Supporting Information

for

Direct Access to 2-Aryl Substituted Pyrrolinium Salts for Carbon Centre Based Radicals *without* Pyrrolidine-2-Ylidene *alias* cyclic(Alkyl)(Amino)Carbenes (CAAC) as a Precursor

Debdeep Mandal,^a Sebastian Sobottka,^b Ramapada Dolai,^a Avijit Maiti,^a Debabrata Dhara,^a Pankaj Kalita,^c Ramakirushnan Suriya Narayanan,^a Vadapalli Chandrasekhar,^{*a,d} Biprajit Sarkar,^{*b} and Anukul Jana^{*a}

1.	Content	S1
2.	General considerations	S2
3.	Experimental details and analytical data	S4
4.	Molecular structures of 3^{Me} , 3^{Et} and 3^{tBu}	S8
5.	NMR Spectra	S9
6.	Cyclic voltammetry	S16
7.	EPR spectroelectrochemistry	S24
8.	UV-Vis-NIR-Spectroelectrochemistry	S33
9.	Computational Details	S38
10.	Crystallographic Tables	S59
11.	References	S64

 ^aTata Institute of Fundamental Research Hyderabad Gopanpally, Hyderabad-500107 Telangana, India
 E-mail: ajana@tifrh.res.in
 ^bInstitut für Chemie und Biochemie, Anorganische Chemie
 Freie Universität Berlin, Fabeckstraße 34–36,14195, Berlin Germany
 E-mail: biprajit.sarkar@fu-berlin.de
 ^cSchool of Chemical Sciences
 National Institute of Science Education and Research, HBNI Bhubaneswar-752050, India
 ^dDepartment of Chemistry

Indian Institute of Technology Kanpur

Kanpur-208016, India E-mail: vc@iitk.ac.in

General Considerations

All experiments were carried out under an argon atmosphere using standard Schlenk techniques or in a PL-HE-2GB Innovative Technology GloveBox. *n*Hexane, diethyl ether and THF were dried by PS-MD-5 Innovative Technology solvent purification system. Benzoyl chloride (synthesis grade) was purchased from SD fine chemicals. PCl₅ (97%) was purchased from AVRA. Isopropyl amine (\geq 99.5%), isopropylmagnesium chloride solution (2.0 M in THF), *p*-Toluoyl chloride (98%), and 4-*tert*butylbenzoyl chloride (98%) were purchased from Merck (Sigma-Aldrich). 4-Ethylbenzoyl chloride (\geq 98%) was purchased from Alpha-Aesar. All the chemicals were used without further purifications. Dichloromethane and acetonitrile were dried and distilled over CaH₂. Benzene-*d*₆ was dried and distilled over potassium under argon. Chloroform-*d*₁ and acetonitrile-*d*₃ were dried and distilled over CaH₂ under argon.

NMR spectroscopy

NMR spectra were recorded on a BrukerNanoBay 300 MHz NMR spectrometer. ¹H and ¹³C{¹H} NMR spectra were referenced to the peaks of residual protons of the deuterated solvent (¹H) or the deuterated solvent itself (¹³C{¹H}). ¹⁹F{¹H} NMR spectra were referenced to external tol-CF₃.

Crystallographic Details

Single crystal X-ray data of all the compounds were collected at 120 K on a Rigaku Xtalab Pro using graphite-monochromated Mo K α radiation (λ_{α} = 0.71069 Å). Data integration and reduction were processed with CrysAlis Pro software. The structure was solved by direct methods using ShelXT^{S1} and programs and refined by full matrix least-squares method based on F^2 using SHELXL^{S2} in the Olex-2^{S3} software. Hydrogens were fixed in their ideal geometries and their contributions included in the refinement. Crystal data and structure refinement of all these compounds are formulated in Tables S30-S34.

Electrochemistry

Cyclic voltammograms were recorded with a PAR VersaStat 4 potentiostat (Ametek) by working in anhydrous and degassed DMF (99.8 % extra dry, Acros Organics) or anhydrous and degassed acetonitrile ($H_2O \le 0.005\%$, puriss., Sigma Aldrich) distilled from P_2O_5 with 0.1 M NBu₄PF₆ (dried, > 99.0 %, electrochemical grade, Fluka) as electrolyte. Concentrations of the complexes were about 1×10^{-4} m. A three-electrode setup was used with a glassy carbon, gold or platinum working electrode, a coiled platinum wire as counter electrode, and a coiled silver wire as a pseudoreference electrode. The ferrocene/ferrocenium couple was used as internal reference.

UV/Vis/NIR spectroscopy and spectroelectrochemistry

UV/Vis/NIR spectra were recorded with an Avantes spectrometer consisting of a light source (AvaLight-DH-S-Bal), a UV/Vis detector (AvaSpec-ULS2048), and an NIR detector (AvaSpec-NIR256-TEC). Spectroelectrochemical measurements were carried out in an optically transparent thin-layer electrochemical (OTTLE) cell (CaF₂ windows) with a platinum-mesh or a gold-mesh working electrode, a platinum-mesh counter electrode, and a silver-foil pseudoreference electrode. The OTTLE cell with the gold working electrode was build analogous to the one with the platinum working electrode (100 mesh woven from 0.064 mm

diameter wire; 99.99% (metals basis)). Anhydrous and degassed DMF (99.8 % extra dry, Acros Organics) or anhydrous and degassed acetonitrile ($H_2O \le 0.005\%$, puriss., Sigma Aldrich) distilled from P_2O_5 with 0.1 M NBu₄PF₆ as electrolyte was used as the solvent.

Electron paramagnetic resonance spectroelectrochemistry

EPR spectra at X-band frequency (ca. 9.5 GHz) were obtained with a Magnettech MS-5000 bench top EPR spectrometer equipped with a rectangular TE 102 cavity. The measurements were carried out in synthetic quarz glass tubes. For EPR spectroelectrochemistry a three-electrode setup was employed using two teflon-coated platinum wires (0.005" bare, 0.008" coated) as working (or a teflon-coated gold wire (0.003" bare, 0.0055" coated) as working electrode) and counter electrode and a Teflon-coated silver wire (0.005" bare, 0.007" coated) as pseudoreference electrode.

Computational Details

The program package ORCA 4.0.1.2 was used for all DFT calculations.⁵⁴ Starting from the molecular structure obtained from Xray diffraction geometry optimizations were carried out using the PBEh-3c method as developed by Grimme and co-workers⁵⁵ and no symmetry restrictions were imposed during the optimization. Subsequent single-point calculations were performed on the optimized geometries using the B3LYP, TPSSh, PBE0 and M06L functionals. ⁵⁶ All calculations were run with empirical Van der Waals correction (D3).⁵⁷ The restricted and unrestricted DFT methods were employed for closed and open shell molecules respectively unless otherwise stated. Convergence criteria were set to default for geometry-optimization (OPT), and tight for SCF calculations (TIGHTSCF). Relativistic effects were included with the zeroth-order regular approximation (ZORA).⁵⁸ Triple- ζ – valence basis sets (TZVP-ZORA)⁵⁹ were employed for all atoms. Calculations were performed using resolution of the identity approximation^{\$10} with matching auxiliary basis sets^{\$11} for geometry optimizations and numerical frequency calculations and the RIJCOSX (combination of the resolution of the identity and chain of spheres algorithms) approximation for single point calculations using the B3LYP functional, where applicable.⁵¹⁰ Low-lying excitation energies were calculated with time-dependent DFT (TD-DFT). Solvent effects were taken into account with the conductor-like polarizable continuum model (CPCM).⁵¹² For all calculations. Spin densities were calculated according to the Löwdin population analysis.⁵¹³ The absence of imaginary frequency confirmed that the optimized geometries represent local minima. Spin densities and difference densities were visualized with the modified Avogadro 1.2.0 program with extended ORCA support.⁵¹⁴ Calculations of EPR parameters and spin density evaluations were carried out with the PBEO functional^{S15} and the IGLO-III basis set.^{S16} NPA charge analysis were performed with JANPA programme.^{S17}

Experimental Details and Analytical Data

Synthesis of 3^H. a) Benzoyl chloride, **1^H** (42.1g, 300.0 mmol) and triethylamine (30.3 g, 300.0 mmol) were taken in a 2-Lit round bottom flask which contain 1200 mL of DCM. The resultant mixture was kept in ice bath and isopropylamine (17.8 g, 300.0 mmol) was added drop wise into this ice-cooled reaction mixture for an over of 1hr period of time. On complete addition of isopropylamine, the ice bath was removed and the reaction mixture was stirred for overnight followed by reflux for 3hrs. Then the reaction mixture was extracted with 1 M aqueous HCl solution and with 1 M aqueous NaOH solution, sequentially followed by washed with brine solution. The resulting organic layer was passed through anhydrous Na₂SO₄. On evaporation of all volatiles followed by washing with cold diethyl ether white color crystalline solid was obtained as desired *N*-isopropylbenzamide.

Yield: 35.14 g (215 mmol, 72%)

¹**H NMR** (300 MHz, CDCl₃, 298 K): δ = 1.26 (d, 6.6 Hz, 6H, CH(CH₃)₂), 4.36–4.21 (m, 1H, CH(CH₃)₂), 5.97 (br, 1H, NH), 7.36–7.50 (m, 3H, *m*- and *p*-PhH), 7.73–7.78 (m, 2H, *o*-PhH) ppm.

b) At room temperature, PCl_5 (47.0 g, 225.7 mmol) was added portion-wise into a toluene suspension of *N*-isopropylbenzamide (30.50 g, 186.8 mmol in toluene 100 mL). The resultant turbid solution was stirred for 1h at room temperature followed by refluxed for 3hrs until a faint yellow clear solution was obtained. Then all the volatiles were distilled off under high vacuum and the residue was distilled at 90 °C in 0.1 Torr pressure that gave 28.83 g of *N*-isopropylbenzimidoyl chloride, **1^H** as a colorless oil. Yield: 28.83 g (159.2 mmol, 85%)

¹**H NMR** (300 MHz, CDCl₃, 298 K): δ = 1.29 (d, 6.3 Hz, 6H, NCH(CH₃)₂), 4.17 (sep, 6.3 Hz, 1H, NCH(CH₃)₂), 7.37–7.46 (m, 3H, *m*-and *p*-Ph*H*), 7.97–8.01 (m, 2H, *o*-Ph*H*) ppm.

c) Isopropyl magnesium bromide (2(M) in THF, 7.9 ml, 15.8 mmol) was added dropwise to a THF solution of chloroimine, $\mathbf{1}^{H}$ (2.88 g, 15.8 mmol in 100 ml THF) at 0 °C. On complete addition, the resultant deep yellow solution was stirred for 1h at room temperature followed by refluxed for 3hrs. After removal of all volatiles, the residue was quenched by water. The reaction mixture was then extracted with DCM and the organic layer was passed through anhydrous Na₂SO₄. The residue obtained on evaporation of all the volatiles was distilled at 100 °C at 0.1 Torr pressure to get pure imine, $\mathbf{2}^{H}$ as a colorless liquid.

Yield: 1.1g (36%, 5.81 mmol)

¹**H** NMR (300 MHz, CDCl₃, 298 K) δ = 0.98 (d, 6.6 Hz, 6H, CCH(CH₃)₂), 1.01 (d, 6.9 Hz, 6H, NCH(CH₃)₂), 2.68 (sep, 6.9 Hz, 1H, CCH(CH₃)₂), 3.22 (sep, 6.3 Hz, 1H, NCH(CH₃)₂), 6.95 (d, 2H, 7.2 Hz, *o*-PhH), 7.23–7.34 (m, 3H, *m*- and *p*-PhH) ppm.

d) *n*BuLi (1.6 m m solution in *n*hexane, 27.7 mL, 44.3 mmol) was added dropwise to a diethylether solution of **2**^H (8.0 g, 42.2 mmol in 200 mL dry diethyl ether) at -78 °C and during the addition time a color change from colorless to light yellow with slight turbidity was observed. After stirring the reaction mixture at -78 °C for 1h, isobutylene oxide (4 mL, 44.3 mmol) was added. The reaction mixture was allowed to reach room temperature in 1h and then stirring was continued for another 1h at room temperature. The reaction mixture again cooled down to -78 °C and triflic anhydride (7.60 mL, 44.3 mmol) was added to it dropwise at -78 °C. During addition of triflic anhydride, the formation of voluminous white precipitate was observed. On complete addition, the reaction mixture was allowed to reach room temperature in 2hrs and stirring was continued for another 1h at room temperature. The reaction mixture was filtered through a G4 sintered funnel and washed with diethyl ether in a three times (3 × 100 mL). On vacuum drying white solid was obtained as desired product **3^H**. Single crystals of compound **3^H**, suitable for single crystal XRD study were grown by diethyl ether vapor diffusion into concentrated acetonitrile solution of it at room temperature.

Yield : 9.0 g (22.8 mmol, 54%). **M. P.:** > 200 °C.

¹**H NMR** (300 MHz, CD₃CN, 298 K): δ = 1.23 (d, 6H, CH(CH₃)₂), 1.28 (s, 6H, CC(CH₃)₂), 1.69 (s, 6H, NC(CH₃)₂), 2.29 (s, 1H, CH₂), 4.28 (sep, 1H, CHMe₂), 7.38–7.48 (m, 2H, Ph-CH), 7.56–7.74 (m, 3H, Ph-CH) ppm.

¹³C{¹H} NMR (75.4 MHz, CD₃CN, 298 K): δ = 22.93 (2C, CH(CH₃)₂), 26.94 (2C, CC(CH₃)₂), 27.69(2C, NC(CH₃)₂), 48.77 (CH₂), 51.35 (CMe₂), 54.81 (CHMe₂), 79.64 (NCMe₂), 122.14 (¹J_{C-F} = 320.45 Hz, CF₃SO₃⁻), 127.44 (HCCCH), 127.86 (2C, Ph-CH), 129.30 (2C, Ph-CH), 132.34 (1C, Ph-CH), 194.70 (1C, NCCMe₂) ppm.

¹⁹ $F{^{1}H}$ NMR (169.2 MHz, CD₃CN, 298 K): $\delta = -79.26$ ppm.

HRMS: Calcd (m/z) for $[C_{17}H_{26}N]^+$: 244.2060; found: 244.2062.

Synthesis of 3^{Me} . The amide, chloroimine, 1^{Me} and imine, 2^{Me} were prepared from the corresponding reactants following the similar synthetic procedure as discussed for the synthesis of compound 3^{H} . *n*BuLi (1.6 M in *n*hexane, 10 mL, 16.0 mmol) was added dropwise to a diethylether solution of 2^{Me} (3.1 g, 15.24 mmol in 80 mL dry diethyl ether) at -78 °C and during the addition a color change from colorless to light yellow with slight turbidity was observed. After stirring the reaction mixture at -78 °C for 1h, isobutylene oxide (1.45 mL, 16.0 mmol) was added. The reaction mixture was allowed to reach room temperature in 1h and then stirring was continued for another 1h. The reaction mixture again cooled down to -78 °C and triflic anhydride (2.75 mL, 16.0 mmol) was added to it dropwise at -78 °C. During addition of triflic anhydride, the formation of voluminous white precipitate was observed. On complete addition, the reaction mixture was allowed to reach room temperature in 2h and stirring was continued for another 1h at room temperature. The reaction mixture was filtered through a G4 sintered funnel and washed with diethyl ether in three times (3 × 50 mL). On vacuum drying white solid was obtained as desired product 3^{Me} . Single crystals of compound 3^{Me} , suitable for single crystal XRD study were grown by diethyl ether vapor diffusion into concentrated acetonitrile solution of it at room temperature.

Yield : 1.20 g (2.94 mmol, 19%). M. P.: > 200 °C.

¹**H NMR** (300 MHz, CD₃CN, 298 K): δ = 1.23 (s, 2H, CH(CH₃)₂), 1.27 (s, 6H, CC(CH₃)₂), 1.68 (s, 6H, NC(CH₃)₂), 2.27 (s, 2H, CH₂), 2.44 (s, 3H, *p*-CH₃), 4.27 (sep, 1H, CHMe₂), 7.24–7.35 (m, 2H, Ph-CH), 7.38–7.48 (m, 2H, Ph-CH) ppm.

¹³C{¹H} NMR (75.4 MHz, CD₃CN, 298 K): δ = 21.40 (*p*-CH₃), 22.93 (2C, CH(CH₃)₂), 26.97 (2C, CC(CH₃)₂), 27.70 (2C, NC(CH₃)₂), 48.76 (CH₂), 51.27 (CCMe₂), 54.69 (CHMe₂), 79.39 (NCMe₂), 122.15 (¹J_{C-F} = 320.45 Hz, CF₃SO₃⁻), 127.78 (2C, Ph-CH), 124.50 (HCCCH), 129.82 (2C, Ph-CH), 143.04 (CMe), 195.14 (NCCMe₂) ppm.

¹⁹F{¹H} NMR (169.2 MHz, CD₃CN, 298 K): $\delta = -79.25$ ppm.

HRMS: Calcd (m/z) for $[C_{18}H_{28}N]^+$: 258.2216; found: 258.2209.

Synthesis of 3^{Et}. The amide, chloroimine, $\mathbf{1}^{Et}$ and imine, $\mathbf{2}^{Et}$ were prepared from the corresponding reactants following a similar synthetic procedure as discussed for the synthesis of compound $\mathbf{3}^{H}$. *n*BuLi (1.6 M in *n*hexane, 7.67 mL, 12.2 mmol) was added dropwise to a diethyl solution of $\mathbf{2}^{Et}$ (2.54 g 11.68 mmol in 80 mL dry diethyl ether) at -78 °C and during the addition a color change from colorless to light yellow with slight turbidity was observed. After stirring the reaction mixture at -78 °C for 1h, isobutylene oxide (1.11 mL, 12.2 mmol) was added. The reaction mixture was allowed to reach room temperature in 1h and then stirring was continued for another 1h. The reaction mixture again cooled down to -78 °C and triflic anhydride (2.10 mL, 12.2 mmol) was added to it dropwise at -78 °C. During addition of triflic anhydride, the formation of voluminous white precipitate was observed. On complete addition, the reaction mixture was allowed to reach room temperature in 2h and stirring was continued for another 1h at room temperature. The reaction mixture was filtered through a G4 sintered funnel and

washed with diethyl ether in a three times (3 × 50 mL). On vacuum drying white solid was obtained as desired product $\mathbf{3}^{\text{Et}}$. Single crystals of compound $\mathbf{3}^{\text{Et}}$, suitable for single crystal XRD study were grown by diethyl ether vapor diffusion into concentrated acetonitrile solution of it at room temperature.

Yield : 2.36 g (5.61 mmol, 48%). M. P.: above 200 °C.

¹**H NMR** (300 MHz, CD₃CN, 298 K): δ = 1.34–1.16 (m, 15H; 6H, CC(CH₃)₂, 3H, CH₂CH₃, 6H, CH(CH₃)₂), 1.68 (s, 6H, NC(CH₃)₂), 2.27 (s, 2H, CH₂), 2.75 (q, 2H, CH₂CH₃), 4.27 (sep, 1H, CHMe₂), 7.26–7.38 (m, 2H, Ph-CH), 7.41–7.52 (m, 2H, Ph-CH) ppm.

¹³C{¹H} NMR (75.4 MHz, CD₃CN, 298 K): δ = 15.54 (CH₂CH₃), 22.94 (2C, CH(CH₃)₂), 26.98 (2C, CC(CH₃)₂), 27.71 (2C, NC(CH₃)₂), 29.20 (CH₂CH₃), 48.78(CH₂), 51.29 (CCMe₂), 54.70 (CHMe₂), 79.41 (NCMe₂), 122.14 (¹J_{C-F} = 320.45 Hz, CF₃SO₃⁻⁻), 124.72 (HCCCH), 127.87 (2C, Ph-CH), 128.68 (2C, Ph-CH), 149.18 (CEt), 195.14 (NCCMe₂) ppm.

¹⁹F{¹H} NMR (169.2 MHz, CD₃CN, 298 K): δ = -79.25 ppm.

HRMS: Calcd (m/z) for $[C_{19}H_{30}N]^+$: 272.2373; found: 272.2372.

Synthesis of 3^{tBu}. The amide, chloroimine, **1^{tBu}** and imine, **2^{tBu}** were prepared from the corresponding reactants following the similar synthetic procedure as discussed for the synthesis of compound **3^H**. *n*BuLi (1.6 M in *n*hexane, 5 mL, 8.0 mmol) was added dropwise to a diethylether solution of **2^{tBu}** (1.87 g, 7.615 mmol in 70 mL dry diethylether) at -78 °C and during the addition time a color change from colorless to light yellow with slight turbidity was observed. After stirring the reaction mixture at -78 °C for 1h, isobutylene oxide (0.73 mL, 8 mmol) was added. The reaction mixture was allowed to reach room temperature in 1h and then stirring was continued for another 1h. The reaction mixture again cooled down to -78 °C and triflic anhydride (1.4 mL, 8 mmol) was added to it dropwise at -78 °C. During addition of triflic anhydride, the formation of voluminous white precipitate was observed. On complete addition, the reaction mixture was allowed to reach room temperature in 2h and stirring was continued for another 1h at room temperature. The reaction mixture was filtered through a G4 sintered funnel and washed with diethylether in a three times (3 × 50 mL). On vacuum drying white solid was obtained as desired product **3^{tBu}**. Crystal of compound **3^{tBu}**, suitable for single crystal XRD measurement were obtained by *n*-hexane layering on concentrated DCM solution at room temperature.

Yield : 1.40 g (3.11 mmol, 40.92%). M. P.: above 200 °C.

¹**H NMR** (300 MHz, CD₃CN, 298 K): δ = 1.22 (d, 6H, CH(CH₃)₂), 1.27 (s, 6H, CC(CH₃)₂), 1.36 (s, 9H, C(CH₃)₃), 1.68 (s, 6H, NC(CH₃)₂), 2.28 (s, 2H, CH₂), 4.27 (sep, 1H, CHMe₂), 7.29–7.41 (m, 2H, Ph-C*H*), 7.60–7.70 (m, 2H, Ph-C*H*) ppm.

¹³C{¹H} NMR (75.4 MHz, CD₃CN, 298 K): δ = 22.93 (2C, CH(*C*H₃)₂), 26.98 (2C, CC(*C*H₃)₂), 27.72 (2C, NC(*C*H₃)₂), 31.22 (3C, C(*C*H₃)₃), 35.66 (*C*Me₃), 48.79 (*C*H₂), 51.30 (C*C*Me₂), 54.69 (*C*HMe₂), 79.42 (N*C*Me₂), 122.14 (¹J_{C-F} = 320.45 Hz, CF₃SO₃⁻), 124.57 (HCCCH), 126.22 (2C, Ph-CH), 127.63 (2C, Ph-CH), 155.95 (*C*CMe₃), 195.19 (NCCMe₂) ppm.

¹⁹F{¹H} NMR (169.2 MHz, CD₃CN, 298 K): $\delta = -79.28$ ppm.

HRMS: Calcd (m/z) for $[C_{21}H_{34}N]^+$: 300.2686; found: 300.2681.

KC₈ reduction of **3^H**. Dry THF (20 mL) was added to a mixture of **3^H** (1.080 g, 2.74 mmol) and KC₈ (0.408 g, 3.02 mmol) at -78 °C. A dark red color solution was formed on bringing the reaction mixture slowly to room temperature in 1h. The stirring was continued for another 2h at room temperature. After removal of all the volatiles, the solid residue was extracted with *n*hexane. Pale yellow color crystals were isolated after overnight from the concentrated *n*hexane that was kept at -35 °C and which is also suitable for single crystal XRD study.

Isolated yield: 0.170 g (0.348 mmol, 25.40%).

KC₈ **Reduction of 3**^{Me}: Dry THF (20 mL) was added to a mixture of 3^{Me} (0.341 g, 0.84 mmol) and KC₈ (0.124 g, 0.921 mmol) at -78 °C. On bringing the reaction mixture was slowly raise to room temperature in 1 hr, followed by stirring for 0.5 h at room temperature pale brown color suspension formed. The color of that suspension gradually changes to bright yellow color on further stirring for 2hrs. After removals of all the in vacuum the sticky residue was extracted with *n*hexane. After concentrating the *n*hexane solution to about 1 mL, it was kept at -80 °C. No crystal were isolated even keeping this solution at -80 °C for 15 days. On evaporation of the hexane extract yellow color dense oil was obtained and measurement of ¹H NMR indicate the formation of interactive mixture of unassigned products.

KC₈ **Reduction of 3**^{Et}: Dry THF (20 mL) was added to a mixture of 3^{Et} (0.527 g, 1.25 mmol) and KC₈ (0.186 g, 1.37 mmol) at -78 °C. On bringing the reaction mixture was slowly to room temperature in 1 hr, the reaction mixture become dark red color. After stirring for 2 hrs at room temperature, all the volatiles were removed in vacuum. During drying the intensity of the red color residue started decreasing to orange red color. The solid residue was extracted with *n*hexane. During evaporation of the *n*hexane extract the intensity of the orange-red color solution further decreased to orange color solution. After concentrating the *n*hexane solution to about 1 mL, it was kept at -80 °C. After 1 day the whole solution turned into deep yellow solution. No crystal were isolated even keeping this solution at -80 °C for 15 days. On evaporation of the hexane extract yellow color dense oil was obtained and measurement of ¹H NMR indicate the formation of interactive mixture of unassigned products.

KC₈ reduction of 3^{tBu}: Dry THF (20 mL) was added to a mixture of 3^{tBu} (1.023 g, 2.27 mmol) and KC₈ (0.338 g, 2.50 mmol) at -78 °C. After few minutes of THF addition, the reaction mixture started turning into red color that get intensified on bringing the reaction mixture slowly to room temperature in 1hr. The stirring was continued for another 2 hrs at room temperature. After removal of all the volatiles, the solid residue was extracted with *n*hexane. On keeping the concentrated *n*hexane solution (2 mL) at -80 °C for 3 days, deep red color polycrystalline compound were obtained. Isolated yield: 0.057 g (0.189 mmol, 8.35 %).

Figure S1. Solid state molecular structures of **3**^{Me} (thermal ellipsoids at 30% probability level and all H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): N1–C1 1.2870(19), C1–C2 1.518(2), C1–C5 1.485(2), N1–C1–C2 112.95(13).

Figure S2. Solid state molecular structures of **3**^{Et} (thermal ellipsoids at 30% and all H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): N1–C1 1.287(3), C1–C2 1.516(3), C5–C1 1.478(3), N1–C1–C2 112.8(2).

Figure S3. Solid state molecular structures of **3**^{tBu} (thermal ellipsoids at 30% probability level and all H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): N1–C1 1.279(10), C1–C2 1.502(10), C5–C1 1.477(11), N1–C1–C2 112.5(7).

Figure S4. ¹H NMR of spectrum compound $\mathbf{3}^{H}$ in CD₃CN at 298 K.

Figure S5. ${}^{13}C{}^{1}H$ NMR spectrum of compound **3**^H in CD₃CN at 298 K.

Figure S7. ¹H NMR spectrum of compound 3^{Me} in CD₃CN at 298 K.

Figure S8. $^{13}C(^{1}H)$ NMR spectrum of compound 3^{Me} in CD₃CN at 298 K.

Figure S9. 19 F{ 1 H} NMR spectrum of compound 3^{Me} in CD₃CN at 298 K.

Figure S10. ¹H NMR spectrum of compound $\mathbf{3}^{Et}$ in CD₃CN at 298 K.

Figure S11. $^{13}C{^{1}H}$ NMR spectrum of compound **3**^{Et} in CD₃CN at 298 K.

Figure S13. ¹H NMR spectrum of compound 3^{fBu} in CD₃CN at 298 K.

Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of compound 3^{tBu} in CD₃CN at 298 K.

Figure S15. $^{19}\text{F}\{^1\text{H}\}$ NMR spectrum of compound $\textbf{3}^{t\text{Bu}}$ in CD_3CN at 298 K.

Figure S16. ^1H NMR spectrum of compound $\textbf{3^H}_{\textbf{2}}$ in C_6D_6 at 298 K.

Cyclic Voltammetry

	E _{1/2} (1 st Red)	E _{1/2} (2 nd Red) ^[a]				
3	-1.80	-2.53				
3 ^{Me}	-1.82	-2.62				
3 ^{Et}	-1.81	-2.61				
3 ^{tBu}	-1.81	-2.75				
All values given were measured with GCWE at 100 mVs ⁻¹ , given in Volts.						
[a] No Reoxidation wave observed.						

Table S1. Redoxpotentials ($E_{1/2}$) vs Fc/Fc⁺ measured in CH₂Cl₂ at 100 mVs⁻¹ with 0.1 M Bu₄NPF₆ at room temperature.

CV of 3^{H}

Figure S17. CV of $\mathbf{3}^{H}$ in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

Figure S18. CV of $\mathbf{3}^{H}$ in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

Figure S20. CV of **3^H** in THF / 0.1 NBu₄PF₆ measured at a GC working electrode. Comparison of faster scan rates. Note the higher current for 750 mVs⁻¹ than 1000 mVs⁻¹.

Figure S19. CV of $\mathbf{3}^{H}$ in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

Figure S21. CV of **3^H** in THF / 0.1 NBu₄PF₆ measured at a GC working electrode. Comparison of slower scan rates. Note the higher current for 75 mVs⁻¹ than 100 mVs⁻¹.

CV of 3^{Me} and 3^{Et}

Figure S22. CV of $\mathbf{3}^{Me}$ in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

Figure S23. CV of 3^{Me} in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

Figure S24. CV of $\mathbf{3}^{\text{Et}}$ in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

Figure S25. CV of $\mathbf{3}^{\text{Et}}$ in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

CV of 3^{tBu}

Figure S26. CV of 3^{tBu} in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

-10

Figure S27. CV of 3^{tBu} in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

Figure S28. CV of 3^{tBu} in THF / 0.1 NBu₄PF₆ measured at a GC working electrode at 100 mVs⁻¹.

Figure S29. CV of 3^{fBu} in THF / 0.1 NBu₄PF₆ measured at a GC working electrode. Comparison of slower scan rates.

Figure S30. CV of 3^{tBu} in THF / 0.1 NBu₄PF₆ measured at a GC working electrode. Comparison of faster scan rates.

Ratio of peak currents from the CVs of 3^{H} , 3^{Me} , 3^{Et} and 3^{tBu}

Figure S31. Evaluation of peak currents as a measure for dimerisation.

Table 32. Overview of peak currents measured at 100 m/s at gewe most NDu ₄ Fr ₆ / mm	Table S2.	Overview of peal	k currents measur	ed at 100 mVs ⁻¹	at gcwe in 0.1 NE	$3u_4PF_6$ / THF.
---	-----------	------------------	-------------------	-----------------------------	-------------------	-------------------

Compound	i _{pc1}	i _{pc2}	i _{pc2} /i _{pc1}
3 ^H	-5.4	-1.9	0.35
3 ^{Me}	-6.0	-2.1	0.35
3 ^{Et}	-9.6	-3.3	0.34
3 ^{tBu}	-6.7	-1.5	0.22

Temperature dependent CV of 3^{H}

Figure S32. Temperature-dependant CV of 3 in presence of ferrocene measured at a GC working electrode at 100 mVs^{-1, S18}

CV Simulation for 3^H

Figure S33. Comparison for experiment and simulation for the radical dimerization mechanism.

Figure S35. Comparison for experiment and simulation for the Anion-Cation dimerization mechanism with a different parameter set.

Figure S37. Comparison for experiment and simulation for both dimerization mechanisms with parameter fitting.

Figure S34. Comparison for experiment and simulation for the Anion-Cation dimerization mechanism.

Figure S36. Comparison for experiment and simulation for both dimerization mechanisms without changes.

The cyclic voltammogram was simulated in two segments from 0.00 V to -3.1 V and from -3.1 V to 0.00 V with the software DigiElch Professional^{S19} by using the Butler-Volmer equation. The surface area of the working electrode was set to 0.07 cm² and the starting concentration of 3 was set to 0.3 mM. The charge transfer coefficients α were left at their initial value of 0.5 and the heterogeneous rate constants k_s were calculated from the peak-to-peak separation^{S20} and consequently set to 0.005 cm/s. The diffusion coefficients were left at their initial values of 1×10^{-5} cm² s⁻¹. The simulated charge-transfer reactions are described by the following equations for the mechanisms (1)-(5), the E⁰ values for **3^H** was set to -1.80 V and for **3^{H*}** to -2.53 V. The electrochemical reactions are denoted with (E) and the coupled chemical reactions with (C), which was assumed to be irreversible for the simulation with Pyr⁺ = **3^H**, Pyr^{0*} = **3^{H*}** and Dimer = **3^H**₂.

Mechanism	Reaction
(1) Radical-radical	$Pyr^+ + e^- \rightleftharpoons Pyr^{0+}$ (E)
	$Pyr^{0\bullet} + e^{-} \rightleftharpoons Pyr^{-}$ (E)
	2 Pyr ^{0•} \rightarrow Dimer (C)
(2) Anion-cation 1	$Pyr^+ + e^- \rightleftharpoons Pyr^{0^+}$ (E)
	$Pyr^{0\bullet} + e^{-} \rightleftharpoons Pyr^{-}$ (E)
	$Pyr^+ + Pyr^- → Dimer$ (C)
(3) Anion-cation 2	$Pyr^+ + e^- \rightleftharpoons Pyr^{0^-}$ (E)
	$Pyr^{0\bullet} + e^{-} \rightleftharpoons Pyr^{-}$ (E)
	$Pyr^+ + Pyr^- \rightarrow Dimer$ (C)
(4) Both, w/o changes	$Pyr^+ + e^- \rightleftharpoons Pyr^{0^-}$ (E)
	$Pyr^{0\bullet} + e^{-} \rightleftharpoons Pyr^{-}$ (E)
	$Pyr^+ + Pyr^- \rightarrow Dimer$ (C)
	2 Pyr ^{0•} → Dimer (C)
(5) Both, fitted	$Pyr^+ + e^- \rightleftharpoons Pyr^{0^{\bullet}}$ (E)
	$Pyr^{0\bullet} + e^{-} \rightleftharpoons Pyr^{-}$ (E)
	$Pyr^+ + Pyr^- \rightarrow Dimer$ (C)
	2 Pyr ^{0•} → Dimer (C)

Table S3. Overview of kinetic parameters used for the various simulations.

Mechanism	K ₁	k _{f1}	k _{b1}	K ₂	k _{f2}	k _{b2}		
Radical	10^8	10^4	10^-4					
Radical								
Cation-				1000	5*10^6	0 (no back reaction)		
Anion 1								
Cation-				10	10^6	0 (no back reaction)		
Anion 2								
Both, w/o	10^8	1.2*10^4	1.2*10^-4	6.7*10^19	5*10^^6	7.4*10^-14		
change								
Both, fitted	Both, fitted 10^5 3080 0.0308 6.7651*10^16 51000 7.5387*10^-13							
Annotations: K_1 , k_{f1} , k_{b1} refer to the radical-radical dimerization and K_2 , k_{f2} , k_{b2} refer to the cation-								
anion dimerization.								

EPR spectroelectrochemistry

 Table S4.
 Experimentally measured g-values via EPR-spectroelectrochemistry.

Compound	g(exp)
3 ^H	2.003
3 ^{tBu}	2.003

Figure S38. EPR spectrum of $\mathbf{3}^{H^*}$ in THF. Electrolysis with Au electrode at ca. -2.0 V, signal vanishes at around -2.5 V in 0.1 M NBu₄PF₆ in THF. Right: 0.6 mT modulation amplitude, left: 0.01 mT modulation amplitude.

Figure S39. EPR spectrum of $\mathbf{3}^{tBu^{\bullet}}$ in THF at 262 K. Electrolysis with Au electrode at ca. -2.0 V, signal vanishes at around -2.5 V vs Ag-Pseudoreference in 0.1 M NBu₄PF₆ in THF. Right: 0.01 mT modulation amplitude, left: 0.06 mT modulation amplitude.

Figure S40. Temperature-dependent EPR spectra of the $3^{H^{\bullet}}/3^{H_{2}}$ mixture after chemical reduction with KC₈, measured in THF.

Figure S41. Comparison of EPR spectra after cooling down to -120° C and re-heating to 20°C of the $3^{H^{\circ}}/3^{H_{2}}$ mixture after chemical reduction with KC₈ measured in THF.

Figure S42. Calculated hyperfine coupling constants at PBE0/IGLO-III level for 3^{H•}.

Figure S43. Calculated hyperfine coupling constants at PBE0/IGLO-III level for 3^{H•}. (different view)

Figure S44. Atom numbering for 3^{H•} for hyperfine coupling constants.

Figure S45. Calculated hyperfine coupling constants at PBE0/IGLO-III level for 3^{tBu*}.

Figure S46. Calculated hyperfine coupling constants at PBE0/IGLO-III level for 3^{tBu•}. (different view)

Figure S47. Atom numbering for 3^{tBu•} for hyperfine coupling constants.

Calculated g values g($\mathbf{3}^{H\bullet}$) = 2.077 and g($\mathbf{3}^{tBu\bullet}$) = 2.057

Atom (3 ^{H•})	Hyperfine Coupling Constant / MHz	Atom (3 ^{tBu•})	Hyperfine Coupling Constant / MHz
ON	8.3755	ON	6.3612
11H	11.4585	13H	10.5975
16H	-11.2654	20H	-10.9123
18H	5.4630	21H	0.0754
20H	-0.4793	22H	6.0376
21H	-0.2458	23H	-0.1333
22H	-0.5388	24H	1.5837
23H	-11.9621	25H	-1.1777
25H	-0.2221	26H	0.4711
26H	4.9875	27H	-1.3822
27H	-0.1215	28H	-0.7807
28H	-0.9457	29H	5.3236
29H	12.4067	33H	-1.2888
30H	-1.1447	34H	13.9106
31H	-0.4659	35H	-1.1960
32H	-2.1393	36H	2.8745
33H	-0.2120	37H	-0.3216
34H	-0.8398	38H	-0.3461
35H	-0.5605	39H	-0.2175
36H	-0.8221	40H	-0.3819
37H	-14.8933	41H	-0.2722
38H	6.8902	42H	-10.2255
39H	0.0759	43H	6.9556
40H	-0.8973	44H	-0.9255
41H	-0.6989	45H	-0.8136
42H	-1.3922	46H	-0.7718
43H	0.4765	47H	-0.5277
		48H	2.1612
		49H	-0.1699
		50H	-0.4218
		51H	-0.4714
		52H	-0.4819
		53H	-0.3455
		54H	-2.4322
		55H	-0.5484

Table S5. Calculated hyperfine coupling constants at PBE0/IGLO-III level for $3^{H^{\bullet}}$ and $3^{tBu^{\bullet}}$.

Table S6. Parameters used for EPR simulation. Values for coupling constants are given in MHz.

	A(N)	A(H)	A(H)	A(H)	A(H)	A(H)	A(H)	g
3 ^{H•}	9	11	13	10	10	5	5	2.0027
3 ^{tBu•}	7	11	10	12	13	5	7	2.0027

Atomic charges and Spin densities

Figure S48. Numbering scheme for NPA charge analysis for 3^H.

Table S7. NPA charge analysis with JANPA for $\mathbf{3}^{H*}$ and $\mathbf{3}^{H*}$.

3 ^{H+}					3 ^H *					
Center	Nuclear charge	Electron population	NMB population	NPA charge	Center	Nuclear charge	Electron population	NMB population	NPA charge	
N1	7.0	7.2561950	7.2253634	-0.2561950255	N1	7.0	7.3918449	7.3634026	-0.3918449187	
C2	6.0	5.4816587	5.4555046	0.5183413188	C2	6.0	5.7842297	5.7594995	0.2157703334	
C3	6.0	5.8443929	5.8294499	0.1556071499	C3	6.0	5.8443000	5.8288678	0.1557000147	
C4	6.0	6.0440763	6.0293409	-0.0440762508	C4	6.0	6.0321026	6.0166140	-0.0321025683	
C5	6.0	6.1499500	6.1268268	-0.1499499727	C5	6.0	6.1242795	6.1018627	-0.1242795491	
C6	6.0	6.1077125	6.0929115	-0.1077124663	C6	6.0	6.0803717	6.0643811	-0.0803717276	
C7	6.0	6.1852738	6.1679988	-0.1852738311	C7	6.0	6.2242496	6.2059473	-0.2242495715	
C8	6.0	6.1851790	6.1678933	-0.1851790237	C8	6.0	6.2270720	6.2080007	-0.2270720034	
C9	6.0	6.6155772	6.6044373	-0.6155772308	C9	6.0	6.6216289	6.6105543	-0.6216289292	
C10	6.0	6.6167228	6.6054982	-0.6167228449	C10	6.0	6.6065954	6.5956322	-0.6065953723	
C11	6.0	6.3986953	6.3851383	-0.3986952546	C11	6.0	6.3874637	6.3740433	-0.3874636729	
H12	1.0	0.7743509	0.7717820	0.2256491479	H12	1.0	0.7983874	0.7954509	0.2016125784	
C13	6.0	6.6077141	6.5974852	-0.6077140702	C13	6.0	6.6074437	6.5972441	-0.6074437087	
C14	6.0	6.6045532	6.5944166	-0.6045532305	C14	6.0	6.6078963	6.5979656	-0.6078963366	
C15	6.0	6.5877520	6.5775324	-0.5877520310	C15	6.0	6.5885424	6.5784716	-0.5885424072	
C16	6.0	6.5883441	6.5780369	-0.5883441240	C16	6.0	6.5898476	6.5795592	-0.5898476469	
H17	1.0	0.7687129	0.7671253	0.2312870824	H17	1.0	0.7927020	0.7908119	0.2072979859	
C18	6.0	6.1979811	6.1799705	-0.1979810747	C18	6.0	6.2204062	6.2022384	-0.2204061626	
H19	1.0	0.7702030	0.7688771	0.2297969940	H19	1.0	0.7875335	0.7860762	0.2124665093	
C20	6.0	6.1899571	6.1723455	-0.1899570864	C20	6.0	6.2691124	6.2489913	-0.2691124326	
H21	1.0	0.7806771	0.7792856	0.2193228778	H21	1.0	0.7943168	0.7928047	0.2056832448	
H22	1.0	0.7644215	0.7633125	0.2355785347	H22	1.0	0.7823632	0.7811386	0.2176367951	
H23	1.0	0.7836146	0.7822567	0.2163854009	H23	1.0	0.7906032	0.7892392	0.2093968239	
H24	1.0	0.7688828	0.7672793	0.2311172428	H24	1.0	0.7889493	0.7866568	0.2110506883	
C25	6.0	6.1979314	6.1799304	-0.1979313510	C25	6.0	6.2211000	6.2029109	-0.2211000036	
H26	1.0	0.7795164	0.7781654	0.2204836422	H26	1.0	0.7896698	0.7881275	0.2103302111	
H27	1.0	0.7625457	0.7614717	0.2374542877	H27	1.0	0.7888290	0.7874332	0.2111709976	
H28	1.0	0.7804171	0.7790187	0.2195828574	H28	1.0	0.7947421	0.7932512	0.2052579175	
H29	1.0	0.7871289	0.7857652	0.2128711184	H29	1.0	0.7971476	0.7957100	0.2028523622	
H30	1.0	0.7688382	0.7675972	0.2311617994	H30	1.0	0.7966790	0.7949255	0.2033210235	
H31	1.0	0.7779688	0.7766094	0.2220312194	H31	1.0	0.7964041	0.7949893	0.2035958800	
H32	1.0	0.7820944	0.7805504	0.2179056304	H32	1.0	0.7871726	0.7854224	0.2128273712	
H33	1.0	0.7675190	0.7664096	0.2324809555	H33	1.0	0.7879428	0.7867366	0.2120571917	
H34	1.0	0.7802643	0.7790425	0.2197356775	H34	1.0	0.7912973	0.7899796	0.2087026884	
H35	1.0	0.7789763	0.7776187	0.2210236507	H35	1.0	0.7908382	0.7893015	0.2091617525	
H36	1.0	0.7714345	0.7702469	0.2285655168	H36	1.0	0.7945024	0.7931334	0.2054976216	
H37	1.0	0.7842681	0.7829511	0.2157318758	H37	1.0	0.7926226	0.7912206	0.2073774267	
H38	1.0	0.7719795	0.7707326	0.2280204906	H38	1.0	0.7876097	0.7862250	0.2123902834	
H39	1.0	0.7701080	0.7687832	0.2298920115	H39	1.0	0.7879390	0.7864228	0.2120609912	
H40	1.0	0.7619693	0.7604470	0.2380306776	H40	1.0	0.7848306	0.7830802	0.2151693847	
H41	1.0	0.7724901	0.7707309	0.2275098851	H41	1.0	0.7916334	0.7896216	0.2083665896	
H42	1.0	0.7807842	0.7795509	0.2192158004	H42	1.0	0.7895713	0.7882397	0.2104287250	
H43	1.0	0.7681654	0.7670580	0.2318345605	H43	1.0	0.7914128	0.7901081	0.2085872223	
H44	1.0	0.7830025	0.7815073	0.2169974671	H44	1.0	0.7958136	0.7942081	0.2041864029	

Figure S49. Numbering scheme for NPA charge analysis for 3^{tBu}.

 Table S8. NPA charge analysis with JANPA for 3^{tBu+} and 3^{tBu+}.

3 ^{tBu+}						3 ^{tBu•}				
Center	Nuclear charge	Electron population	NMB population	NPA charge	Center	Nuclear charge	Electron population	NMB population	NPA charge	
N1	7.0	7.2574043	7.2266725	-0.2574043362	N1	7.0	7.3978459	7.3683006	-0.3978459017	
C2	6.0	5.8450571	5.8301264	0.1549429308	C2	6.0	5.8524321	5.8367451	0.1475678916	
C3	6.0	6.0436659	6.0289018	-0.0436659174	C3	6.0	6.0328530	6.0171716	-0.0328530190	
C4	6.0	5.4780710	5.4520816	0.5219289947	C4	6.0	5.7851751	5.7603861	0.2148249007	
C5	6.0	6.6162470	6.6050365	-0.6162469771	C5	6.0	6.6011199	6.5902903	-0.6011198502	
C6	6.0	6.6153734	6.6042427	-0.6153734093	C6	6.0	6.6182375	6.6073068	-0.6182374584	
C7	6.0	6.3984797	6.3849440	-0.3984796904	C7	6.0	6.3809820	6.3677722	-0.3809820438	
C8	6.0	6.1082098	6.0934036	-0.1082098136	C8	6.0	6.0914485	6.0753310	-0.0914485112	
C9	6.0	6.5870966	6.5768860	-0.5870966183	C9	6.0	6.5850686	6.5750036	-0.5850686429	
C10	6.0	6.5877694	6.5774709	-0.5877693981	C10	6.0	6.5857531	6.5755097	-0.5857530885	
C11	6.0	6.1621921	6.1395080	-0.1621920948	C11	6.0	6.1250187	6.1025164	-0.1250187152	
C12	6.0	6.1755568	6.1587001	-0.1755567800	C12	6.0	6.2146519	6.1964079	-0.2146518508	
C13	6.0	6.1799481	6.1628667	-0.1799481401	C13	6.0	6.2108405	6.1920287	-0.2108405321	
H14	1.0	0.7752017	0.7726279	0.2247983223	H14	1.0	0.8001456	0.7971967	0.1998543525	
C15	6.0	6.6041703	6.5940314	-0.6041702548	C15	6.0	6.6033458	6.5934607	-0.6033457561	
C16	6.0	6.6075400	6.5973038	-0.6075399815	C16	6.0	6.6034913	6.5933368	-0.6034913235	
C17	6.0	5.9699940	5.9481014	0.0300059760	C17	6.0	6.0367955	6.0143888	-0.0367955269	
C18	6.0	6.2103723	6.1930773	-0.2103723195	C18	6.0	6.2228236	6.2053346	-0.2228236380	
C19	6.0	6.2016233	6.1846073	-0.2016233475	C19	6.0	6.2186961	6.2013461	-0.2186960585	
C20	6.0	6.0/13/3/	6.05681//	-0.0/13/36985	020	6.0	6.0635475	6.0486230	-0.0635474653	
H21	1.0	0.7707925	0.7692118	0.2292074804	H21	1.0	0.7948994	0.7930168	0.2051005917	
H22	1.0	0.7809895	0.7795868	0.2190105230	H22	1.0	0.7968740	0.7953876	0.2031259690	
H23	1.0	0.7629072	0.7618308	0.2370927512	H23	1.0	0.7919996	0.7905758	0.2080004335	
H24	1.0	0.7796114	0.7782585	0.2203886130	H24	1.0	0.7925288	0.7909951	0.2074711799	
H25	1.0	0.7621354	0.7606118	0.2378646219	H25	1.0	0.7874180	0.7856787	0.2125820349	
H26	1.0	0.7730669	0.7713053	0.2269330635	H26	1.0	0.7937561	0.7917687	0.2062438688	
H27	1.0	0.7828696	0.7813751	0.21/1304486	H27	1.0	0.7947955	0.7932012	0.2052045416	
1120	1.0	0.7000031	0.7070929	0.2311909109	1120	1.0	0.7950246	0.7937039	0.2049754162	
H29	1.0	0.7610226	0.7797895	0.2189771874	H29 H20	1.0	0.7930871	0.7917490	0.2009129084	
C21	1.0	6 5940642	6 5740650	0.2284408994	C21	1.0 6.0	6 5950590	6 5740794	0.2114271723	
(22)	6.0	6 5071602	6 5965204	-0.3849042130	(31	6.0	6 50/1129	6 502/500	-0.3830373834	
C32	6.0	6 5849641	6 5749725	-0.5371032140	(33	6.0	6 5851410	6 5750709	-0.5941138213	
H34	1.0	0.7786444	0.7772764	0.2213556076	H34	1.0	0.7976625	0.7962296	0.2023374571	
H35	1.0	0.7693015	0.7680582	0.22155556676	H35	1.0	0.7993661	0.7975899	0.2026339465	
H36	1.0	0.7873338	0.7859683	0.2126661943	H36	1.0	0.7986194	0.7971808	0.2000335403	
H37	1.0	0 7908225	0 7894206	0 2091775150	H37	1.0	0 7989360	0 7974000	0 2010640349	
H38	1.0	0 7926853	0 7913569	0 2073146929	H38	1.0	0 7959913	0 7946106	0 2040087147	
H39	1.0	0 7945121	0 7932073	0.2054879365	H39	1.0	0 7968245	0 7954820	0 2031755493	
H40	1.0	0.7919003	0.7905589	0.2080996831	H40	1.0	0.7949681	0.7935648	0.2050319150	
H41	1.0	0.7866634	0.7853517	0.2133365775	H41	1.0	0.7937538	0.7923627	0.2062462326	
H42	1.0	0.7917656	0.7904260	0.2082343837	H42	1.0	0.7949021	0.7934944	0.2050978743	
H43	1.0	0.7705827	0.7689753	0.2294173110	H43	1.0	0.7890015	0.7867081	0.2109984651	
H44	1.0	0.7757901	0.7741241	0.2242099338	H44	1.0	0.7933229	0.7914916	0.2066770565	
H45	1.0	0.7789394	0.7775783	0.2210606349	H45	1.0	0.7929708	0.7914261	0.2070292083	
H46	1.0	0.7721473	0.7709577	0.2278527062	H46	1.0	0.7961743	0.7948099	0.2038257256	
H47	1.0	0.7847862	0.7834611	0.2152138106	H47	1.0	0.7942765	0.7928773	0.2057235220	
H48	1.0	0.7944106	0.7931041	0.2055893936	H48	1.0	0.7969874	0.7956313	0.2030125947	
H49	1.0	0.7908436	0.7894428	0.2091564439	H49	1.0	0.7988367	0.7973072	0.2011632804	
H50	1.0	0.7924015	0.7910803	0.2075984875	H50	1.0	0.7959101	0.7945356	0.2040899169	
H51	1.0	0.7809964	0.7796024	0.2190036104	H51	1.0	0.7958597	0.7943398	0.2041402525	
H52	1.0	0.7646732	0.7635637	0.2353268144	H52	1.0	0.7843769	0.7831700	0.2156231217	
H53	1.0	0.7838989	0.7825391	0.2161011105	H53	1.0	0.7923957	0.7910373	0.2076043126	
H54	1.0	0.7814145	0.7798468	0.2185855322	H54	1.0	0.7910953	0.7893394	0.2089047411	
H55	1.0	0.7680752	0.7669613	0.2319248249	H56	1.0	0.7937319	0.7924128	0.2062680963	
H56	1.0	0.7812162	0.7799850	0.2187837889	H55	1.0	0.7904957	0.7892919	0.2095042914	

Table S9. Loewdin and Mulliken atomic charges and spin densities for $\mathbf{3}^{H^{\bullet}}$.

	Q _{Loewdin}	ΎSpin,Loewdin	Q _{Mulliken}	۲ _{Spin} , Mulliken
Ν	0.27	0.17	-0.03	0.16
<u>C</u> =N	-0.11	0.39	-0.01	0.56
C _{ipso}	-0.15	0.04	0.06	-0.09
C _{ortho}	-0.12	0.09	-0.26	0.15
C _{meta}	-0.16	-0.01	-0.16	-0.07
C _{para}	-0.18	0.11	-0.18	0.17

Table S10. Loewdin and Mulliken atomic charges and spin densities for 3^{tBu*}.

	Q _{Loewdin}	ピ _{Spin,Loewdin}	Q _{Mulliken}	ピ _{Spin,} Mulliken
Ν	0.27	0.15	-0.03	0.16
<u>C</u> =N	-0.12	0.39	-0.05	0.54
C _{ipso}	-0.15	0.03	0.11	-0.09
C _{ortho}	-0.12	0.09	-0.29	0.18
C _{meta}	-0.13	-0.02	-0.22	-0.08
C _{para}	-0.11	0.11	0.16	0.19

Figure S50. Electron densities of **3**^H (left) and **3**^H (right) with an iso-value of 0.08. Taken from a calculation with B3LYP/def2-TZVP.

Figure S51. Electron densities of **3^{tBu}** (left) and **3^{tBu•}** (right) with an iso-value of 0.08. Taken from a calculation with B3LYP/def2-TZVP.

Calculated Energies of various Isomers

Functional	Monomer Cation	Monomer Radical	Monomer Anion	Head-to-Tail Dimer	Head to Head Dimer
PBEh-3c (UKS)		-716.202811083328			
PBEh-3c (RKS)	-716.066514396295		-716.635684430896	-1432.741051673214	-1433.088308270493
B3LYP (UKS)	-717.943607688966	-718.051222983471	-718.114668869832	-1436.117066868625	-1436.085976053292
B3LYP (RKS)	-718.455718594047		-718.114668864621	-1436.117066991070	-1436.085976137692
PBEO (UKS)	-717.511027880874	-717.622809356041	-717.689101867494	-1435.266248227500	-1435.235811358463
PBEO (RKS)	-717.511027982316		-717.689101844752	-1435.266248372699	-1435.235811574712
M06L (UKS)	-718.239745083561	-718.350271153059	-718.416043737010	-1436.719121627786	-1436.682717946314
M06L (RKS)	-718.239744814839		-718.416043535408	-1436.719120988254	-1436.682717441611
TPSSh (UKS)	-718.455718664650	-718.565663094356	-718.630753006319	-1437.148413125609	-1437.116438334753
TPSSh (RKS)	-718.455718594047		-718.630752990531	-1437.148413006569	-1437.116438226319
PBEh-3c (ZPVE)	0.40875819	0.40570437	0.40228668	0.81848429	0.81736355

 Table S11. Final Single Point Energies with different functionals for the H-substituted monomer, head-to-tail dimer and head-to-head dimer.

 Table S12. Final Single Point Energies with different functionals for the Me-substituted monomer, head-to-tail dimer and head-to-head dimer.

Functional	Monomer Cation	Monomer Radical	Monomer Anion	Head-to-Tail Dimer	Head to Head Dimer
PBEh-3c(UKS)		-755.422989687168			
PBEh-3c(RKS)	-755.701200655818		-755.870517640895	-1511.106220150467	-1511.715283438797
B3LYP (UKS)	-757.252393044115	-757.357923608668	-757.421467020389	-1514.704992034309	-1514.697062270741
B3LYP (RKS)	-757.252393034966		-757.421467063258	-1514.704992125686	-1514.697062370078
PBEO (UKS)	-756.797148315578	-756.906856749703	-756.973439859882	-1513.808116616196	-1513.800633116922
PBEO (RKS)	-756.797148439144		-756.973439834860	-1513.808116972019	-1513.800633492300
M06L (UKS)	-757.566928272065	-757.675242406129	-757.740965466836	-1515.342199369441	-1515.329490124749
M06L (RKS)	-757.566927944757		-757.740965285829	-1515.342198748593	-1515.329489426914
TPSSh (UKS)	-757.794385998556	-757.902384455203	-757.968262633683	-1515.797731385949	-1515.787827962455
TPSSh (RKS)	-757.794385959906		-757.968262590891	-1515.797731220895	-1515.787828106720
PBEh-3c (ZPVE)	0.43680327	0.43389541	0.43027147	0.87628733	0.87185579

Functional	Monomer Cation	Monomer Radical	Monomer Anion	Head-to-Tail Dimer	Head to Head Dimer
PBEh-3c(UKS)		-794.626085287057			
PBEh-3c(RKS)	-794.489467067321		-795.096696547988	-1590.177291627277	-1590.171748375601
B3LYP (UKS)	-796.556455113803	-796.661960586163	-796.722229936561	-1593.310876756393	-1593.304804040221
B3LYP (RKS)	-796.556455134320		-796.722229969571	-1593.310877049672	-1593.304804210314
PBEO (UKS)	-796.077994529353	-796.187679104837	-796.250781098403	-1592.367747372241	-1592.362425053634
PBEO (RKS)	-796.077994612652		-796.250781066337	-1592.367747719263	-1592.362425439825
M06L (UKS)	-796.887694119479	-796.996068144811	-797.058523305611	-1593.983610325870	-1593.973888575093
M06L (RKS)	-796.887693766838		-797.058523052491	-1593.983609532065	-1593.973887550711
TPSSh (UKS)	-797.128385210458	-797.236291190233	-797.298463725356	-1594.464375523885	-1594.456444364170
TPSSh (RKS)	-797.128385202101		-797.298463720958	-1594.464375467018	-1594.456444374739
PBEh-3c (ZPVE)	0.46666026	0.46357693	0.46031778	0.93543625	0.93054792

Table S13. Final Single Point Energies with different functionals for the Et-substituted monomer, head-to-tail dimer and head-to-head dimer.

Table S14. Final Single Point Energies with different functionals for the *t*Bu-substituted monomer, head-to-tail dimer and head-to-head dimer.

Functional	Monomer Cation	Monomer Radical	Monomer Anion	Head-to-Tail Dimer	Head to Head Dimer
PBEh-3c (UKS)		-873.037068940899			
PBEh-3c (RKS)	-873.389619862228		-872.909194452958	-1747.064860483502	-1747.067144273739
B3LYP (UKS)	-875.164268971984	-875.269230732933	-875.329833771185	-1750.498155886293	-1750.498097261491
B3LYP (RKS)	-875.164268908874		-875.329833820598	-1751.773934899478	-1750.498097481124
PBEO (UKS)	-874.640180023274	-874.749463297085	-874.812885051283	-1749.463096052478	-1749.463653943646
PBEO (RKS)	-874.640180125330		-874.812885135408	-1751.243726013758	-1749.463654267866
M06L (UKS)	-875.530846000109	-875.639478879157	-875.701927307387	-1751.243728211521	-1751.243019336171
M06L (RKS)	-875.530845492071		-875.701927042841	-1751.243726013758	-1751.243018334281
TPSSh (UKS)	-875.796159553234	-875.903870501859	-875.966195677634	-1751.773934833843	-1751.772940307912
TPSSh (RKS)	-875.796159438487		-875.966195693313	-1751.773934899478	-1751.772940339404
PBEh-3c (ZPVE)	0.52451290	0.52016884	0.51809614	1.05175211	1.04606879

 Table S15. Final Single Point Energies with different functionals for the H-substituted monomer and possible reaction products in kcal/mol.

Functional	Δ G(Cation+Anion)	Δ G(2xRadical)	Δ G(HT-Dimer)	Δ G(TT-Dimer)
B3LYP	32.35	4.768	0	18.88
PBEO	36.97	8.54	0	18.47
M06L	35.21	7.25	0	22.23
TPSSh	34.34	6.31	0	19.44

Table S16. Final Single Point Energies with different functionals for the Me-substituted monomer and possible reaction products.

Functional	Δ G(Cation+Anion)	Δ G(2xRadical)	Δ G(HT-Dimer)	Δ G(TT-Dimer)
B3LYP	13.80	-12.19	0	2.20
PBEO	17.83	-8.88	0	1.92
M06L	15.80	-10.57	0	5.22
TPSSh	16.29	-9.79	0	3.45

Table S17. Final Single Point Energies with different functionals for the Et-substituted monomer and possible reaction products.

Functional	Δ G(Cation+Anion)	Δ G(2xRadical)	Δ G(HT-Dimer)	Δ G(TT-Dimer)
B3LYP	14.951	-13.44	0	0.75
PBEO	19.22	-10.02	0	0.27
M06L	18.23	-10.59	0	3.04
TPSSh	18.31	-10.39	0	1.92

Table S18. Final Single Point Energies with different functionals for the tBu-substituted monomer and possible reaction products.

Functional	Δ G(Cation+Anion)	Δ G(2xRadical)	Δ G(HT-Dimer)	Δ G(TT-Dimer)
B3LYP	-3.20	-32.58	0	-3.54
PBEO	0.56	-29.76	0	-3.93
M06L	1.14	-29.38	0	-3.13
TPSSh	1.54	-28.49	0	-2.95

Figure S52. Energy differences for H-substituted isomers. From left to right: Energy of two monomers, Head-to-tail dimer and head-to-head dimer.

Figure S53. Energy differences for Me-substituted isomers. From left to right: Energy of two monomers, Head-to-tail dimer and head-to-head dimer.

Figure S54. Energy differences for Et-substituted isomers. From left to right: Energy of two monomers, Head-to-tail dimer and head-to-head dimer.

Figure S55. Energy differences for *t*Bu-substituted isomers. From left to right: Energy of two monomers, Head-to-tail dimer and head-to-head dimer.

UV-Vis-NIR-Spectroelectrochemistry

Table S19. (UV-)Vis-NIR data for compounds $\mathbf{3}^{H}$ and $\mathbf{3}^{tBu}$ from OTTLE-spectroelectrochemistry in DCM with 0.1 NBu₄PF₆ measured with a gold mesh working electrode.

λ [nm] (e [10	λ [nm] (e [10 ³ M ⁻¹ • cm ⁻¹])				
3 ^H	214, 260				
3 ^{H•}	214, 246, 271, 353, 487				
3 ^{∺-}	215, 330				
3 ^{tBu}	216, 270 br				
3 ^{tBu•}	212, 225 sh, 249, 273, 356, 486 br				
3 ^{tBu-}	216, 250 sh, 380 br				
Obtained from spectroelectrochemical measurements using an OTTLE-cell with a gold working electrode in					
THF/0.1 M N	THF/0.1 M NBu ₄ PF ₆ at 295K.				

UV/Vis spectrum of radical monomer / dimer-mixture

Figure S56. UV/vis spectra of the **3^{H•}/3^H** mixture in THF collected over 83 minutes.

UV-Vis-NIR spectra of 3^H and 3^H

Figure S57. Overview of 3^{H} in various oxidation states. Re-oxidation took place after second reduction.

Figure S58. Overview of 3^H in various oxidation states. Re-oxidation took place after first reduction.

Figure S59. Changes in the UV-Vis-NIR spectrum of 3^H during OTTLE-spectroelectrochemistry in THF/0.1 M NBu₄PF₆.

Figure S60. Changes in the UV-Vis-NIR spectrum of 3^{H•} during OTTLE-spectroelectrochemistry in THF/0.1 M NBu₄PF₆.

UV-Vis spectra of 3^{tBu}

Figure S61. Overview of 3^{'Bu} in various oxidation states. Re-oxidation took place after second reduction.

Figure S62. Overview of **3**^{tBu} in various oxidation states. Re-oxidation took place after first reduction.

Figure S63. Changes in the UV-Vis-NIR spectrum of 3^{tBu} during OTTLE-spectroelectrochemistry in THF/0.1 M NBu₄PF₆.

Figure S64. Changes in the UV-Vis-NIR spectrum of 3^{tBu•} during OTTLE-spectroelectrochemistry in THF/0.1 M NBu₄PF₆.

(TD-)DFT calculations

General remarks

A quick comparison of three levels of theory was conducted in order to interpret the absorption spectrum of compound 3^{H} . Various TD-DFT calculations were carried out with B3PLYP Doubles , B3LYP TDA-TD-DFT ex and B3LYP Full TD-DFT. As expected, Full TD-DFT showed the best match with the experimentally obtained absorption spectrum., as depicted below for compound 3^{H} .

Figure S65. Comparison of calculated absorption spectra and experimental spectrum from TD-DFT calculations for 3^H.

TDA-TD-DFT Calculation 3^H (singlet state)

Table S20. TD-DFT transitions for **3**^H.

State	Difference density (iso value 0.002)	Transition	Transition homo lumo	Calculated Transition energy	Oscillator strength	Experimental transition energy
20		63a -> 68a (0.49)	HOMO-3 -> LUMO+1 (0.49)	169.3	0.2279	216
15		56a -> 67a (0.17) 65a -> 69a (0.17) 66a -> 70a (0.17)	HOMO-10 -> LUMO (0.17) HOMO-1 -> LUMO+2 (0.17) HOMO -> LUMO+3 (0.17)	170.7	0.4759	
14	No.	55a -> 67a (0.40) 65a -> 68a (0.15) 66a -> 69a (0.18)	HOMO-11 -> LUMO (0.40) HOMO-1 -> LUMO+1 (0.15) HOMO -> LUMO+2 (0.18)	172.7	0.1661	
10		59a -> 67a (0.67) 60a -> 67a (0.21)	HOMO-7 -> LUMO (0.67) HOMO-6 -> LUMO (0.21)	184.3	0.0627	
5		64a -> 67a (0.80)	HOMO-2 -> LUMO (0.80)	205.9	0.1614	260

Table S21. Molecular orbitals for 3^{H} .

LUMO	LUMO+1	LUMO+2	LUMO+3
НОМО	HOMO-1	HOMO-2	НОМО-3
НОМО-6	НОМО-7	HOMO-10	HOMO-11

Table S22. Orbital energies for 3^H.

Orbital No.	HOMO/LUMO	Energy (Eh)	Energy (eV)
55	HOMO-11	-0.393308	-10.7025
56	HOMO-10	-0.389973	-10.6117
57	HOMO-9	-0.386481	-10.5167
58	HOMO-8	-0.380233	-10.3467
59	HOMO-7	-0.373473	-10.1627
60	HOMO-6	-0.368433	-10.0256
61	HOMO-5	-0.367359	-9.9963
62	HOMO-4	-0.362142	-9.8544
63	HOMO-3	-0.348688	-9.4883
64	HOMO-2	-0.337256	-9.1772
65	HOMO-1	-0.286633	-7.7997
66	НОМО	-0.286293	-7.7904
67	LUMO	-0.088517	-2.4087
68	LUMO+1	-0.048959	-1.3323
69	LUMO+2	-0.040165	-1.0930
70	LUMO+3	0.006274	0.1707

Full TD-DFT Calculation 3^H (singlet state)

Table S23. Full TD-DFT transitions for 3^H.

State	Difference density (iso value 0.002)	Transition	Transition homo lumo	Calculated Transition energy	Oscillator strength	Experimental transition energy
12	×	65a -> 69a (0.37) 66a -> 68a (0.17) 66a -> 69a (0.12)	HOMO-1 -> LUMO+2 (0.37) HOMO -> LUMO+1 (0.17) HOMO -> LUMO+2 (0.12)	205.3	0.4653	214
11	×××	59a -> 67a (0.19) 65a -> 68a (0.15) 65a -> 69a (0.16) 66a -> 69a (0.18)	HOMO-7 -> LUMO (0.19) HOMO-1 -> LUMO+1 (0.15) HOMO-1 -> LUMO+2 (0.16) HOMO -> LUMO+2 (0.18)	205.5	0.2048	
9	No.	60a -> 67a (0.80)	HOMO-6 -> LUMO (0.80)	209.3	0.1509	
10	No.	59a -> 67a (0.66) 66a -> 69a (0.13)	HOMO-7 -> LUMO (0.66) HOMO -> LUMO+2 (0.13)	209.5	0.0817	
6		64a -> 67a (0.84)	HOMO-2 -> LUMO (0.84)	234.6	0.1181	260

Table S24. Molecular orbitals for 3^{H} .

LUMO	LUMO+1	LUMO+2	LUMO+3
НОМО	HOMO-1	HOMO-2	HOMO-3
HOMO-6	HOMO-7		

Table S25. Orbital energies for 3^H.

Orbital No.	HOMO/LUMO	Energy (Eh)	Energy (eV)
59	HOMO-7	-0.373473	10.1627
60	HOMO-6	-0.368433	10.0256
61	HOMO-5	-0.367359	-9.9963
62	HOMO-4	-0.362142	-9.8544
63	HOMO-3	-0.348688	-9.4883
64	HOMO-2	-0.337256	-9.1772
65	HOMO-1	-0.286633	-7.7997
66	НОМО	-0.286293	-7.7904
67	LUMO	-0.088517	-2.4087
68	LUMO+1	-0.048959	-1.3323
69	LUMO+2	-0.040165	-1.0930
70	LUMO+3	0.006274	0.1707

Full TD-DFT Calculation 3^H (doublet state)

Table S26. Full TD-DFT transitions for 3^{H} .

State	Difference density (iso value 0.005)	Transition	Transition homo lumo	Calculated Transition energy	Oscillator strength	Experimental transition energy
12		64b -> 67b (0.48)	ΗΟΜΟ-2β -> LUΜΟβ (0.48)	290.7	0.0220	246
7 (0.3 iso)		67a -> 72a (0.54)	ΗΟΜΟα -> LUMO+4α (0.54)	327.8	0.0211	271
4		66b -> 67b (0.73)	ΗΟΜΟβ -> LUMOβ (0.73)	457.8	0.1263	353
2		67a -> 69a (0.90)	HOMOα -> LUMO+1α (0.90)	560.3	0.0653	487

LUMOα+4	LUMOa+3	LUMOa+2	LUMOα+1	LUMOα
ΗΟΜΟα	ΗΟΜΟα-1	ΗΟΜΟα-2	ΗΟΜΟα-3	

Table S27. Selected molecular orbitals for $3^{H^{\bullet}}$.

Table S28. Selected molecular orbitals for 3^{H•}.

LUMOβ+1	LUMOβ	ΗΟΜΟβ	ΗΟΜΟβ-1	ΗΟΜΟβ-2

Table S29. Orbital energies for 3^{H•}.

Spin up Orbitals alpha				Spin down orbitals beta			
Orbital No.	Orbital	Energy (Eh)	Energy (eV)	Orbital No.	Orbital	Energy (Eh)	Energy (eV)
64	ΗΟΜΟα-3	-0.279692	-7.6108	63	ΗΟΜΟβ-3	-0.301520	-8.2048
65	ΗΟΜΟα-2	-0.251411	-6.8412	64	ΗΟΜΟβ-2	-0.261491	-7.1155
66	ΗΟΜΟα-1	-0.240691	-6.5495	65	ΗΟΜΟβ-1	-0.245361	-6.6766
67	ΗΟΜΟα	-0.124949	-3.4000	66	ΗΟΜΟβ	-0.226126	-6.1532
68	LUMOα	-0.003691	-0.1004	67	lumoβ	-0.042896	-1.1673
69	LUMOα+1	0.011238	0.3058	68	LUMOβ+1	0.000016	0.0004
70	LUMOα+2	0.031762	0.8643	69	LUMOβ+2	0.029048	0.7904
71	LUMOa+3	0.054668	1.4876	70	LUMOβ+3	0.033730	0.9178
72	LUMOα+4	0.059111	1.6085	71	LUMOβ+4	0.055033	1.4975

Coordinates of optimized structures

3^{H} , 3^{H} , and $3^{\text{H}-}$ coordinates

Cation	Radical	Anion
N 5.57576588323353 5.70096384191712 18.21150890785246	N 5.64879595220286 5.61187395732964 18.27569468545906	N 5.58604137806047 5.69370277648226 18.40625325122592
C 6.53184080129842 6.49571729581106 18.52834392588876	C 6.51648701024558 6.63469402787846 18.60862297546612	C 6.47721152881239 6.77562286972249 18.71428164455670
C 5.41936861656645 5.51564634449475 16.72781335702993	C 5.65312804174928 5.32844039491407 16.83102814368184	C 5.90084036021372 5.20434/51244577 17.05895014652156
C 4.61007829613500 5.02855621262387 19.12035192935314	C 4.48045047534268 5.22829325607194 19.06968343320795	C 4.20624917957629 5.69277117219482 18.86924724388921
	C 7.08055848499904	C / 22/94253109245 6./5668111328844 19.88546/29230028
C 7.25672200770801 7.04672116359897 17.32963369816216	C 6.98265430639391 7.34679485899257 17.36110106555624	C 0.09205305304044 /.52930299900502 11.41945045812180
C 5.433229/2/68453 8.05132228494046 20.46478672260445	C 7.37978658322865 8.08423337839775 20.42239609077161	C 8.06001062015637 7.83543205436313 20.35244730230811
C 7.84020931723432 0.10020340339709 20.3003729211405	C 7.38864476949352 5.70413803870474 2073940917875373	C /.18008305099792 3.04400594799997 20.80002530058494
C 4.14109949043073 0.21042293774005 10.27910611619180	C 4.33922/3/230/41 3.063/3301126269 10.120/90/7600309	C 4.09426368799049 4.92233006000447 10.13119221187219
C 5.5620052042155 4.05355775450 10.30556942194270	C 5.95353444300636 3.65074510067251 10536436757535256 C 6.90130617353309 6.51920170198266 16.3310/4/96151159	C 0.73794019850364 3.592006409705040 17.10034790097205
H 3.9057298074329 0.16517025335235 10.190070033269622	H 3 72567396506797 / 4237508187951 18 34223201412708	H 3 4834408557352 5 9416644593514 18 0500670315051
C 3 81640034644861 6 00919794389651 19 9709903805910	C 3 8228427634721 6 39760007679257 19 84465827600534	C 3 96962208848121 6 72272006120959 19 96595470165321
C 5 27330724046344 3 93028520250575 19 93882057689478	C 4.68166932892221 4.01463943044761 19.97952523376934	C 3,81312103804138 4 30532815529010 19 38912846679058
C 6 90665793508990 8 53510982592672 17 18049717439667	C 6 10913719936811 8 56719436275221 17 03350924560898	C 5.49972657564609 8.43712611249553 17.06544671551354
C 8 77102978199262 6 89477596894815 17 47337623147840	C 8 44722596029724 7 77834104230624 17 39636110540777	C 7 97170793812234 8 34997363247400 17 27499239699264
H 5.71486974502143 8.66268909926872 19.93379454194204	H 7.13684225660539 8.96047339194491 19.83531445589960	H 8 10798752525307 8 75457242453876 19 78537025722068
C 6.85900112512780 8.43195089403672 21.72724264649415	C 7.93308977225391 8.24991263928981 21.67757606432991	C 8.76833246145604 7.77216244880035 21.53149268947976
H 6.47431938857879 9.34102195430712 22.16881805278661	H 8.13715983972205 9.24954450862744 22.03996182699553	H 9.36899367151563 8.63345878614775 21.81285722594061
C 7.77399764292482 7.65267822256580 22.41962339633756	C 8.21193795893834 7.15064373058656 22.48194754972931	C 8.72438577213841 6.66220543512455 22.37763041957490
H 3.24757298049777 5.78471468505993 16.72819784496087	H 3.52500091319745 5.00311213933943 16.37116717046755	H 4.02668568761311 4.15982052253587 16.56195536512906
H 4.03804611748574 6.11462978736180 15.19953884887480	H 4.48103962199185 5.61076171642563 15.04129080641539	H 5.05002399272351 4.55851148586734 15.19079572428040
H 4.15576445860732 7.28370373350342 16.50869945561416	H 4.00658623954309 6.69682772924844 16.34134889772120	H 4.10442566709832 5.82036666173055 15.96611524156633
H 8.24400739976144 5.19622700188914 20.14280161474211	H 7.24405348496485 4.70463335336623 20.35450436657358	H 6.57542995615687 4.78828249991333 20.52728196888372
C 8.26803843606756 6.48982355180643 21.84792544792069	C 7.93950936305492 5.87685763632024 21.99521995507331	C 7.90117935266728 5.60814199425223 21.97034921937874
H 6.24478694537314 3.50083979305061 16.76852078909081	H 6.87958594828669 3.55806765107014 17.08365131424094	H 7.57638384684917 4.10744251958785 17.85375536065477
H 5.41489501239612 3.94313999592151 15.28381291532078	H 6.06700313922580 3.64954045947605 15.51697114185792	H 7.13467635566218 3.60106018627626 16.21246806373661
H 4.47480336702254 3.53183802877022 16.70081708809858	H 5.15284238466028 3.20946214532210 16.95424010023633	H 6.14629771804166 3.10678081585241 17.59545511887441
H 5.83347840670514 8.71095920512141 17.09824066876517	H 5.04571995005957 8.33231304031259 17.04772112025966	H 4.55518013601753 7.89044751689831 17.09365266467881
H 7.37236079347072 8.91596018709561 16.27151354291466	H 6.35095968034370 8.96701346333786 16.04550719841758	H 5.59685114424607 8.87509887451311 16.06437997318163
H 7.28874373946316 9.12410842079625 18.01355028643212	H 6.26984948033600 9.36676546325510 17.75800551360572	H 5.42310909809794 9.25537204333727 17.78455208110318
H 4.39975657705623 6.42130549952347 20.79034972922996	H 4.534/2524890383 6.73410932386073 20.64967322582461	H 4.61980468/57154 6.55011301071615 20.82345360494668
H 2.9/20853/1/96484 5.4/614668938853 20.40683011301007	H 2.935/12424958/1 6.092919/253/457 20.29203/34646/4/	H 2.9291/1/1/15192 6.659806/9990045 20.29801/5380426
H 3.41179781144884 6.82819952652567 19.37612744208049	H 3.68707643305971 7.24805825029258 19.19073598173968	H 4.13980004034303 /./3403338302094 19.01430804//8800
H 9.10344319/13205 7.4932/01480/141 16.29458335/53/46		H /.92301/33908490 9.29304242138/08 17.820/4840491820
H 9.25242049323402 7.23304/07316392 16.353600/1911163	H 6.70094001443749 6.11990197027007 10.40700341425366	n 6.14022535665599 6.39911005093007 10.22214937065042
H 8 10560618248428 7 95434593812131 23 40374942872509	H 8 64001027021330 7 2830269012103 17.09024004437200	H 9 27693388778771 6 630/1172086255 23 30772013769737
H 8 98714164599807 5 88364796731344 22 38158294802620	H 8 17916174046472 5 00731499654697 22 59450354371544	H 7 82377486013007 4 7202050541720606 22 59281325540375
H 6 48435844731985 6 77196148279103 15 29532017356189	H 6 62036500240136 6 50506844802481 15 32200406433670	H 6 42150577454200 6 60272007132031 15 42346961534731
H 7 41914021681131 5 42264605288012 15 90889032146764	H 7 72324401269008 5 63149346158552 16 29077890667120	H 7 79762577938716 6 01546543279270 16 34850754708339
H 5 85366887211927 3 25071923688820 19 31543012536800	H 5 23202107586918 3 22235563043347 19 47194040537984	H 3.97984401390925 3.52682589970334 18.64324384927500
H 4.49595709607651 3.34283913010356 20.42597102940053	H 3.70969224767508 3.61079263841616 20.26813419975462	H 2.75677382665569 4.27133859820041 19.67146837087272
H 5.91666948710474 4.33190524397572 20.71861571435286	H 5.21126339183360 4.268888993547677 20.89546529200799	H 4.41065769081406 4.05174120946372 20.26604479125858

$3^{\text{Me}}, 3^{\text{Me}} \textbf{,} and 3^{\text{Me-}} coordinates$

3 ^{Me}	3 ^{Me.}	3 ^{Me-}
N 4.53052357474061 -0.58972979850888 4.94461290577250	N 4.47483871300574 -0.52236636875093 4.85239577294568	N 4.26916104606224 -0.83796224762154 5.04426556600920
C 4.09345715954557 0.37391026464399 5.67096247866540	C 3.99436258903654 0.32023483906519 5.83878637567882	C 3.94476190698954 0.48631896371269 5.51627975472282
C 3.73639731886475 -1.56361982850817 4.15068252274382	C 3.76300146501963 -1.70362544724941 4.36254305295474	C 4.11594398843267 -1.09303983626403 3.60335230917548
C 6.02405424654232 -0.74745113834573 4.994624392888888	C 5.94349372849105 -0.48869167483389 4.76187812092743	C 5.60049167346072 -1.09535472670632 5.61142675782997
C 5.193316/308/435 1.105621/5053515 6.3930208509084	C 5.13061429991033 0.80773841275555 6.70559040891223	C 5.20541097179067 1.33031413676222 5.65926054395002
C 2.08200/33/38944 U.7004200029049 5.8250230059951	C 2.0048093/011934 0.0348/383091400 3.0433/043144948 L 4.6093104252904 3.4325E5235266 4.43231175E589634	
T 4.4/34354351120/ -2.2/00836292/03/ 3./964004395/662 C 3.10283667569760 _0 9156213316668 2.92740801632976	□ 4.54067194362604 -2.43255523679545 4.12711765566624 C 2.98793838183031 -1.49993718748175 3.05925625223376	C 3 10070938474259 -0 16507005683026 2 94702177142584
C 2 73772381704141 -2 34148059752136 4 99486908876602	C 2.88008213488630 -234475351094898 5.42777651001945	C 3 66467715740020 -2 53818292956902 3 37904457049800
C 5.07360803265392 2.61738768185152 6.20043744276831	C 5.00321147799667 2.26678862573530 7.13870903320390	C 5.34306375172839 2.44075160342638 4.60218638769120
C 5.11046559124086 0.77547715262974 7.89072239000026	C 5.32337503284735 -0.06787519970276 7.95314469637108	C 5.37880741430076 1.97287117366653 7.04668631361529
C 6.45201783828485 0.53158161826235 5.72604598416590	C 6.29926303722437 0.66195799853134 5.71533441705418	C 6.30698217621068 0.26681142331964 5.45316201743458
C 2.11504895822269 1.67179638727278 4.94007651425985	C 1.98270260035069 1.17451485619471 4.65439190519937	C 2.20137637175274 2.09262737863760 6.31865922192116
C 1.93685579637176 0.30545618808097 6.90922146608100	C 1.98344248332148 1.12310083140425 7.04657097017219	C 1.64357661681435 -0.22956738578919 6.08262076900807
C 6.60963046385249 -0.80127874266446 3.58948556322839	C 6.37567918563218 -0.17125004648255 3.33072528338329	C 6.43807195305527 -2.19879795933697 4.96412315567528
C 6.355/8/66952854 -2.01631/50093018 5.7/404342004622	C 6.62/1911139/161 -1.79198144945541 5.20093490548844	C 5.41143269376716 -1.47948129979342 7.08228142287938
H 2.68820610396564 2.05799875800992 4.10642101118969	H 2.49525638585909 1.05865977991479 3.70952137612120	H 2.86520284784565 2.94160235204299 6.21137055681919
6 0.01119471341090 2.09729921035644 3.12013214003044	H 6 10362371549658 -0 97434938912903 2 64261866729970	H 5 99883216802619 -3 18711935936300 5 10871885124405
H 7.6963970730280 -0.771584795474 3.66746189309164	H 7.45841192892117 -0.04362138759841 3.26979880822951	H 7.42295859484545 -2.21296104114864 5.43726741659608
H 6.30198341655258 0.05553345362102 2.98973597329761	H 5.90486670980673 0.74780521879620 2.98089400276474	H 6.59882559168470 -2.04916012020946 3.89617987155606
H 2.26943987977330 -0.27060124660454 3.19217199692876	H 2.03690254616196 -0.99594844608458 3.21991817656966	H 2.12609764589187 -0.23254763004077 3.43040181209310
H 2.71906989093993 -1.70080304914705 2.27793936242550	H 2.76995292289160 -2.46956856744257 2.60815807990092	H 2.98648430002586 -0.44646107413543 1.89583723514964
H 3.82726007463702 -0.34036541129434 2.34990244295147	H 3.56686201934344 -0.92181407605810 2.33887551007135	H 3.40946827315855 0.87650658988658 2.99356442823865
H 3.19347485596904 -2.73646243271746 5.90292094363778	H 3.44085790527349 -2.53898722811382 6.34272403631402	H 4.34612513019228 -3.26419827171578 3.81897439009797
H 2.38813257247579 -3.19215466642413 4.41079816912506	H 2.49624583/40/20 -3.29/46512963080 5.06008202416591	H 3.58121842772412 -2.76762618387226 2.31300536994984
H 1.86642430454773 -1.75060473676867 5.26501194833708	H 2.02508811008711 -1.71998812472029 5.68247441987821	H 2.685/0482/78/17 -2.68693416844088 3.83785477535749
n 2.30220024919402 - 0.39732940201442 7.01423061393703	T 2.45215672159105 0.67325207965012 7.99150653655079 C 0.70767634492001 1 66346693672180 7 05175136781638	C 0 37280237714793 0 04809681353362 6 52599444229771
H 5.96246340458991 -1.98936054247744 6.79004271644699	H 6.27903252779416 -2.13783973996931 6.17300216261891	H 4.71507190597470 -0.80144307543183 7.57252904513895
H 7.43817999796986 -2.12089514382022 5.84169423866462	H 7.70311433841380 -1.62954663748664 5.27383898023366	H 6.36020603950526 -1.46533154838447 7.62625910545526
H 5.97907627022729 -2.91603834477378 5.28650678380055	H 6.48496831391017 -2.60454297766132 4.48755817609716	H 4.99324409815760 -2.48560027122713 7.15419460383948
H 5.07758388685911 2.89818956825505 5.14641211305474	H 4.80380874229663 2.91618793763761 6.28570293734128	H 5.28936268715792 2.02408313749603 3.59453240515308
H 5.92577724260971 3.10687529724587 6.67238907965425	H 5.93053056877157 2.60080916990692 7.60923857749951	H 6.29339141907943 2.98212630787308 4.68873508094596
H 4.16766112859412 3.01416698481644 6.65676355255336	H 4.19990306003734 2.41942099024675 7.85859771551985	H 4.53651589048604 3.17047162664509 4.69494167616379
H 4.19621620626741 1.16331595376064 8.3383858059835	H 4.50000504023711 0.07044890281869 8.65523339990233	H 4.5/325843258044 2.665/05/4409546 /.28404/95963639
H 5.94934550084571 1.24822015752114 8.40150213505632	H 6.24/14354266831 U.19265219882811 8.4/581/091211//	H 6.32161914943872 2.52769900175453 7.10457492608195
H 7.24563033657581 0.3321949013323 6.44593201150723	H 7.25706669769530 0.50113887430543 6.21489083704823	H 7.15482742818905 0.39131637069380 6.13522008489166
H 6.84957179234961 1.25168084235665 5.00798563422440	H 6.38997862391906 1.59019216719784 5.14443398230401	H 6.71373067188519 0.33181221947651 4.43645552623051
H 0.38498172988965 2.80673761515069 4.42804932755633	H 0.22715526877295 1.94973265619506 3.73122279394752	H 0.64638744025099 3.36191309290992 6.99669763364869
C 0.04538979461476 1.63648969954120 6.19425060948817	C 0.03216904981156 1.94520553267882 5.86802787120386	C -0.04977932244957 1.33560489403078 6.88355075425802
H 0.06359458466077 0.36741771309715 7.92400625814443	H 0.21771475860571 1.83365784540532 8.00188837810030	H -0.33317435412310 -0.77667984631121 6.60570925873088
C -1.37396167574786 2.08021353947082 6.37187949138163	C -1.36897302376472 2.48034870748484 5.87807646832648	C -1.45972860668473 1.62800227873774 7.30473520574855
H -1.52437554447278 3.09850284965778 6.01675991836605	H -1.54732667757687 3.15521652380428 5.04041836965893	H -1.51012989999512 2.48897408106289 7.97752416096285
п -1.00120730000040 2.04035028130487 7.41552967449332 Н -2.05151410440210 1.43632605120205 5.80816254208073	H -1.50531072497717 3.02995387152045 5.79453832555959 H -2.10528664207700 1.67636089086176 5.80480452597401	П -1.50440440593776 0.78444978539541 7.84123488321490 Н -2.13461038080328 1.85036802753324 6.46708062503706
11 2.00101110110210 1.40002000120200 0.00010204200070	11 2.10020004201100 1.0100000000110 3.00400402331401	11 2.1040100000000 1.00000000000000000000000

3 ^{Et}	3 ^{Et.}	3 ^{Et-}
N 21:57258804580254 3.48615682970157 9.94117173624107 C 21:30739050622564 4.42893187198446 9.11148254897059 C 23:03036189736596 3.39049912853816 10.29257569074950 C 20:63462754546092 2.48175674137553 10.50769428210427 C 19:559666378006893 4.27164551726879 7.34737602099353 C 19:559666378006893 4.27164551726879 7.34737602099353 C 22:53044423473299 5.2023641570391 8.69691905703135 C 23:669543603807 4.68417670557659 9.68377513011704 C 22:8669454203807 4.68417670557659 9.68377513011704 C 23:0582901555661 6.70877731330143 8.8266202242287 L 20:185697243304 3.5855582040224 6.78856339614391 C 18.32773168762542 4.64323833651216 6.63804322835661 L 18.32773168762542 4.64323833651216 6.38185539719658 C 13.4274364622813 1.66431428817867 9.43344727306478 C 19.67692748014228 3	N 21.48753815289472 3.56561313330075 9.99815755694646 C 21.28204566643098 4.32095103710776 8.85798533380230 C 22.85788006289993 3.70743135316679 10.51675523195284 C 20.72031581865277 2.36697070263763 10.33857786610290 C 19.9120317073761 4.76713295673088 8.4522000079133 C 19.65559058580495 4.91852966400790 7.05812473375898 C 19.6559058580495 4.91852966400790 7.05812473375898 C 22.601137970504490 4.82623526546631 8.32463298467012 C 22.842940010619965 2.43017329524997 10.40827673689714 C 23.42939009322906 4.8172032121568 9.6209452679724 C 23.428301092292 4.84703028772692 7.26180873024478 C 2.54523551927177 6.24402093615333 7.75980869979330 C 18.44450674599831 5.33768029711470 6.64069657987444 18.2427346151610 5.4442564541211 5.57782439010361 C 12.42583859195913 1.70552023883591 <td>N 21.36122729988513 3.48250376243126 9.87114085198725 C 21.22768031890496 4.17442560546354 8.62159762067281 C 22.53034924091382 4.02384813855670 10.57436038781210 C 21.03725023120706 2.068579738424454 9.99330656181579 C 20.0297205192189 4.7657845447633 S.27088550311027 C 19.73250339461870 5.37431703074756 6.99773725175620 C 18.802883208335 4.75242541613812 9.15201891566802 C 22.63349742204922 4.44195283287431 8.12872969475431 C 22.04859144177914 5.0105512859382 11.43436612488997 C 23.34674204922 4.841952859382 11.43436612488997 C 23.44616207061602 2.98701972505939 1.1643661248897 C 20.4652175712743 3.19108273295174 7.51164841494862 C 22.84051143673858 5.090109725605993 7.16655635856118 L 2.4254733551172 5.376237425 5.21942370371775 C 18.5068127771243 5.97627621</td>	N 21.36122729988513 3.48250376243126 9.87114085198725 C 21.22768031890496 4.17442560546354 8.62159762067281 C 22.53034924091382 4.02384813855670 10.57436038781210 C 21.03725023120706 2.068579738424454 9.99330656181579 C 20.0297205192189 4.7657845447633 S.27088550311027 C 19.73250339461870 5.37431703074756 6.99773725175620 C 18.802883208335 4.75242541613812 9.15201891566802 C 22.63349742204922 4.44195283287431 8.12872969475431 C 22.04859144177914 5.0105512859382 11.43436612488997 C 23.34674204922 4.841952859382 11.43436612488997 C 23.44616207061602 2.98701972505939 1.1643661248897 C 20.4652175712743 3.19108273295174 7.51164841494862 C 22.84051143673858 5.090109725605993 7.16655635856118 L 2.4254733551172 5.376237425 5.21942370371775 C 18.5068127771243 5.97627621
1 23.74789180285422 5.42275375914764 10.47181292861480 1 24.55193322411264 4.51707199828029 9.20552196905711 1 15.74468476945086 5.1334696204298 5.2058196905711 1 15.74468476945086 5.1334696204298 5.36598917765484 1 15.47123667344562 6.16686201338565 7.74936002071873 C 16.3406729656717 7.1829032147949 6.058065694342865 H 17.01762705409918 6.89701639492078 5.22645184294338 H 16.74072852436997 8.02676641570586 6.620023060600904 H 15.38067966837073 7.48493172144579 5.64154078344721	1 22.30963879428322 5.78320663379597 10.1191193200669 24.49830135526349 4.686196564102809 9.43580659408278 1 15.8240258732597 5.73456841028009 6.13125244598665 1 15.32278325846802 5.88545670253715 7.73320228551783 1 16.83962223846538 8.04110357650619 6.22604721325641 1 16.32067834437472 8.1935486453727 7.89829450118403 1 15.11674368162090 8.0705635592944 6.61255325190218	H 23.24470073822000 5.8605615610508 9.63756927748217 H 23.24470073822000 5.8605615610508 9.63756927748217 H 24.38713668345017 4.53267341560408 9.48099302925178 H 15.90411488186040 6.48590975358284 6.1887904385930 H 15.30421813414602 6.08404745265008 7.77892525748947 C 16.07421408243878 8.0822988992297 7.0147365746108 H 16.25055135505964 8.282518325458767 7.86818593004 H 16.2505135505964 8.25218325458767 7.36496398609597 H 15.11112378477632 8.53869510018277 7.36496388609597

$$3^{tBu}$$
, $3^{tBu^{-}}$, and $3^{tBu^{-}}$ coordinates

3 ^{rBu}	3 ^{tBu•}	3 ^{rBu-}
N 1.83335445276566 5.18572132235984 19.88346891417110 C 0.63899302495902 5.2217579075848 20.79411612167335 S.185981650113 5.0153536457132 20.48475421646422 C 1.52776038881441 5.2172769522068 18.8371320488052 C 0.760248477416 5.00502621705017 21.44403524647 C 0.47014419300603 3.0506440919147 21.4443055266 C 0.43050722429256 3.3342008170915 17.817443932521031 C 0.43050722429256 5.330460191463 17.419744999224 C 2.48252738338576 5.19001788255721 17.51944177246199 C 2.3005046015219 40.021568716531 16.8450569812473 C 3.02015871195 4.520083144408 21.547303331433 C 4.00251197198017 6.3200831444080 21.547303331433 C 4.003251197198017 6.3201384843599 20.31822052316895 C 3.85006611597944015 15.28277033314533 15.28274736338569 C 4.369472757424398 4.2700439182659 12.3894084	• 1.86020370304769 5.32952839847113 19.84358239671808 0.665990571979442 5.328528398176 20.65343235390289 0.165990571979442 5.328642233093176 20.65343235390289 0.1692290071801819 7.02337834199033 18.5485216902532 0.1782190071801819 7.02134301351152 12.20013822770422 0.03702073550581 4.054185329272 21.78024167775345 0.03702073550581 4.054185329272 21.78024167775345 0.03702073550581 4.054185329272 11.84395100006514 0.03237011162297 3.22366733380262 18.65089563393177 0.030247011162297 3.22366733380262 18.65089563394172 2.381915849366 15.019916116708 17.380237986799 2.34191354008645 2.000943374005 15.2065172820540 2.38022885578397 6.13519916116708 17.3808237826720 2.3819132842614 4.7252373569022 15.2760072147564 2.2003742842614 5.1598543189831 15.2065172820540 2.342475204750404 3.3752867230236 15.2760072147564 2.422475204754040 4.3752867230236 1	N 1.99542131579926 5.1524482296934 19.79715660126443 C 9.84946976197473 4.42354651040061 20.35414663566162 C 2.881625291120 5.8524405483364 18.51644460732271 C 1.8616747151001 5.67474489113867 18.51644860732271 C 1.067457289340152 2.02212335223600 21.83769422571637 C 1.067457289340152 2.02212335231360 21.83769422571637 C 1.067457289340152 2.02212335223600 21.83769422571442 C 0.1614333556564 0.0724828934553 18.29992427724424 C 0.06335569456068 6.1234521117052 17.345534148411137 C 2.40014057247274 5.43220624226994 17.39692437204353 C 3.5534100170600 21.52024517161617 C 3.6324100170604 25.335414822060 C 1.3932156654 0.02380149822060 C 1.393235052207 3.5658482171150 C 3.64224070844228 7.0238069131178 S 1.9332777507507303 S 3.02
H 4.31195765646078 3.89667515318498 19.01081278244936 H 4.76741019517482 3.63913070961638 20.06482245846199 H 3.2897149897587 2.915454517326842 3.00.07391670425764	H 3.98750989171899 3.64113781598002 19.00446500964351 H 4.44554187062925 3.26720426754963 20.66202066375999 H 2.84716242363415 2.8157751948015 12.006772320679100	H 4.56677480807630 4.53829733610212 20.53707745112636 H 4.54458877187533 5.47722376908845 22.03851112788749 H 3.45096235178555 4.11070362986601 21.82790714154475

3^{H_2} and 3^{H_2} ' coordinates

3 ^H 2	3 ^H 2'
N 11.055119380347 0.4571333177813 4.04533317281 4.04533317281 C 11.05729803474 0.4571333177813 4.04533327871 C 11.05729803474 0.4471333177813 5.0428006732197 C 11.05729803474 0.4471333177813 5.0428006732197 C 11.05624034541 4.95020687710024 9.00045577402348 C 11.05624034541 4.95020687710024 9.00045577402348 C 1.950724034344 4.95020687170024 9.00045577402348 C 9.807444624791 1.0507768005229 7.0710348 C 9.807444624791 6.067650333727 7.0710203526296 C 10.03519527078 8.0697446023 7.0576034052877 C 10.251191627078 8.0697446023 7.0576603382797 C 10.251191627178186 8.072452331322 7.224944132304 C 10.251191671387 6.42698017416 6.46980197466 C 1.02516721718187 7.05764202371714187 6.469831982064 C 1.02516721718187 7.05842037141418 6.0569	C -5.4773/329806310 2.55904077841182 -0.13980108510184 C -5.257374012233 0.05952328422 -0.13980108510184 C -4.2527122805182 0.05956631822709 -0.94558040770638 C -4.652271623789 0.056454770421424 -1.22210135626224 C -6.4698217228398 1.13602142244824 1.32220135268739 C -3.483305413271 3.0448115574252 -1.0528115044863 C -3.483305413271 3.0448115574252 -1.0528115044863 C -3.28157944758 -1.20157973327381641 -1.0328115044863 C -3.4815305821184 -1.03179753237381641 -1.03281150426383 C -3.4144411555486 0.00175332616841 -1.5034425044122 C -3.281579444238434 -1.440578250383 -1.4711398565073 C -3.281579444238434 -0.44577851229384 -0.65211091822473 C -3.281579444238434 -0.038547184293938 -0.65211091822473 C -3.2815794442384344 -0.038547184293938 -0.65211091822473 C -3.28157944445384017111<
H 10.18386968350237 6.72078144009400 12.46357863313568 H 11.67310743134512 2.62439936314802 9.76246176860922 H 13.16932634910861 3.16170143344591 10.5319398143442 H 12.60129589941967 3.94648340256386 9.05241143291660	H -5.65183874296269 -1.36862850999147 2.30348469730228 H -5.932396139869851 -2.88459640500516 1.46787490636710 H -0.462201001419129 0.4682768934082 -0.0022862571328 H 0.43547906840744 -1.87014174515711 0.56673727797453

3^{Me}₂ and 3^{Me}₂' coordinates

X	
	3 ^{Me}
N	5 2
3 ^{Me}	
N 11.01504835502012 9.53965519829883 4.96873543145141	C -5 97144911212798 2 42065362942176 -0 22844986136878
C 9.54044535354018 9.47180752914615 5.08356078541557	C -6.56930137127451 1.08680677567700 0.20207401122463
C 11.87241402410828 8.35908243538737 4.93079823291262 C 11.59600405893683 10.87865426552450 5.08396928704208	N -5.42687465134806 0.17908716956913 0.00484030664852 C -4.42580186633449 0.69954867935668 -0.80100411461871
N 10.57883925566505 5.22178778995717 9.99521919798858	C -4.82317542328614 2.13040508372835 -1.19324319558761
C 10.81648827985262 6.56966597243689 9.79929832287375 C 9.26011342428228 4.65293742058667 9.71561967750221	C -7.01084089062580 1.24324561443858 1.66392429545422 C -7.78969708859760 0.70621797100190 -0.64541035131080
C 11.60241518423967 4.58617621974125 10.83570898206668	C -3.75268721419488 3.20060402544292 -0.94059494679676
C 8.87531383200886 8.73082297276248 3.90669740376865 C 7.48171665410517 8.67654154310955 3.78751896288046	C -5.31886949209756 2.20127391340727 -2.64489682868601 C -5.51665394132109 -1.25560750657291 0.25722707298526
C 9.58812605344398 8.16815473363767 2.85586882264290	C -6.43658329157894 -1.69145983236935 1.39127911599204
C 10.00112617892331 6.61474867477684 7.46962182466992 H 10.23418663218448 5.56195916911073 7.35568614462842	C -5.84382588499576 -2.04284026398378 -1.01391915920580 C -3.24564967199436 0.12303147361958 -1.20724639247218
C 10.37642290977955 7.26865747309140 8.71444462599623	C -2.66642829393782 -1.16971975157275 -0.82804133359775
C 9.51639068530381 7.27667749589876 6.41699975466705 C 10.26119002322517 8.71502090542131 8.68676368824944	C -1.36340976103399 -1.44519925983877 -0.93856254906563 C -0.33018754815438 -0.48707340030828 -1.45313276425737
C 9.72850936948099 9.38468152414563 7.65951935539027	C -1.04669281233573 0.56523181680731 -2.24709198656871
H 9.62756498976866 10.45611388942374 7.75939577214710	C -2.34614103692847 0.83852661727420 -2.11686751190325
C 9.14986035089741 11.01688614334485 4.95580034551579	C 1.49884613705987 1.13595415321597 -0.81094742308330
H 9.30451848870867 6.73071561052550 5.50394014803076 H 6.85317319462004 9.16618439168870 4.51418810429365	C 2.82108519301340 1.04821757559792 -0.64215268666195 C 3.45218076808996 0.00226277555881 0.14753748313872
C 6.85347308614821 8.05307382408206 2.72515118469621	C 2.52150951525708 -0.96405171387868 0.70520125837226
C 7.58481961368229 8.61296827783143 6.77367626891281 H 11.20299810722974 7.52270304554600 4.73878879811937	C 1.20166164906671 -0.91192289214476 0.51008948221859 C 4 79332437340410 -0.06900570093480 0.37247449933823
C 12.64339761964636 7.98438538952982 6.21231672991177	N 5.38407988905593 -0.83363784698178 1.36358101117618
C 12.90424850081432 8.34957766737872 3.78978484020414 H 10.56622904541060 9.28347001634707 9.55367576414089	C 6.67303956745182 -1.34349435947182 0.87966264843859 C 7.14876998292443 -0.20220458287828 -0.03341359044246
H 10.66021916492069 8.24246010073980 2.83018804170096	C 5.88829830681963 0.56708428886407 -0.48629979553581
C 8.96194037779132 7.53471447483048 1.78910000334610 C 11.69022420602666 7.06948928887900 10.93678684781306	C 7.70885731205977 -1.61973106046881 1.96274096314352 C 6.43059380328489 -2.62941318643542 0.08299400354648
C 8.91557496281175 11.42181411787607 3.48752978967608	C 5.66437318822201 0.37295844950563 -1.98740395729971
C 10.39415185253406 11.72829599132626 5.47478538225923 C 7 93909323689102 11 55105257233648 5 72236089209870	C 6.06263229861673 2.05463034172774 -0.15617749295669 C 5.06362677727361 -0.79351517930843 2.78855506254148
H 5.76990745062245 8.05046186553904 2.68550078228764	C 4.14638703758461 0.35883307679095 3.17648688188155
C 7.58209845938809 7.44871301622196 1.70514708847548 H 9.57444822916147 7.10906391242177 1.00254643357211	C 4.55262387402787 -2.12171292671693 3.34951283158084 H -6.72124746325833 3.08663678752091 -0.66051917270074
C 6.89537072789058 6.76342034886092 0.56066577212348	H -5.57239997457842 2.92604671215166 0.65517077492786
H 8.83870521824093 5.26789527516635 8.92385734916430 C 8.27258368479462 4.77499499238692 10.87976453681196	H -7.65353843611313 0.44412602896173 2.02310705552378 H -6.14650201887861 1.31906464674579 2.32410907013639
C 9.30570171558890 3.23513280272590 9.16117732704996	H -7.58111329536164 2.16961320229477 1.75787013161634
C 12.68095915323236 8.18185513856526 10.59505861764927 C 12.48277336861531 5.78669577012893 11.23222147857991	H -8.2354/433842709 -0.23457229308085 -0.32301467794450 H -8.56105902890834 1.47262865420908 -0.55128291600538
C 10.82927863729582 7.48802698383341 12.13355062525836	H -7.54511445283942 0.60791774768028 -1.70152247786499
C 12.2528044175766 11.40346527175863 3.77520404552432	H -2.965779922249574 3.23553237255433 -1.68783691122191 H -4.22852322706135 4.18412500535841 -0.93025053040950
H 9.63748108101602 10.99589185720163 2.79617577648217	H -3.27685776699281 3.05071506935561 0.02921026756291
H 7.92963850285596 11.12494642608317 3.13272058075482	H -4.52757367717674 2.01664722247554 -3.36849566643482
H 10.35153254220860 11.82438046413342 6.56141365741817	H -6.10448020522904 1.47463126420671 -2.84570111002297
H 13.62746144137695 8.45226004712502 6.25250106406152	H -5.22007090322461 -1.73609370236793 -1.85274009379410
H 12.80313357108225 6.90472827930401 6.23109003699115 H 12.11135003115729 8.25055244784284 7.11659015135342	H -6.88651308679705 -1.90687415322773 -1.30315943982669
H 6.99344413185470 11.14102222924677 5.36875246469605	H -1.02640092034816 -2.44386728043971 -0.68084267620264
H 7.88691170707896 12.63004930634860 5.55775554822722	C 0.62444435382769 -1.24605614087665 -2.38271139723001
H 12.50106222464545 8.65649334377097 2.82559868738853	H -2.75128192921701 1.59012518634621 -2.77571915577640
H 13.30268815652139 7.33928538999030 3.67976037554226 H 13.75443746520955 8.99655115640795 4.00587803889774	H 1.09828719611160 1.98282482514361 -1.35829146110755 H 3.43390803977640 1.83636200834605 -1.05681131129561
C 11.07028330535219 3.87836183754572 12.08379779846948	H 2.93548981635321 -1.80781362025751 1.23917258972076
C 12.44026679003217 3.59275871596743 10.02242340180667 H 8.48552756961963 4.09851061573912 11.70502376242951	H 7.80979602756374 0.45890395507988 0.53326264378961 H 7.72755357097980 -0.57374761014071 -0.88156223491577
H 7.26594126927400 4.54641809809687 10.52535348599148	H 7.40460545874537 -2.40929892634613 2.65105779471441
H 8.25648083120174 5.79504950244486 11.26450642809428 H 9.96655443755043 3.16921750140096 8.29673577276172	H 8.63136243123549 -1.95017224849426 1.48357763001949 H 7.95264127727301 -0.73020103054611 2.54460616048684
H 8.30636359950580 2.94044005808028 8.83932505363785	H 7.35234583213686 -2.99047288518699 -0.37762773459259
H 9.63327569018820 2.49879578567339 9.89535452037296 H 13.13323561830435 8.02344939367482 9.61534919005413	H 6.04538649955376 -3.41906660185504 0.73027680381225 H 5.69747166870050 -2.47150620896850 -0.70905911137202
H 13.48177418971846 8.19745063189674 11.33744029693216	H 4.77474373833561 0.88126430759615 -2.35335022037875
H 12.23480881160403 9.17439223251725 10.59974201654573 H 12.31572912485414 10.62439631996333 7.12938436595724	H 6.51777666171048 0.76070921106079 -2.54760744067148 H 5.55549517994239 -0.68326240694665 -2.23563698536649
H 12.88409380372105 12.08738878645606 6.31817824401910	H 5.21309082545929 2.65741309528013 -0.47454099318821
H 13.60268518948149 10.54141640894194 5.92028187764698 H 10.51108271113155 4.54905406564543 12.73484397996530	H 6.18789210657131 2.20299290230673 0.91781929143977 H 6.95184701617064 2.45234218268706 -0.65125484698003
H 11.91391408613046 3.49232318826901 12.65786737138710	H 6.00681436392103 -0.59340710268960 3.30569890010057
H 13.18769512144215 10.94044575773233 3.56733541037913	H 4.10621155692115 0.414/11243843/5 4.26527225264090 H 4.52366159452543 1.31247056199361 2.80737666454019
H 12.40471840975087 12.47795849676856 3.85121494008451	H 3.12743825461279 0.23874009471898 2.81394289005346
H 13.39332094344763 5.78920554062969 10.62707514823949	H 5.18445166698447 -2.95656226403346 3.04577404427017
H 12.79843432403782 5.73523761680520 12.27663040108541	H 3.53447576847204 -2.34178714160418 3.03216549435681
H 10.241484378745464 8.37652428709311 11.89865577638816 H 11.45745666037419 7.72148809013515 12.99631072906128	H -4.53126376287804 -1.55182443533193 0.60856029160066 H -7.49501144160624 -1.53550606316365 1.18810171084862
H 10.13183873182690 6.70586377489682 12.43277046986540	H -6.18434504953483 -1.21414402283873 2.33591303262729
H 13.31838325130255 3.28171309675850 10.59264037201971	C -0.44100993718390 0.92429525724542 0.69405886857379
H 12.78668020488469 4.05503594095226 9.09750415092979	H 0.57986713376455 -1.69874858133357 0.92433569895488
H 6.23885895857269 7.44806150964503 0.02112656025165	H 0.06962834901082 -1.68634145069886 -3.21192277418350
H 6.27850664603968 5.93198277356475 0.90559379704190	H 1.14151955821306 -2.04812331256951 -1.85445258048923
H 7.03230290498433 9.54718001169421 6.73609890535380	H 0.13975890751875 1.36975175187881 1.50198290101710
H 7.49933894052104 8.22722053079073 7.78903030413027	H -1.18350780597306 0.25786534992356 1.13378448609367

3^{Et}₂ and 3^{Et}₂' coordinates

AT A A	2 ^{Et}
322	5 2
N 10.95934061629872 9.47987379632765 5.00569229960209	C -6.03808533520088 2.49488055319442 -0.25562486552083
C 9.48206471279940 9.43297543223184 5.11660125509063	C -6.66531758366107 1.18810256393127 0.21340748452940
C 11.80553658792453 8.29140653523970 4.95660582812289	N -5.52687512943321 0.26072557940412 0.09443040488409
C 11.56011407261006 10.81051996062730 5.11684774037715	C -4.48871676976126 0.74281646197297 -0.688983633044319
N 10.66544738035470 5.22951439406924 10.01440721734873	C -4.87051644440363 2.14812255822663 -1.17730940388581
C 10.88774221950175 6.57655174471573 9.79490834842276	C -7.15132208706502 1.41094961508152 1.65230683168811
C 9.33472459723073 4.65842332745221 9.80150937016855	C -7.6528068777449 0.7883585208730 -0.65811137410510
C 11.71588737889839 4.61188830904534 10.83588579995223	C -3.80102496022846 3.22732929268759 -0.96196641475822
C 8.80898046724875 8.69981628928487 3.93581172138293	C -5.33145174322575 2.13911707208910 -2.64240076044711
C 7.41733088039639 8.69054110545193 3.79095401361659	C -5.64856174655335 -1.16450343248359 0.39292368213465
C 9.51873105965602 8.09688827557652 2.90283672132166	C -6.65031122135520 -1.55225031610555 1.47444636905135
H 10.20909431265189 5.54463547155440 7.3814169459961 C 10.39931709621367 7.261648708330 8.72247491270956	C -3.28684338804002 0.15340217285520 -1.006019500593 C -3.28684338804002 0.15340217285520 -1.00600196006963 C -2.69826748358931 -117664509907482 -0.47975113564758
C 9.43707375439274 7.25018603845444 6.46739322746088	C -1.39637689364500 -1.36849898545530 -0.5726100643811
C 10.26050313278921 8.70534155282501 8.69222673391258	C -0.36625224794560 -0.49733409394371 -1.22517365321263
C 9.67000191076190 9.36174357104367 7.68811680742161	C -1.08601325341095 0.49889268584869 -2.08264914830986
H 9.54842994507024 10.43042766196470 7.79768139762108	C -2.38267812304631 0.79153195041183 -1.96457997940220
C 9.02996114777395 8.70143581112074 6.49843688768632	C 0.53292225346799 0.24640510569693 -0.12809263714628
C 9.11765830996732 10.99666529169818 4.98427360668034	C 1.54183727309017 1.11600501245047 -0.81675597918354
H 9.19266465313175 6.69/18186346281 5.56621054/140/0 H 6.79055848173024 9.20553195560798 4.50063725932421	C 2.86094184758555 0.9955521225714U -0.69594227534249 C 3.49619154626782 0.01056593991305 0.16661821379551 C 2.56052095905200500 0.8507370263444 0.95073762562
C 7.48222240192763 8.61026322476079 6.76125704621821 H 11 157722338135 7.4567065730880 4.7831768319842	C 2.3596559505052 -0.6397170559141 0.639276057055748 C 1.23498566594797 -0.77612948066307 0.71441710505748 C 4.84318382161863 -0.0911736473878 0.3442567855780
C 12.59683612657603 7.91500711163069 6.22510883422596	N 5.45051999565849 -0.77402256127736 1.38313459242523
C 12.81971615190548 8.26861799561476 3.79873427955764	C 6.69696864808786 -1.38194305352625 0.90093494792810
H 10.58822571855196 9.28218596366531 9.54561521214201	C 7.17211704493746 -0.35719681073916 -0.14132391844827
H 10.59222596231382 8.12745418191444 2.89442618273557	C 5.92011918360824 0.41037850252274 -0.62002854761871
C 8.89028832800121 7.47271881052170 1.83360666799060 C 11.80508228995704 7.09573307125146 10.88826834472089 C 9.80041005E76777 11.202005025004 25.4152405286272	C 7.76874599738443 -1.59218114690252 1.96361329339293 C 6.37175098048461 -2.72929614918811 0.24838595948508
C 10.37162948203458 11.67670335170004 5.50775026708028 C 7.91734874004221 11.55630032644872 574378776779079	C 5.0512005002017 0.051247151220304 -2.05020502105001 C 5.15970155042257 1.91597972303865 -0.45322451479254 C 5.19535229426998 -0.5786223352402 2.80848812331822
H 5.70326615072319 8.10440634444545 2.6684500948260	C 4.33965174885367 0.64365867056623 3.11329661517696
C 7.50919645860977 7.43429648054771 1.72539781390773	C 4.66140484539489 -1.82149571449242 3.52252100964014
H 9.50151010176776 7.01300343820861 1.06471534292581	H -6.76685058957554 3.15234977492665 -0.73415413631784
C 6.82697948661770 6.80232921987615 0.54532877435667	H -5.65310090321497 3.03109219903667 0.61614056848828
H 8.89056950826883 5.23968879850000 8.99667394256581	H -7.81582041529186 0.63499758394736 2.02264557944250
C 8.38674505025154 4.84076601803461 10.98970299811968	H -6.30727495725000 1.50288484166149 2.33629912608914
C 9.35388115941644 3.21878528923282 9.30541134389390	H -7.71177900912473 2.34727328686334 1.69026782959340
C 12.77797110043927 8.20380496090248 10.4667795718824	H -8.33164951612953 -0.13439110435682 -0.31791179644175
C 12.01232704170976 5.81900508100504 11.10947381517506	H -6.6268262/0406404 1.50685361/262/357 -0.6166589/3684/4
C 10.99368797262429 7.53368743946845 12.11245050732448	H -7.58821016587388 0.64939914661578 -1.70190855274707
C 12.62931211081498 10.94841741274943 6.20935989264166	H -2.99818780/29808 3.21687775174933 -1.633/2657937638
C 12.19655005189559 11.32546443844753 3.8070977550591	H -4.27206574646892 4.21163473698196 -1.01764780386938
H 9.61112794651324 10.94361989851210 2.82625490903263	H -3.34611713750965 3.13041853527091 0.02441270890799
H 8.99044267293645 12.47743236087375 3.42586335346610	H -5.74919766319470 3.11312866773872 -2.90641222153426
H 7.90692143927202 11.12197033229655 3.15632729004370	H -4.51838649395554 1.93583029232227 -3.33622827608221
H 10.32842658054842 11.76972922561118 6.59450009737192	H -6.09759474216920 1.38865306046510 -2.82874368929565
H 10.45797611868919 12.69432507481887 5.11954097277671	H -5.77719541579914 -3.05847840144215 -0.65385794383366
H 13.59133474473651 8.36196045053601 6.2388107672651	H -5.17834141024286 -1.74319558655297 -1.65833440547724
H 12.73423321466660 6.83247747183559 6.25413999978272	H -6.89378260823175 -1.83828283808987 -1.25778552428930
H 12.0040440886 8.20207401455750 7.1282937740155	H -3.2677851240726192072 - 4.23447757209024
H 12.050445944068466 6.22050514657306 7.15065857740156	H -3.50478391639527 -1.5344775739951 -0.00870577395940
H 6.95983475277931 11.19902204747769 5.36528261220099	H -1.05675220597098 -2.32075419592780 -0.17764645453159
H 7.01825763155231 12.63977564134378 5.600754077888895	C 0.53992083539829 -1.32750065323055 -2.11552817540833
H 7.94916021535671 11.38119802276283 6.81748977983849	H -0.51369851476500 0.96647644246666 -2.86549667533801
H 12.40921254718826 8.58761206667068 2.84164093584230	H -2.78263686343895 1.49984931433615 -2.67225098583204
H 13.19906210109923 7.25201557462437 3.67890910588558	H 1.14757628516114 1.91866253341635 -1.43161613370232
H 13.68414436983085 8.89966526678341 4.00485599518065	H 3.48705304831083 1.71204833831985 -1.21595313187160
C 11.22640161490260 3.94001931661258 12.12128683075769	H 2.96851993916095 -1.66396383248247 1.45488991656338
C 12.52167687415909 3.59374549673264 10.02121399905291	H 7.87943856642046 0.33125596943043 0.32862656820029
H 6.62963292147630 4.209306929325 11.64200020030747 H 7.36890053846303 4.59410481557891 10.68249271670940 H 8.34196298931255 5.88073474241188 11.3415440920493	H 7.46521937247461 -2.29566656204584 2.7399007578712 H 8.6557793479072 -2.0956655204584 2.73999007578712
H 9.98402791600369 3.11339433313620 8.42217742078792	H 8.07177025339819 -0.66021541333251 2.44203165494038
H 8.34224426086405 2.91946819960036 9.02967524232893	H 7.25782467120306 -3.17151729263456 -0.21148957290935
H 9.70118085163899 2.50961775889518 10.05685586525080	H 5.98795884986071 -3.43493998263478 0.98707724667861
H 13.19733371065416 8.02354879775576 9.49620820372153	H 5.60970404686445 -2.62076601975576 -0.52447861398653
H 13.60358153604210 8.24028814320135 11.20063050644358	H 4.73500056636926 0.57314185541915 -2.46225902092598
H 12.32741357315468 9.19433455527463 10.4201220093344	H 6.46284312116063 0.36909409208198 -2.71441231060044
H 12.27883948099419 10.55372686063440 //15230047755360	H 5.46885687346591 -0.99881787149111 -2.21530018125076
H 12.86433280057333 12.00667448864214 6.345465980886668	H 5.31860178790984 2.51541914080136 -0.79914277873396
H 13.5635640072823 10.4506807204708 5.58230507717443	H 6.32573707471424 2.45862715432310 -0.59384619308985
H 10.69722343253537 4.6308417837373 12.77615517147665	H 7.04007890667870 2.22619190165358 -1.02126187926704
H 12.08869313732312 3.56210586827673 12.67259335286740	H 6.16761817387084 -0.36664960630031 3.26322206692312
H 10.57622333360002 3.08694582417862 11.93055545656618	H 4.34789311803534 0.80969403413074 4.19149212466310
H 13.15794420448480 10.85754942722538 3.60543719866195	H 4.73542755758861 1.53945396046816 2.63484771762240
H 12.38085716277967 12.39942406942331 3.87885939144863	H 3.30234675026864 0.53117122531860 2.80416767806186
H 11.56344352243001 11.15451994948435 2.93997322717372	H 4.71621549488835 -1.68159803877199 4.60350223498530
H 13.49276043001209 5.81153663567936 10.52121947356303	H 5.24539564550220 -2.70865304293306 3.27699636005171
H 12.97756019782230 5.78566711067933 12.19831328443659	H 3.62146874727980 -2.02804213996633 3.277429226695622
H 10.407235524020255524020 8.242127550962645 11.9896295254420	H 4.667700565700656 -1.4558466564028 0.9720166903199
H 11.65633053511036 7.77661759164932 12.94631401849552	H -7.69060403632100 -1.38494871030146 1.20070293053779
H 10.30518655688453 6.75944661963666 12.45002418898696	H -6.45027284540471 -1.05381688201470 2.42063266439659
H 11.95604454040549 2.68768003782874 9.80784018352663	H -6.54096785012190 -2.62351526744776 1.64664445233162
H 13.41927773255440 3.29644242913724 10.56790444835628	C -0.36215701075285 1.13001292006896 0.77037829028627
H 12.83505940416470 4.02893434207338 9.07173473232976	H 0.60794316254443 -1.49457407875036 1.23230722279171
H 7.43255910362234 5.97429217504828 0.16920307687469	H -0.88430441218378 1.85464413063108 0.14043190271422
C 6.580918/0184228 7.80432834297134 -0.58087316863094	C 0.39581835994015 1.8644174496969 1.8666872931736
H 5.87511853544207 6.36617514558237 0.85830196156593	H -1.13773027296047 0.50498376404265 1.21919421488114
H 7.0732905864440 7.85617514558237 0.85830196156593	H -1.034290098169 0.7381146146290 0.7381146146
п /.v/rzзисиодини // л.водзаквизиовузи b.uss/repor/14/2442	п 1.304932600081030 - 02.73812105149399 - 2.57182233252883
Н 6.97238406083453 9.53915233772440 6.52251913207701	C - 0.20817029542169 - 2.13114154002875 - 3.20278307887605
С. 7.09877842136667 8.22730137538545 8.1831865554425	H 1.08267634897834 - 2.07367262658600 - 1.44248929690772
H 7.51891622383664 8.23220069225595 -0.93540409965645	H -0.73174817918790 -1.45618617892592 -3.88066127673737
H 5.95337993149987 8.62903154207959 -0.24190151261954	H -0.55513634016833 -2.80707524604312 -2.78518565512795
H 6.08466999748997 7.33222220501951 -1.42960470156561	H 0.48407676896973 -2.72831582068692 -3.79793848108691
H 7.57058750280286 7.30570122094389 8.50993154393584	H 1.17092838411477 2.51391980685475 1.45859030248637
H 6.01103645225187 8.06756668274568 8.22540174252826	H 0.88201815000412 1.17205532211750 2.55500163967303
H 7.33737895216784 9.00309024586060 8.90590009674459	H 0.28528859487836 2.48559150500278 2.45020746625996

3^{*t*Bu₂} and 3^{*t*Bu₂' coordinates}

3' ^{Bu} 2	3' ^{Bu} 2'
3 Bu 2 C 1 1 1 1 1 1 1 1 1 1	C -6.8004757515432 1.8316004181241 -0.436506771398 A -0.4438383837101 -0.2524412733308 A -0.4438383837101 -0.2524412733308 C -5.5706802441248 -0.4438383837101 -0.443733223446 C -5.5716802441248 -0.4438383837101 -0.4437733231446 C -5.57168024441 -5.592731331 -1.73251446717722 C -5.57168024441 -5.5927313377201 -0.44477332203446 C -5.57716257446711 -0.4467714169024 -4.78620902720308 C -5.57716257446711 -0.24677110802441 -5.9877117597731 -0.446751169027 C -5.577162574101 -0.246787117597731 -0.4467511690272 -0.78165384416 C -5.5771697791701 -0.2478717597731 -0.2607971128530 -0.73165384416 C -1.344727273974167311 -0.3467287147871 -0.2607971128530 -0.1516384416 C -3.3687287144871 -0.3698787446871 -0.738165382710 -0.738165382710 C -3.47628744711 -0.3587167976727885 -0.73816537790737
H 13.50065169028945 5.0310657057309 9.20091157682019 C 7.0025742745001 5.0376547120026 -0.10126239404885 C 6.69382490611931 8.3115656837663 -0.17550456933371 C 5.0660344923281 2 7.051659150992 0.8205157449916 C 6.7703205944500 7.2069747445300 0.8205157449916 C 6.806579947971 9.400754432010 -0.8205157449916 C 6.80257892496191 2 7.6742017812303 7.84570920971182 H 7.7327290453489 8.404403232022 - 1.07126059185014 H 6.3453739189227 7.87320000289 - 1.07126059185014 H 7.5110477127284 H 7.511047533267 A 7.37320000328 - 1.07126059185014 H 7.751127533267 A 7.3804033533785 7.8555710431300 H 7.70023285442381 7.54035784302049 4.41944922272491 H 7.7032385442381 7.54035894499194002 6.530515714755 H 5.5710167717274 7.380404935333785 7.8555710451300 H 7.7002385442362494 3.3804499194002 6.56370157214956 H 5.77032385442381 7.540358649691 8.003645540292 H 6.6220672102899 8.6030645540292 H 6.5200472106896 9.56030645540292 H 6.5200472106896 9.56030645540292 H 6.5200472106896 9.54034924237333 5.3246686204251 H 6.520472106895 9.54034924237333 5.3246686204251 H 6.520472106895 9.54034924237333 5.3246686204251 H 6.520472106895 9.54034924247333 5.3246686204251 H 6.520472106895 9.54034924247333 5.3246686204251 H 6.520472106895 9.5454942433 5.32466852344 H 4.46909027759353 6.840475440786 0.01217420553453 H 4.4695902275 5.54559 H 5.520757285 5.645295438 7.545598358 H 4.469590277585556 - 0.54559813934 0.30454340292 H 4.4695902275955356 0.54559913 5.3204575345547 H 4.64695935495 1.125569354549 H 4.469590277585556 - 0.545591393423 J 1.4475574182217 H 8.6495957285556 - 0.5455913934223 J 1.4475574182217 H 8.6495957285556 - 0.5455913934 0.3045534253 H 4.469590277585556 - 0.5455913934223 J 0.43613134427756 H 4.6495907727 - 0.545597528 - 0.545591334427756 H 5.50575537537585758 H 5.50575758 H 5.5055755758 H 5.5055755758 H 5.5055755758 H 5.50557557558 H 4.555555453 H 4.55555545597528 H 5.5257557557558 H 4.555555545597528 H 4.55555545597528 H 4.55555545597528 H 4.55555545597528 H 4.555555545597528 H 4.555555545597528 H 4.555555545597528 H 4.5555555455	H 0.6580136714389 -0.4745578174137 1.82815104754563 C 0.23068806678 3.45634552630 C 0.5071458066678 3.45634552630 C 0.570485765222093 -0.19798694914250 3.10317500659048 C 1.057045775522209 -0.19798694914250 3.10317500659048 C 1.0570477325827 -1.7578148609427 - 2.24423486287076 C 1.06201755820300 -1.8550653057857 -1.285242785782 H -1.557047786123 2.5071514809429 -2.2440319504283 H -1.557047786123 2.5071514269942 -2.2440319504283 H -1.558794768123 2.50715120152 H -1.558794768123 2.50175120152 H -1.558794768123 2.50171132714578 H -1.558794768123 2.5017110327565317 1.186996410701 H 1.558794768123 2.5017110377655317 1.186998443047667 H -1.37205105669545 2.07111037656317 1.186998443047667 H -1.55807442508007 1.183229233301576 2.246703302688440 H -1.55807442508007 1.180395443129 H -0.98021751838007 1.16895441192865 2.40036778617648 H 2.080425415883 4.14693054433127 - 2.02873934874832 H -0.98021751838007 1.1689544119286 2.40303778617648 H 2.080425415883 4.14693054433127 - 2.02873934874832 H -0.98021751838007 1.168954413286 2.403130288414 H 1.5150173187832 -2.6110844208274 -2.02873934874832 H -0.9802175183807 1.168954413285 -2.4031371857 H -0.9802175183808 1.168954413285 -2.4031371857 H -0.9802175183808 1.168954413285 -2.01314871858 H -0.9802175183808 1.168954413285 -2.01312885 2.403139487385 H -0.9802175183808 1.168954413285 -2.01314873858 H -0.9802175183808 1.169875431285 -2.01314871858 H -0.9802175183808 1.169875431285 -2.01314871858 H -0.9802175183808 1.109890080813 -2.291224248314 H -0.980216885898 0.02174183714578 H -0.9802168858989 0.02174183714578 H -0.9802168858989 0.02174183714578 H -0.980216885898 H -0.9802175183808498544 -2.017183714578 H -0.980216885898 H -0.980216885898

Crystallographic Tables

 Table S30. Crystal data and structure refinement for compound 3^H (CCDC:1868053).

Identification code	AJ0168RT1
Empirical formula	C ₁₈ H ₂₆ F ₃ NO ₃ S
Formula weight	393.46
Temperature/K	293(2)
Wavelength	0.71073 Å
Crystal system	Orthorhombic
space group	Pbca
Unit cell dimensions	a = 8.2322(9) Å α = 90°.
	b = 16.0090(15) Å β = 90°.
	c = 30.617(3) Å γ = 90°.
Volume	4035.0(7) Å ³
Z, Calculated density	8, 1.295 g/cm ³
Absorption coefficient	0.204 mm ⁻¹
F(000)	1664.0
Crystal size	$0.55 \times 0.413 \times 0.261 \text{ mm}^3$
Theta range for data collection	2.861 to 25.498°.
Limiting indices	$-9 \leq h \leq 9, -17 \leq k \leq 17, -37 \leq l \leq 36$
Reflections collected / unique	17681 / 3642 [<i>R</i> (int) = 0.0553]
Completeness to theta= 25.498	97.3%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3642 / 0 / 241
Goodness-of-fit on F^2	1.095
Final R indices [/>2sigma(/)]	$R_1 = 0.0570, wR_2 = 0.1583$
R indices (all data)	$R_1 = 0.0742, wR_2 = 0.1716$
Largest diff. peak and hole	0.45 and –0.32 e. Å ⁻³

Table S31. Crystal data and structure refinement for compound 3^{Me} (CCDC: 1868056)

Identification code	aj0284
Empirical formula	$C_{19}H_{28}F_{3}NO_{3}S$
Formula weight	407.48
Temperature/K	293(2)
Wavelength	0.71073 Å
Crystal system	Monoclinic
space group	C2/c
Unit cell dimensions	a = 34.1987(12) Å α = 90°.
	b = 8.2153(3) Å β = 101.860(4)°.
	c = 15.7716(6) Å γ = 90°.
Volume	4336.5(3) Å ³
Z, Calculated density	8, 1.248 g/cm ³
Absorption coefficient	0.192 mm ⁻¹
F(000)	1728.0
Crystal size	$0.89 \times 0.773 \times 0.235 \text{ mm}^3$
Theta range for data collection	2.553 to 26.498°.
Limiting indices	-34 ≤ h ≤ 42, -10 ≤ k ≤ 9, -19 ≤ l ≤ 18
Reflections collected / unique	23027 / 4493 [<i>R</i> (int) = 0.0344]
Completeness to theta= 26.498	99.7%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4493 / 0 / 251
Goodness-of-fit on F^2	1.057
Final R indices [I>2sigma(I)]	$R_1 = 0.0407, wR_2 = 0.1050$
R indices (all data)	$R_1 = 0.0467, wR_2 = 0.1087$
Largest diff. peak and hole	0.51 and –0.38 e. Å ⁻³

Table S32. Crystal data and structure refinement for compound 3^{Et} (CCDC: 1868057).

Identification code	AJ0300
Empirical formula	$C_{20}H_{30}F_{3}NO_{3}S$
Formula weight	421.51
Temperature/K	293(2)
Wavelength	0.71073 Å
Crystal system	Monoclinic
space group	C2/c
Unit cell dimensions	a = 33.4373(11) Å α = 90°.
	b = 8.2621(2) Å β = 93.540(3)°.
	c = 15.8008(6) Å γ = 90°.
Volume	4356.8(2) Å ³
Z, Calculated density	8, 1.285 g/cm ³
Absorption coefficient	0.193 mm^{-1}
F(000)	792.0
Crystal size	$0.45 \times 0.327 \times 0.097 \text{ mm}^3$
Theta range for data collection	2.832 to 26.5°.
Limiting indices	–41 ≤ h ≤ 40, –10 ≤ k ≤ 10, –16 ≤ l ≤ 19
Reflections collected / unique	26737 / 4422 [<i>R</i> (int) = 0.0851]
Completeness to theta= 26.5	97.9%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4422 / 0 / 260
Goodness-of-fit on F^2	1.103
Final R indices [/>2sigma(/)]	$R_1 = 0.0588, wR_2 = 0.1463$
R indices (all data)	$R_1 = 0.0680, wR_2 = 0.1517$
Largest diff. peak and hole	0.86 and –0.33 e. Å ⁻³

Table S33. Crystal data and structure refinement for compound 3^{tBu} (CCDC: 1868055).

Identification code	AJ0254
Empirical formula	$C_{34.5}H_{50.5}F_{4.75}N_{1.5}O_{4.5}S_{1.5}$
Formula weight	696.60
Temperature/K	293(2)
Wavelength	0.71073 Å
Crystal system	Monoclinic
space group	I2/m
Unit cell dimensions	a = 18.9188(12) Å α = 90°.
	b = 10.3807(6) Å β = 97.509(4)°
	c = 35.7997(16) Å γ = 90°
Volume	6970.4(7) Å ³
Z, Calculated density	8, 1.328 g/cm ³
Absorption coefficient	0.189 mm ⁻¹
F(000)	2966.0
Crystal size	$0.498 \times 0.4 \times 0.097 \text{ mm}^3$
Theta range for data collection	2.583 to 26.499°.
Limiting indices	$-23 \le h \le 23, -13 \le k \le 12, -44 \le l \le 44$
Reflections collected / unique	47739 / 7598 [<i>R</i> (int) = 0.1046]
Completeness to theta= 26.499	99.5%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7598 / 54 / 545
Goodness-of-fit on F^2	1.173
Final R indices [/>2sigma(/)]	$R_1 = 0.1590, wR_2 = 0.3768$
R indices (all data)	$R_1 = 0.1916, wR_2 = 0.3962$
Largest diff. peak and hole	1.11 and –0.75 e. Å ⁻³

Table S34. Crystal data and structure refinement for compound $\mathbf{3}_{2}^{H}$ (CCDC: 1868054).

Identification code	AJ0212
Empirical formula	$C_{34}H_{52}N_2$
Formula weight	488.77
Temperature/K	120.01(2)
Wavelength	0.71073 Å
Crystal system	Monoclinic
space group	P2 ₁ /c
Unit cell dimensions	a = 15.1760(14) Å α = 90°.
	b = 15.7667(14) Å β = 96.938(8)°.
	c = 12.4170(9) Å γ = 90°.
Volume	2949.3(4) Å ³
Z, Calculated density	4, 1.101 g/cm ³
Absorption coefficient	0.063 mm ⁻¹
F(000)	1080.0
Crystal size	$0.204 \times 0.152 \times 0.112 \text{ mm}^3$
Theta range for data collection	2.704 to 26.5°.
Limiting indices	–19 ≤ h ≤ 17, –19 ≤ k ≤ 18, –15 ≤ l ≤ 15
Reflections collected / unique	32924 / 6102 [<i>R</i> (int) = 0.1013]
Completeness to theta= 26.5	99.8%
Refinement method	Full-matrix least-squares on <i>F</i> ²
Data / restraints / parameters	6102 / 0 / 337
Goodness-of-fit on F ²	1.039
Final R indices [/>2sigma(/)]	$R_1 = 0.0907$, $wR_2 = 0.2111$
R indices (all data)	$R_1 = 0.1182, wR_2 = 0.2237$
Largest diff. peak and hole	0.34 and –0.38 e. Å ⁻³

References

- S1 G. M. Sheldrick, Acta Cryst. A 2015, 71, 3–8.
- S2 G. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
- S3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.
- S4 F. Neese, WIREs Comput Mol Sci, 2018, 8, 1.
- S5 S. Grimme, J. G. Brandenburg, C. Bannwarth and A. J. Hansen, Chem. Phys., 2015, 143, 054107.
- S6 (*a*) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; (*b*) C. T: Lee, W. T Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785. (*c*) Y. Zhao, and D. G. Truhlar, *J. Chem. Phys.*, 2006, **125**, 194101. (*d*) J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, **91**, 146401.
- S7 (*a*) S.Grimme, S.Ehrlich and L. Goerigk, *J Comput Chem.* 2011, **32**, 1456; (*b*) S. Grimme, J. Antony, S.Ehrlich and H.Krieg, *J. Chem. Phys.* 2010, **132**, 154104; (*c*) S. Grimme, *J. Comput. Chem.*, 2004, **25**, 1463–1476. (*d*) S. Grimme, *J. Comput. Chem.*, 2006, **27**, 1787.

S8 C. Van Wüllen, J. Chem. Phys., 1998, 109, 392.

- S9 D. A. Pantazis, X.-Y. Chen, C. R. Landis and F. Neese, J. Chem. Theory Comput., 2008, 4, 908.
- S10 (*a*) F. Neese, *J. Comput. Chem.*, 2003, 24, 1740; (*b*) F. Neese, F. Wenmohs, A. Hansen and U. Becker, *Chem. Phys.*, 2009, 356, 98; (*c*) O. Vahtras, J. Almloef and M. W. Feyereisen, *Chem. Phys. Lett.*, 1993, 213, 514; (*d*) J. L. Whitten, *J. Chem. Phys.*, 1973, 58, 4496; (*e*) R. Izsak and F. Neese, *J. Chem. Phys.*, 2011, 135, 144105; (*f*) F. Neese and G. Olbrich, *Chem. Phys. Lett.*, 2002, 362, 170; (g) T. Petrenko, S. Kossmann and F Neese, *J. Chem. Phys.*, 2011, 134, 054116.
- S11 (*a*) K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor. Chem. Acc.*, 1997, **97**, 119; (*b*) K. Eichhorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, **242**, 652.
- S12 V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.
- S13 P. O. Löwdin, J. Chem. Phys., 1950, 18, 365.
- S14 (*a*) M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *J. Cheminform.*, 2012, **4**, 17; (*b*) *Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. modified version with extended ORCA support http://avogadro.openmolecules.net/ and <u>https://orcaforum.cec.mpg.de/</u>.*
- S15 C. Adamo and V. Barone, J. Chem. Phys., 1999, **110**, 6158.S16 W. Kutzelnigg, U. Fleischer and M. Schindler, NMR: Basic Principles and Progress, Springer-Verlag, Berlin, 1990, **23**, p. 165.
- S17 (*a*) T. Yu. Nikolaienko, L. A. Bulavin, Int. J. Quantum Chem. 2019, 119, e25798; (*b*) T. Y. Nikolaienko, L. A. Bulavin, D. M. Hovorun, *Comput. Theor. Chem.* 2014, **1050**, 15–22.
- S18 Y. Wang, E. I. Rogers and R. G. Compton, J. Electroanal. Chem., 2010, 648, 15–19.
- S19 DigiElch Professional Version 7.FD 2006, ElchSoft GbR, Kleinromstedt, Germany.
- S20 R. S. Nicholson and I. Shain, Anal. Chem., 1965, 37, 1351.