe and Z-gradients. <sup>1</sup>H NMR spectra are referenced to the residual protons of the deuterated solvent. <sup>13</sup>C NMR spectra are referenced to the D-coupled <sup>13</sup>C signals of the solvent. <sup>19</sup>F NMR spectra are referenced to an external standard of CFCl<sub>3</sub>.

# **References:**

S1 D.-A. Roşca, D. A. Smith and M. Bochmann, *Chem. Commun.*, 2012, **48**, 7247–7249.

S2 S. J. Lancaster, A. Rodriguez, A. Lara-Sanchez, M. D. Hannant, D. A. Walker, D. L. Hughes and M. Bochmann, *Organometallics* 2002, **21**, 451 – 453

# 2. Reactions with HBPin

Reaction with HBPin in the presence of  $Et_2O$ :



**1·OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 5 mg of  $(C^N^C)AuC_6F_5$  and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a screw cap NMR tube in  $CD_2Cl_2$ . The NMR tube was then inserted into a cold bath at  $-78^{\circ}C$  and a solution of HBPin (3 equivalents in  $CD_2Cl_2$ ) was injected through the septum of the NMR tube by a micrometric syringe. The solution was quickly shaken and inserted into the pre-cooled NMR probe and analyzed at  $-60^{\circ}C$ . Quantitative conversion of **1·OEt**<sub>2</sub> into **2** was observed upon warming the sample up to  $-20^{\circ}C$  for 30 minutes.

**Reaction with HBPin under base-free conditions:** 



**1-OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 7.5 mg of (C^N^C)AuC<sub>6</sub>F<sub>5</sub> and 1 equivalent of [H(OEt<sub>2</sub>)<sub>2</sub>][H<sub>2</sub>N(B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>)<sub>2</sub>] within a J-Young NMR tube in C<sub>6</sub>D<sub>5</sub>Cl. The tube was then dried under vacuum to remove any trace of Et<sub>2</sub>O and redissolved in CD<sub>2</sub>Cl<sub>2</sub>. The resultant solution was transferred into a screw-cap NMR tube and inserted in a cold bath at -78°C. A solution containing 1 molar equivalents of HBPin was injected through the septum and the sample was quickly shaken before inserting the tube in the precooled NMR probe at -70°C. The first <sup>1</sup>H NMR spectrum revealed the formation of a mixture of **3** (80%) and **2** (20%). Data for **3**: <sup>1</sup>H NMR (300.13 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 203 K, *J* values in Hz): 8.35 (t, <sup>3</sup>*J*<sub>HH</sub>=8.1, 1H, H1), 8.06 (br d, 3H, H2+H5'), 7.93 (d, <sup>3</sup>*J*<sub>HH</sub>=8.1, 1H, H2'), 7.70 (d, partially overlapped with **2**, H5), 7.48 (d, partially overlapped with **2**, H6), 6.49 (s, 1H, H8), 5.62 (br s, NH<sub>2</sub>), 1.27 (s, 9H, CMe<sub>3</sub>), 1.12 (s, 9H, CMe<sub>3</sub>'), 1.08 ppm (s, 12H, 10). <sup>19</sup>F NMR (275.55 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 203 K, *J* values in Hz): -119.1 (br s, 2F, *o*-F C<sub>6</sub>F<sub>5</sub>), -130.9 (br s, *o*-F [H<sub>2</sub>N{B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]), -136.4 (br s, *o*-F [H<sub>2</sub>N{B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]), -150.9 (t, <sup>3</sup>*J*<sub>FF</sub>=21.0, 1F, *p*-F C<sub>6</sub>F<sub>5</sub>), -159.1 (br t *p*-F [H<sub>2</sub>N{B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]), -157.9 (m, 2F, *m*-F C<sub>6</sub>F<sub>5</sub>), -164.7 ppm (br s, *m*-F [H<sub>2</sub>N{B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>])).



**Figure S1**. Evolution of the <sup>1</sup>H NMR spectrum of  $1 \cdot OEt_2$  (CD<sub>2</sub>Cl<sub>2</sub>, 213K) upon the addition of 3 equivalents of HBPin and warming up to -20 °C.



**Figure S2**. <sup>1</sup>H NMR spectrum of **3** (CD<sub>2</sub>Cl<sub>2</sub>, 203K); red trace denotes traces of **2**.

S3



Figure S3. A section of the <sup>1</sup>H NOESY NMR spectrum of 5 (CD<sub>2</sub>Cl<sub>2</sub>, 203K); red trace denotes traces of 2.



1.OEt<sub>2</sub> was generated at room temperature in the glovebox by reacting 5 mg of (C^N^C)AuC<sub>6</sub>F<sub>5</sub> and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a screw cap NMR tube in  $CD_2Cl_2$ . The NMR tube was then inserted into a cold bath at  $-78^{\circ}$ C and a solution of HSiEt<sub>3</sub> in CD<sub>2</sub>Cl<sub>2</sub> was injected through the septum of the NMR tube by a micrometric syringe. The solution was quickly shaken and inserted into the pre-cooled NMR probe and analyzed. The experiment has been performed under different experimental conditions: when 8 molar equivalents of HSiEt<sub>3</sub> are used at  $-30^{\circ}$ C, 2 and 5 were obtained in a molar 2/5 ratio >95/5; when the amount of silane was decreased to 2 equivalents and the temperature lowered to -60°C, the 2/5 ratio amounted to 85/15. Due to the poor signal to noise ratio, <sup>13</sup>C NMR data for **5** are obtained indirectly through HMBC and HMQC experiments. Data for 3: <sup>1</sup>H NMR (300.13 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 213 K, J values in Hz): δ 8.13 (t,  ${}^{3}J_{HH}=7.9$ , 1H, H1), 8.00 (d,  ${}^{3}J_{HH}=7.9$ , 1H, H1), 7.79 (d, partially overlapped with 2, H5), 7.61 (d, partially overlapped with 2, H2'), 7.52 (AB system, 4H, H5'+H6'), 7.35 (dd,  ${}^{3}J_{HH}=8.1$ , <sup>4</sup>J<sub>HH</sub>=2.0, 1H, H6), 6.96 (dd, <sup>4</sup>J<sub>HH</sub>=5.0, <sup>4</sup>J<sub>HH</sub>=1.7, 1H, H8), 1.33 (s, 9H, <sup>t</sup>Bu'), 1.16 (s, 9H, <sup>t</sup>Bu), 0.20 ppm (ps q,  ${}^{4}J_{HH}$ =5.0,  ${}^{4}J_{HE}$ =5.7, 1H, Au–H).  ${}^{13}C{}^{1}H$  NMR (300.13 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 213 K): 170.5 (s, C9), 167.1 (s, C3), 162.5 (s, C3'), 154.1 (s, C7), 152.3 (s, C7'), 145.0 (s, C4), 141.6 (s, C1), 141.5 (s, C4'), 130.6 (s, C8), 129.3 (s, C5' or C6'), 125.8 (s, C5), 125.1 (s, C6' or C5'), 124.3 (s, C6), 124.0 (s, C2'), 119.3 (s, C2), 35.0 (s, CMe<sub>3</sub> + CMe<sub>3</sub>'), 31.3 (s, CMe<sub>3</sub>'), 30.7 ppm (s, CMe<sub>3</sub>). <sup>19</sup>F NMR (275.55 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 213 K, J values in Hz): -120.2 (m, 2F, o-F C<sub>6</sub>F<sub>5</sub>), -159.7 (t,  ${}^{3}J_{\text{FF}}=20.7, 1\text{F}, p-\text{F}C_{6}\text{F}_{5}), -162.7 \text{ ppm (m, 2F, }m-\text{F}C_{6}\text{F}_{5}).$ 

Reaction with HSiEt<sub>3</sub> under base-free conditions:



**1**•**OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 7.5 mg of (C^N^C)AuC<sub>6</sub>F<sub>5</sub> and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a J-Young NMR tube in C<sub>6</sub>D<sub>5</sub>Cl. The tube was then dried under vacuum to remove any trace of Et<sub>2</sub>O and the residue was dissolved in CD<sub>2</sub>Cl<sub>2</sub>. The resultant solution was transferred into a screw-cap NMR tube and inserted into a cold bath at -78 °C. A solution containing 2 molar equivalents of HSiEt<sub>3</sub> was injected through the septum. The sample was quickly shaken before inserting the tube into the precooled NMR probe at -60 °C.

Data for 4: <sup>1</sup>H NMR (300.13 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 203 K, *J* values in Hz): 8.33 (t, <sup>3</sup>*J*<sub>HH</sub>=8.1, 1H, H1), 8.07 (d, <sup>3</sup>*J*<sub>HH</sub>=8.1, 1H, H1), 7.90 (br m, 3H, H5'+H2'), 7.74 (br m, 3H, H6'+H5), 7.49 (br d, 1H, H6), 6.63 (s, 1H, H8), 5.62 (br s, 2H, NH<sub>2</sub>), 1.32 (s, 9H, CMe<sub>3</sub>'), 1.26 (br s, 1H, Au–*H*–Si), 1.13 (s, 9H, CMe<sub>3</sub>), 0.85 (m, partially overlapped with HSiEt<sub>3</sub>, H11), 0.85 ppm (br m, 6H, H10). <sup>13</sup>C{<sup>1</sup>H} NMR (300.13 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 203 K): 161.1 (s, C3), 159.2 (s, C3'), 156.8 (s, C7), 156.2 (s, C7'), 150.6 (s, C9), 147.4 (br d, <sup>1</sup>*J*<sub>CF</sub>=234.5, *o*–C [H<sub>2</sub>N{B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]), 144.7 (s, C1), 139.5 (s, C4), 138.8 (br d, <sup>1</sup>*J*<sub>CF</sub>=245.5, *p*–C [H<sub>2</sub>N{B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]), 136.4 (br d, <sup>1</sup>*J*<sub>CF</sub>=245.5, *p*–C [H<sub>2</sub>N{B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]), 134.5 (s, C4'), 130.6 (s, C8), 129.7 (s, C5'), 127.8 (s, C6'), 127.4 (s, C6), 126.2 (s, C2'), 120.2 (s, C2), 35.7 (s, CMe<sub>3</sub>), 35.4 (s, CMe<sub>3</sub>'), 30.8 (s, CMe<sub>3</sub>'), 30.5 (s, CMe<sub>3</sub>), 6.96 (s, C11), 2.0 ppm (s, C10).



**Figure S4.** A section of the <sup>1</sup>H NMR spectrum obtained after mixing  $1 \cdot OEt_2$  and HSiEt<sub>3</sub> (CD<sub>2</sub>Cl<sub>2</sub>, 213K); \* denote traces of reduction products.



**Figure S5.** A section of the <sup>1</sup>H NMR spectrum obtained after mixing **1**•**OEt**<sub>2</sub> and HSiEt<sub>3</sub> (CD<sub>2</sub>Cl<sub>2</sub>, 213K); \* denote traces of reduction products.



**Figure S6.** Sections of the <sup>1</sup>H, <sup>1</sup>H{<sup>19</sup>F}, <sup>19</sup>F, <sup>19</sup>F{<sup>1</sup>H} and <sup>1</sup>H COSY NMR spectra obtained after mixing **1** and HSiEt<sub>3</sub> (CD<sub>2</sub>Cl<sub>2</sub>, 213K) showing the scalar coupling pattern of the hydride signal in complex **5**.



**Figure S7.** <sup>1</sup>H NMR spectrum obtained after mixing **1** and HSiEt<sub>3</sub> (CD<sub>2</sub>Cl<sub>2</sub>, 203K); red signals correspond to traces of hydride **2**, blue signals are relative to unreacted (C^N^C)AuC<sub>6</sub>F<sub>5</sub>. \* denotes free HSiEt<sub>3</sub>.



**Figure S8.** A section of the <sup>1</sup>H NOESY NMR spectrum obtained after mixing **1** and HSiEt<sub>3</sub> (CD<sub>2</sub>Cl<sub>2</sub>, 203K) showing the presence of chemical exchange between free and bound HSiEt<sub>3</sub>.



**Figure S9**. Evolution of the <sup>1</sup>H NMR spectrum of **4** (CD<sub>2</sub>Cl<sub>2</sub>, 203K) upon the addition of 3 equivalents of 2butyne. The boxes highlight spectral change for the 5', 6' and H8 regions.



**Figure S10**. Evolution of the <sup>1</sup>H NMR spectrum of **4** (CD<sub>2</sub>Cl<sub>2</sub>, 203K) upon the addition of 3 equivalents of 2-butyne.

#### 4. Reactions with H<sub>2</sub>

Reaction with  $H_2$  in the presence of  $Et_2O$ :



**1.OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 7.5 mg of (C^N^C)AuC<sub>6</sub>F<sub>5</sub> and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a J-Young NMR tube in CD<sub>2</sub>Cl<sub>2</sub>. Successively, the sample was interfaced to the vacuum line, freeze-pump-thaw degassed 3 times and exposed to H<sub>2</sub> (1 atm) for 1 minute at 77 K. The frozen solution was allowed to melt at 195 K and transferred into the pre-cooled NMR probe at 223 K.

**Reaction with H\_2 under base-free conditions:** 



**1.OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 7.5 mg of (C^N^C)AuC<sub>6</sub>F<sub>5</sub> and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a J-Young NMR tube in C<sub>6</sub>D<sub>5</sub>Cl. The tube was then dried under vacuum to remove any trace of Et<sub>2</sub>O and redissolved in CD<sub>2</sub>Cl<sub>2</sub>. Successively, the sample was interfaced to the vacuum line, freeze-pump-thaw degassed 3 times and exposed to H<sub>2</sub> (1 atm) for 1 minute at 77 K. The frozen solution was allowed to melt at 195 K and transferred into the pre-cooled NMR probe at 223 K. No reaction was observed over the course of several hours, so the sample was warmed up to room temperature and left reacting for 1 week.



Figure S11. Evolution of three sections of the <sup>1</sup>H NMR of  $1 \cdot OEt_2$  (a) upon exposure to H<sub>2</sub> at -20 °C after 2

hours (b) and 4 hours (c).



**Figure S12**. A section of the <sup>19</sup>F NMR spectrum obtained during the reaction of  $1 \cdot OEt_2$  with H<sub>2</sub> (CD<sub>2</sub>Cl<sub>2</sub>, 253K). Asterisk denote inert minor impurity in H<sub>2</sub>N[B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>2</sub><sup>-</sup>.



Figure S13. Kinetic profile of the reaction between  $1 \cdot OEt_2$  and  $H_2$  in CD2Cl2 at -20 °C.



**Figure S14**. Evolution of the <sup>1</sup>H NMR spectrum of the mixture obtained after reacting  $1 \cdot OEt_2$  and  $H_2$  in  $CD_2Cl_2$  at -20 °C by exposing the sample to room temperature (5 x 2 minutes); green circles denote protonated 2,6-biarylpyridine ligand.



**Figure S15**. A section of the <sup>1</sup>H NOESY NMR spectrum of the mixture obtained after reacting  $1 \cdot OEt_2$  and H<sub>2</sub> in CD<sub>2</sub>Cl<sub>2</sub> at -20 °C by exposing the sample to room temperature (5 x 2 minutes).



Figure S16. <sup>1</sup>H NMR spectrum obtained after the reaction between 1 and H<sub>2</sub> at room temperature.

# 5. Reactions with Hantzsch ester *Reaction in the presence of Et<sub>2</sub>O:*



**1**•OEt<sub>2</sub> was generated at room temperature in the glovebox by reacting 5 mg of  $(C^N^C)AuC_6F_5$  and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a screw cap NMR tube in CD<sub>2</sub>Cl<sub>2</sub>. The NMR tube was then inserted into a cold bath at  $-78^{\circ}C$  and a solution of diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (2 equivalents in CD<sub>2</sub>Cl<sub>2</sub>) was injected through the septum of the NMR tube by a micrometric syringe. The solution was quickly shaken and inserted into the pre-cooled NMR probe and analyzed at -60°C. Quantitative conversion of **1** into **2** was observed instantaneously.

#### **Reaction under base-free conditions:**



**1.OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 5 mg of  $(C^N^C)AuC_6F_5$  and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a J-Young NMR tube in  $C_6D_5Cl$ . The tube was then dried under vacuum to remove any trace of  $Et_2O$  and redissolved in  $CD_2Cl_2$ . The resultant solution was transferred into a screw-cap NMR tube and inserted in a cold bath at -78°C. A solution containing 2 molar equivalents 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate was injected through the septum and the sample was quickly shaken before inserting the tube in the precooled NMR probe at -70°C.



Figure S17. <sup>1</sup>H NMR spectrum obtained after the reaction between  $1 \cdot OEt_2$  and 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate at  $-50^{\circ}C$  (CD<sub>2</sub>Cl<sub>2</sub>).

#### 6. Reaction with 1,4-Dihydro-N-benzylnicotinamide



**1-OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 5 mg of (C^N^C)AuC<sub>6</sub>F<sub>5</sub> and 1 equivalent of [H(OEt<sub>2</sub>)<sub>2</sub>][H<sub>2</sub>N(B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>)<sub>2</sub>] within a screw cap NMR tube in CD<sub>2</sub>Cl<sub>2</sub>. The NMR tube was then inserted into a cold bath at  $-78^{\circ}$ C and a solution of diethyl 1,4-dihydro-N-benzylnicotinamide (1 equivalent in CD<sub>2</sub>Cl<sub>2</sub>) was injected through the septum of the NMR tube by a micrometric syringe. The solution was quickly shaken and inserted into the pre-cooled NMR probe and analyzed at -30°C. Data for 7: <sup>1</sup>H NMR (300.13 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 243 K, *J* values in Hz): 8.24 (t, <sup>3</sup>*J*<sub>HH</sub>=7.9, 1H, H1), 8.07 (d, <sup>3</sup>*J*<sub>HH</sub>=7.9, 1H, H2), 7.72 (d, <sup>3</sup>*J*<sub>HH</sub>=8.5, 1H, H5), 7.60 (t, <sup>3</sup>*J*<sub>HH</sub>=7.9, 1H, H2<sup>2</sup>), 7.52-7.38 (m, 8H, H5<sup>2</sup>+H6+H6+*m*-Ph+*p*-Ph), 7.22 (d, <sup>3</sup>*J*<sub>HH</sub>=7.2, 2H, *o*-Ph), 6.71 (s, 1H, H13), 6.51 (s, 1H, H8), 5.77 (d, 1H, <sup>3</sup>*J*<sub>HH</sub>=8.7,

H15), 5.69 (br s, 2H, NH<sub>2</sub> AB<sub>2</sub><sup>-</sup>), 5.08 (br s, 2H, H10), 4.86 (br d, 1H, H14), 4.29 (s, 2H, H16), 2.66 (s, 2H, N–*CH*<sub>2</sub>), 1.30 (s, 9H, CMe<sub>3</sub><sup>-</sup>), 1.15 ppm (s, overlapped with Et<sub>2</sub>O, CMe<sub>3</sub>).



**Figure S18.** Evolution of the <sup>1</sup>H NMR spectrum of **7** (a, CD<sub>2</sub>Cl<sub>2</sub>, 243K) 30 minutes after mixing **1** and 1,4dihydro-N-benzylnicotinamide (b).

## 7. Reaction with 1,4-cyclohexadiene



**1**•**OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 5 mg of  $(C^N^C)AuC_6F_5$  and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a J-Young NMR tube in  $CD_2Cl_2$  and mixed with 8 equivalents of 1,4-cyclohexadiene. The progress of the reaction was monitored by <sup>1</sup>H NMR over the period of two weeks.



Figure S19. Kinetic profile for the reaction between 1 and 1,4-cyclohexadiene in CD<sub>2</sub>Cl<sub>2</sub> at RT.



Figure S20. <sup>1</sup>H NMR spectrum obtained after 14 days from the mixing of  $1 \cdot OEt_2$  and 1,4-cyclohexadiene in  $CD_2Cl_2$  at RT.

#### 8. Reaction with cycloheptatriene

**1**•**OEt**<sub>2</sub> was generated at room temperature in the glovebox by reacting 7.5 mg of (C^N^C)AuC<sub>6</sub>F<sub>5</sub> and 1 equivalent of  $[H(OEt_2)_2][H_2N(B(C_6F_5)_3)_2]$  within a Screw cap NMR tube in CD<sub>2</sub>Cl<sub>2</sub>. Successively, the sample was inserted in a cold bath at -78°C and 2 equivalents of cycloheptatriene were injected by using a microsyringe. The sample was then inserted in the pre-cooled NMR probe at -50 °C and the reaction was monitored by gradually increasing the temperature of the NMR probe.



**Figure S21.** Thermal evolution of the <sup>1</sup>H NMR spectrum of  $1 \cdot OEt_2$  upon the reaction with 2 equivalents of cycloheptatriene in  $CD_2Cl_2$ .



cycloheptatriene in  $CD_2Cl_2$  (T=25°C); squares denote unidentified Au(III) side products, asterisk denote inert minor impurity of  $AB_2^-$ .

# 9. Computational.

Computational studies were performed for model systems lacking the *t*Bu substituents at the Au-bound phenyl rings. Me<sub>3</sub>SiH was used as a model for Et<sub>3</sub>SiH. All calculations were done using Gaussian 09.<sup>S3</sup> Structures were optimized at the B3LYP<sup>S4-S6</sup>/def2-SVP<sup>S7</sup> level (with a corresponding ECP at Au<sup>S8</sup>) for the gas phase. The nature of stationary points was checked by vibrational analyses. Improved single-point energies were obtained with M06<sup>S9</sup>/cc-pVTZ<sup>S10-S13</sup> (and using the corresponding ECP at Au<sup>S14,S15</sup>) including a PCM(CH<sub>2</sub>Cl<sub>2</sub>) solvent correction.<sup>S16-S18</sup> These were combined with the thermal corrections (enthalpy and entropy) at 250 K, 1 bar, obtained from the B3LYP/def2-SVP vibrational analyses. Entropy contributions to the free energy were scaled by a factor of 0.67 to account for reduced freedom in solution.<sup>S19,S20</sup>

| Name                   | Formula        | Hcorr<br>250 K | TScorr<br>250 K | Eelec       | G           | on scale    | Grel<br>kcal/mol |
|------------------------|----------------|----------------|-----------------|-------------|-------------|-------------|------------------|
| LAuAr_+                | C23H12AuF5N    | 0.30953        | 0.06361         | -1572.76947 | -1572.50256 | -1572.50256 | (0)              |
| LAuAr_OMe2_+           | C25H18AuF5NO   | 0.39624        | 0.07072         | -1727.77613 | -1727.42728 | -1572.51668 | -8.86            |
| LAuAr_H_transC         | C23H13AuF5N    | 0.31696        | 0.06463         | -1573.53618 | -1573.26252 | -1573.26252 | (0)              |
| LAuAr_H_cisC           | C23H13AuF5N    | 0.31729        | 0.06359         | -1573.54762 | -1573.27293 | -1573.27293 | -6.53            |
| dimer1_HtransC+        | C46H25Au2F10N2 | 0.62781        | 0.10693         | -3146.35102 | -3145.79485 | -1573.29229 | -18.68           |
| dimer2_HtransC+        | C46H25Au2F10N2 | 0.62809        | 0.10591         | -3146.35174 | -3145.79461 | -1573.29204 | -18.53           |
| dimer1_HtransN+        | C46H25Au2F10N2 | 0.62838        | 0.10636         | -3146.31358 | -3145.75646 | -1573.25390 | 5.41             |
| dimer2_HtransN+        | C46H25Au2F10N2 | 0.62833        | 0.10763         | -3146.31314 | -3145.75693 | -1573.25437 | 5.12             |
| H2                     |                |                |                 |             |             |             |                  |
| H2                     | H2             | 0.01263        | 0.01259         | -1.17079    | -1.16660    |             |                  |
| OMe2                   | C2H6O          | 0.08336        | 0.02415         | -154.97778  | -154.91060  |             |                  |
| OMe2_H+                | C2H7O          | 0.09709        | 0.02542         | -155.37210  | -155.29204  | -310.20264  |                  |
| OMe2_2_H+              | C4H13O2        | 0.17968        | 0.03687         | -310.37865  | -310.22367  | -310.22367  | -13.20           |
| Au(+) + H2 + OMe2      |                |                |                 |             |             | -1728.57977 | (0)              |
| LAuAr_H2_+             | C23H14AuF5N    | 0.32572        | 0.06408         | -1573.94205 | -1573.65926 | -1728.56986 | 6.21             |
| LAuAr_H2_+OMe2_transTS | C25H20AuF5NO   | 0.41052        | 0.07395         | -1728.92525 | -1728.56428 | -1728.56428 | 9.72             |
| LAuArH_HOMe2_+         | C25H20AuF5NO   | 0.41446        | 0.07344         | -1728.92827 | -1728.56301 | -1728.56301 | 10.51            |
| AuH + HOMe2(+)         |                |                |                 |             |             | -1728.55456 | 15.82            |
| Au(+) + H2 + 2 OMe2    |                |                |                 |             |             | -1883.49037 | (0)              |
| LAuAr_H2_+             | C23H14AuF5N    | 0.32572        | 0.06408         | -1573.94205 | -1573.65926 | -1883.48047 | 6.21             |
| LAuAr_H2_+OMe2_transTS | C25H20AuF5NO   | 0.41052        | 0.07395         | -1728.92525 | -1728.56428 | -1883.47488 | 9.72             |
| LAuArH_HOMe2_+         | C25H20AuF5NO   | 0.41446        | 0.07344         | -1728.92827 | -1728.56301 | -1883.47362 | 10.51            |
| AuH + H[OMe2]2(+)      |                |                |                 |             |             | -1883.48620 | 2.62             |
| HSiMe3                 |                |                |                 |             |             |             |                  |
| HSiMe3                 | C3H10Si        | 0.12410        | 0.03051         | -409.79628  | -409.69262  |             |                  |
| SiMe3_+                | C3H9Si         | 0.11543        | 0.03136         | -408.99189  | -408.89748  |             |                  |
| SiMe3_+_OMe2           | C5H15OSi       | 0.20326        | 0.03865         | -564.03202  | -563.85466  |             |                  |
| Au(+) + HSiMe3         |                |                |                 |             |             | -1982.19519 |                  |
| AuH + Me3Si(+)         |                |                |                 |             |             | -1982.16000 | 22.08            |
| Au(+) + HSiMe3 + OMe2  |                |                |                 |             |             | -2137.10579 | (0)              |
| LAuAr_HSiMe3_+         | C26H22AuF5NSi  | 0.43570        | 0.07670         | -1982.58791 | -1982.20360 | -2137.11421 | -5.28            |

Table S1. Total and relative energies for species studied.<sup>a</sup>

| Name                       | Formula        | <i>Н</i> согг<br>250 К | TScorr<br>250 K | Eelec       | G           | on scale    | Grel<br>kcal/mol |
|----------------------------|----------------|------------------------|-----------------|-------------|-------------|-------------|------------------|
| LAuAr_HSiMe3_+OMe2_transTS | C28H28AuF5NOSi | 0.52117                | 0.08304         | -2137.57270 | -2137.10718 | -2137.10718 | -0.87            |
| AuH + Me3SiOMe2(+)         |                |                        |                 |             |             | -2137.11718 | -7.15            |
| HBPin                      |                |                        |                 |             |             |             |                  |
| HBPin                      | C6H13BO2       | 0.19684                | 0.03338         | -411.74078  | -411.56630  |             |                  |
| BPin+                      | C6H12BO2       | 0.18594                | 0.03369         | -410.86753  | -410.70417  |             |                  |
| BPin+_OMe2                 | C8H18BO3       | 0.27520                | 0.04241         | -565.97125  | -565.72447  |             |                  |
| Au(+) + HBPin              |                |                        |                 |             |             | -1984.06886 |                  |
| AuH + BPin(+)              |                |                        |                 |             |             | -1983.96669 | 64.11            |
| Au(+) + HBPin + OMe2       |                |                        |                 |             |             | -2138.97946 | (0)              |
| LAuAr_HBPin_+              | C29H25AuBF5NO2 | 0.50879                | 0.08088         | -1984.52461 | -1984.07001 | -2138.98062 | -0.72            |
| LAuAr_HBPinOMe2_+          | C31H31AuBF5NO3 | 0.59356                | 0.08604         | -2139.51810 | -2138.98219 | -2138.98219 | -1.71            |
| AuH + Me2OBPin(+)          |                |                        |                 |             |             | -2138.98699 | -4.72            |
| PyCar                      |                |                        |                 |             |             |             |                  |
| PyCarH                     | C11H15NO4      | 0.26520                | 0.04931         | -783.64280  | -783.41064  |             |                  |
| PyCar+                     | C11H14NO4      | 0.25568                | 0.04818         | -782.88613  | -782.66274  |             |                  |
| Au(+) + PyCarH             |                |                        |                 |             |             | -2355.91320 | (0)              |
| LAuAr_+_PyCar_TS           | C34H27AuF5N2O4 | 0.57195                | 0.09173         | -2356.41783 | -2355.90735 | -2355.90735 | 3.67             |
| AuH + PyCar(+)             |                |                        |                 |             |             | -2355.92526 | -7.57            |
| Ph3CH                      |                |                        |                 |             |             |             |                  |
| Ph3CH                      | C19H16         | 0.30230                | 0.04678         | -733.30709  | -733.03614  |             |                  |
| Ph3C+                      | C19H15         | 0.29160                | 0.04435         | -732.50741  | -732.24552  |             |                  |
| Au(+) + Ph3CH              |                |                        |                 |             |             | -2305.53870 |                  |
| AuH + Ph3C(+)              |                |                        |                 |             |             | -2305.50805 | 19.24            |
| CHDH                       |                |                        |                 |             |             |             |                  |
| CHDH                       | С6Н8           | 0.12616                | 0.02654         | -233.30295  | -233.19457  |             |                  |
| CHD+                       | C6H7           | 0.11467                | 0.02663         | -232.50622  | -232.40938  |             |                  |
| Au(+) + CHDH               |                |                        |                 |             |             | -1805.69713 | (0)              |
| LAuAr_+_CHDH_react         | C29H20AuF5N    | 0.43755                | 0.07880         | -1806.07574 | -1805.69098 | -1805.69098 | 3.86             |
| LAuAr_+_CHDH_TS            | C29H20AuF5N    | 0.43255                | 0.07293         | -1806.05498 | -1805.67128 | -1805.67128 | 16.22            |
| LAuArH_CHD+_prod           | C29H20AuF5N    | 0.43335                | 0.07670         | -1806.05418 | -1805.67222 | -1805.67222 | 15.63            |
| AuH + CHD(+)               |                |                        |                 |             |             | -1805.67190 | 15.83            |
| BnH                        |                |                        |                 |             |             |             |                  |
| BnH                        | C7H8           | 0.13288                | 0.03110         | -271.42979  | -271.31775  |             |                  |
| Bn+                        | C7H7           | 0.12209                | 0.02784         | -270.58824  | -270.48480  |             |                  |
| Au(+) + BnH                |                |                        |                 |             |             | -1843.82031 |                  |
| AuH +Bn(+)                 |                |                        |                 |             |             | -1843.74733 | 45.80            |

<sup>a</sup> Chosen reference values in bold. Free energies calculated as G = Eelec + Hcorr - 0.67 TScorr.

## References

S3. *Gaussian 09 B.01*: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F.

S20

- Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
- Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M.
- Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.
- Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morukuma, V. G.
- Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B.
- Foresman, J. V. Ortiz, J. Ciolowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009
- S4. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- S5. A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- S6. C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- S7. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- S8. D. Andrae, U. Haussermann, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta, 1990, 77, 123-
- 141.
- S9. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- S10. T. H. Dunning, J. Chem. Phys., 1989, 90, 1007-1023.
- S11. D. E. Woon and T. H. Dunning, J. Chem. Phys., 1993, 98, 1358-1371.
- S12. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. S. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L.
- Windus, J. Chem. Inf. Model., 2007, 47, 1045-1052.
- S13. D. Feller, J. Comput. Chem., 1996, 17, 1571-1586.
- S14. D. Figgen, G. Rauhut, M. Dolg and H. Stoll, Chem. Phys., 2005, 311, 227-244.
- S15. K. A. Peterson and C. Puzzarini, *Theor. Chem. Acc.*, 2005, **114**, 283-296.
- S16. S. Miertus and J. Tomasi, Chem. Phys., 1982, 65, 239-245.
- S17. S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117-129.