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Section Sa: 

 

Comparison of the different ESIMS signal intensities for [(Isop)n.H]+ species in 

experiments (A), (B), and (C) (Figure 2). The observed signal intensities were 

surprisingly the strongest in the case of the gas-liquid collisions between Isop(g) and 

acidic water (pH = 1) (C), followed by pure isoprene (B), and the organic phase from 

emulsions of liquid isoprene and acidic water (pH = 1) (A). We consider that during the 

vigorous shaking of the isoprene-water emulsions, a fraction of the aqueous content was 

dissolved into the organic phase, i.e. isoprene. Subsequently, as the organic phase was 

electrosprayed after the phase separation, the aqueous components decreased the intensity 

of the isoprene oligomers due to the competing effect of the ions being attracted into the 

mass spectrometer. Since our ESIMS has a minimum detection limit of m/z = 50, we 

were unable to observe those smaller ions. The higher signal intensities (maximum signal 

intensity 68,000 a.u.) of the gas-liquid collision (C) could be attributed to the 

considerably higher flow rate of isoprene, 0.48 g/min in 600 mL/min of air, into the 

atmospheric chamber of the ESIMS, compared to 10 µL/min in experiments (A) and (B).   
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Section Sb: 

Determining if the mass spectrometric peaks (Figures 2, S3) correspond to 

covalently bonded oligomers or physisorbed clusters of isoprene. The temperature of 

the glass capillary at the inlet of the mass spectrometer is an important variable in 

ESIMS. It provides thermal energy to the incoming droplets, facilitating the evaporation 

of the solvent or neutral molecules – at elevated temperatures, the non-covalently bonded 

clusters become unstable and the molecules separate, whereas covalently bonded 

oligomers survive. Thus, based on the changes in the mass spectral intensities as a 

function of the glass capillary temperature, we could discern if the peaks comprised of 

covalently bonded or non-covalently bonded species. For instance, while injecting pure 

acetone, ethanol, and isoprene (Figure S1 – B1, B2, and B3, respectively), we observed 

peaks in the spectra corresponding to (M)n (m/z = n.M + H+), i.e., (Ace)2, (Et)2, (Et)3, and 

(Isop)2,3,4…(Figure S1 – top right corner insets). However, as we increased the 

temperature of the glass capillary, we noticed that the intensities of the heavier peaks of 

acetone and ethanol dramatically decreased with increasing temperatures (Panels B1 and 

B2 in Figure S1). In stark contrast, the mass spectral intensities for isoprene did not vary 

much as the temperature increased (Panel B3 in Figure S1). Thus, our simple experiment 

helped us conclude that while acetone and ethanol form non-covalent clusters1 with an 

excess proton, isoprene forms covalently bonded oligomers. Our conclusion was further 

corroborated by the clean spectra of acetone and ethanol, evidencing that negligible 

fragmentation and reactions were present. 
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Figure S1 – Influence of capillary temperature on the detection of [(M)n+H]+ peaks 
at the ESIMS. (B1) Comparison between signal intensities of peaks from (Ace)1 (m/z 59 
= MWACETONE + MWH+) and (Ace)2 (m/z 117 = 2.MWACETONE + MWH+). (B2) 
Comparison of peaks from (Et)2 (m/z 93 = 2.MWETHANOL + MWH+) and (Et)2 (m/z 138 = 
3.MWETHANOL + MWH+). (B3) Comparison of peaks from (Isop)1 (m/z 69 = 
1.MWISOPRENE + MWH+) and (Isop)10 (m/z 681 = 10.MWISOPRENE + MWH+). ESIMS set to 
positive mode, 6 kV, 10 µL/min for acetone and ethanol, and 5 µL/min for isoprene. The 
insets in the right corners are characteristic ESIMS spectra for each case. 
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Figure S2 - Influence of shaking duration on the liquid-liquid collisions, experiments 
(A). Comparison of ESIMS peaks from (Isop)2 (m/z 136 = 1.MWISOPRENE + MWH+) and 
(Isop)6 (m/z 409 = 6.MWISOPRENE + MWH+); ESIMS set to positive mode, 6 kV, 150 °C, 
10 µL/min, pH of aqueous phase 1.52. The shaking time did not considerably influence 
the signal intensity of the liquid-liquid collisions. 
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Figure S3 – ESIMS spectra for gas-liquid collisions, experiments (C). (C1) Water at 
p[NaCl] = 5 and flow rate of 1 µL/min; (C2) Water at pH = 1 and flow rate of 1 µL/min; 
(C3) Water at pH = 12.3 and flow rate of 1 µL/min. The main peaks correspond to the 
oligomers of isoprene plus one proton [(Isop)n+H]+, and are separated by the mass of 
isoprene (68 m/z). The four smaller peaks between the main ones correspond to the four 
possible fragmentations of the carbon bonds within the isoprene molecule (C5H8). In all 
three cases the stream flow of air (600 mL/min) and gaseous isoprene (which evaporated 
from the air bubbler at ~0.48 g/min) was directed towards the electrosprayed water jet; 
the temperature of the capillary in the ESIMS was 150 °C, the electrical potential applied 
at the electrospray needle was 6 kV, the capillary inlet was grounded, and the separation 
between the needle and the capillary inlet was ~1 cm.  
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Figure S4 – Influence of gaseous isoprene on the surface tension of a droplet of 
water. The surface tension was measured by the pendant drop method in a chamber in 
the presence of air (blue line) and gaseous isoprene in air (red line). The surface tension 
of the water droplet changed considerably in the presence of gaseous isoprene, indicating 
adsorption and possibly dissolution of the isoprene into the bulk water. 
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Section Sc: 

 

What is the role of the net positive charge during droplet formation at the 

electrospray? Let us consider that the charge separation (and oxidation reactions) at the 

metallic needle ejecting an analyte under electric fields leads to a decrease in the pH of 

the just-formed droplets by at least 0.1 (or a 26% increase in the concentration of 

protons)2, 3. The initial droplet size will depend on the electric potential, polarity, needle 

diameter, ionic strength, surface tension, and viscosity (Figure S5 contains a visual 

representation of this thought experiment). While evaporating, the charge density of the 

droplets increases and the Rayleigh limit is eventually reached, i.e. the repulsion of the 

electrostatics will overpower the cohesion of the surface tension. The excess charge is 

predicted to be 𝑄 = (𝑘𝜋&ε(𝛾𝑅+)-/&, where d is the diameter of the droplet at the time of 

fission, 𝛾 is the surface tension of the liquid, ε( is the permittivity of a vacuum, and k is a 

constant4, 5. 
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Figure S5 – Simulation of the influence of bulk pH and initial radius on the 
net/excess charge of electrosprayed droplets. For a given ESI setup, the just-formed 
droplets will have different diameters depending on experimental conditions such as the 
electric potential, polarity, needle diameter, ionic strength, and surface tension. We 
expect that the sooner the droplets reach the Rayleigh limit, the faster they will undergo 
Coulomb fissions and release highly reactive clusters containing excess hydronium ions. 
Let us consider water with pH = 5 (pink line): a droplet of 1000 nm is formed with an 
excess charge of ~26%, i.e. 10-16 C (Point P). Since this droplet is below the Rayleigh 
limit, it will not undergo Coulomb fission immediately. However, this pH 5 droplet will 
evaporate (following the horizontal arrow) and then, after reaching the Rayleigh limit, 
undergo Coulomb fission. Note that the down arrow representing fission is exaggerated; 
it shows a ~10-fold decrease in the droplet charge during each fission, while a lower 
discharge is expected in reality3. Conversely, droplets with pH = 1 (black line) would 
immediately eject hydroniums to the gas phase under same setup conditions. A parallel 
can be drawn between this process and the proposed Mechanism M3. 
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Section Sd: 

 

 

Figure S6 - Ab initio predictions of the proton transfer reaction between a gas-phase 
hydronium ion, H3O+(g), and a gas-phase isoprene molecule, Isop(g).  Theory 
predicted the reaction to be spontaneous with a free energy change of ∆G0 = - 30 kcal 
mol-1, in accordance with the experimental gas-phase basicities (GB) of H2O (GBH2O = 
157.7 kcal mol-1) and Isop (GBISO = 190.6 kcal mol-1); ∆GB = 32.9 kcal mol-1.  
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Figure S7 - Spontaneous gas-phase oligomerization of gas-phase cis-isoprene 
(Isop(g)) with a protonated trans-isoprene molecule, leading to a cyclic product. The 
units for G0 and H0 are kcal-mol-1. 
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Figure S8 – Spontaneous gas-phase oligomerization of a trans-isoprene (Isop(g)) 
molecule with a protonated trans-isoprene, leading to a linear product. The units for 
G0 and H0 are kcal-mol-1. 
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Table S1 – Calculated energy landscapes for the interactions/reactions of isoprene 
with the (H2O)3.H+ cluster by three computational approaches with the same 
functional (M06), but different basis sets: 

(A) M06/6-311G* (with single point optimization with 6-311++G**,  
(B) M06/6-311++G**,  
(C) M06/6-311++G** with single-point calculations with CCSD(T)  

STEP (A) Original  
calculations 

(M06/6-311G*/6-311++G**) 
(kcal/mol) 

(B) Revised calculations 
(M06/6-311++G**) 

(kcal/mol) 

(C) Revised calculations 
(M06/6-311++G**/CCSD(T)) 

(kcal/mol) 

A-I -14.2 -14.6 -14.2 

TS-I -6.0 -3.5 -3.7 

P-I -6.1 -4.0 -4.7 

A-II -14.4 -13.7 NA 

TS-II -12.7 -13.3 NA 

P-II -16.5 -20.0 NA 
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Table S2 – (H2O)36.H+ snapshots taken from our BOMD simulation at 300K after 
equilibration for 5 ps (Details in the Computational Methods Section in the 
manuscript). The cluster size was ≈1.5×1.3×0.8 nm3. Due to the small size of the 
cluster, the proton is always exposed or close to the surface, engaging in hydrogen 
bonding and breaking. The cluster we employed in our DFT calculations had the 
proton on the surface to facilitate simpler calculations. Thus, the activation barriers 
for our calculations with the larger cluster (Figure 6) present the lower bound. This 
means that the real barriers will be even higher, which further substantiates our 
point that chemical reactions in electrosprays, proceeding through partially 
hydrated hydroniums (Figure 5), are kinetically hindered at the pristine air-water 
interface (Figure 6). 
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Section Se: 

 

Description of the NMR: NMR signals showed at the spectra obtained in Liquid-

liquid collisions experiments (A) and pure, as-purchased isoprene (B): 
1H NMR (700 MHz, Chloroform-d) δ (ppm): 6.47 (dd, J = 17.5, 10.8 Hz, 1H, H2), 5.20 

(d, J = 17.5 Hz, 1H, H1b), 5.09 (d, J = 10.8 Hz, 1H, H1a), 5.02 (d, J = 13.2 Hz, 2H, H5b 

and H5b), 1.87 (s, 3H, CH3). 
13C NMR (176 MHz, Chloroform-d) δ (ppm): 142.29 (C3), 139.61 (C2), 116.76 and 

113.65 (C1 and C5), 17.80 (C4). 
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