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Section S1. Description of the algorithms. 

This section provides descriptions of the key aspects of our pathway selection 

algorithms. In Section S1.1 we formalize the definitions of a chemical reaction network, of 

synthetic pathways within it, and the costs of such pathways. In Section S1.2, we discuss a 

procedure for restricting the initial retrosynthetic graph to its subgraph containing all 

syntheses of the target, and called a solutions’ graph. In Section S1.3, we outline the 

algorithm for computing costs of nodes in the solutions’ graph and in Section S1.4, the 

algorithm for finding the cheapest pathways in the solutions’ graph and the path retrieving 

part of the algorithm for finding both cheap and diverse pathways. In Section S1.5, we focus 

on the penalization of reactions and on finding the nodes whose costs increase due to such 

penalization. Finally, in Section S1.6 we discuss how such costs are recomputed. 

S1.1. Definitions. 

A chemical network is represented as a finite directed bipartite graph comprised of 

chemical nodes and reaction nodes. We assume that for each reaction node in the network 

there is exactly one edge from it to some chemical node, which is called the product of the 

reaction. Chemical nodes from which there are edges to a reaction node are called substrates 

of this reaction. We assume that each reaction in the network has at least one substrate. Some 

chemical nodes in the network are considered to be starting materials and are not products of 

any reactions in the network. 
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A synthetic pathway leading to the target chemical node is an acyclic subgraph of the 

network, containing the target, such that:  

(i) each reaction in the pathway has all the same substrates and product as in the 

network, 

(ii) each chemical node in the pathway which is not a starting material is a product of 

exactly one reaction in the pathway, 

(iii) the target is not a substrate of any reaction in the pathway and the remaining 

chemical nodes in the pathway are substrates of at least one reaction in it. 

We define the cost of a synthetic pathway (per millimole of its target) as follows. If the 

pathway consists of a single node (which is a starting material), we assume its cost to be given 

and equal to the cost of a millimole of this starting material. Otherwise, the pathway’s cost is 

defined recursively as: 

����(�) = �����_����(�) +	� 	��,�	�����������ℎ(�, �)�
�∈����(�)

, 

where � is the only reaction in � producing the target, �����_����(�) is a nonnegative fixed 

cost of the reaction as discussed in the main text, pred(�) is the set of predecessors of � in � 

(i.e., it substrates), ������ℎ(�, �) is the only (sub)pathway in � having � as its target, and 

��,� ≥ 1	are some coefficients denoting the number of millimoles of substrate c needed to 

synthesize one millimole of the product of reaction �. As discussed in the main text, we 

implemented our algorithms for the special case of ��,� = 1/�����, for ����� ∈ 	 (0,1] 

denoting the average/global yield, though our algorithms also apply to other definition of 

��,�	. The computation of costs of subpathways of � according to the above formula takes 

place in the topological order of their targets, i.e., the cost of a chemical node being pathway’s 

target is computed only after such costs for all its predecessor chemical nodes in � being the 

targets have been computed. The assumption ��,� ≥ 1 ensures that our Dijkstra-like 

algorithms for computing costs of nodes in the network work, as discussed in Section S1.3 

(see also 26 and references therein for a related definition of a synthesis plan and its cost). 

For coefficients ��,� equal to 1 (yield equal to 100% for ��,� = 1/�����) and costs of 

starting materials equal zero, the cost of a pathway is equal to the sum of �����_����(�) over 

all reaction nodes � in the pathway if the pathway is a tree (i.e., a directed tree rooted in the 

target) or at least if the subgraph of the pathway induced by its nodes which are not starting 

materials is a tree. If such a subgraph is not a tree, then �����_����(�) for some reactions � 
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will appear several times in a sum obtained by unfolding the above recursive formula for 

����(�). 

 

S1.2. Restriction of the retrosynthetic graph to its solutions’ subgraph. 

A chemical node c in a reaction network � is called synthesizable if there exists a synthetic 

pathway in � of which � is a target. A reaction � in � is called viable if all substrates of � are 

synthesizable, or equivalently if in � there exists a synthesis pathway of �’s product 

containing �. An algorithm described by pseudocode in Figure S1 updates the set of 

previously found synthesizable chemical and viable reaction nodes (together called 

synthesizable nodes) considering newly discovered synthesizable chemicals. The algorithm 

performs a DFS-like search of the reaction network, beginning with the newly discovered 

synthesizable chemicals and using the definition of a reaction being viable and the fact that a 

chemical node which is not a starting material is synthesizable only if it is product of some 

viable reaction. This algorithm is similar to the one for finding nodes B-connected to a source 

node in a hypergraph from 24 (if one identifies reactions with hyperarcs in such hypergraphs 

analogously as in 26,S1). 

To find all synthesizable nodes in the network, it is sufficient to run the procedure 

from Figure S1 with the argument synthFound (denoting the initial set of found synthesizable 

nodes) being an empty set, newSynthChems (i.e., the list of newly discovered synthesizable 

chemical nodes) consisting of all the starting materials in the network, and with the dictionary 

numNonsynthSubs (mapping reaction nodes to the numbers of their substrates not in 

synthFound) initialized to store the total numbers of substrates for each reaction in the 

network. After the procedure finishes, synthFound consists of all the synthesizable nodes in 

the network. 
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Figure S1. Pseudocode of an algorithm for updating the set of synthesizable nodes in a 

reaction network. Triangles denote comments. The method pop() removes and returns the 

last element from a list. The method succesors of a graph returns the set of successor reactions 

of a chemical node given as the argument (i.e., reactions of which it is a substrate), while the 

method successor returns the single successor product of a given reaction node. The method 

add adds the element given as its argument to a set or a list. For a dictionary d, d[x] denotes 

the value stored in d corresponding to a key x. 

 

We note that if the graph grows with the progress of retrosynthetic searches (cf. main 

text), it is more effective to update the set of synthesizable nodes each time a new reaction 

and its substrates are added to the reaction network. In this way, one can immediately find out 

when the target becomes synthesizable and one can proceed with selecting its synthetic 

pathways. Such an update of the set of found synthesizable nodes synthFound can be realized 

as follows. After a reaction rx and its substrates are added to the network, rx’s substrates 

which are new starting materials are added to synthFound and information about the number 

of rx’s substrates not in synthFound is recorded in the dictionary numNonsynthSubs. Next, if 



5 
 

all the rx’s substrates are in synthFound (i.e., rx is viable), rx is also added to synthFound, and 

if further the rx’s product is not in synthFound, the procedure from Figure S1 is run with the 

list newSynthChems comprising only this product. 

If the target belongs to the set of synthesizable nodes found, we further proceed as 

follows. We find the set of ancestors of the target in the subgraph of the original retrosynthetic 

graph induced by its synthesizable nodes. We do this without actually computing such a 

subgraph – we perform a DFS-like search of the original network, starting from the target and 

exploring nodes which are yet undiscovered synthesizable ancestors of the already visited 

nodes. Once such a set of ancestors is determined, we compute a subgraph of the original 

network induced by such ancestors and the target. Note that the resulting subgraph is a 

reaction network containing all the synthesis pathways of the target present in the original 

network � (this follows from the fact that all nodes of every synthetic pathway of the target in 

a reaction network are synthesizable and are either ancestors of the target or the target itself). 

Thus, we call such a subgraph a solutions’ graph. Because the solutions’ graph is not larger 

(and typically much smaller) than the original graph, it uses significantly less memory (e.g., 

when saved on a disk). It is also not more computationally expensive (and typically cheaper) 

to perform computation of initial costs on it (discussed Section S1.3) or to find nodes whose 

costs are affected by penalization and to recompute these costs (discussed in Sections S1.5 

and S1.6). 

Assuming that the number of substrates of each reaction (i.e. its in-degree) in the 

network G is bounded by a given constant (e.g., in our numerical experiments, all reactions 

had no more than four substrates), and that the set synthFound and dictionary 

numNonsynthSubs are implemented using hash tables, our algorithms for computing the 

solutions’ graph discussed in this section run in time �(������	��	�����	��	�). 

 

S1.3. Computing the initial costs in solutions’ graph. 

The cost of a chemical node in a reaction network is defined as the cost of its lowest-cost 

synthetic pathway in the network, while the cost of a reaction node in a network is defined as 

the cost of the cheapest synthetic pathway of the reaction’s product and containing this 

reaction. Such costs fulfill the following generalized Bellman’s equations24: for each chemical 

node � in the network which is not a starting material we have 

����(�) = ����∈����(�)(����(�)) 

and for each reaction � in the network 
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����(�) = �����_����(�) +	� 	��,�	����(�)
�∈����(�)

. 

We compute the costs of all the nodes in the network which are not starting materials using a 

Dijkstra-like algorithm. The algorithm is similar to the one for finding minimum weight B-

paths in weighted hypergraphs described in 24 (see also 26) for a binary heap used as a priority 

queue. This algorithm can be used in our case because the fixed costs of reactions we consider 

are nonnegative and, because ��,� ≥ 1, the so-called gain-free condition (which guarantees 

that cycles in the network are nondecreasing) is satisfied24. One difference between our 

algorithm and the one from 24 is that rather than starting from a single source node, our 

algorithm begins with computing the costs of reactions whose all substrates are starting 

materials, and pushing the minimum cost of their products and such products themselves onto 

the priority queue. Assuming boundedness of reactions’ in-degrees (i.e., number of substrates 

in each reaction, see above), our algorithm for computing the costs runs it time �(����(�)) 

for � denoting the number of nodes in the solutions’ graph. 

S1.4. Finding the pathways. 

We shall first discuss our algorithm for finding a desired number of the target’s 

minimal-cost syntheses and then the algorithm for finding both economical and diverse 

routes. The number of pathways found by each of these algorithms is equal to the minimum of 

a user specified positive integer k and the number of all synthesis pathways of the target that 

exist in the solution’s graph G. 

Our algorithm for finding the minimal-cost pathways constructs them recursively 

starting from the target. The function used for expanding a pathway selects a reaction’s 

product provided as the function’s argument and calls itself recursively for each substrate of 

this reaction which is not a starting material, given as an argument. During the pathway’s 

construction, the function maintains a set of argument products with which it was called on 

the recursively processed path from the target (i.e. the argument product is added to this set at 

the beginning of the function and removed at its end) and a dictionary mapping products with 

which it was called to the selected reactions yielding such products. The algorithm maintains 

a directed graph, called a sequence graph, whose nodes are unique integer identifiers 

representing different sequences of reactions that can be consecutively selected during the 

recursive construction of pathways. A node n1 in the sequence graph has an edge to node n2, 

only if n2 is an identifier of a sequence of reactions represented by n1 followed by a reaction 

that can be chosen next by the recursive function. For each identifier in the sequence graph, 
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the last reaction in the corresponding sequence is remembered in a dictionary. The algorithm 

also keeps a priority queue (implemented using a binary heap) containing sequence 

identifiers. The score of a sequence identifier in the queue is the minimum possible cost of 

pathways comprising the reactions from the corresponding sequence. The queue is initialized 

to contain an identifier of an empty sequence of reactions with a score equal to the cost of the 

target (computed as discussed in Section S1.3). 

The algorithm keeps performing the following procedure in a loop until k pathways 

are returned or the priority queue becomes empty (meaning that all synthetic pathways of the 

target in G have been returned). First, it pops from the priority queue the sequence identifier 

with the lowest score v. It then retrieves all the ancestors of the sequence identifier from the 

sequence graph and, using them and the dictionary mapping identifiers to the last reactions in 

their sequences, it reconstructs a list of consecutive reactions to make during pathway’s 

construction. Then, the abovementioned recursive function is called with the target and the list 

of reactions given as arguments. The function tries to construct a pathway containing 

reactions from the list and with cost equal to v as follows. If the list of reactions is nonempty, 

the function pops a next reaction to perform from the list. Otherwise, it proceeds as follows. It 

selects a lowest-cost reaction rmin in G producing the argument product p. The further 

operations made by the function depend on whether it is called with p provided as its 

argument for the first time during the pathway’s construction. If this is the case, then the 

function finds reactions in G producing p which do not create a cycle (we say that a reaction r 

creates a cycle if there is a cycle in the subgraph induced by reactions selected so far by the 

function, r, as well as substrates and products of these reactions). Reactions creating a cycle 

cannot be chosen during pathway expansion, since, by definition, synthetic pathways cannot 

contain cycles. To verify if a reaction r creates a cycle, the function checks if any of r’s 

substrates is present in the maintained set of products from the recursively processed path 

from the target to p. The function adds to the sequence graph new identifiers representing the 

sequences of reactions selected so far followed by each of the found reactions producing p 

that does not create a cycle. Each such new identifier corresponding to some last reaction r 

other than the selected cheapest one rmin is also added to the priority queue. The score of such 

an identifier in the queue is computed as the popped identifier’s score v plus a product of 

����(�) − 	����(����) and the product of coefficients ��,� over the reactions s and their 

substrates c encountered on the recursively processed path from the target to p (which for 

��,� = 1/����� is equal to the inverse yield raised to the power of the number of reactions in 

such a path). If rmin creates a cycle, then the pathway expansion function is terminated without 
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a success and the algorithm starts expanding another pathway from the beginning (i.e. starting 

from popping a new identifier from the priority queue). In a situation when the function is 

called with the argument product p for the second or later time during the pathway’s 

construction, it proceeds as follows. It checks if the selected reaction rmin is equal to the 

previously chosen one r for this product (using the maintained dictionary mapping products to 

the selected reactions producing them). If not, then the function adds to the sequence graph a 

new identifier corresponding to choosing r again and to the priority queue this identifier with 

a score computed identically as discussed above. Furthermore, the function is terminated 

without a success (by definition, synthesis pathways can contain only one reaction with a 

given product), and the algorithm starts expanding another pathway. If, on the other hand, � =

����,	then the function adds an identifier corresponding to choosing this reaction to the 

sequence graph. When the function called with the target as an argument finishes successfully, 

a pathway comprised of the selected reactions is returned. 

The algorithm for finding economically feasible and diverse pathways performs the 

following steps in a loop until it stops. It runs a procedure like the one above for finding the 

lowest-cost pathways until a pathway that was not returned yet is retrieved or the procedure 

discovers that there are no more synthetic pathways left in G (i.e. the priority queue becomes 

empty). If such a new pathway is found, it is returned. When the k pathways requested by the 

user are returned or the procedure discovers that there are no more pathways left in G, the 

algorithm stops. Otherwise, it penalizes appropriate reactions in the solutions’ graph and 

recomputes the costs of nodes affected by such a penalization as discussed in Sections S1.5 

and S1.6. In our implementation, different runs of the procedure for finding lowest-cost 

pathways in the above loop reuse the same sequence graph (but, of course, the priority queue 

is reinitialized each time at the beginning of the procedure). Note that in this algorithm, our 

procedure for finding a sequence of lowest-cost pathways could be replaced by an alternative 

one (see, e.g., 21 and its discussion in 26). 

S1.5. Penalization of reactions and identification of nodes whose costs 

increase due to such penalization. 

To promote finding diverse pathways, we add a penalty � > 0 to (i) fixed costs of reactions 

from the previously found pathway and (ii) fixed costs of other, similar reactions in the 

network. We consider a reaction � to be similar to reaction � if � has the same product as � 

and at least one of the substrates of � belongs to the set of main substrates of � (main 

substrates are those with at least four carbon atoms or the largest number of carbon atoms).  
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Let cost denote the cost function defined as in Section S1.3 before penalization of 

fixed costs of reactions, and cost’ – after the penalization. We are interested in finding the set 

Sincr of nodes n in the solutions’ graph G for which ����(�) < ����′(�), i.e., whose costs 

increase due to penalization. From the generalized Bellman’s equations in Section S1.3, Sincr 

satisfies the following two conditions (for S replaced by Sincr). 

Condition 1. A reaction node r (from G) belongs to S only if it is one of the penalized 

reactions or some of r’s substrates belong to S. 

Condition 2. A chemical node c belongs to S only if all reactions r producing c and such that 

����(�) = ����(�) form a nonempty subset of S. 

The algorithm described by the pseudocode in Figure S2 finds and returns the smallest set 

Sfound satisfying the above two conditions, i.e., such that for any other S satisfying them, we 

must have ������ ⊂ �. In particular, we have ������ ⊂ �����, i.e., all the nodes found by this 

algorithm incrase costs due to penalization.  
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Figure S2. Pseudocode of an algorithm identifying nodes of the solutions’ graph whose 

costs increase due to penalization. For a list l, set(l) creates and returns a set with the same 

elements as l. The remaining notations used are the same as in Figure S1.  

 

We will show that under the additional Assumption 1 below, we also have ����� =

������, i.e., this algorithm returns exactly the nodes whose costs increase due to penalization.  

Assumption 1: For each reaction r in G and its substrate c, ����(�) < ����(�).  

This assumption holds, e.g., if all the fixed costs of reactions are positive or if the costs of 
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starting materials are positive and ��,�	>1 (which for ��,� = 1/����� is equivalent to ����� <

100%). 

Let us now make Assumption 1. We will show that ����� ∖ ������is empty, which 

(along with ������ ⊂ �����) implies that ����� = ������ . Let C be the set of nodes in ����� ∖

������ with minimum value of cost, i.e., for  

� = min�����(�): � ∈ ����� ∖ �������, 

we have  

� = �� ∈ ����� ∖ ������:	����(�) = ��. 

We will show that C is empty, which will imply that ����� ∖ ������ is empty. 

Assume, aiming at a contradiction, that for some reaction node r, � ∈ �. Then, due to 

Condition 1 for � = ����� (and the fact that r cannot be penalized since � ∉ ������), some 

substrate c of r must belong to �����. From Assumption 1, for this substrate it holds that 

����(�) < ����(�). We must have � ∈ ������ as otherwise it would hold � ∈ ����� ∖ ������ 

and ����(�) < ����(�) = � = min�����(�): � ∈ ����� ∖ �������, which is impossible. Thus, 

from Condition 1 for � = ������, we must also have � ∈ ������. We received a contradiction 

with � ∈ � ⊂ ����� ∖ ������. Thus, C cannot contain any reaction nodes. 

Assume now, again aiming for a contradiction, that for some chemical node c, � ∈ �. 

Then, from Condition 2 for � = �����, all reactions r of which c is a product and for which 

����(�) = ����(�), fulfill	� ∈ �����.	For such reactions we must have � ∈ ������, as 

otherwise we would have � ∈ ����� ∖ ������ and from ����(�) = ����(�) = �, it would 

hold	� ∈ �, which we just proved to be impossible. Therefore, from Condition 2 for � =

������, we have � ∈ ������, which is in contradiction with � ∈ � ⊂ ����� ∖ ������. Thus, C 

also cannot contain any chemical nodes, i.e. it is indeed empty. 

Assuming the boundedness of reactions’ in-degrees, and that dictionaries and sets used 

in the algorithm described by pseudocode in Figure S2 are implemented using hash tables, 

this algorithm runs it time �(������	��	�����	��	��������������ℎ).  

We note that if Assumption 1 does not hold, then, instead of finding nodes according 

to the above algorithm and recomputing their costs as discussed in Section S1.6, one can 

recompute the cost of all nodes which are not starting materials from scratch as discussed in 

Section S1.3. 
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S1.6. Recomputing the costs which increase due to penalization. 

To recompute the costs of nodes whose costs increase (due to penalization), we use a Dijkstra-

like algorithm similar to the one described in S1.4. The algorithm starts with computing the 

new costs (i.e. after penalization) of penalized reactions whose substrates do not increase their 

costs. Then, it finds chemical nodes whose cost increases and which are products of at least 

one reaction with known new cost and pushes the minimum new costs of such products and 

the products themselves onto the priority queue.  
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Section S2. Performance experiments. 

Our algorithms were implemented in Python (without any parallelization) and run on a 

computer with AMD Opteron 6380 processors with 2.5 GHz clockspeed. In all performance 

tests, 80% yield was used. For clofedanol and NAr3, fixed reaction cost $1/mmol was used, 

while for AMG641 it was set to $20/mmol. For reactions requiring protections, additional 

penalty (AMG641: $40/mmol; NAr3: $1/mmol; Clofedanol: $2/mmol) was added. For each 

molecule, we saved retrosynthesis graphs of various sizes from a single search and ran the full 

path selection algorithm on them either with (i) no diversity penalty or (ii) with such penalty 

equal to 10,000. CPU times of various stages of the algorithm and of finding the consecutive 

pathways were recorded. In Figure 5 in the main text, only the times �� of computing the cost 

of solutions’ graph and finding first � pathways were considered for graphs which contained 

at least 100 different synthesis pathways of the target.  

The table below summarizes information about CPU times of all the stages of the full 

algorithm for selecting 100 pathways from the largest retrosynthetic graphs for each molecule. 

The time to find synthesizable chemical nodes and viable reactions in the graph (using the 

procedure from Figure S1 with newSynthChems consisting of starting materials as discussed 

in Section S1.2, which could be executed after the retrosynthetic graph was constructed as 

opposed to the alternative updating approach) is denoted as ������; the time to find the 

ancestors of the target in the subgraph induced by synthesizable nodes is ����������; the time 

to restrict the retrosynthetic graph to the solutions’ subgraph induced by the target and such 

ancestors as ���������; and the time to compute the initial costs in the solutions’ graph as 

������. Since these parts are identical with and without diversity penalties applied, the table 

lists averages of CPU times for both of these scenarios. The time of finding paths is denoted 

as ������ and of penalizing reactions, finding the nodes changing costs, and recomputing their 

costs as ������ (for � equal to zero such operations are not performed and thus their CPU time 

is zero). The sum of CPU times of all stages is denoted as ������. 
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Molecule p tsynth [s] tancestors [s] tsubgraph [s] ticost [s] tpaths [s] trcost [s] ttotal 

Clofedanol 

0 

0,033 0,032 0,088 0,113 

0,045 0 0,311 

10000 0,081 0,289 0,635 

AMG641 

0 

0,014 0,015 0,038 0,047 

0,022 0 0,136 

10000 0,073 0,159 0,346 

NAr3 

0 

0,007 0,008 0,019 0,028 

0,024 0 0,086 

10000 0,068 0,216 0,345 

 

As seen in the Table, the total CPU time with p = 0 is less than 0.32 sec and less than 0.65 sec 

for p = 10,000. Note that ������ for experiments in which nonzero penalties were used was in 

all cases much smaller than 99	 ∙ ������, which demonstrates that finding and recomputing only 

the costs of nodes increasing due to penalization is much faster than recomputing the costs of 

all nodes from scratch.  
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Section S3. Differences with prior approaches. 

S3.1. Comparison with Chematica’s early path-selection algorithms. Previous 

versions of Chematica included a rudimentary path-selection algorithm described briefly in 

the SI Section S6.3 of our 2018 Chem publication 20. This prior method differed from the 

current one in the several important ways – both in terms of unrealistic chemical assumptions 

and also much less efficient algorithms, together translating into chemically sub-optimal 

solutions being found and into painfully long path retrieval times. These differences are 

detailed below: 

S.3.1.1. Chemical differences. Previous version of the algorithm used a different, less 

realistic definition of cost of a synthetic pathway. The cost of a pathway was based on the 

grams of starting materials rather than millimoles and, more importantly, did not take into 

account reaction yields, and it was assumed that each step produces one gram of the product 

from one gram of each of reaction’s substrates: 

����(�) = �����_����(�) +	� �����������ℎ(�, �)�
�∈����(�)

, 

This formulation translated into unrealistic cost estimates – for instance, a ten step linear 

pathway would score on par with a convergent 5+5 synthesis starting from the same number 

of similarly priced materials, although it is evident that in practice, the latter route is 

significantly more economical. The new implementation, taking into accounts yields and per-

millimole conversions is much more chemical and can discriminate between such cases (see 

also main-text Figure 2).   

Next, the penalties assigned to avoid repetition of similar reactions are now improved 

to select really diverse pathways. As detailed in Section S1.5, we penalize reactions that were 

already present in the previously found pathways and also those that use similar reactions. We 

consider a reaction � to be similar to reaction � if � has the same product as � and at least one 

of the substrates of � belongs to the set of main substrates of � (main substrates are those with 

at least four carbon atoms or the largest number of carbon atoms). In contrast, in the previous 

version of the algorithm, reaction s was considered to be similar to reaction r if it had the 

same product and the substrate with the highest number of carbon atoms (for several 

substrates having the same, largest number of carbon atoms, the one with the 

lexicographically longest SMILES stringS2 was considered). This condition for similarity was 

narrower in scope than the new one and, consequently, resulted in smaller set of reactions 

being penalized. For example, analogous steps marked in grey in Figure 9a and blue in Figure 
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9b in the main text are similar according to the new definition, but not according to the 

previous one. 

 

S.3.1.2. Algorithmic differences. Our new selection algorithms are much more time 

and memory efficient. In particular, for realistic networks of solutions, they now execute in a 

fraction of a second vs. thousands of seconds in the previous version of Chematica. To 

achieve these improvements, most of algorithm’s routines have been thoroughly changed; 

some of the key changes are in the modules responsible for: 

 (i) Updating synthesizable nodes. A more efficient algorithm for updating the set of 

synthesizable nodes (discussed in Section S1.2) is now implemented. Notably, to verify if a 

reaction is viable, we now check if the number of its substrates not yet found to be 

synthesizable, maintained in a dictionary numNonsynthSubs, is equal to zero (as in line 7 of 

Figure S1). Before, this was achieved by iteration over all of reaction’s substrates and 

checking if they are synthesizable. 

(ii) Extraction of the solution’s graphs from the entire network of nodes visited 

during retrosynthetic searches. In the previous version of the algorithm for finding the 

solutions’ graph, the subgraph of the original retrosynthetic network induced by synthesizable 

nodes was computed before the ancestors of the target in this subgraph were found. As 

discussed in Section S1.2, in the current version, such ancestors are found using a DFS-like 

search of the original network without the time-consuming computation of this subgraph. 

 (iii) Computing and re-computing of costs. Previously, to compute the costs in the 

solutions’ graph, the algorithm began with finding a graph of strongly connected components 

of the solutions’ graph. Then, such components were visited in the topological order and costs 

of nodes within each of these components were calculated using a Dijkstra-like algorithm. 

This approach was also used to recompute the costs of all nodes in the whole solutions’ graph 

after penalization of the fixed costs of reactions.   

In the new version, we compute initial costs of nodes in the solutions’ graph using a 

Dijkstra-like algorithm (discussed in Section S1.3), which is not only faster than the 

previously used approach but also much simpler to implement. Furthermore, in the algorithm 

for finding diverse pathways, we find and recompute only the costs changing due to 

penalization, which is typically significantly faster than recomputing all costs from scratch 

(see sections S1.5, S1.6, and S2). 

 (iv) Retrieval of the minimal-cost and diverse pathways. In the old and new 

implementation, this algorithm tried to further expand parts of pathways corresponding to 
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different sequences of reactions chosen in the initial stage of pathway construction. The 

information about such sequences was stored in a list of tuples consisting of a list of nodes 

visited up to a given point during pathway expansion, the list of substrates to be expanded 

(consisting of unexpanded substrates of visited reactions which were not starting materials), 

the so-called “accumulated costs” (equal to sums of fixed costs of visited reactions and costs 

of visited starting materials), and the “total costs“, equal to sums of the accumulated costs and 

the computed costs (in the solutions’ graph) of substrates to be expanded. Such a list 

consumed much more memory and time to construct than the priority queue with sequence 

identifiers and scores (corresponding to the abovementioned total costs) as well as the 

sequence graph used to reconstruct the sequences of reactions from such identifiers, both of 

which are used in our new algorithm.  

In the old algorithm, before the pathway expansion phase, the total and accumulated 

costs of all elements of the list of tuples were recomputed (using the information about the 

visited nodes and substrates to be expanded in the tuples) and the element with the minimum 

total cost (corresponding to the part of the pathway to be further expanded) was found in the 

list and removed from it. Such recomputing of total and accumulated costs was very time 

consuming but was needed in cases when the costs of visited reactions or substrates to be 

expanded changed as a result of penalization and recomputing of costs in the solutions’ graph. 

Also, in the pathway expansion process, as long as the list of substrates to expand was 

nonempty, the algorithm proceeded as follows. A chemical node p was popped from this list 

and reactions from the solutions’ graph producing this chemical that did not create a cycle 

were found (see Section S1.4 for the definition of reactions creating a cycle) by computing 

subgraphs of the solutions’ graph induced by visited nodes and reactions, and by checking if 

such subgraphs were directed acyclic graphs. Then, the cheapest reaction rmin  producing p 

was found and the tuples corresponding to reactions not creating a cycle other than rmin were 

computed (using accumulated cost to compute their total costs) and added to the list of tuples. 

If rmin created a cycle, then pathway expansion was terminated and the algorithm moved on to 

expanding another pathway. Otherwise, the algorithm selected rmin as the next reaction during 

the pathway expansion and updated the accumulated cost, set of visited nodes, and substrates 

to expand. Once the list of substrates to expand became empty, the pathway corresponding to 

visited nodes was returned. Then, if fewer than the required number of pathways were 

returned, the algorithm penalized appropriate reactions and recomputed the costs in solutions’ 

graph (as discussed above) and moved on to identify another pathway. Unlike our current 

algorithm, this old implementation did not have any mechanisms ensuring that the found 
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pathways had only one reaction with a given product. Thus, it sometimes returned as 

“pathway” graphs containing several reactions producing a given chemical. 

In our new algorithm, there is no need to recompute the scores in the priority queue 

after the costs in solutions’ graph change due to penalization – this is so because after the 

costs change, a new priority queue is constructed. The new algorithm is also much more 

efficient in checking if a reaction creates a cycle (see Section S1.4).  

 

Finally, we note that with our implementation, we added the possibility of saving a solutions’ 

graph during retrosynthetic search to later load it and select pathways from it multiple times 

under different scenarios (i.e., different costs of reactions, average yields, magnitudes of 

imposed diversity penalties). In the previous version of Chematica, only the diversity 

penalties could be changed during retrosynthetic search using the “select diverse” slider in the 

Chematica’s main window. This affected the diversity of the next set of pathways selected 

from the continuously expanding retrosynthetic graph. The cost of reactions, however, was 

fixed and specified by the user before search – any change in this parameter required the user 

to restart the entire, slow retrosynthetic search. 

 

S3.2. Comparison with other relevant works in the area. 

In this Section, we narrate briefly other publications in which problems and algorithms related 

to our work have been addressed, albeit not in the context of chemically realistic 

retrosynthetic design or even not in the context of chemistry at all. 

 

S.3.2.1. Differences from methods for finding the best K synthesis plans 26 and K shortest 

hyperpaths 21. In reference 26, the authors reformulate the problem of finding the K lowest-

cost synthesis plans in a reaction network in terms of the problem of finding K lowest-cost 

hyperpaths in a hypergraph. They also apply an algorithm from ref 21 (for the special case of 

the latter problem for acyclic hypergraphs) to find K synthesis plans with the lowest total 

weight of starting materials, assuming fixed reaction yields. Unfortunately, they consider a 

completely unrealistically simple mathematical model of a reaction network, in which the 

molecules are represented as carbon skeletons and reactions rely on forming bonds between 

arbitrary carbon atoms of different substrates to join them, or between the atoms of the same 

substrate to form rings. Even the authors themselves admit that real reactions can differ 

significantly from the ones in their model and the “skeleton plans” resulting from their model 
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may not correspond to any feasible syntheses. There is also no mention in their work of any 

selection based on synthetic diversity. 

 

In contrast, we demonstrate that our algorithm is applicable to realistic, large reaction 

networks, possibly containing cycles, from which it can rapidly select chemically viable 

syntheses. In fact, the synthetic examples we provide are the first demonstration of computer-

generated plans that are not only chemically correct but also scored realistically against 

(simultaneously!) prices of the starting materials, reaction operation costs, and yields, and 

selected according to synthetic diversity criteria. 

 

Down to some more technical detail, we note that the authors of ref 26 mention – but 

do not demonstrate – that a more complicated version of the algorithm from 21 could also be 

applied to more general reaction networks, like the ones admitting cycles (though, as opposed 

to our work, they do not provide sufficient conditions for the algorithm to be applicable to 

such networks). They also suggest that this algorithm could be used with more general 

synthesis plan costs, having the recursive form of so called “additive weighting functions” 

(see 21), e.g., allowing to consider fixed-reaction-costs and costs of consumed starting 

materials similar as in our work. Note, however, that even if implemented, the algorithm from 

21 is expected to be much slower than the version of our algorithm for finding lowest-cost 

pathways (both run on solutions’ graphs similar as in our performance experiments). To show 

this, consider the following argument. Recall that for a given solutions’ graph, our algorithm 

for selecting a given number of the lowest-cost pathways first computes the initial cost of 

nodes in the graph (as discussed in Section S1.3), and then finds the pathways in it (see 

Section S1.4). Note also that, in all our performance experiments in Section S2 for computing 

100 lowest-cost pathways on the largest solutions’ graphs, the time ������ of computing the 

initial costs was higher than the time ������ of finding all the pathways. The algorithm from 21 

requires the computation of costs of nodes in a modified graph using a Dijkstra-like method 

from 24 (i.e. similar as in our work) at least once for each pathway found. This is the case both 

for the slower and the improved versions of this algorithm called, respectively, Yen and LBYen 

in 21. Furthermore, the CPU time of both versions of the algorithm in numerical experiments 

in 21 was roughly proportional to the number of such cost computations made. Thus, even if 

the algorithm from 21 required only one computation of costs for each of the 100 pathways 

found in our solutions’ graphs, it can still be expected to run much slower than our algorithm 

(i.e., at least 50 times slower). 



20 
 

 

S.3.2.2. Differences from methods for finding dissimilar paths in graphs. 

There has been some work in the non-chemical literature on the problem of finding dissimilar 

but possibly short paths between a given origin and a destination in weighted graphs – for 

instance, in the context of finding spatially dissimilar paths in transportation networks 27,S3. 

We note that this problem is significantly less general than considered in our work. First, a 

weighted directed graph can be identified only with a reaction network in which graph’s 

nodes are represented by chemical nodes and its edges, by unary reactions with fixed costs 

equal to the edges’ weights. Furthermore, for the network containing a single starting material 

whose cost is zero and for yield equal to 100%, synthetic pathways of a target in the network 

have cost equal to the length of the corresponding paths from origin to destination in the 

graph setting. 

The algorithm for finding short but dissimilar pathways in graphs that is most related 

to the approach in our work is a so-called Iterative Penalty Method (IPM) (see 27 and 

references therein). It relies on the repetitive application of finding the shortest path (e.g., 

using the Dijkstra algorithm) and then adding penalties, e.g., to the edges from such a path. 

An approach analogous to IPM in the context of our reaction networks could rely on 

repetitively computing the costs in the network (or efficiently re-computing only the changing 

costs), finding the lowest-cost pathway, and penalizing the fixed costs of reactions from this 

pathway. One of the differences between our algorithm and such an IPM analogue is that, 

after finding a pathway, we penalize not only the reactions from this pathway but also 

appropriately defined similar reactions (for example, pairs of analogous reactions marked in 

blue and grey in Figure 9a and 9b in the main text are similar according to our definition 

though not identical). Another important difference is that our algorithm does not return the 

lowest-cost pathway in the graph with recomputed cost, but the lowest-cost pathway not 

returned before (using our method for generating the consecutive lowest-cost pathways until a 

new pathway is discovered). This ensures that our method cannot return the same pathway 

several times and that it returns all the existing pathways when their total number is not higher 

than the number of pathways requested by the user. The IPM-like algorithm, on the other 

hand, can return repeated pathways and may never return some existing pathways no matter 

for how many iterations it is run. An IPM version for finding K distinct diverse paths was 

used in ref 27 whereby, when a repeated path is found, the algorithm rejects it (but applies 

penalties to its edges) and goes to another iteration of the method. Note that a similar idea 

could be used in the IPM analogue for reaction networks. Unfortunately, such an algorithm 
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will never finish in the case when K is greater than the number of existing pathways in the 

network (which the user does not know a priori when specifying K) and even in some cases 

when there exist at least K distinct paths in the graph. To illustrate this, consider a simple 

reaction network in Figure S3 below and assume that the fixed costs of all reactions, diversity 

penalty, and yield are all equal to 1, as well as that the cost of the only starting material is 

zero. This network contains three pathways: p1 containing reactions r1 and r4 and with cost 2, 

p2 with reactions r2 and r5 and cost also 2, and p3 with reactions r2, r3, and r4 and cost 3. 

  

 

Figure S3. An example of an extremely simple reaction network used to compare our 

algorithm against an IPM-type approach.  Red node is the starting material, violet nodes are 

intermediates, and the yellow dot is the target molecule. 

 

For this network, both our and the IPM-like algorithm could first return pathway p1 and then 

p2. When queried for more pathways, our algorithm would next return pathway p3 and then 

discover that there are no more pathways left in the network. The IPM analogue, on the other 

hand, would again return pathway p1, then again p2, and so on, never returning pathway p3. 

Thus, if the technique of rejecting repeated pathways were used, when queried for three or 

more pathways, the IPM-like algorithm would get stuck in an infinite loop. The same 

problems can occur with the original IPM algorithm in the graph setting (e.g., the above 

example can be easily reformulated in the directed graph setting) and an approach similar to 

ours could be used to overcome them, i.e., instead of finding the shortest path in the penalized 

graph, one could generate a sequence of shortest paths (e.g., using Yen’ algorithmS4) until a 
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new path is found or the algorithm discovers that there are no more paths left in the graph. 

However, to our knowledge, this has never been done in the literature. 
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Section S4. Details of Chematica’s syntheses of triarylamine. 

 

Figure S4. Details of top ten synthetic pathways obtained for triarylamine with RxC = 

$1/mmol, Y = 80%. Pathways depicted in Figure 6c,d are marked with red frames. 
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Section S5. Details of Chematica’s syntheses of Clofedanol. 

 

Figure S5. Details of top three synthetic pathways obtained for clofedanol. Paths are arranged 

in the order obtained with RxC = $1/mmol, Y= 80%.  
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Section S6. Details of Chematica’s syntheses of AMG641 with different 
RxC-Y settings.  

 

Figure S6. Details of the top-scoring synthetic pathway obtained for AMG641 with RxC = 

$20/mmol, Y = 99% discussed in Figure 8a. 

 

Figure S7. Details of the top-scoring synthetic pathway obtained for AMG641 with RxC = 

$20/mmol, Y = 80% discussed in Figure 8b.  
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Figure S8. Details of the top-scoring synthetic pathway obtained for AMG641 with RxC = 

$2/mmol, Y = 80% discussed in Figure 8c.  

 

Figure S9. Details of the top-scoring synthetic pathway obtained for AMG641 with RxC = 

$0.2/mmol, Y = 80% discussed in Figure 8d.  
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Section S7. Details of Chematica’s syntheses of AMG641 with different P 
settings.  

 

Figure S10. Details of the top three synthetic pathways obtained for AMG641 with RxC = 

$20/mmol, Y = 80%, P = 0 discussed in Figure 9a.  

 

Figure S11. Details of the top three synthetic pathways obtained for AMG641 with RxC = 

$2/mmol, Y = 80%, P = 0 discussed in Figure 9b. Chematica’s proposed protecting group for 

the last step is shown in blue frame. 
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Figure S12. Details of the top three synthetic pathways obtained for AMG641 with Y = 80%, 

P = 10 000 discussed in Figure 9c,d. Paths are arranged in the order obtained with RxC = 

$20/mmol, Y= 80%.  
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Section S8. Details of Chematica’s syntheses of the whisky lactone with 
different P settings.  

 

Figure S13. Details of the top three synthetic pathways obtained for whisky lactone with Y = 

80%, P = 0 discussed in Figure 10a.  
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Figure S14. Details of the top three synthetic pathways obtained for whisky lactone with Y = 

80%, P = 10 000 discussed in Figure 10b.  

 


