Supporting Information:

Site-Selective Functionalization of Si₆R₆ Siliconoids

Yannic Heider,[‡] Nadine E. Poitiers,[‡] Philipp Willmes, Kinga Leszczyńska, Volker Huch, and David Scheschkewitz*

Krupp-Chair of General and Inorganic Chemistry, Saarland University, D-66123 Saarbrücken, Germany

Contents

General Methods	<u>S2</u>
1. Preparation, data and spectra (NMR, UV-vis, IR) of:	<u>S3</u>
<i>ligato-</i> TMS-substituted siliconoid 5a	S 3
<i>ligato</i> -Benzoyl-substituted siliconoid 5b	S7
privo-Lithiated Anionic siliconoid 4Li	S11
privo-TMS-substituted siliconoid 6a	S16
privo-Benzoyl-substituted siliconoid 6b	S20
privo-Pivaloyl-substituted siliconoid 6c	S22
privo-Bis(dimethylamino)phosphinyl-substituted siliconoid 6d	S28
privo-Trichlorosilyl-substituted siliconoid 6e	S31
privo-Borate-substituted siliconoid 6f	S34
2. Details on X-ray Diffraction Studies	<u> 540</u>
3. Plots of the Hammett parameter σ_m/σ_p vs ²⁹ Si chemical shift of Si2	<u> 546</u>

General

All manipulations were carried out under a protective atmosphere of argon, by using a glovebox or standard Schlenk techniques. Ethereal solvents were dried by heating to reflux over Na/benzophenone and distilled and stored under an atmosphere of argon. Hydrocarbons were dried over sodium or potassium. NMR spectra were recorded on a Bruker Avance III 300 NMR spectrometer (¹H = 300.13 MHz, ¹³C = 75.46 MHz, ²⁹Si = 59.6 MHz, ⁷Li = 116.64 MHz, ¹¹B = 96.3 MHz) and/or a Bruker Avance IV 400 NMR spectrometer (¹H = 400.13 MHz, ¹³C = 100.6 MHz, ²⁹Si = 59.6 MHz) UV/Vis spectra were recorded on a Perkin-Elmer Lambda 35 spectrometer in quartz cells with a path length of 0.1 cm. Infrared spectra were measured with a Bruker Vertex 79 in a platinum ATR diamond cell. Elemental analyses were performed on an elemental analyzer Leco CHN-900 and/or an elementar vario Micro Cube. They are mostly low in carbon, which is tentatively attributed to incomplete combustion due to the formation of silicon carbide. Compounds **1**, **2** and **3** were prepared according to our published procedures.^{21, 22, 31, 32}

General procedure for the synthesis of privo and ligato functionalized siliconoids 5a-b and 6a-f.

The respective compounds are prepared by treating 1 equivalent of the anionic siliconoid **3Li** or **4Li** with 1 equivalent of Me₃SiCl (**5a**, **6a**), benzoylchloride (**5b**, **6b**), pivaloyl chloride (**6c**), $(Me_2N)_2PCl$ (**6d**), SiCl₄ (**6e**), or H₃B·SMe₂ (**6f**) in benzene or toluene at room temperature. After stirring for the indicated period of time, all volatiles are removed in vacuo and the crude product is filtered from hexane and crystallized from hexane or pentane.

Preparation of ligato-Trimethylsilyl-2,2,5,5,6-pentakis(2',4',6'-triisopropylphenyl)tetracyclo

[2.2.0.0^{1,3}.0^{3,6}]hexasilane (5a)

Quantities: **3Li**, 325 mg (0.21 mmol); Me₃SiCl 25.24 mg (0.23 mmol); benzene (5 mL); stirring 4 h; crystallization from pentane. Yield: 120 mg (45 %) red crystals. ¹H-NMR (300.13 MHz, tol-d₈, 223 K): δ = 7.61, 7.28 (C₁₀H₈), 7.21 (m, overlapping with C₁₀H₈, 3 H, Ar-H), 7.09 – 6.81 (m, overlapping with benzene-d₆, 12 H, Tip-CH), 5.32 (sept, ³J_{HH} = 6.44 , 1H, Tip-*i*Pr-CHMe₂), 5.07 (sept, ³J_{HH} = 6.44, 1 H, Tip*i*Pr-CHMe₂), 4.44 (sept, ${}^{3}J_{HH}$ = 6.44, 2 H, Tip-*i*Pr-CHMe₂), 3.96 (sept, ${}^{3}J_{HH}$ = 6.44, 2 H, Tip-*i*Pr-CH₃), 3.55 (sept, ${}^{3}J_{HH} = 6.44$, 1H, Tip-^{*i*}Pr-CHMe₂), 3.28 (m, overlapping, together 3H, Tip-^{*i*}Pr-CHMe₂), 2.73 (m, overlapping, together 6H, Tip-ⁱPr-CHMe₂), 2.22 (br, 2H, Tip-ⁱPr-CH₃), 1.98 (br, 2H, Tip-ⁱPr-CH₃), 1.76 (br, 3H, Tip-^{*i*}Pr-CH₃), 1.53 - 1.07 (br, together 96H, Tip-^{*i*}Pr-CH₃), 0.22 (s, 9H, Si-CH₃). ¹³C-NMR (75.46 MHz, tol-d₈, 223 K): δ = 156.47, 155.65, 154.41, 154.15, 153.82, 153.15, 152.95, 151.94, 151.59, 150.59, 150.42, 150.14, 148.99, 148.89, 139.32, 139.07 (Ar-C), 133.88, 128.15, 126.06 (C₁₀H₈), 123.61, 123.45, 123.21, 123.04, 122.47, 122.08, 121.91, 121.24, 121.05 (Ar-CH), 38.37, 36.22, 36.09, 35.90, 35.14, 34.84, 34.46, 34.25, 32.05, 29.31 (Tip-ⁱPr-CH), 29.1884, 28.49, 27.26, 26.23, 25.35, 24.96, 24.58, 24.24, 24.05, 23.85, 23.42, 22.80 (Tip-^{*i*}Pr-CH₃), 22.56 (Tip-*i*Pr-CH₂), 14.12 (Tip-^{*i*}Pr-CH₃), 2.94 (Si-CH₃). ²⁹Si-NMR (59.62 MHz, tol-d₈, 223 K): $\delta = 169.9$ (s, *privo*-SiTip₂), 25.8 (s, *remoto*-SiTip₂), 11.3 (s, *ligato*-SiTip), -3.7 (s, ligato-Si-SiMe₃), -42.5 (s, SiMe₃), -257.8 (s, nudo-Si), -266.6 (s, nudo-Si). Elemental analysis calculated for C₈₁H₁₃₀Si₇: C, 74.81; H, 10.08. Found: C, 74.1; H, 9.95.

Figure S1: ¹H NMR of 5a in C_6D_6 (300 MHZ).

Figure S2: ¹³C NMR of **5a** in C₆D₆ (75.5 MHZ).

Figure S3: ²⁹Si NMR of **5a** in C₆D₆ (59.6 MHZ).

Figure S4: UV-Vis spectrum of 5a in hexane at different concentrations.

Figure S5: Determination of ϵ (9273 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 349 nm) of **5a** against concentration.

Figure S6: Determination of ϵ (5736 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 382 nm) of **5a** against concentration.

Figure S7: Determination of ϵ (602 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 459 nm) of **5a** against concentration.

Preparation of ligato-Benzoyl-2,2,5,5,6-pentakis(2',4',6'-triisopropyl-phenyl)tetracyclo

[2.2.0.0^{1,3}.0^{3,6}] hexasilane (5b)

Quantities: **3Li**, 500 mg (0.32 mmol); benzoylchloride 49.24 mg (0.35 mmol); benzene; stirring 4 h; crystallization from pentane. Yield: 270 mg (66 %) red crystals.

¹**H-NMR** (300.13 MHz, benzene-d₆, 300 K): $\delta = 7.87$ (m, 1H, Ar-H) 7.62, 7.24 (C₁₀H₈), 7.07 - 6.79 (br, overlapping with benzene-d₆, 8H Tip-CH), 6.73 (s, 1H, Tip-CH), 5.05 - 4.82 (m, 2H, Tip-^{*i*}Pr-CHMe₂), 4.38 - 4.13 (m, 2H, Tip-^{*i*}Pr-CHMe₂), 4.03 - 3.48 (m, 4H, Tip-^{*i*}Pr-CHMe₂), 3.22 - 2.89 (m, 2H, Tip-^{*i*}Pr-CHMe₂), 2.82 - 2.48 (m, 5H, Tip-^{*i*}Pr-CHMe₂) 2.33 (sept, ³J_{HH} = 6.8 Hz, 1H, Tip-^{*i*}Pr-CHMe₂), 2.1, 2.07 (br, 3H, Tip-^{*i*}Pr-CH₃), 1.87 - 0.12 (m, overlapping with hexane, 112H, Tip-^{*i*}Pr-CH₃). ¹³C-NMR (75.46 MHz, benzene-d₆, 300 K): $\delta = 155.99$, 154. 64, 152.59, 151.01, 150.59, 150.23, 149.53, 143.49, 136.75, 136.38, 136.09 (Ar-C), 133.90 (C₁₀H₈), 132.42, 128.89 (Ar-CH), 128.19 (C₁₀H₈), 127.87, 127.55 (Ar-C), 125.88 (C₁₀H₈), 123.55, 123.09, 122.51, 122.24, 122.04, 121.32, 120.99 (br, Ar-CH), 37.61, 36.79, 36.39, 35.99, 35.52, 34.34, 34.59, 34.49, 34.27, 34.17, 33.86 (Tip-^{*i*}Pr-CH), 28.21, 28.11, 27.34, 27.19, 27.09, 25.54, 24.92, 24.74, 24.28, 24.28, 24.05, 23.86, 23.76, 23.53, 23.24 (Tip-^{*i*}Pr-CH₃), 22.54 (Tip-^{*i*}Pr-CH₂), 22.43, 14.11 (Tip-^{*i*}Pr-CH₃). ²⁹Si-NMR (59.62 MHz, benzene-d₆, 300 K): $\delta = 174.7$ (s, *privo*-SiTip₂), -26.5 (s, *ligato*-Si-C=O), -263.0 (s, *nudo*-Si), -279.0 (s, *nudo*-Si). Elemental analysis calculated for C₈₂H₁₂₀OSi₆: C, 76.33; H, 8.91. Found: C, 74.96; H, 9.60.

Figure S8: ¹H NMR of **5b** in C₆D₆ (300 MHZ).

Figure S9: 13 C NMR of **5b** in C₆D₆ (75.5 MHZ).

Figure S10: ²⁹Si NMR of **5b** in C₆D₆ (59.6 MHZ).

Figure S11: UV-Vis spectrum of 5b in hexane at different concentrations.

Figure S12: Determination of ϵ (6318 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 363 nm) of **5b** against concentration.

Figure S13: Determination of ϵ (551 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 477 nm) of **5b** against concentration.

Figure S14: Infrared spectrum of 5b (powder).

Preparation of privo-Lithiated anionic siliconoid 4Li

privo-Lithio-2,4,5,5,6-pentakis(2',4',6'-triisopropylphenyl) tetracyclo [2.2.0.0^{1,3}.0^{3,6}]hexasilane (4Li) A solution of 2.39 g of siliconoid **3** (1.72 mmol) in 6 mL of Et_2O is cooled to $-78^{\circ}C$. Lithium/naphthalene solution in thf (7.6 mL, 0.5 M, 3.78 mmol) is added dropwise and the resulting reaction mixture allowed warming to room temperature overnight with vigorous stirring. All volatiles are removed in vacuum and the resulting residue is washed three times with hexane. The final product **4Li** remains as pale-orange microcrystals. (1.42 g; 60% yield). ¹**H NMR** (300.13 MHz, benzene d_{6} , 300K): δ = 7.28 (d, 1H, Tip-H), 7.27 (d, 1H, Tip-H), 7.05 (d, 1H, Tip-H), 7.00 (s, 2H, Tip-H), 6.94 (d, 1H, Tip-H), 6.93 (s, 1H, Tip-H), 6.84, 6.83 (each d, each 1H, Tip-H), 5.45 (sept, 1H, ¹Pr-CH), 5.15 – 5.00 (m, 2H, ⁱPr-CH), 4.57 (sept, 1H, ⁱPr-CH), 4.45 (sept, 1H, ⁱPr-CH), 4.18 (sept, 2H, ⁱPr-CH), 3.64 (sept, 1H, ⁱPr-CH), 3.44 – 3.30 (m, 2H, ⁱPr-CH), 3.04 (t, 8H, thf), 2.83 – 2.65 (m, 5H, ⁱPr-CH), 2.17, 2.14 (each d, together 6H, ⁱPr-CH₃), 1.74 (t, 6H, ⁱPr-CH₃), 1.67, 1.62, 1.57 (each d, each 3H, ⁱPr-CH₃), 1.50 (d, 9H, ⁱPr-CH₃), 1.45 (d, 3H, ⁱPr-CH₃) 1.25 – 1.11 (m, 38H, ⁱPr-CH₃ and thf), 0.95 (d, 6H, ⁱPr-CH₃), 0.75 (t, 6H, ⁱPr-CH₃), 0.69 – 0.62 (m, 9H, ⁱPr-CH₃) 0.37, 0.34 (each d, together 6H, ⁱPr-CH₃). ⁷Li NMR (116.6 MHz, benzene-d₆, 300K): δ = 0.29 (s). ¹³C NMR (75.5 MHz, benzene-d₆, 300K): δ = 158.3, 156.4, 156.1, 156.0, 153.8, 153.5, 152.5, 152.5, 151.0, 149.3, 148.8, 148.4, 148.3, 147.5, 146.3, 140.9, 139.8, 131.7, 131.5 (Ar-C), 123.0, 122.6, 122.4, 122.2, 121.4, 121.3, 120.9, 120.1, 119.8 (Ar-CH), 68.5 (thf), 36.8, 36.7, 36.5, 36.3, 36.1, 36.0, 35.1, 34.9, 34.8, 34.7, 34.6, 30.2, 28.1, 27.8, 27.5, 27.1, 26.7, 25.6 (Tip-'Pr-CH and Tip-^{*i*}Pr-CH₃), 25.2 (thf), 25.2, 24.9, 24.9, 24.8, 24.7, 24.6, 24.5, 24.3, 24.2 23.6, 22.6, 22.0 (Tip^{*i*}Pr-CH and Tip-^{*i*}Pr-CH₃). ²⁹Si NMR (59.6 MHz, benzene-d₆, 300K): δ = 267.9 (br, *privo*-SiTipLi), 100.2 (s, *ligato*-Si), 15.3 (s, *remoto*-Si), -43.8 (s, *ligato*-Si), -222.2 (s, *nudo*-Si), -231.4 (s, *nudo*-Si). Elemental analysis calculated for C₈₃H₁₃₁LiO₂Si₆: C, 74.60; H, 9.88. Found: C, 72.68; H, 9.51.

Figure S15: ¹H NMR of **4Li** in C₆D₆ (300 MHZ).

Figure S16: ⁷Li NMR of **4Li** in C₆D₆ (116.6 MHZ).

Figure S17: ¹³C NMR of **4Li** in C₆D₆ (75.5 MHZ).

Figure S18: ²⁹Si NMR of **4Li** in C₆D₆ (59.6 MHZ).

Figure S19: UV-Vis spectrum of 4Li in hexane at different concentrations.

Figure S20: Determination of ϵ (5974 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 373 nm) of **4Li** against concentration.

Figure S21: Determination of ε (543 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 468 nm) of **4Li** against concentration.

<u>Preparaion of privo-Trimethylsilyl-2,4,5,5,6-pentakis(2',4',6'-triisopropylphenyl)tetracyclo</u> [2.2.0.0^{1,3}.0^{3,6}]hexasilane (6a)

Quantities: **4Li**, 104 mg (0.078 mmol); Me₃SiCl 11 I L (9.39 mg, 0.086 mmol); toluene (2 mL); stirring 2.5 h; crystallization from hexane. Yield: 65 mg (66 %) orange crystals.

¹**H NMR** (300.13 MHz, benzene-d₆, 300K): δ = 7.27 (d, 2H, Tip-H), 7.07, 7.01, 6.97, 6.91, 6.83 (each d, each 1H, Tip-H), 6.80 (d, 2H, Tip-H), 6.75 (d, 1H, Tip-H), 4.93 (m, 2H, ⁱPr-CH), 4.37 (sept, 1H, ⁱPr-CH), 4.06 (sept, 2H, ⁱPr-CH), 3.74, 3.63 (each m, each 1H, ⁱPr-CH), 3.57 (t, 10H, thf), 3.37 (m, 2H, ⁱPr-CH), 2.71 (m, 6H, ⁱPr-CH), 2.14 (d, 3H, ⁱPr-CH₃), 2.05 (d, 3H, ⁱPr-CH₃), 1.82 (d, 3H, ⁱPr-CH₃), 1.67 (m, 7H, ⁱPr-CH₃), 1.57 (m, 14H, ⁱPr-CH₃), 1.43 (br, 10H, thf), 1.24, 1.21, 1.20, 1.18, 1.17, 1.16, 1.15, 1.13, 1.11, 1.08 (each d, overall 36H, ⁱPr-CH₃), 0.79 (d, 3H, ⁱPr-CH₃), 0.67 (t, 6H, ⁱPr-CH₃), 0.51 (m, 6H, ⁱPr-CH₃), 0.40, 0.38 (each d, overall 6H, ⁱPr-CH₃), 0.29 (d, 3H, ⁱPr-CH₃), -0.15 (s, 9H, Si(CH₃)₃). ¹³C NMR (75.5 MHz, benzene-d₆, 300K): δ = 157.1, 156.9, 156.6, 156.1, 153.7, 153.2, 152.6, 152.0, 150.7, 150.2, 149.9, 149.4, 149.2, 138.7, 138.3, 134.8, 129.1, 126.9, 123.7 (Ar-C), 123.1, 122.8, 122.6, 122.4, 122.2, 122.1, 121.7, 121.6, 121.3, 121.0 (Ar-CH), 37.7, 37.6, 37.3, 36.9, 36.7, 36.4, 35.1, 35.0, 34.8, 34.7, 34.6, 34.5, 27.8, 27.6, 27.4, 27.1, 27.0, 26.5, 26.4, 26.2, 25.7, 25.4, 25.3, 25.1, 25.0, 24.9, 24.6, 24.4, 24.3, 24.1, 24.0, 23.9, 22.6 (Tip-ⁱPr-CH and Tip-ⁱPr-CH₃), 1.5 (Si(CH₃)₃. ²⁹Si NMR (59.6 MHz, benzene-d₆, 300K): δ = 193.6 (s, *privo*-Si(Tip)SiMe₃), 29.2 (s, *remoto*-SiTip₂), 22.4 (s, *ligato*-SiTip), -11.2 (s, SiMe₃), -15.9 (s, *ligato*-SiTip), -242.0 (s, *nudo*-Si), -253.3 (s, *nudo*-Si). Elemental analysis calculated for C₇₈H₁₂₄Si₇: C, 74.45; H, 9.93. Found: C, 71.65; H, 9.83.

Figure S22: ¹H NMR of **6a** in C₆D₆ (300 MHZ).

Figure S23: ¹³C NMR of **6a** in C₆D₆ (75.5 MHZ).

Figure S24: ²⁹Si NMR of **6a** in C₆D₆ (59.6 MHZ).

Figure S25: UV-Vis spectrum of 6a in hexane at different concentrations.

Figure S26: Determination of ϵ (5176 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 357 nm) of **6a** against concentration.

Figure S27: Determination of ε (371 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 469 nm) of **6a** against concentration.

Preparation of privo-Benzoyl-2,4,5,5,6-pentakis(2',4',6'-tri-iso-propylphenyl)tetracyclo

[2.2.0.0^{1,3}.0^{3,6}] hexasilane (6b)

Quantities: **4Li**, 89.5 mg (0.06 mmol); benzoyl chloride 7.5 μ L (9.1 mg, 0.065 mmol); toluene; stirring 0.5 h; The crude product was thoroughly dried in vacuo and characterized by multinuclear NMR spectroscopy.

¹**H** NMR (300.13 MHz, benzene-d₆, 300K): δ = 7.72 (s), 7.70 (d), 7.26 (d), 7.24 (br), 7.07 (d), 6.96 (d), 6.89 (d), 6.87 (s), 6.81 (t), 6.77 (m), 6.74 (s), 5.06 – 5.02 (m), 4.90 – 4.85 (m), 4.30 – 4.20 (m), 4.15 – 4.02 (m), 3.70 – 3.63 (m), 3.30 – 3.19 (m), 2.86 – 2.55 (m), 2.14 (d), 2.04 (d), 1.87 (d), 1.63 – 1.33 (m), 1.25 – 1.06 (m), 0.80 (d), 0.74 (d), 0.70 – 0.62 (m), 0.47 (d), 0.39 (d), 0.31 (d). ¹³C NMR (75.5 MHz, benzene-d₆, 300 K): δ = 226.9 (CO), 156.8, 156.5, 156.1, 156.1, 154.3, 153.7, 153.4, 153.3, 152.2, 152.0, 151.4, 150.8, 150.6, 149.6, 149.5, 149.1, 140.5, 138.5, 138.4, 133.5, 132.4, 128.9, 126.5, 126.1, 123.5, 123.2, 122.9, 122.4, 122.2, 121.9, 121.5, 121.3, 121.2 (Ar-C and Ar-CH), 37.4, 37.1, 36.6, 35.2, 34.8, 34.6, 34.5 (Tip-*i*Pr-CH and Tip-*i*Pr-CH₃), 32.0 (hexane), 27.6, 27.4, 27.1, 26.7, 26.5, 26.1, 25.9, 25.7, 25.6, 25.4, 25.3, 24.9, 24.7, 24.5, 24.1, 24.1, 24.0, 23.9, 23.5, 23.1, 22.9, 22.7, 22.6 (Tip-*i*Pr-CH and Tip-*i*Pr-CH₃), 14.4 (hexane). ²⁹Si NMR (59.6 MHz, benzene-d₆, 300 K): δ = 166.2 (s, *privo*-Si(Tip)COPh), 30.9 (s, *remoto*-SiTip₂), -3.6 (s, *ligato*-SiTip), -16.2 (s, *ligato*-SiTip) -269.5 (s, *nudo*-Si) -271.1 (s, *nudo*-Si).

6.80 6.87

Figure S28: ¹H NMR of **6b** in C₆D₆ (300 MHZ).

Figure S29: ¹³C NMR of **6b** in C₆D₆ (75.5 MHZ).

Figure S30: ²⁹Si NMR of **6b** in C₆D₆ (59.6 MHZ).

<u>Preparation of privo-Pivaloyl-2,4,5,5,6-pentakis(2',4',6'-triisopropylphenyl)tetracyclo[2.2.0.0^{1,3}.0^{3,6}]</u> <u>hexasilane (6c)</u>

Quantities: **4Li**, 150.7 mg (0.11 mmol); pivaloyl chloride 13.9 µL (13.6 mg, 0.11 mmol); toluene (2.5 mL); stirring 0.5 h; crystallization from hexane. Yield: 39 mg (27 %) orange crystals.

¹**H NMR** (400.13 MHz, benzene-d₆, 300K): δ = 7.27, 7.25, 7.12, 7.07, 7.01, 6.92, 6.86, 6.85 (each d, each 1H, Tip-H), 6.80 (t, 2H, Tip-H), 5.07, 4.86, 4.35 (each sept, each 1H, ⁱPr-CH), 4.18 – 4.06 (m, 2H, ⁱPr-CH), 3.96 – 3.87 (m, 2H, ⁱPr-CH), 3.65 (s, 1H, ⁱPr CH), 3.32 – 3.23 (m, 2H, ⁱPr-CH), 2.78 – 2.70 (m, 3H, ⁱPr-CH), 2.65 – 2.58 (m, 2H, ⁱPr-CH), 2.17, 2.05, 1.81, 1.78 (each d, each 3H, ⁱPr-CH₃), 1.64 – 1.56 (m, 12H, ⁱPr-CH₃), 1.44, 1.41, 1.32 (each d, each 3H, ⁱPr-CH₃), 1.25 – 1.17 (m, 21H, ⁱPr-CH₃), 1.11 – 1.08 (m, 12H, ⁱPr-CH₃), 0.89 (s, 9H, ⁱBu-CH₃), 0.75, 0.69, 0.67, 0.58 (each d, each 3H, ⁱPr-CH₃), 0.36 – 0.28 (m, 12H, ⁱPr-CH₃), 0.89 (s, 9H, ⁱBu-CH₃), 0.75, 0.69, 0.67, 0.58 (each d, each 3H, ⁱPr-CH₃), 0.36 – 0.28 (m, 12H, ⁱPr-CH₃), 1.32 **C NMR** (100.6 MHz, benzene-d₆, 300K): δ = 238.7 (CO), 157.1, 156.9, 155.9, 155.4, 154.2, 153.8, 153.5, 153.2, 152.1 151.8, 151.6, 150.6, 150.5, 149.5, 149.3, 138.5, 138.4, 133.6, 128.2, 127.9 (Ar-C), 126.6, 123.6, 123.0, 122.9, 122.7, 122.4, 122.2, 122.0, 121.5, 120.6 (Ar-CH), 49.4 (CMe₃), 37.7, 37.5, 37.3, 37.2, 37.0, 36.7, 36.5, 35.3, 35.0, 35.0, 34.7, 34.6, 34.6, 32.0, 29.0, 27.4, 26.8 (Tip-ⁱPr-CH and Tip-ⁱPr-CH₃), 26.8 (ⁱBu-CH₃), 26.2, 26.1, 25.7, 25.7, 25.5, 25.4, 25.2, 25.1, 25.0, 24.9, 24.8, 24.5, 24.1, 24.1, 24.1, 24.0, 23.9, 23.6, 23.1, 22.4, 14.4 (Tip-ⁱPr-CH and Tip-ⁱPr-CH₃). ²⁹Si NMR (59.6 MHz, benzene-d₆, 300 K): δ = 173.1 (s, *privo*-Si(Tip)COⁱBu) 30.9 (s, *remoto*-SiTip₂), -1.7 (s, *ligato*-SiTip), -14.5 (s, *ligato*-SiTip) -263.1 (s, *nudo*-Si) -265.8 (s, *nudo*-Si). Elemental analysis calculated for C₈₀H₁₂₄OS₁₆: C, 75.64, H; 9.84. Found: C, 74.29; H, 10.05.

Figure S31: ¹H NMR of **6c** in C₆D₆ (400 MHZ).

Figure S32: ¹³C NMR of **6c** in C₆D₆ (100.6 MHZ).

Figure S33: ²⁹Si NMR of **6c** in C₆D₆ (59.6 MHZ).

Figure S34: UV-Vis spectrum of 6c in hexane at different concentrations.

Figure S35: Determination of ϵ (5817 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 342 nm) of **6c** against concentration.

Figure S36: Determination of ϵ (6081 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 362 nm) of **6c** against concentration.

Figure S37: Determination of ϵ (2704 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 415 nm) of **6c** against concentration.

Figure S38: Determination of ϵ (708 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 473 nm) of **6c** against concentrations.

Figure S39: Infrared spectrum of 6c (powder).

Preparation of privo-Bis(dimethylamino)phosphanyl-2,4,5,5,6-pentakis(2',4',6'tri¬iso¬propyl¬ phenyl)¬tetracyclo[2.2.0.0^{1,3}.0^{3,6}] hexasilane (6d)

Quantities: **4Li**, 102.8 mg (0.077 mmol); $(Me_2N)_2PCI$ 11.2 μ L (11.9 mg, 0.077 mmol); benzene-d₆ (0.6 mL); NMR scale. The crude product was thoroughly dried in vacuum and characterized by multinuclear NMR spectroscopy.

¹**H NMR** (300.13 MHz, benzene-d₆, 300K): δ = 7.28 (d, 2H, Tip-H), 7.09 (s, 1H, Tip-H), 6,99 (s, 1H, Tip-H), 6.91 (s, 1H, Tip-H), 6.87 (s, 1H, Tip-H), 6.81 (s, 2H, Tip-H), 6.79 (s, 1H, Tip-H), 5.06 (sept, 1H, ⁱPr-CH), 4.88 (sept, 1H, ⁱPr-CH), 4.41 (sept, 1H, ⁱPr-CH), 4.19 – 4.08 (m, 2H, ⁱPr-CH), 4.01 – 3.95 (m, 2H, ⁱPr-CH), 3.65 (sept, 1H, [']Pr-CH), 3.47 (sept, 1H, [']Pr-CH), 3.35 (sept, 1H, [']Pr-CH), 2.78 – 2.65 (m, 5H, [']Pr-CH), 2.58 (d, ${}^{3}J_{PH}$ = 9.89 Hz, 6H, N(CH₃)₂), 2.30 (d, ${}^{3}J_{PH}$ = 9.19 Hz, 6H, N(CH₃)₂), 2.19 (d, 3H, ${}^{i}Pr$ -CH₃), 2.06 (d, 3H, ⁱPr-CH₃), 1.86 (d, 3H, ⁱPr-CH₃), 1.79 (d, 3H, ⁱPr-CH₃), 1.70 (d, 3H, ⁱPr-CH₃), 1.65 – 1.57 (m, 12H, ⁱPr-CH₃), 1.44 (t, 6H, ^{*i*}Pr-CH₃), 1.22 – 1.14 (m, 27H, ^{*i*}Pr-CH₃), 1.11 – 1.07 (m, 6H, ^{*i*}Pr-CH₃), 0.84 (d, 3H, ^{*i*}Pr-CH₃), 0.72 (d, 3H, ^{*i*}Pr-CH₃), 0.68 (d, 3H, ^{*i*}Pr-CH₃), 0.55 (d, 3H, ^{*i*}Pr-CH₃), 0.45 – 0.39 (m, 9H, ^{*i*}Pr-CH₃), 0.31 (d, 3H, ^{*i*}Pr-CH₃). ¹³**C NMR** (75.5 MHz, benzene-d₆, 300 K): δ = 157.4, 157.1, 156.9, 156.5, 156.3, 156.0, 155.9, 154.5, 153.7, 153.6, 153.3, 152.0, 151.8, 151.2, 151.0, 150.7, 150.3, 149.9, 149.3, 149.1 (Ar-C), 123.7, 123.1, 122.8, 122.5, 122.2, 122.1, 121.9, 121.7, 121.6, 121.4 (Ar-CH), 47.2 (d, ²J_{CP} = 9.54 Hz, N(CH₃)₂), 46.0 (d, ²JC-P = 14.79 Hz, N(CH₃)₂), 40.7, 39.5, 38.4, 37.6, 37.4, 37.2, 37.1, 36.9, 36.4, 35.2, 34.8, 34.7, 34.6, 34.5, 28.4, 27.8, 27.4, 26.9, 26.6, 26.4, 26.3, 25.6, 25.4, 25.3, 25.2, 25.1, 25.0, 24.9, 24.8, 24.5, 24.5, 24.1, 24.1, 24.0, 24.0, 22.4 (Tip-ⁱPr-CH and Tip-ⁱPr-CH₃). ²⁹Si NMR (59.6 MHz, benzene-d₆, 300 K): $\delta = 186.5$ (d, ¹J_{siP} = 97.44 Hz, *privo*-Si(Tip)P(NMe₂)₂), 28.0 (d, ¹J_{siP} = 7.52 Hz, *remoto*-SiTip₂), 13.7 (d, ¹J_{SiP} = 20.87 Hz, *ligato*-SiTip), -16.9 (s, *ligato*-SiTip), -246.0 (d, ¹J_{SiP} = 33.40 Hz, *nudo*-Si), -256.1 (d, ${}^{1}J_{SiP}$ = 8.28 Hz, *nudo*-Si). ${}^{31}P$ NMR (121.5 MHz, benzene-d₆, 300 K): δ = 121.3 (s, $^{1}J_{SiP} = 97.44 \text{ Hz}$).

Figure S40: ¹H NMR of **6d** in C₆D₆ (400 MHZ).

Figure S41: ³¹P NMR of **6d** in C_6D_6 (121.5 MHZ).

-121.3

Figure S42: 13 C NMR of 6d in C₆D₆ (75.5 MHZ).

Figure S43: ²⁹Si NMR of **6d** in C₆D₆ (59.6 MHZ).

privo-Trichlorosilyl-2,4,5,5,6-pentakis(2',4',6'-tri¬iso¬propyl¬phenyl)tetracyclo[2.2.0.0^{1,3}.0^{3,6}] hexasilane (6e)

Quantities: **4Li**, 81.8 mg (0.061 mmol); SiCl₄ 7.7 μ L (11.4 mg, 0.067 mmol); benzene-d₆ (0.6 mL); NMR scale. The crude product was thoroughly dried in vacuo and characterized by multinuclear NMR spectroscopy.

¹**H NMR** (300.13 MHz, benzene-d₆, 300K): δ = 7.25 (s, 2H, Tip-H), 7.10 (d, 1H, Tip-H), 7.04 (d, 1H, Tip-H), 6.97 (d, 1H, Tip-H), 6.90 (d, 1H, Tip-H), 6.82 (d, 1H, Tip-H), 6.78 (s, 2H, Tip-H), 6.74 (d, 1H, Tip-H), 4.89 (sept, 1H, ⁱPr-CH), 4.74 (sept, 1H, ⁱPr-CH), 4.28 (sept, 1H, ⁱPr-CH), 4.01 – 3.79 (m, 3H, ⁱPr-CH), 3.72 – 3.52 (m, 2H, ⁱPr-CH), 3.39 – 3.20 (m, 2H, ⁱPr-CH), 2.78 – 2.52 (m, 5H, ⁱPr-CH), 2.13 (d, 3H, ⁱPr-CH₃), 2.03 (d, 3H, ⁱPr-CH₃), 1.81 (d, 6H, ⁱPr-CH₃), 1.62 (d, 3H, ⁱPr-CH₃), 1.60 – 1.50 (m, 15H, ⁱPr-CH₃), 1.39 (d, 3H, ⁱPr-CH₃), 1.24 (d, 3H, ⁱPr-CH₃), 1.21 – 1.05 (m, 30H, ⁱPr-CH₃), 0.77 (d, 3H, ⁱPr-CH₃), 0.65 (d, 6H, ⁱPr-CH₃), 0.53 (d, 3H, ⁱPr-CH₃), 0.46 (d, 3H, ⁱPr-CH₃), 0.38 – 0.35 (m, 6H, ⁱPr-CH₃), 0.28 (d, 3H, ⁱPr-CH₃). ¹³**C NMR** (75.5 MHz, benzene-d₆, 300 K): δ = 157.0, 156.7, 156.6, 156.2, 154.4, 154.1, 153.8, 153.6, 152.0, 151.8, 151.3, 150.8, 149.9, 149.7, 137.8, 137.5, 130.1, 127.6, 125.3(Ar-C), 123.9, 123.3, 122.9, 122.8, 122.4, 122.3, 122.2, 122.1, 121.5 (Ar-CH), 38.3, 37.8, 37.6, 37.5, 37.1, 36.5, 36.5, 35.4, 35.1, 34.7, 34.7, 34.6, 34.6, 34.5, 27.8, 27.4, 27.3, 27.1, 27.0, 26.7, 26.5, 26.1, 25.6, 25.2, 25.1, 25.0, 24.6, 24.1,

24.0, 23.9, 23.8, 23.7, 22.9, 22.5 (Tip-^{*i*}Pr-CH and Tip-^{*i*}Pr-CH₃). ²⁹Si NMR (59.6 MHz, benzene-d₆, 300 K): $\delta = 161.7$ (privo-Si(Tip)SiCl₃), 35.2 (s, *remoto*-SiTip₂), 12.0 (s, *ligato*-SiTip), 7.4 (SiCl₃), -6.4 (s, *ligato*-SiTip), -251.6 (s, *nudo*-Si), -258.9 (s, *nudo*-Si).

Figure S44: ¹H NMR of **6e** in C₆D₆ (300 MHZ).

Figure S45: ¹³C NMR of **6e** in C₆D₆ (75.5 MHZ).

Figure S46: ²⁹Si NMR of **6e** in C₆D₆ (59.6 MHZ).

Preparation of privo-Lithium-2,4,5,5,6-pentakis(2',4',6'-triisopropylphenyl)tetracyclo[2.2.0.0^{1,3}.0^{3,6}] hexasilan-2-ylborate (6f)

Quantities: **4Li**, 53.4 mg (0.04 mmol); H_3B ·SMe₂ 4.2 μ L (3.4 mg, 0.04 mmol); toluene (1 mL); stirring 1 h; crystallization from hexane. Yield: 40 mg (78 %) yellow crystals.

¹**H NMR** (300.13 MHz, benzene-d₆, 300K): δ = 7.27, 7.24, 7.09, 6.97, 6.94 (each d, each 1H, Tip-H), 6.89 (s, 2H, Tip-H), 6.81, 6.80, 6.68 (each d, each 1 H, Tip-H), 5.16, 5.05, 4.77 (each sept, each 1H, ⁱPr-CH), 4.30 (m, 3H, ⁱPr-CH), 3.79, 3.69 (each sept, each 1H, ⁱPr-CH), 3.33 (m, 2H, ⁱPr-CH), 3.07 (br, 7H, thf), 2.72 (m, 5H, ⁱPr-CH), 2.14, 2.10, 1.78, 1.71 (each d, each 3H, ⁱPr-CH₃), 1.61 (m, 12H, ⁱPr-CH₃), 1.47, 1.42, 1.37 (each d, each 3H, ⁱPr-CH₃), 1.20 (m, 30H, ⁱPr-CH₃), 1.19 (m, thf), 0.63 (m, 18H, ⁱPr-CH₃), 0.35 (m, 9H, ⁱPr-CH₃). ⁷Li NMR (116.6 MHz, benzene-d₆, 300K): δ = -0.58 (s). ¹¹B NMR (96.3 MHz, benzene-d₆, 300K): δ = -36.4 (q, ¹J_{BH} = 82.3 Hz, BH₃). ¹³C NMR (75.5 MHz, benzene-d₆, 300K): δ = 156.8, 156.5, 156.4, 155.9, 153.5, 153.3, 152.0, 151.9, 149.3, 149.0, 148.8, 148.6, 148.4, 148.1, 142.7, 139.9, 139.4, 130.6, 128.8 (Ar-C), 123.1, 122.7, 122.4, 122.2, 121.6, 121.0, 120.8, 120.3, 119.6 (Ar-CH), 36.9, 36.7, 36.6, 36.1, 35.9, 35.2, 34.7, 34.6, 34.5, 34.4, 33.8, 28.5, 27.5, 27.5, 27.3, 27.0, 26.4, 26.3, 25.7, 25.5, 25.2, 25.1, 25.0, 24.9, 24.8, 24.7, 24.6, 24.4, 24.3, 24.1, 24.0, 24.0, 23.9, 23.9, 23.8, 23.6, 22.5, 22.0 (Tip-ⁱPr-CH and Tip-ⁱPr-CH₃). ²⁹Si NMR (59.6 MHz, benzene-d₆, 300K): δ = 237.3 (br, *privo*-Si(Tip)BH₃), 21.7 (s, *ligato*-SiTip), 21.1 (s, *remoto*-SiTip₂), -28.8 (s, *ligato*-SiTip), -243.3 (s, *nudo*-Si), -255.6 (s, *nudo*-Si). Elemental analysis calculated for C₇₉H₁₂₆BLIOSi₆: C, 74.24; H, 9.94. Found: C, 70.10; H, 9.50.

Figure S47: ¹H NMR of **6f** in C₆D₆ (300 MHZ).

Figure S49: ⁷Li NMR of **6f** in C₆D₆ (116.6 MHZ).

Figure S50: ¹³C NMR of **6f** in C₆D₆ (75.5 MHZ).

S37

Figure S53: UV-Vis spectrum of 6f in hexane at different concentrations.

Figure S54: Determination of ϵ (4936 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 361 nm) of **6f** against concentration.

Figure S55: Determination of ε (396 M⁻¹ cm⁻¹) by linear regression of absorptions (λ = 454 nm) of **6f** against concentration.

Details on X-ray Diffraction Studies

-	-	-
Identification code	sh3711	
Empirical formula	C78 H124 Si7, 0.5(C5 H12)	
Formula weight	1294.47	
Temperature	132(2) К	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 38.1514(15) Å	α = 90°.
	b = 12.7134(5) Å	β= 94.456(3)°.
	c = 33.8416(11) Å	γ = 90°.
Volume	16364.7(11) Å ³	
Z	8	
Density (calculated)	1.051 Mg/m ³	
Absorption coefficient	0.155 mm ⁻¹	
F(000)	5688	
Crystal size	0.546 x 0.393 x 0.223 mm ³	
Theta range for data collection	1.071 to 29.218°.	
Index ranges	-52<=h<=52, -17<=k<=17, -46<=l<=46	
Reflections collected	160059	
Independent reflections	22155 [R(int) = 0.0358]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7458 and 0.7025	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	22155 / 83 / 836	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0431, wR2 = 0.1036	
R indices (all data)	R1 = 0.0584, wR2 = 0.1118	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.779 and -0.649 e.Å ⁻³	

 Table S1. Crystal data and structure refinement for *ligato*-TMS-substituted siliconoid 5a (CCDC-1877380).

Identification code sh3716 C82 H120 O Si6 **Empirical formula** Formula weight 1290.31 Temperature 132(2) K Wavelength 0.71073 Å Monoclinic Crystal system P2₁/c Space group Unit cell dimensions a = 18.8229(6) Å α= 90°. β= 107.786(2)°. b = 28.6659(10) Å c = 30.7990(12) Å γ = 90°. Volume 15824.1(10) Å³ Ζ 8 Density (calculated) 1.083 Mg/m³ Absorption coefficient 0.147 mm⁻¹ 5632 F(000) Crystal size 0.672 x 0.453 x 0.385 mm³ 0.993 to 27.929°. Theta range for data collection Index ranges -22<=h<=24, -37<=k<=35, -40<=l<=40 **Reflections collected** 152878 Independent reflections 37861 [R(int) = 0.0485] Completeness to theta = 25.242° 99.9 % Semi-empirical from equivalents Absorption correction Max. and min. transmission 0.7456 and 0.6696 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 37861 / 192 / 1743 Goodness-of-fit on F² 1.081 Final R indices [I>2sigma(I)] R1 = 0.0648, wR2 = 0.1395 R indices (all data) R1 = 0.1038, wR2 = 0.1598 Extinction coefficient n/a 0.801 and -0.476 e.Å⁻³ Largest diff. peak and hole

Table S3. Crystal data and structure refinement for	or privo-lithiated anionic silicono	id 4Li (CCDC-1877378	
Identification code	sh3618	sh3618	
Empirical formula	C87 H139 Li O3 Si6		
Formula weight	1408.45		
Temperature	175(2) К		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 14.2918(16) Å	α= 109.652(5)°.	
	b = 16.4145(18) Å	β= 104.243(4)°.	
	c = 21.516(3) Å	γ = 99.970(4)°.	
Volume	4422.6(9) Å ³		
Z	2		
Density (calculated)	1.058 Mg/m ³		
Absorption coefficient	0.138 mm ⁻¹		
F(000)	1544		
Crystal size	0.696 x 0.647 x 0.466 mm ³		
Theta range for data collection	1.362 to 27.284°.		
Index ranges	-18<=h<=18, -21<=k<=20, -27<=l<=27		
Reflections collected	69055		
Independent reflections	19545 [R(int) = 0.0443]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7455 and 0.6196		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	19545 / 411 / 1006		
Goodness-of-fit on F ²	1.064		
Final R indices [I>2sigma(I)]	R1 = 0.0628, wR2 = 0.1581		
R indices (all data)	R1 = 0.0952, wR2 = 0.1885		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.975 and -0.428 e.Å ⁻³		

8).

Table S4. Crystal data and structure refinement for privo-TMS-substituted siliconoid 6a (CCDC-1877379).			
Identification code	sh3668		
Empirical formula	C78 H124 Si7, C6 H14		
Formula weight	1344.57		
Temperature	152(2) К		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 21.0070(7) Å	α= 90°.	
	b = 20.4182(7) Å	β= 95.4324(13)°.	
	c = 19.9183(7) Å	γ = 90°.	
Volume	8505.1(5) Å ³		
Z	4		
Density (calculated)	1.050 Mg/m ³		
Absorption coefficient	0.152 mm ⁻¹		
F(000)	2960		
Crystal size	0.480 x 0.380 x 0.166 mm ³		
Theta range for data collection	0.974 to 28.755°.		
Index ranges	-27<=h<=28, -27<=k<=25, -24<=l<=26		
Reflections collected	68739		
Independent reflections	22100 [R(int) = 0.0376]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7458 and 0.6844		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	22100 / 26 / 1278		
Goodness-of-fit on F ²	1.032		
Final R indices [I>2sigma(I)]	R1 = 0.0473, wR2 = 0.1158		
R indices (all data)	R1 = 0.0737, wR2 = 0.1319		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.783 and -0.504 e.Å ⁻³		

Table S5. Crystal data and structure refinement for	privo-pivaloyl-substituted silico	onoid 6c (CCDC-187738)
Identification code	sh3824	
Empirical formula	C80 H124 O Si6, 0.5(C6 H14)	
Formula weight	1313.41	
Temperature	152(2) К	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 13.3961(3) Å	α= 67.9010(10)°.
	b = 18.2592(5) Å	β= 70.1540(10)°.
	c = 19.4141(4) Å	$\gamma = 76.3090(10)^{\circ}.$
Volume	4106.08(17) Å ³	
Z	2	
Density (calculated)	1.062 Mg/m ³	
Absorption coefficient	0.143 mm ⁻¹	
F(000)	1442	
Crystal size	0.374 x 0.306 x 0.220 mm ³	
Theta range for data collection	1.179 to 33.864°.	
Index ranges	-20<=h<=20, -28<=k<=28, -30<=l<=30	
Reflections collected	127205	
Independent reflections	33036 [R(int) = 0.0356]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7467 and 0.7205	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	33036 / 77 / 872	
Goodness-of-fit on F ²	1.032	
Final R indices [I>2sigma(I)]	R1 = 0.0544, wR2 = 0.1381	
R indices (all data)	R1 = 0.0908, wR2 = 0.1578	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.580 and -0.722 e.Å ⁻³	

Table S6. Crystal data and structure refineme	nt for <i>privo</i> -borate-substituted	siliconoid 6f (CCDC-187738	
Identification code	sh3732	sh3732	
Empirical formula	C158 H252 B2 Li2 O2 Si1	C158 H252 B2 Li2 O2 Si12, 2(C6 H6)	
Formula weight	2712.38	2712.38	
Temperature	192(2) K	192(2) К	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Monoclinic	Monoclinic	
Space group	P2 ₁ /c		
Unit cell dimensions	a = 17.8496(8) Å	α= 90°.	
	b = 24.9370(10) Å	β= 99.856(2)°.	
	c = 20.3519(9) Å	γ = 90°.	
Volume	8925.2(7) Å ³		
Z	2		
Density (calculated)	1.009 Mg/m ³	1.009 Mg/m ³	
Absorption coefficient	0.133 mm ⁻¹	0.133 mm ⁻¹	
F(000)	2968	2968	
Crystal size	0.778 x 0.754 x 0.306 m	0.778 x 0.754 x 0.306 mm ³	
Theta range for data collection	1.158 to 29.617°.	1.158 to 29.617°.	
Index ranges	-24<=h<=24, -34<=k<=22	-24<=h<=24, -34<=k<=22, -28<=l<=28	
Reflections collected	96855	96855	
Independent reflections	25096 [R(int) = 0.0341]	25096 [R(int) = 0.0341]	
Completeness to theta = 25.242°	100.0 %	100.0 %	
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents	
Max. and min. transmission	0.7459 and 0.6970	0.7459 and 0.6970	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	25096 / 192 / 950	25096 / 192 / 950	
Goodness-of-fit on F ²	1.403	1.403	
Final R indices [I>2sigma(I)]	R1 = 0.0643, wR2 = 0.17	R1 = 0.0643, wR2 = 0.1752	
R indices (all data)	R1 = 0.0991, wR2 = 0.19	R1 = 0.0991, wR2 = 0.1926	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	1.192 and -0.383 e.Å ⁻³	1.192 and -0.383 e.Å ⁻³	

3).

Plot of the Hammett parameter σ_m/σ_p vs ²⁹Si chemical shift of Si2

Figure S56: Plot of the Hammett parameter σ_m vs ²⁹Si chemical shift of Si2 for substituents in *ligato* position of **5a-f** and **2**.

Figure S57: Plot of the Hammett parameter σ_m vs ²⁹Si chemical shift of Si2 for substituents in *privo* position of **6a-f** and **2**.

Figure S58: Plot of the Hammett parameter σ_p vs ²⁹Si chemical shift of Si2 for substituents in *ligato* position of **5a-f** and **2**.

Figure S59: Plot of the Hammett parameter σ_p vs ²⁹Si chemical shift of Si2 for substituents in *privo* position of **6a-f** and **2**.