Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2019

Supplementary Information for Manuscript titled “Selection of cost-effective yet

chemically diverse pathways from the networks of computer-generated retrosynthetic

plans” by Tomasz Badowski'*, Karol Molga'*, Bartosz A. Grzybowski'-?*

! Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, Warsaw
01-224, Poland

2IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-
gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798, South Korea

* Authors contributed equally

*Correspondence to: nanogrzybowski@gmail.com

Section S1. Description of the algorithms.

This section provides descriptions of the key aspects of our pathway selection
algorithms. In Section S1.1 we formalize the definitions of a chemical reaction network, of
synthetic pathways within it, and the costs of such pathways. In Section S1.2, we discuss a
procedure for restricting the initial retrosynthetic graph to its subgraph containing all
syntheses of the target, and called a solutions’ graph. In Section S1.3, we outline the
algorithm for computing costs of nodes in the solutions’ graph and in Section S1.4, the
algorithm for finding the cheapest pathways in the solutions’ graph and the path retrieving
part of the algorithm for finding both cheap and diverse pathways. In Section S1.5, we focus
on the penalization of reactions and on finding the nodes whose costs increase due to such

penalization. Finally, in Section S1.6 we discuss how such costs are recomputed.

S1.1. Definitions.

A chemical network is represented as a finite directed bipartite graph comprised of
chemical nodes and reaction nodes. We assume that for each reaction node in the network
there is exactly one edge from it to some chemical node, which is called the product of the
reaction. Chemical nodes from which there are edges to a reaction node are called substrates
of this reaction. We assume that each reaction in the network has at least one substrate. Some
chemical nodes in the network are considered to be starting materials and are not products of

any reactions in the network.

A synthetic pathway leading to the target chemical node is an acyclic subgraph of the
network, containing the target, such that:
(1) each reaction in the pathway has all the same substrates and product as in the
network,
(i1)) each chemical node in the pathway which is not a starting material is a product of
exactly one reaction in the pathway,
(ii1) the target is not a substrate of any reaction in the pathway and the remaining
chemical nodes in the pathway are substrates of at least one reaction in it.
We define the cost of a synthetic pathway (per millimole of its target) as follows. If the
pathway consists of a single node (which is a starting material), we assume its cost to be given
and equal to the cost of a millimole of this starting material. Otherwise, the pathway’s cost is

defined recursively as:

cost(S) = fixed_cost(r) + z a,. cost(subpath(S,c)),
cepred(r)

where 7 is the only reaction in S producing the target, fixed_cost(r) is a nonnegative fixed
cost of the reaction as discussed in the main text, pred(r) is the set of predecessors of 7 in S
(i.e., it substrates), subpath(S,c) is the only (sub)pathway in S having c as its target, and
a,. = 1 are some coefficients denoting the number of millimoles of substrate ¢ needed to
synthesize one millimole of the product of reaction r. As discussed in the main text, we
implemented our algorithms for the special case of a,. = 1/yield, for yield € (0,1]
denoting the average/global yield, though our algorithms also apply to other definition of
a,. . The computation of costs of subpathways of S according to the above formula takes
place in the topological order of their targets, i.e., the cost of a chemical node being pathway’s
target is computed only after such costs for all its predecessor chemical nodes in S being the
targets have been computed. The assumption a,. =1 ensures that our Dijkstra-like
algorithms for computing costs of nodes in the network work, as discussed in Section S1.3
(see also % and references therein for a related definition of a synthesis plan and its cost).

For coefficients a,.. equal to 1 (yield equal to 100% for a, . = 1/yield) and costs of
starting materials equal zero, the cost of a pathway is equal to the sum of fixed_cost(r) over
all reaction nodes r in the pathway if the pathway is a tree (i.e., a directed tree rooted in the
target) or at least if the subgraph of the pathway induced by its nodes which are not starting

materials is a tree. If such a subgraph is not a tree, then fixed_cost(r) for some reactions r

will appear several times in a sum obtained by unfolding the above recursive formula for

cost(S).

S1.2. Restriction of the retrosynthetic graph to its solutions’ subgraph.

A chemical node c in a reaction network G is called synthesizable if there exists a synthetic
pathway in G of which c is a target. A reaction r in G is called viable if all substrates of r are
synthesizable, or equivalently if in G there exists a synthesis pathway of r’s product
containing r. An algorithm described by pseudocode in Figure S1 updates the set of
previously found synthesizable chemical and viable reaction nodes (together called
synthesizable nodes) considering newly discovered synthesizable chemicals. The algorithm
performs a DFS-like search of the reaction network, beginning with the newly discovered
synthesizable chemicals and using the definition of a reaction being viable and the fact that a
chemical node which is not a starting material is synthesizable only if it is product of some
viable reaction. This algorithm is similar to the one for finding nodes B-connected to a source
node in a hypergraph from 2* (if one identifies reactions with hyperarcs in such hypergraphs
analogously as in 2651),

To find all synthesizable nodes in the network, it is sufficient to run the procedure
from Figure S1 with the argument synthFound (denoting the initial set of found synthesizable
nodes) being an empty set, newSynthChems (i.e., the list of newly discovered synthesizable
chemical nodes) consisting of all the starting materials in the network, and with the dictionary
numNonsynthSubs (mapping reaction nodes to the numbers of their substrates not in
synthFound) initialized to store the total numbers of substrates for each reaction in the
network. After the procedure finishes, synthFound consists of all the synthesizable nodes in

the network.

1: procedure UPDATESYNTHFOUND(G, synthFound, newSynthChems,
numN onsynthSubs)
> Updates the set synthFound of synthesizable nodes found considering
newly discovered synthesizable chemical nodes newSynthC hems.
> Arguments:
> (+: reaction network
> synthFound: set of previously found synthesizable nodes
> newSynthChems: list of newly found synthesizable chemical nodes
> numNonsynthSubs: dictionary mapping reactions to numbers of their
substrates not in synthFound

2: Add nodes from newSynthChems to synthFound.
3: while newSynthChems is nonempty do

4: chem < newSynthChems.pop()

5: for ra € G.successors(chem) do

6: numN onsynthSubs([rz| < numNonsynthSubs[rz| — 1
7: if numNonsynthSubs[rxz] = 0 then

8: synthFound.add(rx)

9: product < G.successor(rz)

10: if product ¢ synthFound then

11: synthFound.add(product)

12: newSynthChems.add(product)

Figure S1. Pseudocode of an algorithm for updating the set of synthesizable nodes in a
reaction network. Triangles denote comments. The method pop() removes and returns the
last element from a list. The method succesors of a graph returns the set of successor reactions
of a chemical node given as the argument (i.e., reactions of which it is a substrate), while the
method successor returns the single successor product of a given reaction node. The method
add adds the element given as its argument to a set or a list. For a dictionary d, d/x/ denotes

the value stored in d corresponding to a key x.

We note that if the graph grows with the progress of retrosynthetic searches (cf. main
text), it is more effective to update the set of synthesizable nodes each time a new reaction
and its substrates are added to the reaction network. In this way, one can immediately find out
when the target becomes synthesizable and one can proceed with selecting its synthetic
pathways. Such an update of the set of found synthesizable nodes synthFound can be realized
as follows. After a reaction rx and its substrates are added to the network, x5 substrates
which are new starting materials are added to synthFound and information about the number

of rx’s substrates not in synthFound is recorded in the dictionary numNonsynthSubs. Next, if

all the rx’s substrates are in synthFound (i.e., rx is viable), rx is also added to synthFound, and
if further the »x’s product is not in synthFound, the procedure from Figure S1 is run with the
list newSynthChems comprising only this product.

If the target belongs to the set of synthesizable nodes found, we further proceed as
follows. We find the set of ancestors of the target in the subgraph of the original retrosynthetic
graph induced by its synthesizable nodes. We do this without actually computing such a
subgraph — we perform a DFS-like search of the original network, starting from the target and
exploring nodes which are yet undiscovered synthesizable ancestors of the already visited
nodes. Once such a set of ancestors is determined, we compute a subgraph of the original
network induced by such ancestors and the target. Note that the resulting subgraph is a
reaction network containing all the synthesis pathways of the target present in the original
network G (this follows from the fact that all nodes of every synthetic pathway of the target in
a reaction network are synthesizable and are either ancestors of the target or the target itself).
Thus, we call such a subgraph a solutions’ graph. Because the solutions’ graph is not larger
(and typically much smaller) than the original graph, it uses significantly less memory (e.g.,
when saved on a disk). It is also not more computationally expensive (and typically cheaper)
to perform computation of initial costs on it (discussed Section S1.3) or to find nodes whose
costs are affected by penalization and to recompute these costs (discussed in Sections S1.5
and S1.6).

Assuming that the number of substrates of each reaction (i.e. its in-degree) in the
network G is bounded by a given constant (e.g., in our numerical experiments, all reactions
had no more than four substrates), and that the set synthFound and dictionary
numNonsynthSubs are implemented using hash tables, our algorithms for computing the

solutions’ graph discussed in this section run in time O (number of nodes in G).

S1.3. Computing the initial costs in solutions’ graph.
The cost of a chemical node in a reaction network is defined as the cost of its lowest-cost
synthetic pathway in the network, while the cost of a reaction node in a network is defined as
the cost of the cheapest synthetic pathway of the reaction’s product and containing this
reaction. Such costs fulfill the following generalized Bellman’s equations®*: for each chemical
node c in the network which is not a starting material we have

cost(c) = Minyepreq(c)(cost(r))

and for each reaction r in the network

cost(r) = fixed_cost(r) + Z a, . cost(c).
cepred(r)

We compute the costs of all the nodes in the network which are not starting materials using a
Dijkstra-like algorithm. The algorithm is similar to the one for finding minimum weight B-
paths in weighted hypergraphs described in >* (see also 2°) for a binary heap used as a priority
queue. This algorithm can be used in our case because the fixed costs of reactions we consider
are nonnegative and, because a, . = 1, the so-called gain-free condition (which guarantees
that cycles in the network are nondecreasing) is satisfied®*. One difference between our

algorithm and the one from 2*

is that rather than starting from a single source node, our
algorithm begins with computing the costs of reactions whose all substrates are starting
materials, and pushing the minimum cost of their products and such products themselves onto
the priority queue. Assuming boundedness of reactions’ in-degrees (i.e., number of substrates
in each reaction, see above), our algorithm for computing the costs runs it time O(nlog(n))

for n denoting the number of nodes in the solutions’ graph.

S1.4. Finding the pathways.

We shall first discuss our algorithm for finding a desired number of the target’s
minimal-cost syntheses and then the algorithm for finding both economical and diverse
routes. The number of pathways found by each of these algorithms is equal to the minimum of
a user specified positive integer k£ and the number of all synthesis pathways of the target that
exist in the solution’s graph G.

Our algorithm for finding the minimal-cost pathways constructs them recursively
starting from the target. The function used for expanding a pathway selects a reaction’s
product provided as the function’s argument and calls itself recursively for each substrate of
this reaction which is not a starting material, given as an argument. During the pathway’s
construction, the function maintains a set of argument products with which it was called on
the recursively processed path from the target (i.e. the argument product is added to this set at
the beginning of the function and removed at its end) and a dictionary mapping products with
which it was called to the selected reactions yielding such products. The algorithm maintains
a directed graph, called a sequence graph, whose nodes are unique integer identifiers
representing different sequences of reactions that can be consecutively selected during the
recursive construction of pathways. A node n; in the sequence graph has an edge to node n2,
only if n2 is an identifier of a sequence of reactions represented by 7, followed by a reaction

that can be chosen next by the recursive function. For each identifier in the sequence graph,

the last reaction in the corresponding sequence is remembered in a dictionary. The algorithm
also keeps a priority queue (implemented using a binary heap) containing sequence
identifiers. The score of a sequence identifier in the queue is the minimum possible cost of
pathways comprising the reactions from the corresponding sequence. The queue is initialized
to contain an identifier of an empty sequence of reactions with a score equal to the cost of the
target (computed as discussed in Section S1.3).

The algorithm keeps performing the following procedure in a loop until k& pathways
are returned or the priority queue becomes empty (meaning that all synthetic pathways of the
target in G have been returned). First, it pops from the priority queue the sequence identifier
with the lowest score v. It then retrieves all the ancestors of the sequence identifier from the
sequence graph and, using them and the dictionary mapping identifiers to the last reactions in
their sequences, it reconstructs a list of consecutive reactions to make during pathway’s
construction. Then, the abovementioned recursive function is called with the target and the list
of reactions given as arguments. The function tries to construct a pathway containing
reactions from the list and with cost equal to v as follows. If the list of reactions is nonempty,
the function pops a next reaction to perform from the list. Otherwise, it proceeds as follows. It
selects a lowest-cost reaction rmin in G producing the argument product p. The further
operations made by the function depend on whether it is called with p provided as its
argument for the first time during the pathway’s construction. If this is the case, then the
function finds reactions in G producing p which do not create a cycle (we say that a reaction
creates a cycle if there is a cycle in the subgraph induced by reactions selected so far by the
function, r, as well as substrates and products of these reactions). Reactions creating a cycle
cannot be chosen during pathway expansion, since, by definition, synthetic pathways cannot
contain cycles. To verify if a reaction » creates a cycle, the function checks if any of r’s
substrates is present in the maintained set of products from the recursively processed path
from the target to p. The function adds to the sequence graph new identifiers representing the
sequences of reactions selected so far followed by each of the found reactions producing p
that does not create a cycle. Each such new identifier corresponding to some last reaction r
other than the selected cheapest one rmin is also added to the priority queue. The score of such
an identifier in the queue is computed as the popped identifier’s score v plus a product of
cost(r) — cost(Tyn) and the product of coefficients ag, over the reactions s and their
substrates ¢ encountered on the recursively processed path from the target to p (which for
as. = 1/yield is equal to the inverse yield raised to the power of the number of reactions in

such a path). If rmin creates a cycle, then the pathway expansion function is terminated without

a success and the algorithm starts expanding another pathway from the beginning (i.e. starting
from popping a new identifier from the priority queue). In a situation when the function is
called with the argument product p for the second or later time during the pathway’s
construction, it proceeds as follows. It checks if the selected reaction rmin is equal to the
previously chosen one r for this product (using the maintained dictionary mapping products to
the selected reactions producing them). If not, then the function adds to the sequence graph a
new identifier corresponding to choosing » again and to the priority queue this identifier with
a score computed identically as discussed above. Furthermore, the function is terminated
without a success (by definition, synthesis pathways can contain only one reaction with a
given product), and the algorithm starts expanding another pathway. If, on the other hand, r =
Tmin, then the function adds an identifier corresponding to choosing this reaction to the
sequence graph. When the function called with the target as an argument finishes successfully,
a pathway comprised of the selected reactions is returned.

The algorithm for finding economically feasible and diverse pathways performs the
following steps in a loop until it stops. It runs a procedure like the one above for finding the
lowest-cost pathways until a pathway that was not returned yet is retrieved or the procedure
discovers that there are no more synthetic pathways left in G (i.e. the priority queue becomes
empty). If such a new pathway is found, it is returned. When the k pathways requested by the
user are returned or the procedure discovers that there are no more pathways left in G, the
algorithm stops. Otherwise, it penalizes appropriate reactions in the solutions’ graph and
recomputes the costs of nodes affected by such a penalization as discussed in Sections S1.5
and S1.6. In our implementation, different runs of the procedure for finding lowest-cost
pathways in the above loop reuse the same sequence graph (but, of course, the priority queue
is reinitialized each time at the beginning of the procedure). Note that in this algorithm, our
procedure for finding a sequence of lowest-cost pathways could be replaced by an alternative

one (see, e.g., 2! and its discussion in 26).

S1.5. Penalization of reactions and identification of nodes whose costs

increase due to such penalization.

To promote finding diverse pathways, we add a penalty p > 0 to (i) fixed costs of reactions
from the previously found pathway and (ii) fixed costs of other, similar reactions in the
network. We consider a reaction s to be similar to reaction r if s has the same product as r
and at least one of the substrates of s belongs to the set of main substrates of r (main

substrates are those with at least four carbon atoms or the largest number of carbon atoms).

Let cost denote the cost function defined as in Section S1.3 before penalization of
fixed costs of reactions, and cost’— after the penalization. We are interested in finding the set
Siner of nodes n in the solutions” graph G for which cost(n) < cost’(n), i.e., whose costs
increase due to penalization. From the generalized Bellman’s equations in Section S1.3, Sincr
satisfies the following two conditions (for S replaced by Sincr).

Condition 1. A reaction node » (from G) belongs to S only if it is one of the penalized
reactions or some of 7’s substrates belong to S.

Condition 2. A chemical node ¢ belongs to S only if all reactions » producing ¢ and such that
cost(r) = cost(c) form a nonempty subset of S.

The algorithm described by the pseudocode in Figure S2 finds and returns the smallest set
Srouna satisfying the above two conditions, i.e., such that for any other S satisfying them, we

must have Sfyynq © S. In particular, we have Sgoyung © Siner, 1.€., all the nodes found by this

algorithm incrase costs due to penalization.

1: function GETNODESINCREASINGCOST(G, penalizedRxs, cost)
> Returns a set of nodes in G whose costs increase due to penalization.
> Arguments:
> G solutions’ graph
> penalizedRxs: list of penalized reactions
> cost: dictionary mapping nodes in G to their costs before penalization
> set of found nodes in G whose costs increase due to penalization

2: nodesInerCost « set(penalizedRxs)
o list of reactions whose descendants need to be checked for increasing costs
3: raesCheck DescIner < penalizedRxs

> dictionary mapping chemical nodes to the number of their cheapest pre-
decessor reactions which are not known to increase cost

4: numCheapest Rrs + empty dictionary

5: while resCheckDescIner is nonempty do

6: ra «— resCheck DescIner.pop()

T: product < G.successor(rzx)

8: if product ¢ nodesIncrCost then
> if rx is the cheapest predecessor reaction of product

9: if cost[rz] = cost[product] then

10: if product ¢ numCheapest Rrs then

11: numC heapest Rrs[product] < number of predecessor re-
actions of product with cost equal cost[product]

12: numCheapest Rrs|product] < numCheapest Rrs|product] — 1
> if all the cheapest reactions leading to product are known to increase cost

13: if numCheapestRxs[product] = () then

14: nodesIncrCost.add(product)

15: for rr € G.successors(product) do

16: if rx ¢ nodesIncerCost then

17: nodesIncrCost.add(rx)

18: rasCheck DescIncer.add(rx)

19: return nodesIncrCost

Figure S2. Pseudocode of an algorithm identifying nodes of the solutions’ graph whose
costs increase due to penalization. For a list /, set(]) creates and returns a set with the same

elements as /. The remaining notations used are the same as in Figure S1.

We will show that under the additional Assumption 1 below, we also have S, =

Stounas 1-€., this algorithm returns exactly the nodes whose costs increase due to penalization.

Assumption 1: For each reaction r in G and its substrate ¢, cost(c) < cost(r).

This assumption holds, e.g., if all the fixed costs of reactions are positive or if the costs of

10

starting materials are positive and a,..>1 (which for a, . = 1/yield is equivalent to yield <
100%).

Let us now make Assumption 1. We will show that S;;,c, \ Spoynais empty, which
(along with S¢pyng © Siner) implies that Sicr = Spouna - Let C be the set of nodes in Sjper \
Stouna With minimum value of cost, i.e., for

m = min(cost(n):n € Siner \ Srouna)»
we have

C=1{n€Spe\ Stouna: cost(n) = m}.
We will show that C is empty, which will imply that Si, - \ Sroung is empty.
Assume, aiming at a contradiction, that for some reaction node », r € C. Then, due to
Condition 1 for § = S, (and the fact that » cannot be penalized since 7 € Sfpynq), SOMe
substrate ¢ of » must belong to S;,.-- From Assumption 1, for this substrate it holds that
cost(c) < cost(r). We must have ¢ € Sgoynq as otherwise it would hold ¢ € Siner \ Srouna
and cost(c) < cost(r) = m = min(cost(n):n € Sincr \ Souna), Which is impossible. Thus,
from Condition 1 for S = Sf,,54, Wwe must also have r € S¢ynq. We received a contradiction
with 7 € C € Siper \ Sfouna- Thus, C cannot contain any reaction nodes.

Assume now, again aiming for a contradiction, that for some chemical node ¢, ¢ € C.
Then, from Condition 2 for S = S;,,.,, all reactions » of which c is a product and for which
cost(r) = cost(c), fulfill™ € Sy, For such reactions we must have 7 € Sfyyng, as
otherwise we would have 7 € Siper \ Sfouna and from cost(r) = cost(c) = m, it would
hold r € C, which we just proved to be impossible. Therefore, from Condition 2 for S =
Stouna> We have ¢ € S¢yynq, which is in contradiction with ¢ € C € Syper \ Spouna- Thus, C
also cannot contain any chemical nodes, i.e. it is indeed empty.

Assuming the boundedness of reactions’ in-degrees, and that dictionaries and sets used
in the algorithm described by pseudocode in Figure S2 are implemented using hash tables,
this algorithm runs it time O (number of nodes in solutions’ graph).

We note that if Assumption 1 does not hold, then, instead of finding nodes according
to the above algorithm and recomputing their costs as discussed in Section S1.6, one can
recompute the cost of all nodes which are not starting materials from scratch as discussed in

Section S1.3.

11

S1.6. Recomputing the costs which increase due to penalization.

To recompute the costs of nodes whose costs increase (due to penalization), we use a Dijkstra-
like algorithm similar to the one described in S1.4. The algorithm starts with computing the
new costs (i.e. after penalization) of penalized reactions whose substrates do not increase their
costs. Then, it finds chemical nodes whose cost increases and which are products of at least
one reaction with known new cost and pushes the minimum new costs of such products and

the products themselves onto the priority queue.

12

Section S2. Performance experiments.

Our algorithms were implemented in Python (without any parallelization) and run on a
computer with AMD Opteron 6380 processors with 2.5 GHz clockspeed. In all performance
tests, 80% yield was used. For clofedanol and NArs, fixed reaction cost $1/mmol was used,
while for AMG641 it was set to $20/mmol. For reactions requiring protections, additional
penalty (AMG641: $40/mmol; NArs: $1/mmol; Clofedanol: $2/mmol) was added. For each
molecule, we saved retrosynthesis graphs of various sizes from a single search and ran the full
path selection algorithm on them either with (i) no diversity penalty or (ii) with such penalty
equal to 10,000. CPU times of various stages of the algorithm and of finding the consecutive
pathways were recorded. In Figure S in the main text, only the times t,, of computing the cost
of solutions’ graph and finding first n pathways were considered for graphs which contained
at least 100 different synthesis pathways of the target.

The table below summarizes information about CPU times of all the stages of the full
algorithm for selecting 100 pathways from the largest retrosynthetic graphs for each molecule.
The time to find synthesizable chemical nodes and viable reactions in the graph (using the
procedure from Figure S1 with newSynthChems consisting of starting materials as discussed
in Section S1.2, which could be executed after the retrosynthetic graph was constructed as
opposed to the alternative updating approach) is denoted as tgy,p; the time to find the
ancestors of the target in the subgraph induced by synthesizable nodes is t;pcestors; the time
to restrict the retrosynthetic graph to the solutions’ subgraph induced by the target and such
ancestors as tg,pgrapn; and the time to compute the initial costs in the solutions’ graph as
ticost- Since these parts are identical with and without diversity penalties applied, the table
lists averages of CPU times for both of these scenarios. The time of finding paths is denoted
as tyqens and of penalizing reactions, finding the nodes changing costs, and recomputing their
costs as t,..,s (for p equal to zero such operations are not performed and thus their CPU time

is zero). The sum of CPU times of all stages is denoted as t;,¢q;-

13

Molecule p tsynth [S] t [S] t grap [S] ticost [S] tpaths [S] trcost [S] t1<>ta|

0 0,045 0 0,311

Clofedanol 0,033 0,032 0,088 0,113
10000 0,081 0,289 0,635
0 0,022 0 0,136

AMG641 0,014 0,015 0,038 0,047
10000 0,073 0,159 0,346
0 0,024 0 0,086

NAr; 0,007 0,008 0,019 0,028
10000 0,068 0,216 0,345

As seen in the Table, the total CPU time with p = 0 is less than 0.32 sec and less than 0.65 sec
for p = 10,000. Note that t,.,s for experiments in which nonzero penalties were used was in
all cases much smaller than 99 - t;.,s;, Wwhich demonstrates that finding and recomputing only

the costs of nodes increasing due to penalization is much faster than recomputing the costs of

all nodes from scratch.

14

Section S3. Differences with prior approaches.

S3.1. Comparison with Chematica’s early path-selection algorithms. Previous
versions of Chematica included a rudimentary path-selection algorithm described briefly in
the SI Section S6.3 of our 2018 Chem publication ?°. This prior method differed from the
current one in the several important ways — both in terms of unrealistic chemical assumptions
and also much less efficient algorithms, together translating into chemically sub-optimal
solutions being found and into painfully long path retrieval times. These differences are
detailed below:

S.3.1.1. Chemical differences. Previous version of the algorithm used a different, less
realistic definition of cost of a synthetic pathway. The cost of a pathway was based on the
grams of starting materials rather than millimoles and, more importantly, did not take into
account reaction yields, and it was assumed that each step produces one gram of the product

from one gram of each of reaction’s substrates:

cost(S) = fixed_cost(r) + z cost(subpath(S, c)),
cepred(r)

This formulation translated into unrealistic cost estimates — for instance, a ten step linear
pathway would score on par with a convergent 5+5 synthesis starting from the same number
of similarly priced materials, although it is evident that in practice, the latter route is
significantly more economical. The new implementation, taking into accounts yields and per-
millimole conversions is much more chemical and can discriminate between such cases (see
also main-text Figure 2).

Next, the penalties assigned to avoid repetition of similar reactions are now improved
to select really diverse pathways. As detailed in Section S1.5, we penalize reactions that were
already present in the previously found pathways and also those that use similar reactions. We
consider a reaction s to be similar to reaction r if s has the same product as r and at least one
of the substrates of s belongs to the set of main substrates of r (main substrates are those with
at least four carbon atoms or the largest number of carbon atoms). In contrast, in the previous
version of the algorithm, reaction s was considered to be similar to reaction r if it had the
same product and the substrate with the highest number of carbon atoms (for several
substrates having the same, largest number of carbon atoms, the one with the
lexicographically longest SMILES string%? was considered). This condition for similarity was
narrower in scope than the new one and, consequently, resulted in smaller set of reactions

being penalized. For example, analogous steps marked in grey in Figure 9a and blue in Figure

15

9b in the main text are similar according to the new definition, but not according to the

previous one.

S.3.1.2. Algorithmic differences. Our new selection algorithms are much more time
and memory efficient. In particular, for realistic networks of solutions, they now execute in a
fraction of a second vs. thousands of seconds in the previous version of Chematica. To
achieve these improvements, most of algorithm’s routines have been thoroughly changed;
some of the key changes are in the modules responsible for:

(i) Updating synthesizable nodes. A more efficient algorithm for updating the set of
synthesizable nodes (discussed in Section S1.2) is now implemented. Notably, to verify if a
reaction is viable, we now check if the number of its substrates not yet found to be
synthesizable, maintained in a dictionary numNonsynthSubs, is equal to zero (as in line 7 of
Figure S1). Before, this was achieved by iteration over all of reaction’s substrates and
checking if they are synthesizable.

(ii) Extraction of the solution’s graphs from the entire network of nodes visited
during retrosynthetic searches. In the previous version of the algorithm for finding the
solutions’ graph, the subgraph of the original retrosynthetic network induced by synthesizable
nodes was computed before the ancestors of the target in this subgraph were found. As
discussed in Section S1.2, in the current version, such ancestors are found using a DFS-like
search of the original network without the time-consuming computation of this subgraph.

(iii) Computing and re-computing of costs. Previously, to compute the costs in the
solutions’ graph, the algorithm began with finding a graph of strongly connected components
of the solutions’ graph. Then, such components were visited in the topological order and costs
of nodes within each of these components were calculated using a Dijkstra-like algorithm.
This approach was also used to recompute the costs of all nodes in the whole solutions’ graph
after penalization of the fixed costs of reactions.

In the new version, we compute initial costs of nodes in the solutions’ graph using a
Dijkstra-like algorithm (discussed in Section S1.3), which is not only faster than the
previously used approach but also much simpler to implement. Furthermore, in the algorithm
for finding diverse pathways, we find and recompute only the costs changing due to
penalization, which is typically significantly faster than recomputing all costs from scratch
(see sections S1.5, S1.6, and S2).

(iv) Retrieval of the minimal-cost and diverse pathways. In the old and new

implementation, this algorithm tried to further expand parts of pathways corresponding to

16

different sequences of reactions chosen in the initial stage of pathway construction. The
information about such sequences was stored in a list of tuples consisting of a list of nodes
visited up to a given point during pathway expansion, the list of substrates to be expanded
(consisting of unexpanded substrates of visited reactions which were not starting materials),
the so-called “accumulated costs” (equal to sums of fixed costs of visited reactions and costs
of visited starting materials), and the “total costs®, equal to sums of the accumulated costs and
the computed costs (in the solutions’ graph) of substrates to be expanded. Such a list
consumed much more memory and time to construct than the priority queue with sequence
identifiers and scores (corresponding to the abovementioned total costs) as well as the
sequence graph used to reconstruct the sequences of reactions from such identifiers, both of
which are used in our new algorithm.

In the old algorithm, before the pathway expansion phase, the total and accumulated
costs of all elements of the list of tuples were recomputed (using the information about the
visited nodes and substrates to be expanded in the tuples) and the element with the minimum
total cost (corresponding to the part of the pathway to be further expanded) was found in the
list and removed from it. Such recomputing of total and accumulated costs was very time
consuming but was needed in cases when the costs of visited reactions or substrates to be
expanded changed as a result of penalization and recomputing of costs in the solutions’ graph.
Also, in the pathway expansion process, as long as the list of substrates to expand was
nonempty, the algorithm proceeded as follows. A chemical node p was popped from this list
and reactions from the solutions’ graph producing this chemical that did not create a cycle
were found (see Section S1.4 for the definition of reactions creating a cycle) by computing
subgraphs of the solutions’ graph induced by visited nodes and reactions, and by checking if
such subgraphs were directed acyclic graphs. Then, the cheapest reaction rmi» producing p
was found and the tuples corresponding to reactions not creating a cycle other than rmi» were
computed (using accumulated cost to compute their total costs) and added to the list of tuples.
If min created a cycle, then pathway expansion was terminated and the algorithm moved on to
expanding another pathway. Otherwise, the algorithm selected rmin as the next reaction during
the pathway expansion and updated the accumulated cost, set of visited nodes, and substrates
to expand. Once the list of substrates to expand became empty, the pathway corresponding to
visited nodes was returned. Then, if fewer than the required number of pathways were
returned, the algorithm penalized appropriate reactions and recomputed the costs in solutions’
graph (as discussed above) and moved on to identify another pathway. Unlike our current

algorithm, this old implementation did not have any mechanisms ensuring that the found

17

pathways had only one reaction with a given product. Thus, it sometimes returned as
“pathway” graphs containing several reactions producing a given chemical.

In our new algorithm, there is no need to recompute the scores in the priority queue
after the costs in solutions’ graph change due to penalization — this is so because after the
costs change, a new priority queue is constructed. The new algorithm is also much more

efficient in checking if a reaction creates a cycle (see Section S1.4).

Finally, we note that with our implementation, we added the possibility of saving a solutions’
graph during retrosynthetic search to later load it and select pathways from it multiple times
under different scenarios (i.e., different costs of reactions, average yields, magnitudes of
imposed diversity penalties). In the previous version of Chematica, only the diversity
penalties could be changed during retrosynthetic search using the “select diverse” slider in the
Chematica’s main window. This affected the diversity of the next set of pathways selected
from the continuously expanding retrosynthetic graph. The cost of reactions, however, was
fixed and specified by the user before search — any change in this parameter required the user

to restart the entire, slow retrosynthetic search.

S3.2. Comparison with other relevant works in the area.
In this Section, we narrate briefly other publications in which problems and algorithms related
to our work have been addressed, albeit not in the context of chemically realistic

retrosynthetic design or even not in the context of chemistry at all.

S.3.2.1. Differences from methods for finding the best K synthesis plans 2 and K shortest
hyperpaths 2!, In reference 2°, the authors reformulate the problem of finding the K lowest-
cost synthesis plans in a reaction network in terms of the problem of finding K lowest-cost
hyperpaths in a hypergraph. They also apply an algorithm from ref 2! (for the special case of
the latter problem for acyclic hypergraphs) to find K synthesis plans with the lowest total
weight of starting materials, assuming fixed reaction yields. Unfortunately, they consider a
completely unrealistically simple mathematical model of a reaction network, in which the
molecules are represented as carbon skeletons and reactions rely on forming bonds between
arbitrary carbon atoms of different substrates to join them, or between the atoms of the same
substrate to form rings. Even the authors themselves admit that real reactions can differ

significantly from the ones in their model and the “skeleton plans” resulting from their model

18

may not correspond to any feasible syntheses. There is also no mention in their work of any

selection based on synthetic diversity.

In contrast, we demonstrate that our algorithm is applicable to realistic, large reaction
networks, possibly containing cycles, from which it can rapidly select chemically viable
syntheses. In fact, the synthetic examples we provide are the first demonstration of computer-
generated plans that are not only chemically correct but also scored realistically against
(simultaneously!) prices of the starting materials, reaction operation costs, and yields, and

selected according to synthetic diversity criteria.

Down to some more technical detail, we note that the authors of ref 2® mention — but
do not demonstrate — that a more complicated version of the algorithm from ! could also be
applied to more general reaction networks, like the ones admitting cycles (though, as opposed
to our work, they do not provide sufficient conditions for the algorithm to be applicable to
such networks). They also suggest that this algorithm could be used with more general
synthesis plan costs, having the recursive form of so called “additive weighting functions”
(see '), e.g., allowing to consider fixed-reaction-costs and costs of consumed starting
materials similar as in our work. Note, however, that even if implemented, the algorithm from
2l is expected to be much slower than the version of our algorithm for finding lowest-cost
pathways (both run on solutions’ graphs similar as in our performance experiments). To show
this, consider the following argument. Recall that for a given solutions’ graph, our algorithm
for selecting a given number of the lowest-cost pathways first computes the initial cost of
nodes in the graph (as discussed in Section S1.3), and then finds the pathways in it (see
Section S1.4). Note also that, in all our performance experiments in Section S2 for computing
100 lowest-cost pathways on the largest solutions’ graphs, the time t;.,s; of computing the
initial costs was higher than the time t,,4.ps of finding all the pathways. The algorithm from *'
requires the computation of costs of nodes in a modified graph using a Dijkstra-like method
from 2* (i.e. similar as in our work) at least once for each pathway found. This is the case both
for the slower and the improved versions of this algorithm called, respectively, Yen and LBYen
in 2!. Furthermore, the CPU time of both versions of the algorithm in numerical experiments
in 2! was roughly proportional to the number of such cost computations made. Thus, even if

the algorithm from 2!

required only one computation of costs for each of the 100 pathways
found in our solutions’ graphs, it can still be expected to run much slower than our algorithm

(i.e., at least 50 times slower).

19

S.3.2.2. Differences from methods for finding dissimilar paths in graphs.
There has been some work in the non-chemical literature on the problem of finding dissimilar
but possibly short paths between a given origin and a destination in weighted graphs — for
instance, in the context of finding spatially dissimilar paths in transportation networks 2”5,
We note that this problem is significantly less general than considered in our work. First, a
weighted directed graph can be identified only with a reaction network in which graph’s
nodes are represented by chemical nodes and its edges, by unary reactions with fixed costs
equal to the edges’ weights. Furthermore, for the network containing a single starting material
whose cost is zero and for yield equal to 100%, synthetic pathways of a target in the network
have cost equal to the length of the corresponding paths from origin to destination in the
graph setting.

The algorithm for finding short but dissimilar pathways in graphs that is most related

27 and

to the approach in our work is a so-called Iterative Penalty Method (IPM) (see
references therein). It relies on the repetitive application of finding the shortest path (e.g.,
using the Dijkstra algorithm) and then adding penalties, e.g., to the edges from such a path.

An approach analogous to IPM in the context of our reaction networks could rely on
repetitively computing the costs in the network (or efficiently re-computing only the changing
costs), finding the lowest-cost pathway, and penalizing the fixed costs of reactions from this
pathway. One of the differences between our algorithm and such an IPM analogue is that,
after finding a pathway, we penalize not only the reactions from this pathway but also
appropriately defined similar reactions (for example, pairs of analogous reactions marked in
blue and grey in Figure 9a and 9b in the main text are similar according to our definition
though not identical). Another important difference is that our algorithm does not return the
lowest-cost pathway in the graph with recomputed cost, but the lowest-cost pathway not
returned before (using our method for generating the consecutive lowest-cost pathways until a
new pathway is discovered). This ensures that our method cannot return the same pathway
several times and that it returns all the existing pathways when their total number is not higher
than the number of pathways requested by the user. The IPM-like algorithm, on the other
hand, can return repeated pathways and may never return some existing pathways no matter
for how many iterations it is run. An IPM version for finding K distinct diverse paths was
used in ref 2’ whereby, when a repeated path is found, the algorithm rejects it (but applies
penalties to its edges) and goes to another iteration of the method. Note that a similar idea

could be used in the IPM analogue for reaction networks. Unfortunately, such an algorithm

20

will never finish in the case when K is greater than the number of existing pathways in the
network (which the user does not know a priori when specifying K) and even in some cases
when there exist at least K distinct paths in the graph. To illustrate this, consider a simple
reaction network in Figure S3 below and assume that the fixed costs of all reactions, diversity
penalty, and yield are all equal to 1, as well as that the cost of the only starting material is
zero. This network contains three pathways: p; containing reactions 77 and 74 and with cost 2,

p2 with reactions 72 and s and cost also 2, and p3 with reactions 2, 73, and 4 and cost 3.

O

&9
<

&y

Figure S3. An example of an extremely simple reaction network used to compare our
algorithm against an IPM-type approach. Red node is the starting material, violet nodes are

intermediates, and the yellow dot is the target molecule.

For this network, both our and the IPM-like algorithm could first return pathway p; and then
p2. When queried for more pathways, our algorithm would next return pathway ps3 and then
discover that there are no more pathways left in the network. The IPM analogue, on the other
hand, would again return pathway p;, then again p2, and so on, never returning pathway ps.
Thus, if the technique of rejecting repeated pathways were used, when queried for three or
more pathways, the IPM-like algorithm would get stuck in an infinite loop. The same
problems can occur with the original IPM algorithm in the graph setting (e.g., the above
example can be easily reformulated in the directed graph setting) and an approach similar to
ours could be used to overcome them, i.e., instead of finding the shortest path in the penalized

graph, one could generate a sequence of shortest paths (e.g., using Yen’ algorithm$*) until a

21

new path is found or the algorithm discovers that there are no more paths left in the graph.

However, to our knowledge, this has never been done in the literature.

Supplementary references.
S1 P. Carbonell, D. Fichera, S. B. Pandit and J.-L. Faulon, BMC Syst. Biol., 2012, 6, 10.
S2 D. Weininger, J. Chem. Inf- Model., 1988, 28, 31-36

S3 H. Liu, C. Jin, B. Yang and A. Zhou, IEEE Trans. Knowl. Data Eng., 2018, 30, 488—

502.

S4 J.Y. Yen, Manage. Sci., 1971, 17, 712-716.

Section S4. Details of Chematica’s syntheses of triarylamine.

X
i — Q-
-—
L DR

Figure S4. Details of top ten synthetic pathways obtained for triarylamine with RxC =

'

jand base or Culigand base.

Typical condtons: Pe]Lgand base

AND 10.1021/005010h AND 10.1039/B5232554 AND.
10.1021/m8003625

h,"ia ©
@ 0— ¢

10.1021/0080845Kk
AND 10.102170050150h AND 10.1021168055358 AND
10.10217068525¢

69— O

Paigand base or Culigand base.
Bustrtive Reference: 10.1021/a3030492 AND 10.1021/0080845k

AND 10.1021/0080190h AND 10-1038185232554 AND.
10.1021/m8003625

58— 8

s: Pd gand base or Cullgand base
Busratve Reference: 10.1021/89030452 AND 1010210080945k

AND 10.1021/0060190h AND 10.103818523255 AND.
10:1021)m8003625

‘Typicalcondiions: P igand base or Culgand base.

Paigand base or Culigand base
Bustrtive Reference: 1010217303049z AND 10.1021/0080845k
"D

AND 10.1021/0080150h AND 10.1038/8523255 A
10.1021/mE003625

Typical condtons: Pd] or Culbase solvent

10

AND 10,
1010216003625

o 10.10217p034994y

SO @
Q-0 o

Paigand base or Culigand base

Bustrtive Reference: 1010217303049z AND 10.1021/0080845K.
AND 10.1021/0080190h AND 10-10381B5232554 AND.
1010218003625

Qb
o © oo

[navigate |

Paigand base or Culigand base
Bustrtive Reference: 10-1021/a903049z AND 10.1021/0060945K
AND 10.1021/0080190h AND 10-1030/85232554 AND.
10.1021/m8003625

Paligand base or Culigand base
iraive Reference: 10.1021789030492 AND 10.1021/0060345k

AND 10.1021/0080190h AND 10-1039/85232554 AND.
10.1021/1m003625

fcalcondions: P igand base or Culigand base.
Hustrative Reference: 10.102173903049z AND 10.102170060945k

AND 10.1021/0080190h AND 10.1039185232554 AND.
10.1021/m8003625

&b -‘@S@

Name: Amination of aryl bromides.
Calculated yilg mogerste

Typical condtons: P gand base or Cullgand base

Name: Arinatin of ary romides
Calculted yiei: moderate

Typial condtions: P igand base or Culigand base

10 L
AND 10.1021/0060190h AND 10.1039/B923255A AND.
10.1021jr6003625

= ©r©©

Navigate

AND 1010210050190 AND 10.1038/BS232554 AND.
1010217803625

O G
o oo

((Naigate

Lk) ')

10.102170080845k
AND 10.1021/0060190h AND 10.10211a8055355 AND
10.1021a0889251

©.©,4©¢©

[navigate

ndtions: P gand.base or Cullgand base

tratve Reference: 10.1021/s9030492 AND 10.102110060945K
AND 10.10210060190h AND 10.1039/5232554 AND.
10.1021/m8003625

$1/mmol, Y = 80%. Pathways depicted in Figure 6¢,d are marked with red frames.

22

Section SS. Details of Chematica’s syntheses of Clofedanol.

]
@ $0.68 0107 EEEEEEEES =
Name: Hannich Reaction Name: Synthesis of aryl Grignard reagents Name: Aldokiike condensa
) |® 055 ———— Calculated yield: moderate Calculated yield: moderate Calculated yield: moderate
Typical condtions: ethanol. hydrochioric acid. reflux of 1,4-gioxane. Typical conditions: iPrigCLTHF or other conditions fike BuLiMgBr2 o Typical conditions: N-BULiTHF.cooling
$1, 249 1300 Hg.THF
3 llustrative Reference: 10.1016/,bme.2015.05.017 and
llustrative: Reference: DOL 10.1018/ bme. 2004.12.050 or Patent Susiralive Reference DOL{0CT016/50040-10G3(39)0 14045 a0l 10.1021/00162844

US20121277423 A1, 2012 10.1021/j00000574 and 10.1002/anie 200454084 and

@
©

Name: Grignard-Type Reaction Navigate

Calculated yiekd: moderate
Typical conditions: Mg or Liether

Wustratve Reference: DOE 101021081259 or
10.10187,bme.2012.11.015 or 1010184 tetasy 2012 05.02¢ Name: Reduction of Niries {0 Amines
Calculated yield: moderate

Typical conditions: H2Pd MeOH

lustrative Reference: DOL10.1021/ja01145a082 or DOL
10.1021/j8011458082

Name: lannich Reaction Name: Synthesis of aryl Grignard reagents.
Calculated yield: moderate Calculated yield: moderate.

Typical conditions: ethanal. hydrochioric acid. reflux or 1 4-dioxane. Typical conditions: PrhgCI.THF or other condiions ke BuliMgBr2 or
1300 Mg THE Name: N N-reductive dimethylation
Calculated yield: moderate
lustrative Reference: DO 10.1016/.bmc. 2004.12.050 or Patent; lustrative Reference: DOL. 10.1016/50040-4039(99)01404- and
US20127277423 A1, 2012 10.1021/[00000574 and 10.1002/anie. 200454084 and Typical condtions: NaBH3CN
lustrative Reference: 10.1021/a306045j and
10.1016/}tet 2008.11.042 and 10,1016/, bme 2007.03.054 and
10.1016/.bmc.2014.11.041

Name: Grignard-Type Reaction Navigate

Calculated yield: moderate.

Typical conditions: Mg or Liether

Navigate
llustrative Reference: DOI: 10.1021/jm0&1429p or
10.10164/bme.2012.11.015 or 10,1016/} etasy.2012.05.024

Navigate

Figure SS. Details of top three synthetic pathways obtained for clofedanol. Paths are arranged
in the order obtained with RxC = $1/mmol, Y= 80%.

23

Section S6. Details of Chematica’s syntheses of AMG641 with different
RxC-Y settings.

Name: DoM Anisoles MOMs ArBr Name: Hydroxylation of benzylic position Name: N-alkylation of amines.
Calculated yield: moderate Calculated yield: moderate Calculated yield: good

Typical conditions: Typical conditions: 1.Ce(OTf}4 MeCN 2 NaBH4 Typical conditions: MsCLE{ZN

RLi.or LiINRZ.-7EC THF then ArBr.PdC2dppf.or. Pd-PEPPSI
llustrative Reference: 10.1039/B0088431 and WO2012137047 p.12 llustrative Reference: DOI 10.103%B301100C and

llustrative Reference: 10.1021/ja026223r AND 10.1016/.tetasy.2013.05.007
10.1002/anie.201306427

@ llj . | Nawgale. ‘ &J [lj Navigate |

Figure S6. Details of the top-scoring synthetic pathway obtained for AMG641 with RxC =
$20/mmol, Y = 99% discussed in Figure 8a.

Name: Synthesis of benzeneboronic acid from aryl bromide
Calculated yield: moderate

Typical conditions: 1.nBu-Li THF.cosling.2.(n-Bu0)3B.cooling 3.H+

llustrative Reference: 10.1016/50040-4039(03)01300-5 and
10.1021/j702271c and 10.1021/012016252

Name: Suzuki coupling of arylboronic acids with aryl bromides
Calculsted yield: good

Typical conditions: Pd catalyst base solvent

Navigate | llustrative Reference: 10.1021/cr00038a007 and
10.1007/3418_2012_32 and 10.1021/cr0505268 and
10 1016/ ffuchem 201601 018 and 10.1039/C3CSB0197H

Name: N-alkylation of amines by alcohols i
Calculated yield: good \@
i

Typical conditions:
DCM .2 2,6 6-tetramethyl-1-piperidinol. phenyliodosodiaacetate.RT.MNa(e
acetate

llustrative Reference: DOL 10.1021/01201351a

Mavigate

Figure S7. Details of the top-scoring synthetic pathway obtained for AMG641 with RxC =
$20/mmol, ¥ = 80% discussed in Figure 8b.

24

Name: Dol Anisoles MOMs ArBr Name: Hydroxylation of benzylic position Name: N-alkylation of amines
Calculated yield: moderate Calculated yield: moderate Calculated yield: good

Typical conditions: Typical conditions: 1.Ce(0Tf)4 MeCN 2 NaBH4 Typical conditions: MsCLEE3N
RLi.or.LiMA2 -TEC THF then ArBr.PdCI2dppf.or.Pd-PEPPSI

llustrative Reference: 10.1038/B0088431 and WO2012137047 p.12 llustrative Reference: DO 10.103%/B301100C and
llustrative Reference: 10.1021/a026228r AND 101016/ tetasy 2013.05.007

10.1002/anie. 201306427

Navigate lij w Navigate |

Figure S8. Details of the top-scoring synthetic pathway obtained for AMG641 with RxC =
$2/mmol, Y = 80% discussed in Figure 8c.

Name: Dol Anisoles MOMs B(OH)2 Hame: Suzuki coupling with aryl chiorides Name: Hydrexylation of benzyiic position Name: N-alkylation of amines
Calculated yield: moderate Calculated yield: good Calculated yield: moderate Calculated yield: good
Typical conditions: RLLor.LINR2.-T8C.THF then.B(OR)3 Typical conditions: [Pg].catalyst.base. Typical conditions: 1.Ce(QT14.MeCN 2. NaBH4 Typical conditiens: MsCLE(SN

lustrative Reference: Eur. J. Org. Chem:2002, 3966 lustrative Reference: 10.1002/anie.201108508 and llustrative Reference: 10.1038/80088431 and W02012137047 p.12 lustrative Reference: DOL 10.1038/8301100C and
10.1002/2nie 200801465 and 10.1085/5-0033-1336293 and 10.1016/}tetasy.2013.05.007
10.1039/c1cc10708a and 10.1055/5-0030-1280169 and
A AMAG 1at 200 02 171

Navigate |

Figure S9. Details of the top-scoring synthetic pathway obtained for AMG641 with RxC =
$0.2/mmol, Y = 80% discussed in Figure 8d.

25

Section S7. Details of Chematica’s syntheses of AMG641 with different P

settings.

7504

o s4,

O\,

v g’

@ 280
su,@.a/u;\‘.\‘*.
4769
g

® $4,76014g
o 0\.

Name: Synthesis of benzenetoronic acid from aryl bromide.
Calculted yie: moderate

Typicalcondions: 11Bu-LiTHF cooing.2 (n-8u0)38 coolng 2o

ustratve Reference: 10.1016/S0040-4039(03)01300-5 and
10.102110702271c and 10.1021/012016252

“‘\k;ri“,
6%

Lo | [vaviat |

Name: H-akylaton of amines by alconos
Calculted yies: good

‘Typicalcondtions:
DCI12,26 6-etramethy'-1piperiino phenyliodosodiaacetate R Na(e

Nustratve Reference: DO 1010210201351

5%

. U
g

Name: Dol Anisoles HOMs ArBr
Calculted yies: moderate

Typica condtons:
RLLor LNR2-75C THF tnen ArBr.PACI2dpot o PS

Wustraive Reference: 10.1021/s026229r AND.
10.1002/ani 201306427

Name: -akylaton Of Prinary Amines
Calulsted yeld moderat

Typical condtions: DUF DHSO acetone

Mame: Suzuli couping of arylbronic acds wih aryl bromides.
Calculted yils: good

Typial condiions: P catayst base.sovent
Busirative Reference: 10.1021/cr00039a007 and

10.100773415_2012_32 and 10.1021/cr0505265 and
10,1018/ fuchem 2016.01.018 and 10.10381C3CSBO197H

b od 8

Navigate

Calculted yils moderate

10.102176702271c and 10.1021/02016252

b -3

Navigate

Name: Synthesis of benzeneboronic ac from arylbromide.

“Typical condions: 1.184-LiTHF cocing 2 (-8U0)38 coolng 3.+

ustratve Reference: 10.1016/S0040-4039(03)01300-5 and

Suzuki couping wih arylchorides
ated yied: ood

Typical condiions:] caalystbase.
Wustrative Reference: 10.1002/anie 201108608 and

3
10.1002/arie 200801485 and 10.1055/5-0033-1338263 and
10.1039/c10210708a and 10.1055/5-0030-1260163 and

$5-"%
o "o

Navigate

Navigate

Name: Hyaroxyition of benzyic postion

Hame:N-sky'aton of amines.
Cakuisted yeld: moderate o

Calculted yiis: goo

Typical congtions: 1.Ce(OT4 MeCl 2 NaBH Typical condons: WSCLEGH

seeees|

1 ana
10.1016]tetasy 2013.05.007

50y

Navigate | Navigate - (')

f%@

Navigate |

Figure S10. Details of the top three synthetic pathways obtained for AMG641 with RxC =
$20/mmol, Y = 80%, P = 0 discussed in Figure 9a.

1046

& %,__;.\
$0,13 0249 “

—

$2.90)15g —9

Name: Dold Anisoles MOMs ArBr
Calculated yield moderate.

Typical condtons:

Name: Hydroxylation of benzyic postion
Calculated yiekt moderate.

Typical condtions: 1.Ce(OTf}4 MeCN 2 NaBH¢

RLLor LINR2-78C.THF then ArBr. PACI2dppf.or PA-PEPPS]

lustrative Reference:

1
10.1002/anie. 201306427

Typical condiions:

Name: Dol Anisoles MOMS ArBr
Calculated yield: moderate.

lustrative Referznce: 10.1039/B0088431 and WO2012137047 p.12
0102120262281 AND
7

Navigate |

Name: Wohk-Ziegler Bromination
Calculated yiekt: goos

Typical condiions: NBS radical intator or heat

RLLOr LINRZ-78C. THF then. ArBr.PICI20pDf o7 PO-PEFPS!

lustrative Reference: 1

lustrative Reference: Strategic Applications of Named Reactions in

0102172026225 AND Organic Synthesis; L Kurt, B.Czako

10.1002/anie 201306427

Name: N-akylation of amines
Calcuated yiels: good

Typical conditions: MSCLESN

lustrative Reference: DOL 10.1038/8301100C and
10.1016/jtetasy.2013.05.007

533

Lk ')

Name: Dold Anisoles MOMs ArBr
Calculated yield: moderate

Name: N-akylation of amines
Calculated yiekt good

Typical conditons: MsCIEGN

lustrative Reference: DOL 10.1039/8301100C and
101016/ tetasy.2012.05.007

Navigate

Name: N-akylation O Primary Amings.
Calculated yieit: moderate

Typical conditons: DHF DHS0 acetone

Typical condiions:
RLior LINR2-78C THF then.ArBr.P4CI2dppf or PA-PEPPSI

Nustrative Reference: 10.1021/a026228r AND
10.1002/anie 201306427

I
o o
(] (') (o)

[e%aA — Ny
§

A
el

Navigate

Classification Protecting Groups
1.N-Benzyl
amines

2 N-Triphenyimethyl

3. N-Benzylogmethyl

Figure S11. Details of the top three synthetic pathways obtained for AMG641 with RxC =

$2/mmol, Y = 80%, P = 0 discussed in Figure 9b. Chematica’s proposed protecting group for

the last step is shown in blue frame.

26

Name: Synthesis of benzeneboronic acid from aryl bromide. Name: N-alkylation of amines by alcohols Name: N-alkylation of amines
Calculated yield: moderate Calculated yieks: good Calculated yield: good

Typical condtions: 1 nBu-LLTHF.cooling 2 (n-BuO)3B.cooling 3 1+ Typical conditons: Typical conditions: MSCLEGN

DCH2,26 E-detramethyk1
llusirative Reference: 10.1016/S0040-4038(03)01300-5 and acetate lustrative Reference: DO 10.1039/8301100C and
10.1021/0702271¢ and 10.1021/012016252 101018/} tetasy.2013.05.007

lustrative Reference: DO 10.1021/0201351a

i ;

Navigate Navigate o || " Navigate

Name: Suzuki coupling of arylboronic acids with ary bromides. |
Calculated yield: good Name: Dol Anisoles HOMs ArBr
Calculsted yield: moderate
Typical conditions: Pd catalyst base.solvent
Typical condtions:
lustrative Reference: 10.1021/cr00039a007 and RLior.LINR2.-78C.THF then. ArBr. PACRdppf.or.Pd-PEPPSI
10.1007/3418_2012_32 and 10.1021/cr0S05268 and
016.01.018 and 10.1 6 lusirative Reference: 10.1021/ja026229r AND
10.1002/anie. 201306427

5ol

[l] ") Navigate

Name: Dol Anisoles MOHs Argr Name: Hydroxylation of benzylic position Name: N-alkylation of amines
Calculsted yieid: moderate Calculated yield: moderate Calculated yield: good
Typical condtions: Typical conditions: 1.Ce(0TA4 MeCN 2 NaBH4. Typical condtions: MSCLEEN
RLior LINR2 -7T8C.THF then.ArBr.PdCi2dppf.or. Pd-PEPPSI

lustrative Reference: 10.1039/B008543| and WOZ012137047 p.12 lustrative Reference: DO 10.1039/8301100C and
lusirative Reference: 10.1021/a026229r AND 10.1016/]tetasy 2013.05.007

10.1002/anie 201306427

Navigate Navigate | ole * Navigate

Figure S12. Details of the top three synthetic pathways obtained for AMG641 with Y = 80%,
P =10 000 discussed in Figure 9¢,d. Paths are arranged in the order obtained with RxC =
$20/mmol, Y= 80%.

27

Section S8. Details of Chematica’s syntheses of the whisky lactone with

different P settings.

Name: Proine Medated Synthesis Of Butenoides
Calculated yield: moderate

Typical condtions: R-proine DBU.Cu(OAC)2

Bustrative Reference: 10.1016/jtetasy 2012.02.004

o A

t
A

Y

&J

w

Name: Stereoselective addtion of metaloorganic reagents to Michael
acceptor
Cakulated yie: 9ood

Typical condtions: CuLTHF -78C
Bustrative Reference: 10.1016/50040-4039(00)80116-1 and
10.1021/02018104 and 10.1021/00106389 and

Navigate

Name: Akylation of terminal Akynes
Calculsted yield: good

Typical condtions: K2C03 Cul TBAB. solvent
Rustrative Reference: DO 10.1021/18064223m (SL page S-3) AND

10.1016/jet 2008.01.139 AND 10.1021/0K049474) AND Patent
USS231232 A1, page ¢

Name: Enantioselective synthesis of butenoides via chiral alene
Calculsted yieid: moderate

Typical condtions: 1. Chiral guanidine.hexane.t
2 Au(PPR)ICIAGOTIOCH 1t

Bustrative Reference: 10.1021/a901528b

Name: Enantioselective addtion of akynes to aidehydes
Cakculated yiel: 9ood

Typical condtions: 1. Zn(OT2 13N toluene.N-methyl ephedrine 2.
18-C-6 K2C03 tokuene refux

Bustrative Reference: DO 10.1021/0006791r

Navigate |

Name: Cyclocarbonylation of akynols to 2(SH)-furanones
Calculated yield: moderate

Typical condtions: Pd(cat).CO.H2 DCM.95C

Bustrative Reference: DOL 10.1021/09703663

Navigate

Name: Stereoselective addtion of metaloorganic reagents to Michael
acceptor
Calculated yield: good

Typical condions: CulTHF -78C
Rustrative Reference: 10.1016/50040-4039(00)30116-1 and
10.1021/02018104 and 10.1021/100106389 and

Navigate |

Name: Stereoselective addtion of metaloorganic reagents to Michael
acceptor
Calculsted yiel: 9ood

Typical condtions: CulTHF -78C
Bustrative Reference: 10.1016/S0040-4039(00)80116-1 and
10.1021/02018104 and 10.1021/00106389 and

Navigate

Figure S13. Details of the top three synthetic pathways obtained for whisky lactone with ¥ =
80%, P = 0 discussed in Figure 10a.

28

/]
@

80%, P

3 ss 00, o-
so.‘\‘

$0, 159

Name: Proine lediated Synthesis Of Butenoides
Caiculated yield: moderat

Typical condtions: R-proline. DBU.Cu(OAC]

Bustrative Reference: 10,1016/ tetasy 2012.02.004

Navigate

o —o——o

Name: Stereoselective addtion of metaloorganic reagents to Michael

Caiculated yield: good

Typical condtions: Cul THF -78C

Bustrative Reference: 10.1016/50040-4039(00)30116-1 and

10.1021/02018104 and 10.1021/00106389 and

Navigate

29

Name: Stegich Esterification
Caiculsted yield: moderate

Typical condtions: alcoholOCC.DMAP.DCM or thiolDCC.DMAP.OCH

=

Name: Chiral auxiiary directed akylation of enolates
Calculsted yiels: good

Typical condtions: 1.Chiral auxiliary (Oppoizer's Evans’ or
Seebach's) or ephedrine 2 LDA then electrophie Auxiiary removat
DBALOCH

v 10. an

me: Enantioselective crotylation of aldehydes
Caiculated yield: good

Typical condtions: [¥] complex K3PO4 PrOH THF S0C

Rustrative Reference: 10.1021/8808357w and 10.1021/0200068Q

Name: Asymmetric Akynylation of Aldehydes
Caiculated yield: good

Typical condtions:
(RI-BINOL nBr3 methyidicyclohexeneamine. DCM. 40C

Rustrative Reference: 10.1021/180539460

Name: Brown Hydroboration of Akenes
Caiculsted yield: good

Typical condtions: B2H6 H202 THF NaOH

Name: Reduction of akyne to akane
Calculated yield: good

Typical condtions: K2 P&IC

Rustrative Reference: 10.1016/.bmc.2011.05.030 AND
10.1021/01048591b AND 10.1021/0020486x

Name: Oxidative lactonization of 1,4-dols
Caiculated yield: moderate

Typical condtions: Cp(stlRuCKcod) tBuOK acetone.30C

Bustrative Reference: DO 10.1021/00706408

Navigate

Name: Alcoholysis of ntries to esters
Caiculated yield: moderate

Typical condtions: THSOTE.t

Bustrative Reference: 10.3762bp0¢.9.179

Navigate

Figure S14. Details of the top three synthetic pathways obtained for whisky lactone with ¥ =
10 000 discussed in Figure 10b.

