Supporting Information

Copper-Catalyzed 1,4-Alkylarylation of 1,3-Enynes Masked Alkyl Electrophiles

Changqing Ye,^[a,b] Yajun Li,^[a] Xiaotao Zhu,^[a] Shengmin Hu,^[a] Daqiang Yuan^[a] and Hongli Bao^{*[a,b]}

^[a] Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.

^[b] University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China

E-mail: hlbao@fjirsm.ac.cn

Materials and methods	3				
Synthesis of 1,3-enynes	4				
Characterization data for 1,3-enynes	5				
Synthesis of alkyl diacyl peroxides	9				
Characterization data for diacyl peroxides	10				
Optimization of the reaction conditions					
General procedure for Table S1:	12				
General procedure for 1,4-alkylarylation of 1,3-enynes	13				
General procedure A	13				
General procedure B	13				
Characterization data for products	14				
Synthetic applications					
a) Synthesis of indenyl iodide 7 with NIS					
b) Synthesis of 1 <i>H</i> -indene 8					
c) Synthesis of 2 <i>H</i> -pyran 9	31				
d) Synthesis of 2 <i>H</i> -pyran 10	31				
Preliminary mechanism study					
a) Radical trapping experiment					
b) Radical clock experiments					
c) Radical dimerization					
Single crystal data of 20					
Reference					
NMR spectra					

Materials and methods

All reactions were carried out under an atmosphere of nitrogen in an flame-dried glassware with magnetic stirring unless otherwise indicated. Commercially obtained reagents were used as received. Solvents were dried by Innovative Technology Solvent Purification System. Liquids and solutions were transferred via syringe. All reactions were monitored by thin-layer chromatography. GC-MS data were recorded on Thermo ISQ QD. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded on Bruker-BioSpin AVANCE III HD and JEOL ECZ600S. Data for ¹H NMR spectra are reported relative to TMS as an internal standard (0.00 ppm) and are reported as follows: chemical shift (ppm), multiplicity, coupling constant (Hz), and integration. Data for ¹³C NMR spectra are reported relative to chloroform as an internal standard (77.16 ppm) and are reported in terms of chemical shift (ppm). HRMS data were recorded on Thermo Fisher Scientific LTQ FTICR-MS, Waters Micromass GCT Premier or Thermo Finnigan DECAX-30000 LCQ Deca XP.

To a 50 mL round bottomed flask was charged with terminal alkyne (5 mmol, 1 equiv) and 10 mL of THF. The solution was cooled to -78 °C and *n*-BuLi (2.5 M in THF, 2 mL, 5 mmol, 1 equiv) was added. The resulting solution was stirred for 20 minutes at room temperature and then cooled to -78 °C again. Ketone (5 mmol, 1 equiv) in THF solution was added dropwise. The reaction mixture was then allowed to warm to room temperature and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NH₄Cl (40 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (30 mL), dried over MgSO₄ and filtered. Then concentrated under reduced pressure to afford the crude propargyl alcohol¹.

The resulting crude propargyl alcohol was dissolved in dry DCM (40 mL), and the mixture was cooled to 0 °C with a cooling bath. To this solution was added TEA (25 mmol, 5 equiv) and methylsulfonyl chloride (12.5 mmol, 2.5 equiv) sequentially. After 30 min the reaction was monitored by TLC for completion. Once completion the reaction was quenched with saturated aqueous NH₄Cl (40 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (30 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude material was purified by flash chromatography to yield the 1,3-enyne².

Characterization data for 1,3-enynes

¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 5.82 (s, 1H), 5.54 (s, 1H), 3.70 (t, *J* = 6.4 Hz, 2H), 2.61 (t, *J* = 6.8 Hz, 2H), 2.35 (s, 3H), 2.05 (p, *J* = 6.6 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.15, 134.78, 130.47, 129.05, 125.91, 119.14, 89.42, 80.90, 43.81, 31.43, 21.20, 16.88. HRMS (EI+) calcd for [C₁₄H₁₅Cl]⁺ ([M]⁺): 218.0862, found: 218.0867.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 5.79 (s, 1H), 5.52 (s, 1H), 2.40 (t, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.66 – 1.54 (m, 2H), 1.51 – 1.39 (m, 2H), 1.37 – 1.27 (m, 4H), 0.94 – 0.86 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.98, 135.03, 130.77, 128.96, 125.97, 118.47, 91.88, 79.88, 31.39, 28.74, 28.68, 22.61, 21.18, 19.44, 14.10. HRMS (EI+) calcd for $[C_{17}H_{22}]^+$ ([M]⁺): 226.1722, found: 226.1730.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 – 7.57 (m, 2H), 7.06 – 6.97 (m, 2H), 5.76 (s, 1H), 5.54 (s, 1H), 2.40 (t, J = 7.1 Hz, 2H), 1.64 – 1.54 (m, 2H), 1.48 – 1.41 (m, 2H), 1.35 – 1.29 (m, 4H), 0.91 – 0.88 (m, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 162.81 (d, J = 247.5 Hz), 134.01 (d, J = 3.0 Hz), 130.01, 127.86 (d, J = 8.1 Hz), 119.10, 115.16 (d, J = 21.5 Hz), 92.42, 79.67, 31.42, 28.76, 28.73, 22.66, 19.47, 14.13. HRMS (EI+) calcd for $[C_{16}H_{19}F]^+$ ([M]⁺): 230.1471, found: 230.1474.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.55 – 7.50 (m, 2H), 7.48 – 7.43 (m, 2H), 5.82 (s, 1H), 5.59 (s, 1H), 2.41 (t, J = 7.2 Hz, 2H), 1.64 – 1.56 (m, 2H), 1.48 – 1.41 (m, 2H), 1.36 – 1.30 (m, 4H), 0.91 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 136.85, 131.44, 130.11, 127.80, 122.28, 119.80, 92.68, 79.39, 31.46, 28.77, 22.70, 19.50, 14.18. HRMS (EI+) calcd for $[C_{16}H_{19}Br]^+$ ([M]⁺): 290.0670, found: 290.0675.

C₆H₁₃ 1e Ph

¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 – 7.69 (m, 2H), 7.63 – 7.54 (m, 4H), 7.46 – 7.39 (m, 2H), 7.37 – 7.30 (m, 1H), 5.88 (s, 1H), 5.60 (s, 1H), 2.42 (t, *J* = 7.1 Hz, 2H), 1.67 – 1.57 (m, 2H), 1.52 – 1.42 (m, 2H), 1.37 – 1.29 (m, 4H), 0.95 – 0.86 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*)

 δ 140.92, 140.68, 136.83, 130.59, 128.81, 127.41, 127.05, 126.99, 126.53, 119.25, 92.24, 79.75, 31.40, 28.76, 28.71, 22.63, 19.48, 14.11. The spectrum data matches previously reported values³.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (s, 1H), 7.55 – 7.48 (m, 1H), 7.27 – 7.23 (m, 2H), 5.83 (s, 1H), 5.60 (s, 1H), 2.40 (t, J = 7.1 Hz, 2H), 1.63 – 1.56 (m, 2H), 1.48 – 1.41 (m, 2H), 1.35 – 1.30 (m, 4H), 0.90 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 139.67, 134.31, 129.87, 129.47, 128.09, 126.37, 124.15, 120.31, 92.70, 79.19, 31.40, 28.70, 28.67, 22.63, 19.42, 14.10. HRMS (EI+) calcd for [C₁₆H₁₉CI]⁺ ([M]⁺): 246.1175, found: 246.1185.

C₆H₁₃ 1g

¹H NMR (600 MHz, Chloroform-*d*) δ 7.57 – 7.39 (m, 2H), 7.26 – 7.21 (m, 1H), 7.14 – 7.09 (m, 1H), 5.83 (d, J = 1.3 Hz, 1H), 5.57 (d, J = 1.2 Hz, 1H), 2.42 (t, J = 7.1 Hz, 2H), 2.38 (s, 3H), 1.65 – 1.59 (m, 2H), 1.51 – 1.45 (m, 2H), 1.36 – 1.30 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 137.91, 137.89, 131.15, 128.96, 128.26, 126.91, 123.30, 119.32, 92.04, 79.98, 31.48, 28.81, 28.76, 22.70, 21.57, 19.53, 14.17. HRMS (EI+) calcd for $[C_{17}H_{22}]^+$ ([M]⁺): 226.1722, found: 226.1719.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.29 – 7.23 (m, 1H), 7.23 – 7.16 (m, 3H), 5.69 (d, J = 1.9 Hz, 1H), 5.39 (d, J = 2.0 Hz, 1H), 2.45 (s, 3H), 2.34 (t, J = 7.1 Hz, 2H), 1.58 – 1.53 (m, 2H), 1.44 – 1.38 (m, 2H), 1.33 – 1.28 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 140.10, 135.52, 132.36, 130.39, 128.76, 127.75, 125.88, 123.91, 92.07, 80.71, 31.44, 28.74, 22.65, 20.28, 19.56, 14.13. HRMS (EI+) calcd for $[C_{17}H_{22}]^+$ ([M]⁺): 226.1722, found: 226.1729.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 7.90 – 7.72 (m, 4H), 7.46 (m, 2H), 5.98 (s, 1H), 5.67 (s, 1H), 2.47 (t, J = 7.0 Hz, 2H), 1.72 – 1.59 (m, 2H), 1.55 – 1.47 (m, 2H), 1.40 – 1.31 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 135.08, 133.28, 133.15, 130.91, 128.42, 127.82, 127.55, 126.22, 126.16, 125.91, 123.46, 119.69, 92.31, 79.78, 31.41, 28.76, 28.71, 22.63, 19.51, 14.10. The spectrum data matches previously reported values³.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.53 – 7.43 (m, 2H), 7.36 – 7.32 (m, 2H), 7.30 – 7.24 (m, 3H), 7.16 – 7.11 (m, 2H), 5.82 (d, J = 1.2 Hz, 1H), 5.54 (d, J = 1.2 Hz, 1H), 2.95 (t, J = 7.5 Hz, 2H), 2.74 (t, J = 7.5 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 140.76, 138.09, 134.89, 130.73, 129.05, 128.69, 128.53, 126.44, 126.07, 118.79, 90.88, 80.77, 35.18, 21.69, 21.27. HRMS (EI+) calcd for [C₁₉H₁₈]⁺ ([M]⁺): 246.1409, found: 246.1413.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.59 (m, 2H), 7.36 – 7.26 (m, 3H), 5.83 (d, J = 1.2 Hz, 1H), 5.58 (d, J = 1.1 Hz, 1H), 2.31 (d, J = 6.6 Hz, 2H), 1.90 – 1.84 (m, 2H), 1.77 – 1.64 (m, 4H), 1.31 – 1.10 (m, 5H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.87, 131.04, 128.26, 128.08, 126.08, 119.32, 90.97, 80.61, 37.52, 32.84, 27.26, 26.31, 26.18. HRMS (EI+) calcd for $[C_{17}H_{20}]^+$ ([M]⁺): 224.1565, found: 224.1574.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 – 7.61 (m, 2H), 7.35 – 7.32 (m, 2H), 7.30 – 7.27 (m, 1H), 5.85 (d, *J* = 1.1 Hz, 1H), 5.59 (d, *J* = 1.1 Hz, 1H), 3.67 (s, 3H), 2.51 – 2.47 (m, 4H), 1.95 – 1.90 (m, 2H).¹³C NMR (150 MHz, Chloroform-*d*) δ 173.69, 137.68, 130.83, 128.41, 128.28, 126.11, 119.93, 90.51, 80.71, 51.70, 33.01, 24.00, 18.96. HRMS (ESI) calcd for [C₁₅H₂₆O₂Na]⁺ ([M+Na]⁺): 251.1043, found: 251.1042.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.55 (m, 2H), 7.36 – 7.24 (m, 3H), 5.85 (s, 1H), 5.61 (s, 1H), 3.82 – 3.69 (m, 2H), 2.83 – 2.73 (m, 1H), 2.63 (t, J = 6.5 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.49, 130.60, 128.43, 128.34, 126.08, 120.34, 88.30, 81.46, 61.13, 23.75. HRMS (EI+) calcd for $[C_{12}H_{12}O]^+$ ([M]⁺): 172.0888, found: 172.0894.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.45 (m, 4H), 7.38 – 7.23 (m, 5H), 6.46 (q, J = 6.9 Hz, 1H), 2.12 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 136.81, 133.70, 133.23, 131.60, 128.55, 128.48, 128.44, 127.24, 123.51, 123.37, 96.02, 86.26, 17.19. HRMS (EI+) calcd for $[C_{17}H_{13}CI]^+$ ([M]⁺): 252.0706, found: 252.0698.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.49 (m, 2H), 7.35 – 7.27 (m, 2H), 7.26 – 7.19 (m, 1H), 6.39 (q, J = 6.9 Hz, 1H), 2.46 (t, J = 7.0 Hz, 2H), 2.04 (d, J = 6.9 Hz, 3H), 1.66 – 1.57 (m, 2H), 1.53 – 1.46 (m, 2H), 1.35 – 1.29 (m, 4H), 0.93 – 0.88 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.94, 131.52, 128.21, 127.14, 125.87, 124.77, 96.85, 77.71, 31.38, 28.95, 28.64, 22.61, 19.64, 16.78, 14.07. The spectrum data matches previously reported values³.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 – 7.69 (m, 2H), 7.58 – 7.50 (m, 2H), 7.41 – 7.31 (m, 6H), 5.98 (s, 1H), 5.76 (s, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.28, 131.68, 130.62,

128.42, 128.36, 126.11, 123.11, 120.68, 90.78, 88.56. The spectrum data matches previously reported values³.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.55 (m, 2H), 7.39 – 7.25 (m, 3H), 5.81 (d, *J* = 1.1 Hz, 1H), 5.55 (d, *J* = 1.2 Hz, 1H), 1.53 – 1.33 (m, 1H), 0.87 – 0.77 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.89, 130.96, 128.36, 128.21, 126.14, 119.55, 95.20, 75.10, 8.77, 0.30. The spectrum data matches previously reported values⁴.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.47 (m, 2H), 7.39 – 7.23 (m, 7H), 7.22 – 7.15 (m, 1H), 6.43 (d, J = 16.0 Hz, 1H), 6.22 (dt, J = 15.9, 7.0 Hz, 1H), 5.85 (s, 1H), 5.60 (s, 1H), 2.46 (t, J = 7.1 Hz, 2H), 2.41 – 2.33 (m, 2H), 1.84 – 1.73 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.79, 137.70, 130.94, 130.80, 129.75, 128.58, 128.37, 128.22, 127.04, 126.13, 126.05, 119.64, 91.58, 80.26, 32.23, 28.41, 18.96. MS (EI+) calcd for $[C_{21}H_{20}CI]^+$ ([M]⁺): 272.1, found: 272.3.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 – 7.61 (m, 2H), 7.45 – 7.41 (m, 2H), 7.19 (d, *J* = 7.9 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 5.92 (d, *J* = 1.1 Hz, 1H), 5.69 (d, *J* = 1.3 Hz, 1H), 2.37 (s, 3H), 2.36 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 138.62, 138.32, 134.70, 131.68, 130.62, 129.22, 129.18, 126.12, 120.19, 119.57, 90.89, 88.20, 21.63, 21.30. The spectrum data matches previously reported values⁵.

Synthesis of alkyl diacyl peroxides

Alkyl diacyl peroxides have potentials to explode. Any alkyl diacyl peroxides involved reaction (as product or substrate) should be carried out with precautions!

Lauroyl peroxide (LPO) 2a was purchased from Admas. Other peroxides were prepared according to our previous work⁶.

A solution of DMAP (0.6 mmol), 30% hydrogen peroxide (8 mmol), and acid (6 mmol) in DCM (8 mL) was cooled to -15 °C for about 10 min, then DCC (6.72 mmol) was added. After stirring at -15~-10 °C for 1.5 h, DCM (15 mL) was added into the reaction solution and the solution was filtered through a short pad of silica gel. Then washed the pad of silica gel by additional 40 mL of DCM. The combined solution was concentrated on a rotary evaporator under vacuum at 10~15 °C and then purified by flash column chromatography on silica gel to give the alkyl diacyl peroxide.

Characterization data for diacyl peroxides

¹H NMR (400 MHz, Chloroform-*d*) δ 2.42 (t, J = 7.5 Hz, 4H), 1.76 – 1.66 (m, 4H), 1.41 – 1.24 (m, 16H), 0.93 – 0.83 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.25, 31.54, 30.00, 28.87, 28.75, 24.81, 22.55, 14.00. The spectrum data matches previously reported values⁷.

¹H NMR (400 MHz, Chloroform-*d*) δ 2.49 – 2.40 (m, 4H), 1.87 – 1.69 (m, 10H), 1.65 – 1.48 (m, 8H), 1.19 – 1.02 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.40, 39.47, 32.29, 30.94, 29.36, 25.10. The spectrum data matches previously reported values⁶.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.26 (m, 4H), 7.26 – 7.17 (m, 6H), 3.02 (t, *J* = 7.8 Hz, 4H), 2.80 – 2.68 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.42, 139.33, 128.71, 128.29, 126.71, 31.70, 30.70. The spectrum data matches previously reported values⁶.

¹H NMR (400 MHz, Chloroform-*d*) δ 3.67 – 3.47 (m, 4H), 2.57 – 2.45 (m, 4H), 1.95 – 1.81 (m, 8H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.77, 44.23, 31.42, 29.20, 22.15. The spectrum data matches previously reported values⁶.

¹H NMR (400 MHz, Chloroform-*d*) δ 3.68 – 3.30 (m, 4H), 2.73 – 2.50 (m, 4H), 2.36 – 2.11 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.19, 31.80, 28.39, 27.60. The spectrum data matches previously reported values⁶.

¹H NMR (400 MHz, Chloroform-*d*) δ 2.60 (t, J = 7.0 Hz, 4H), 2.49 (t, J = 7.0 Hz, 4H), 2.16 (s, 6H), 1.97 (p, J = 6.9 Hz, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 207.44, 168.76, 41.60, 29.95, 28.88, 18.64. The spectrum data matches previously reported values⁶.

$$\begin{array}{c} 0 \\ -0 \\ 0 \\ 0 \\ 2h \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right)$$

¹H NMR (400 MHz, Chloroform-*d*) δ 3.72 (s, 6H), 2.81 – 2.69 (m, 8H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.80, 168.21, 52.25, 28.72, 25.34. The spectrum data matches previously reported values⁶.

¹H NMR (400 MHz, Chloroform-*d*) δ 5.89 – 5.72 (m, 2H), 5.06 – 4.88 (m, 4H), 2.42 (t, J = 7.4 Hz, 4H), 2.07 – 2.00 (m, 4H), 1.75 – 1.67 (m, 4H), 1.40 – 1.29 (m, 16H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.30, 139.09, 114.33, 33.81, 30.07, 29.02, 28.94, 28.90, 28.88, 24.88. The spectrum data matches previously reported values⁶.

¹H NMR (400 MHz, Chloroform-*d*) δ 2.19 (s, 4H), 2.00 (s, 6H), 1.74 - 1.63 (m, 24H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.72, 44.46, 42.11, 36.53, 32.99, 28.55. The spectrum data matches previously reported values⁷.

Optimization of the reaction conditions

General procedure for Table S1: In a flame-dried Schlenk tube, Cat. (0.01

mmol, 5 mol%) and Py-Box ligand (±)-L16 (0.014 mmol, 7 mol%) were dissolved in THF (1 mL)

under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then 1,3-enyne **1a** (0.2 mmol, 1.0 equiv), peroxide **2a** (0.3 mmol, 1.5 equiv), PhB(OH)₂ (0.6 mmol, 3 equiv) and base (0.6 mmol, 3 equiv) were sequentially added. The reaction mixture was stirred at rt for 5 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product.

1a	CI	+ LPO + + P 2a	hB(OH) ₂ — 3a	Cat, 5 mol % (±)-L16, 7 mol % DIPEA, 3 equiv Solvent, rt, N ₂		$\begin{array}{c} C_{11}H_{23} \\ Ph \\ C = C_{6}H_{13} \\ 4a \end{array}$
	entry	cat.	solvent	base	yield (%)	-
	1	CuTc	THF	DIPEA	69%	-
	2	Cu(OAc) ₂	THF	DIPEA	67%	
	3	Cu(OTf) ₂	THF	DIPEA	51%	
	4	Cu(TFA) ₂	THF	DIPEA	66%	
	5	Pd(OAc) ₂	THF	DIPEA	trace	
	6	NiCl ₂	THF	DIPEA	trace	
	7	$CoCl_2$	THF	DIPEA	trace	
	8	Cu(CH ₃ CN) ₄ BF ₄	THF	DIPEA	70%	
	9	Cu(CH ₃ CN) ₄ BF ₄	DCM	DIPEA	50%	
	10	Cu(CH ₃ CN) ₄ BF ₄	TBME	DIPEA	21%	
	11	Cu(CH ₃ CN) ₄ BF ₄	1,4-dioxan	e DIPEA	18%	
	12	Cu(CH ₃ CN) ₄ BF ₄	DMF	DIPEA	Trace	
	13	Cu(CH ₃ CN) ₄ BF ₄	DME	DIPEA	47%	
	14	Cu(CH ₃ CN) ₄ BF ₄	THF	KF	18%	
	15	Cu(CH ₃ CN) ₄ BF ₄	THF	DMAP	trace	
	16	Cu(CH ₃ CN) ₄ BF ₄	THF	K_2CO_3	trace	
	17	Cu(CH ₃ CN) ₄ BF ₄	THF	Et ₃ N	65%	
	18^b	Cu(CH ₃ CN) ₄ BF ₄	THF	DIEPA	53%	
	19^{c}	$Cu(CH_3CN)_4BF_4$	THF	DIEPA	trace	

Table S1. Optimized reaction conditions^a

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.6 mmol, 3 equiv), Cat. (5 mol%), (\pm)-L16 (7 mol%), base (0.6 mmol, 3 equiv), solvent (1 mL), rt. ^{*b*}2,4,6-Triphenyloroxin instead of PhB(OH)₂. ^{*c*}PhBpin instead of PhB(OH)₂. ^{*d*} Isolated yield.

General procedure for 1,4-alkylarylation of 1,3-enynes

General procedure A: In a flame-dried Schlenk tube, Cu(CH₃CN)₄BF₄ (0.01 mmol,

5 mol%) and Py-Box ligand (±)-L16 (0.014 mmol, 7 mol%) were dissolved in THF (1 mL) under

a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then 1,3-enyne (0.2 mmol, 1.0 equiv), peroxide (0.3 mmol, 1.5 equiv), $PhB(OH)_2$ (0.6 mmol, 3 equiv) and DIPEA (0.6 mmol, 3 equiv) were sequentially added. The reaction mixture was stirred at rt for 5 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product.

General procedure B: In a flame-dried Schlenk tube, Cu(CH₃CN)₄BF₄ (0.01 mmol,

5 mol%) and Py-Box ligand (±)-L16 (0.014 mmol, 7 mol%) were dissolved in THF (1 mL) under

a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then 1,3-enyne (0.2 mmol, 1.0 equiv), peroxide (0.3 mmol, 1.5 equiv), $PhB(OH)_2$ (0.6 mmol, 3 equiv) and DMF (1 mL) were sequentially added. The reaction mixture was stirred at rt for 5 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product.

Characterization data for products

Following the general procedure **A**, **4a** was obtained as a liquid (63 mg, 70% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 8.2 Hz, 2H), 7.38 – 7.30 (m, 4H), 7.28 – 7.21 (m, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 3.63 (t, *J* = 6.4 Hz, 2H), 2.74 (t, *J* = 7.5 Hz, 2H), 2.56 (t, *J* = 7.6 Hz, 2H), 2.36 (s, 3H), 2.15 – 2.01 (m, 2H), 1.66 – 1.54 (m, 2H), 1.40 (p, *J* = 7.6, 7.1 Hz, 2H), 1.37 – 1.22 (m, 16H), 0.91 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 204.80, 136.79, 133.71, 129.38, 128.63, 126.95, 125.95, 110.04, 107.78, 45.06, 32.07, 31.10, 30.58, 29.88, 29.82, 29.78, 29.68, 29.51, 28.30, 27.65, 22.85, 21.22, 14.28. HRMS (DART) calcd for $[C_{31}H_{44}Cl]^+([M+H]^+)$: 451.3126, found: 451.3123.

Following the general procedure A, **4b** was obtained as a liquid (58 mg, 63% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.46 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 8.3 Hz, 2H), 2.56 (q, J = 7.2 Hz, 4H), 2.35 (s, 3H), 1.67 – 1.57 (m, 4H), 1.45 – 1.39 (m, 4H), 1.32 – 1.25 (m, 20H), 0.92 – 0.87 (m, 6H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.15, 137.36, 136.42, 134.18, 129.25, 128.49, 126.62, 126.03, 125.95, 109.00, 32.07, 31.93, 30.53, 29.88, 29.82, 29.79, 29.71, 29.58, 29.51, 28.28, 28.26, 22.84, 21.20, 14.27, 14.22. HRMS (DART) calcd for [C₃₄H₅₁]⁺ ([M+H]⁺): 459.3985, found: 459.3981.

Following the general procedure A, **4c** was obtained as a liquid (43 mg, 46% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (d, *J* = 7.7 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.20 (t, *J* = 7.3 Hz, 1H), 6.99 (t, *J* = 8.7 Hz, 2H), 2.72 – 2.38 (m, 4H), 1.63 – 1.51 (m, 4H), 1.42 – 1.34 (m, 4H), 1.30 – 1.21 (m, 20H), 0.90 – 0.83 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.98 (d, *J* = 1.9 Hz), 161.78 (d, *J* = 245.7 Hz), 133.04 (d, *J* = 3.2 Hz), 128.45, 127.38 (d, *J* = 7.8 Hz), 126.71, 125.91, 115.23 (d, *J* = 21.3 Hz), 109.23, 108.26, 31.96, 31.80, 30.59, 30.40, 29.73, 29.71, 29.70, 29.67, 29.58, 29.44, 29.40, 28.13, 28.08, 22.73, 14.16, 14.11. HRMS (DART) calcd for $[C_{33}H_{48}F]^+$ ([M+H]⁺): 463.3735, found: 463.3731.

Following the general procedure A, **4d** was obtained as a liquid (68 mg, 65% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.45 – 7.41 (m, 4H), 7.34 – 7.29 (m, 4H), 7.24 – 7.20 (m, 1H), 2.56 (t, J = 7.6 Hz, 2H), 2.52 (t, J = 7.6 Hz, 2H), 1.64 – 1.53 (m, 4H), 1.43 – 1.36 (m, 4H), 1.32 – 1.24 (m, 20H), 0.92 – 0.87 (m, 6H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.39, 136.80, 136.23, 131.54, 128.57, 127.62, 126.90, 126.02, 120.46, 109.63, 108.45, 32.03, 31.87, 30.43, 30.38, 29.78, 29.75, 29.64, 29.51, 29.48, 28.19, 28.14, 22.80, 14.23, 14.18. HRMS (DART) calcd for $[C_{33}H_{48}Br]^+$ ($[M+H]^+$): 523.2934, found: 523.2931.

Following the general procedure A, **4e** was obtained as a liquid (76 mg, 73% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 8.1 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 7.8 Hz, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 3H), 7.26 (t, *J* = 7.5 Hz, 1H), 2.74 – 2.37 (m, 4H), 1.72 – 1.62 (m, 4H), 1.50 – 1.42 (m, 4H), 1.36 – 1.28 (m, 20H), 0.95 – 0.90 (m, 6H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.71, 141.03, 139.56, 137.16, 136.22, 128.91, 128.58, 127.28, 127.15, 127.08, 126.81, 126.47, 126.10, 109.36, 108.95, 32.10, 31.96, 30.57,

30.53, 29.93, 29.87, 29.83, 29.75, 29.63, 29.55, 28.34, 28.30, 22.88, 14.31, 14.26. HRMS (DART) calcd for $[C_{39}H_{53}]^+$ ([M+H]⁺): 521.4142, found: 521.4136.

Following the general procedure A, **4f** was obtained as a liquid (53 mg, 55% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.43 – 7.39 (m, 2H), 7.39 – 7.36 (m, 1H), 7.34 – 7.28 (m, 3H), 7.24 – 7.18 (m, 2H), 7.18 – 7.14 (m, 1H), 2.54 (t, *J* = 8.4 Hz, 2H), 2.50 (t, *J* = 7.8 Hz, 2H), 1.60 – 1.52 (m, 4H), 1.42 – 1.36 (m, 4H), 1.27 – 1.22 (m, 20H), 0.88 – 0.85 (m, 6H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.51, 139.37, 136.72, 134.51, 129.63, 128.57, 126.93, 126.66, 126.06, 125.95, 124.19, 109.73, 108.35, 32.03, 31.87, 30.44, 30.38, 29.79, 29.76, 29.74, 29.63, 29.51, 29.47, 28.16, 28.10, 22.80, 14.24, 14.18. HRMS (DART) calcd for [C₃₃H₄₈Cl]⁺ ([M+H]⁺): 479.3439, found: 479.3435.

Following the general procedure A, **4g** was obtained as a liquid (65 mg, 71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.41 (m, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.16 (m, 4H), 7.01 (d, *J* = 7.3 Hz, 1H), 2.65 – 2.42 (m, 4H), 2.33 (s, 3H), 1.66 – 1.53 (m, 4H), 1.45 – 1.34 (m, 4H), 1.30 – 1.19 (m, 20H), 0.91 – 0.83 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 205.30, 137.96, 137.20, 137.05, 128.42, 128.34, 127.47, 126.63, 126.58, 125.97, 123.11, 109.09, 108.89, 32.00, 31.86, 30.48, 30.42, 29.80, 29.76, 29.72, 29.63, 29.51, 29.44, 28.19, 28.17, 22.78, 21.65, 14.21, 14.16. HRMS (DART) calcd for [C₃₄H₅₁]⁺ ([M+H]⁺): 459.3985, found: 459.3981.

Following the general procedure A, **4h** was obtained as a liquid (50 mg, 54% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.39 (m, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.21 – 7.11 (m, 4H), 2.50 – 2.38 (m, 4H), 2.33 (s, 3H), 1.61 – 1.47 (m, 4H), 1.42 – 1.33 (m, 4H), 1.31 – 1.23 (m, 20H), 0.91 – 0.86 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.77, 138.50, 137.67,

135.78, 130.39, 128.35, 128.25, 126.73, 126.34, 126.15, 125.68, 108.21, 106.00, 34.50, 31.97, 31.88, 30.55, 29.73, 29.69, 29.67, 29.59, 29.41, 29.39, 28.30, 28.15, 22.75, 20.71, 14.18, 14.16. HRMS (DART) calcd for $[C_{34}H_{51}]^+$ ([M+H]⁺): 459.3985, found: 459.3982.

Following the general procedure A, **4i** was obtained as a liquid (53 mg, 54% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.76 (m, 3H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.59 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.48 – 7.39 (m, 4H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.3 Hz, 1H), 2.67 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.71 – 1.57 (m, 4H), 1.46 – 1.38 (m, 4H), 1.32 – 1.23 (m, 20H), 0.89 – 0.82 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 206.04, 137.05, 134.51, 133.73, 132.46, 128.46, 128.01, 127.78, 127.56, 126.69, 126.05, 125.99, 125.55, 125.43, 123.39, 109.38, 31.96, 31.81, 30.45, 30.35, 29.82, 29.73, 29.69, 29.62, 29.48, 29.41, 28.17, 22.74, 22.72, 14.17, 14.11. HRMS (DART) calcd for [C₃₇H₅₁]⁺ ([M+H]⁺): 495.3985, found: 495.3980.

Following the general procedure A, **4j** was obtained as a liquid (43 mg, 45% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.49 – 7.44 (m, 2H), 7.35 – 7.31 (m, 2H), 7.31 – 7.27 (m, 4H), 7.24 – 7.19 (m, 4H), 7.13 (d, *J* = 8.4 Hz, 2H), 2.96 – 2.86 (m, 4H), 2.56 – 2.45 (m, 2H), 2.35 (s, 3H), 1.55 – 1.50 (m, 2H), 1.41 – 1.24 (m, 18H), 0.92 – 0.89 (m, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.11, 142.19, 137.05, 136.56, 133.93, 129.28, 128.58, 128.46, 126.79, 126.01, 125.98, 109.68, 108.41, 34.42, 32.33, 32.05, 30.54, 29.87, 29.82, 29.77, 29.68, 29.50, 28.22, 22.83, 21.21, 14.27. HRMS (DART) calcd for [C₃₆H₄₇]⁺ ([M+H]⁺): 479.3672, found: 479.3669.

Following the general procedure **A**, **4k** was obtained as a liquid (61 mg, 67% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.40 (m, 4H), 7.30 (t, *J* = 7.6 Hz, 4H), 7.22 – 7.15 (m, 2H),

2.54 (t, J = 7.6 Hz, 2H), 2.44 (d, J = 6.9 Hz, 2H), 1.90 – 1.74 (m, 3H), 1.71 – 1.56 (m, 6H), 1.31 – 1.19 (m, 22H), 0.89 (t, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 205.96, 137.22, 137.10, 128.41, 126.58, 126.17, 126.07, 107.97, 107.18, 38.54, 36.41, 33.73, 33.68, 31.98, 30.63, 29.80, 29.74, 29.72, 29.70, 29.59, 29.42, 28.30, 26.57, 26.32, 26.27, 22.76, 14.20. HRMS (DART) calcd for [C₃₄H₄₉]⁺ ([M+H]⁺): 457.3829, found: 457.3826.

Following the general procedure A, **41** was obtained as a liquid (64 mg, 69% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.49 – 7.43 (m, 4H), 7.36 – 7.30 (m, 4H), 7.23 – 7.18 (m, 2H), 3.66 (s, 3H), 2.61 (t, *J* = 7.7 Hz, 2H), 2.57 (t, *J* = 7.6 Hz, 2H), 2.43 (t, *J* = 7.4 Hz, 2H), 1.99 – 1.89 (m, 2H), 1.64 – 1.54 (m, 2H), 1.42 – 1.36 (m, 2H), 1.31 – 1.24 (m, 16H), 0.90 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.21, 174.04, 136.90, 136.74, 128.60, 128.58, 126.90, 126.06, 125.98, 109.85, 108.37, 51.61, 33.91, 32.05, 30.53, 29.87, 29.80, 29.77, 29.67, 29.49, 28.28, 23.48, 22.83, 14.26. HRMS (DART) calcd for [C₃₂H₄₅O₂]⁺ ([M+H]⁺): 461.3414, found: 461.3411.

Following the general procedure **A**, **4m** was obtained as a liquid (26 mg, 32% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, J = 7.7 Hz, 4H), 7.34 – 7.26 (m, 4H), 7.23 – 7.17 (m, 2H), 3.87 (t, J = 6.5 Hz, 2H), 2.94 – 2.74 (m, 2H), 2.55 (t, J = 7.6 Hz, 2H), 2.31 (t, J = 7.5 Hz, 1H), 1.64 – 1.53 (m, 2H), 1.43 – 1.34 (m, 2H), 1.32 – 1.24 (m, 16H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.82, 136.34, 136.28, 128.67, 128.60, 127.10, 127.06, 125.90, 125.84, 110.19, 105.80, 61.39, 33.47, 31.95, 30.41, 29.75, 29.69, 29.66, 29.63, 29.55, 29.39, 28.18, 22.73, 14.17. HRMS (DART) calcd for [C₂₉H₄₁O]⁺ ([M+H]⁺): 405.3152, found: 405.3149.

Following the general procedure **A**, **4n** was obtained as a liquid (33 mg, 42% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.47 – 7.42 (m, 4H), 7.36 – 7.31 (m, 4H), 7.27 – 7.22 (m, 2H), 4.72 – 4.61 (m, 2H), 2.64 – 2.55 (m, 2H), 1.62 – 1.55 (m, 2H), 1.42 – 1.36 (m, 2H), 1.32 – 1.21 (m, 17H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 203.57, 136.15, 134.54, 128.82, 128.70, 127.43, 127.40, 126.23, 126.12, 112.40, 110.07, 61.86, 32.03, 30.53, 29.77, 29.74, 29.72, 29.62, 29.47, 28.20, 22.81, 14.25. HRMS (EI+) calcd for [C₂₈H₃₈O]⁺ ([M]⁺): 390.2923, found: 390.2931.

Following the general procedure A, **40** was obtained as a liquid (38 mg, 49% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 4H), 7.25 – 7.20 (m, 3H), 7.13 (d, *J* = 7.9 Hz, 2H), 2.35 (s, 3H), 2.12 (t, *J* = 7.5 Hz, 2H), 1.85 (s, 3H), 1.55 – 1.47 (m, 2H), 1.29 – 1.18 (m, 18H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 203.08, 138.38, 136.39, 135.23, 128.96, 128.37, 128.33, 128.19, 126.62, 108.57, 102.87, 34.42, 31.98, 29.75, 29.72, 29.70, 29.68, 29.58, 29.48, 29.43, 27.66, 22.76, 21.19, 19.08, 14.19. HRMS (DART) calcd for [C₂₉H₄₁]⁺ ([M+H]⁺): 389.3203, found: 389.3200.

Following the general procedure A, **4p** was obtained as a liquid (13 mg, 27% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.35 (m, 2H), 7.32 – 7.27 (m, 2H), 7.19 – 7.15 (m, 1H), 3.47 (t, J = 6.8 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 2.14 – 2.04 (m, 2H), 1.80 (s, 3H), 1.77 – 1.71 (m, 2H), 1.52 – 1.43 (m, 4H), 1.10 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 200.98, 138.38, 128.23, 126.11, 125.78, 106.70, 103.35, 45.15, 34.17, 32.54, 26.97, 26.74, 23.18, 19.12, 12.77. HRMS (EI+) calcd for [C₁₇H₂₃Cl]⁺ ([M]⁺): 262.1488, found: 262.1485.

Following the general procedure A, **4q** was obtained as a liquid (27 mg, 32% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.26 (m, 14H), 3.37 – 3.22 (m, 2H), 2.84 – 2.74 (m, 1H), 1.71 – 1.54 (m, 4H), 1.52 – 1.38 (m, 2H), 1.36 – 1.22 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 206.11, 136.68, 136.49, 134.78, 132.76, 128.81, 128.54, 128.53, 128.25, 128.15, 127.77, 127.49, 127.45, 114.30, 114.14, 44.93, 35.59, 34.45, 32.81, 25.00, 20.61. HRMS (DART) calcd for $[C_{27}H_{27}Cl_2]^+$ ([M+H]⁺): 421.1484, found: 421.1481.

Following the general procedure A, **4r** was obtained as a liquid (16 mg, 20% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.38 (m, 4H), 7.35 – 7.26 (m, 4H), 7.24 – 7.16 (m, 2H), 3.51 (t, *J* = 6.7 Hz, 1.5 H), 3.35 (t, *J* = 6.7, Hz, 0.5H), 2.88 – 2.74 (m, 1H), 2.54 (t, *J* = 7.6 Hz, 2H), 1.77 (m, 1.5H), 1.61 – 1.54 (m, 3.5H), 1.43 – 1.36 (m, 3H), 1.29 – 1.24 (m, 6H), 1.19 (dd, *J* = 6.8, 1.8 Hz, 3H), 0.87 – 0.84 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.53, 136.98, 136.83, 128.51, 128.45, 126.70, 126.66, 126.40, 125.77, 45.11, 35.79, 34.13, 32.89, 31.80, 30.50, 29.55, 28.41, 24.96, 22.72, 20.25, 14.12. HRMS (DART) calcd for [C₂₇H₃₆Cl]⁺ ([M+H]⁺): 395.2500, found: 395.2497.

Following the general procedure A, **4s** was obtained as a liquid (34 mg, 46% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.46 (m, 2H), 7.44 – 7.37 (m, 4H), 7.37 – 7.30 (m, 6H), 7.30 – 7.20 (m, 3H), 3.36 (t, J = 6.8 Hz, 2H), 2.64 (t, J = 7.4 Hz, 2H), 1.82 – 1.60 (m, 4H), 1.52 – 1.41 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 206.99, 136.85, 136.11, 128.65, 128.51, 128.32, 127.38, 127.17, 126.05, 113.12, 108.77, 45.05, 32.57, 30.18, 27.23, 26.87. HRMS (DART) calcd for [C₂₆H₂₆Cl]⁺ ([M+H]⁺): 373.1718, found: 373.1714.

Following the general procedure **A**, **4t** was obtained as a liquid (19 mg, 32% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.41 (m, 2H), 7.36 – 7.29 (m, 6H), 7.24 – 7.18 (m, 2H), 6.54 (t, *J* = 3.2 Hz, 1H), 3.48 (t, *J* = 6.7 Hz, 2H), 2.65 – 2.52 (m, 2H), 1.84 – 1.72 (m, 2H), 1.69 – 1.51 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 206.42, 136.06, 134.54, 128.78, 128.57, 127.15, 127.12, 126.79, 126.10, 109.65, 98.15, 45.11, 32.49, 29.93, 27.17, 26.81. HRMS (DART) calcd for $[C_{20}H_{22}Cl]^+$ ([M+H]⁺): 297.1405, found: 297.1403.

Following the general procedure A, **5a** was obtained as a liquid (50 mg, 63% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.40 (m, 2H), 7.37 – 7.25 (m, 4H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 3.60 (t, *J* = 6.4 Hz, 2H), 2.71 (t, *J* = 7.5 Hz, 2H), 2.52 (d, *J* = 8.0 Hz, 2H), 2.33 (s, 3H), 2.11 – 1.97 (m, 2H), 1.63 – 1.49 (m, 2H), 1.43 – 1.33 (m, 2H), 1.32 – 1.19 (m, 8H), 0.86 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.71, 136.70, 133.62, 129.29, 128.54, 126.86, 125.86, 109.94, 107.69, 44.99, 31.89, 31.02, 30.50, 29.79, 29.55, 29.39, 28.22, 27.56, 22.72, 21.14, 14.17. HRMS (DART) calcd for [C₂₇H₃₆Cl]⁺ ([M+H]⁺): 395.2500, found: 395.2498.

Following the general procedure **A**, **5b** was obtained as a liquid (48 mg, 61% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.40 (m, 2H), 7.36 – 7.26 (m, 4H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.12 (d, *J* = 7.9 Hz, 2H), 3.60 (t, *J* = 6.5 Hz, 2H), 2.71 (t, *J* = 7.5 Hz, 2H), 2.53 (t, *J* = 7.6 Hz, 2H), 2.32 (s, 3H), 2.10 – 1.98 (m, 2H), 1.79 – 1.63 (m, 3H), 1.62 – 1.43 (m, 6H), 1.41 – 1.35 (m, 2H), 1.09 – 0.94 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.74, 136.70, 133.63, 129.30, 128.55, 126.87, 125.88, 125.87, 109.92, 107.71, 44.99, 39.98, 36.27, 32.75, 32.71, 31.03, 30.72, 27.58, 27.32, 25.22, 21.15. HRMS (DART) calcd for [C₂₇H₃₄Cl]⁺ ([M+H]⁺): 393.2344, found: 393.2341.

Following the general procedure A, **5c** was obtained as a liquid (41 mg, 51% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.49 – 7.44 (m, 2H), 7.36 – 7.29 (m, 4H), 7.29 – 7.25 (m, 2H), 7.25 – 7.21 (m, 1H), 7.18 (t, J = 6.8 Hz, 1H), 7.16 – 7.10 (m, 4H), 3.60 (t, J = 6.4 Hz, 2H), 2.79 – 2.67 (m, 4H), 2.60 (t, J = 7.6 Hz, 2H), 2.34 (s, 3H), 2.11 – 2.01 (m, 2H), 1.98 – 1.87 (m, 2H). ¹³C NMR

128.43, 127.06, 125.96, 125.90, 109.70, 108.15, 45.02, 35.92, 31.08, 30.04, 29.88, 27.66, 21.20. HRMS (DART) calcd for $[C_{28}H_{30}Cl]^+$ ([M+H]⁺): 401.2031, found: 401.2027.

Following the general procedure A, **5d** was obtained as a liquid (56 mg, 72% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.38 (m, 2H), 7.37 – 7.26 (m, 4H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 3.61 (t, *J* = 6.4 Hz, 2H), 3.46 (t, *J* = 6.7 Hz, 2H), 2.70 (t, *J* = 7.6 Hz, 2H), 2.56 (t, *J* = 7.2 Hz, 2H), 2.33 (s, 3H), 2.13 – 1.98 (m, 2H), 1.80 – 1.70 (m, 2H), 1.65 – 1.47 (m, 5H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.62, 136.86, 136.55, 133.39, 129.35, 128.60, 126.98, 125.85, 125.81, 109.56, 107.99, 45.13, 44.96, 32.55, 31.01, 30.30, 27.57, 27.42, 27.00, 21.15. HRMS (DART) calcd for [C₂₄H₂₉Cl₂]⁺ ([M+H]⁺): 387.1641, found: 387.1638.

Following the general procedure **A**, **5e** was obtained as a liquid (51 mg, 54% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.39 (m, 2H), 7.37 – 7.27 (m, 4H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 3.61 (t, *J* = 6.4 Hz, 2H), 3.37 (t, *J* = 6.8 Hz, 2H), 2.72 (t, *J* = 7.5 Hz, 2H), 2.57 (t, *J* = 7.6 Hz, 2H), 2.33 (s, 3H), 2.11 – 2.00 (m, 2H), 1.99 – 1.90 (m, 2H), 1.79 – 1.65 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.60, 136.94, 136.44, 133.24, 129.39, 128.64, 127.06, 125.88, 125.81, 109.25, 108.22, 44.94, 33.57, 32.64, 31.02, 29.57, 27.63, 26.65, 21.16. HRMS (EI+) calcd for [C₂₃H₂₆ClBr]⁺ ([M]⁺): 416.0906, found: 416.0904.

Following the general procedure A, **5f** was obtained as a liquid (40 mg, 52% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.45 – 7.42 (m, 2H), 7.34 – 7.29 (m, 4H), 7.24 – 7.20 (m, 1H), 7.13 (d, *J* = 8.1 Hz, 2H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.72 (t, *J* = 7.5 Hz, 2H), 2.56 (t, *J* = 7.5 Hz, 2H), 2.41 (t, *J* = 7.5 Hz, 2H), 2.34 (s, 3H), 2.08 – 2.01 (m, 5H), 1.71 – 1.65 (m, 2H), 1.62 – 1.51 (m, 2H). ¹³C NMR

(150 MHz, Chloroform-*d*) δ 209.10, 204.67, 136.93, 136.61, 133.41, 129.42, 128.68, 127.06, 125.91, 125.88, 109.58, 108.06, 45.02, 43.69, 31.06, 30.36, 29.92, 27.69, 27.63, 23.89, 21.20. HRMS (DART) calcd for $[C_{25}H_{30}OC1]^+$ ([M+H]⁺): 381.1980, found: 381.1977.

CI/

Following the general procedure **A**, **5g** was obtained as a liquid (46 mg, 60% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.46 – 7.43 (m, 2H), 7.35 – 7.31 (m, 4H), 7.25 – 7.21 (m, 1H), 7.14 (d, *J* = 8.2 Hz, 2H), 3.65 (s, 3H), 3.62 (t, *J* = 6.5 Hz, 2H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.60 (t, *J* = 7.7 Hz, 2H), 2.42 (t, *J* = 7.3 Hz, 2H), 2.34 (s, 3H), 2.11 – 2.02 (m, 2H), 1.96 – 1.87 (m, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 204.62, 173.99, 137.01, 136.47, 133.25, 129.44, 128.69, 127.12, 125.96, 125.88, 109.21, 108.44, 51.67, 45.01, 33.88, 31.06, 29.94, 27.68, 23.49, 21.21. HRMS (DART) calcd for [C₂₄H₂₈O₂Cl]⁺ ([M+H]⁺): 383.1772, found: 383.1769.

Following the general procedure **A**, **5h** was obtained as a liquid (53 mg, 63% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.48 – 7.44 (m, 2H), 7.35 – 7.31 (m, 4H), 7.25 – 7.21 (m, 1H), 7.17 – 7.11 (m, 2H), 5.86 – 5.77 (m, 1H), 5.04 – 4.97 (m, 1H), 4.97 – 4.90 (m, 1H), 3.63 (t, *J* = 6.5 Hz, 2H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.55 (d, *J* = 7.8 Hz, 2H), 2.35 (s, 3H), 2.14 – 1.99 (m, 4H), 1.65 – 1.50 (m, 2H), 1.42 – 1.34 (m, 4H), 1.31 – 1.24 (m, 6H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 204.79, 139.39, 139.37, 136.80, 136.77, 133.68, 129.38, 128.63, 126.95, 125.94, 114.24, 110.01, 107.79, 45.06, 33.92, 31.09, 30.56, 29.83, 29.60, 29.21, 29.03, 28.27, 27.63, 21.21. HRMS (DART) calcd for [C₂₉H₃₈Cl]⁺ ([M+H]⁺): 421.2657, found: 421.2654.

Following the general procedure **A**, **5i** was obtained as a liquid (44 mg, 49% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.40 (m, 2H), 7.36 – 7.26 (m, 4H), 7.23 – 7.18 (m, 1H), 7.12 (d, *J* =

7.9 Hz, 2H), 3.61 (t, J = 6.4 Hz, 2H), 2.72 (t, J = 7.2 Hz, 2H), 2.55 – 2.47 (m, 2H), 2.33 (s, 3H), 2.12 – 2.00 (m, 2H), 1.96 (s, 3H), 1.76 – 1.60 (m, 6H), 1.58 -1.48 (m, 6H), 1.39 – 1.33 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.59, 136.72, 136.68, 133.58, 129.28, 128.55, 126.83, 125.88, 125.85, 110.41, 107.54, 44.98, 42.89, 42.42, 37.27, 32.43, 30.96, 28.77, 27.46, 23.77, 21.14. HRMS (DART) calcd for $[C_{31}H_{38}Cl]^+$ ([M+H]⁺): 445.2657, found: 445.2654.

Following the general procedure A, **5j** was obtained as a liquid (45 mg, 60% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.47 – 7.41 (m, 2H), 7.37 – 7.28 (m, 4H), 7.24 – 7.20 (m, 1H), 7.18 – 7.09 (m, 2H), 3.61 (t, J = 6.5 Hz, 2H), 2.80 – 2.66 (m, 2H), 2.52 – 2.39 (m, 2H), 2.35 (s, 3H), 2.15 – 2.02 (m, 2H), 1.88 – 1.78 (m, 2H), 1.72 – 1.65 (m, 2H), 1.64 – 1.53 (m, 2H), 1.23 – 1.10 (m, 3H), 1.03 – 0.89 (m, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.50, 136.80, 136.75, 133.83, 129.36, 128.60, 126.89, 126.16, 126.05, 108.12, 106.59, 45.05, 38.73, 36.49, 33.78, 33.73, 31.20, 27.86, 26.60, 26.35, 26.33, 21.21. HRMS (DART) calcd for $[C_{26}H_{32}Cl]^+$ ($[M+H]^+$): 379.2187, found: 379.2184.

Following the general procedure A, **5k** was obtained as a liquid (14 mg, 19% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.41 (m, 2H), 7.37 – 7.29 (m, 4H), 7.24 – 7.19 (m, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 5.69 – 5.56 (m, 2H), 3.61 (t, *J* = 6.5 Hz, 2H), 2.72 (t, *J* = 7.6 Hz, 2H), 2.67 – 2.60 (m, 2H), 2.59 – 2.41 (m, 3H), 2.33 (s, 3H), 2.17 – 1.99 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 205.29, 136.80, 136.46, 133.69, 129.90, 129.70, 129.30, 128.54, 126.89, 125.88, 125.81, 109.15, 107.65, 45.01, 39.59, 39.56, 37.66, 35.61, 31.02, 27.68, 21.12. HRMS (DART) calcd for [C₂₅H₂₈Cl]⁺ ([M+H]⁺): 363.1874, found: 363.1871.

Following the general procedure **B**, **6a** was obtained as a liquid (63 mg, 60% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.64 – 7.61 (m, 2H), 7.60 – 7.57 (m, 2H), 7.57 – 7.52 (m, 2H), 7.47 – 7.43 (m, 2H), 7.39 – 7.33 (m, 3H), 7.17 (d, *J* = 7.9 Hz, 2H), 3.66 (t, *J* = 6.4 Hz, 2H), 2.78 (t, *J* = 7.5 Hz, 2H), 2.62 – 2.55 (m, 2H), 2.37 (s, 3H), 2.17 – 2.07 (m, 2H), 1.68 – 1.58 (m, 2H), 1.46 – 1.40 (m, 2H), 1.34 – 1.26 (m, 16H), 0.91 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.09, 140.90, 139.78, 136.86, 135.78, 133.68, 129.44, 128.91, 127.35, 127.06, 126.36, 126.01, 110.20, 107.55, 45.05, 32.06, 31.15, 30.63, 29.90, 29.84, 29.80, 29.70, 29.52, 28.34, 27.69, 22.85, 21.23, 14.27. HRMS (DART) calcd for [C₃₇H₄₈Cl]⁺ ([M+H]⁺): 527.3439, found: 727.3434.

Following the general procedure A, **6b** was obtained as a liquid (64 mg, 69% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, J = 8.0 Hz, 2H), 7.27 – 7.17 (m, 3H), 7.12 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 7.2 Hz, 1H), 3.60 (t, J = 6.5 Hz, 2H), 2.70 (t, J = 7.5 Hz, 2H), 2.59 – 2.47 (m, 2H), 2.33 (s, 6H), 2.09 – 1.98 (m, 2H), 1.62 – 1.50 (m, 2H), 1.43 – 1.34 (m, 2H), 1.30 – 1.21 (m, 16H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.70, 138.09, 136.64, 136.63, 133.71, 129.28, 128.45, 127.69, 126.52, 125.88, 123.02, 109.74, 107.69, 45.01, 31.99, 31.04, 30.49, 29.81, 29.75, 29.71, 29.62, 29.44, 28.21, 27.64, 22.77, 21.65, 21.14, 14.21. HRMS (DART) calcd for [C₃₂H₄₆Cl]⁺ ([M+H]⁺): 465.3283, found: 465.3279.

Following the general procedure **A**, **6c** was obtained as a liquid (53 mg, 55% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.04 – 6.92 (m, 2H), 3.58 (t, *J* = 6.5 Hz, 2H), 2.56 (d, *J* = 7.6 Hz, 2H), 2.43 (d, *J* = 7.6 Hz, 2H), 2.33 (s, 3H), 2.29 (s, 6H), 2.04 – 1.94 (m, 2H), 1.59 – 1.49 (m, 2H), 1.38 – 1.23 (m, 18H), 0.88 (t, *J* = 6.5 Hz, 2H), 2.56 (d, *J* = 7.6 Hz, 2H), 1.59 – 1.49 (m, 2H), 1.38 – 1.23 (m, 18H), 0.88 (t, *J* = 6.5 Hz, 2H), 2.56 (d, *J* = 7.6 Hz, 2H), 1.59 – 1.49 (m, 2H), 1.59 – 1.49 (m, 2H), 1.58 – 1.23 (m, 18H), 0.88 (t, *J* = 6.5 Hz, 2H), 1.59 – 1.49 (m, 2H), 1.59 – 1.49 (m, 2H), 1.58 – 1.23 (m, 18H), 0.88 (t, J) = 0.5 Hz, 2H), 0.58 (t, J) = 0.5 Hz, 0.5 Hz,

J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 202.53, 136.57, 136.27, 135.64, 135.01, 134.30, 131.37, 129.09, 128.16, 126.54, 126.08, 106.58, 106.53, 44.86, 32.00, 31.62, 31.02, 30.68, 29.77, 29.73, 29.72, 29.65, 29.44, 28.34, 22.77, 21.13, 21.04, 20.69, 14.21. HRMS (DART) calcd for $[C_{33}H_{48}Cl]^+$ ([M+H]⁺): 479.3439, found: 479.3434.

Following the general procedure **B**, **6d** was obtained as a liquid (35 mg, 35% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.21 (m, 6H), 7.03 (d, *J* = 7.7 Hz, 2H), 3.52 (t, *J* = 6.4 Hz, 2H), 2.62 (t, *J* = 7.4 Hz, 2H), 2.49 – 2.40 (m, 2H), 2.24 (s, 3H), 2.02 – 1.91 (m, 2H), 1.53 – 1.45 (m, 2H), 1.36 – 1.26 (m, 2H), 1.23 (s, 9H), 1.21 – 1.14 (m, 16H), 0.80 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.57, 149.85, 136.59, 133.76, 133.66, 129.25, 125.86, 125.54, 125.48, 109.85, 107.37, 45.03, 34.52, 31.99, 31.36, 31.05, 30.54, 29.84, 29.75, 29.71, 29.61, 29.43, 28.26, 27.53, 22.77, 21.14, 14.20. HRMS (DART) calcd for [C₃₅H₅₂Cl]⁺ ([M+H]⁺): 507.3752, found: 507.3748.

Following the general procedure **B**, **6e** was obtained as a liquid (34 mg, 36% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.28 (m, 2H), 7.22 – 7.15 (m, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 1H), 3.60 (t, *J* = 6.5 Hz, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.57 – 2.48 (m, 2H), 2.33 (s, 3H), 2.24 (s, 6H), 2.09 – 1.98 (m, 2H), 1.60 – 1.51 (m, 3H), 1.41 – 1.34 (m, 2H), 1.30 – 1.21 (m, 16H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.41, 136.65, 136.53, 135.34, 133.86, 129.83, 129.23, 127.08, 125.85, 123.29, 109.57, 107.50, 45.03, 31.98, 31.05, 30.49, 29.80, 29.74, 29.70, 29.61, 29.42, 28.20, 27.64, 22.75, 21.12, 20.01, 19.47, 14.19. HRMS (DART) calcd for [C₃₃H₄₈Cl]⁺ ([M+H]⁺): 479.3439, found: 479.3434.

Following the general procedure A, **6f** was obtained as a liquid (58 mg, 62% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.35 (m, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.99 (t, *J* = 8.7 Hz, 2H), 3.60 (t, *J* = 6.4 Hz, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.53 (t, *J* = 7.6 Hz, 2H), 2.33 (s, 3H), 2.09 – 1.97 (m, 2H), 1.61 – 1.48 (m, 2H), 1.41 – 1.33 (m, 2H), 1.31 – 1.21 (m, 16H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.39 (d, *J* = 2.0 Hz), 161.92 (d, *J* = 246.1 Hz), 136.82, 133.47, 132.69, 132.65, 129.32, 127.32 (d, *J* = 7.9 Hz), 125.83, 115.38 (d, *J* = 21.4 Hz), 110.15, 106.93, 44.91, 31.97, 30.93, 30.48, 29.76, 29.73, 29.70, 29.68, 29.58, 29.42, 28.20, 27.73, 22.75, 21.13, 14.19. HRMS (DART) calcd for [C₃₁H₄₃ClF]⁺ ([M+H]⁺): 469.3032, found: 469.3028.

Following the general procedure **B**, **6g** was obtained as a liquid (42 mg, 43% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.38 – 7.33 (m, 2H), 7.32 – 7.25 (m, 4H), 7.16 – 7.11 (m, 2H), 3.61 (t, J = 6.4 Hz, 2H), 2.68 (t, J = 7.5 Hz, 2H), 2.53 (t, J = 7.6 Hz, 2H), 2.34 (s, 3H), 2.10 – 1.97 (m, 2H), 1.62 – 1.49 (m, 2H), 1.40 – 1.34 (m, 2H), 1.31 – 1.22 (m, 16H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 204.79, 137.00, 135.33, 133.35, 132.61, 129.42, 128.71, 127.15, 125.92, 110.47, 107.04, 44.92, 32.04, 30.97, 30.52, 29.81, 29.79, 29.77, 29.75, 29.63, 29.48, 28.24, 27.59, 22.82, 21.20, 14.25. HRMS (DART) calcd for $[C_{31}H_{43}Cl_2]^+$ ([M+H]⁺): 485.2736, found: 485.2732.

Following the general procedure **B**, **6h** was obtained as a liquid (75 mg, 77% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.36 – 7.27 (m, 3H), 7.15 (d, *J* = 7.9 Hz, 2H), 6.88 – 6.76 (m, 2H), 3.59 (t,

J = 6.5 Hz, 2H), 2.67 (d, J = 7.2 Hz, 2H), 2.49 (t, J = 7.8 Hz, 2H), 2.35 (s, 3H), 2.06 – 1.93 (m, 2H), 1.63 – 1.51 (m, 2H), 1.39 – 1.24 (m, 18H), 0.90 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 204.91, 161.93 (dd, J = 267.5, 11.5 Hz), 160.28 (dd, J = 270.9, 12.2 Hz), 136.82, 133.56, 130.26 (dd, J = 8.8, 5.3 Hz), 129.33, 126.07, 121.82 (dd, J = 12.9, 2.9 Hz), 121.82 (dd, J = 12.9, 2.9 Hz), 108.11, 104.47 (t, J = 25.9 Hz), 102.58, 44.71, 32.05, 31.11, 30.45, 29.91, 29.80, 29.77, 29.72, 29.66, 29.49, 28.12, 22.82, 21.19, 14.24. HRMS (DART) calcd for $[C_{31}H_{42}CIF_{2}]^{+}$ ($[M+H]^{+}$): 487.2938, found: 487.2932.

Following the general procedure **B**, **6i** was obtained as a liquid (61 mg, 61% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.86 – 7.83 (m, 2H), 7.80 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 8.6 Hz, 1H), 7.62 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.38 – 7.36 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 3.67 (t, *J* = 6.4 Hz, 2H), 2.87 (t, *J* = 7.5 Hz, 2H), 2.61 (t, *J* = 7.2 Hz, 2H), 2.36 (s, 3H), 2.19 – 2.11 (m, 2H), 1.67 – 1.57 (m, 2H), 1.45 – 1.39 (m, 2H), 1.31 – 1.23 (m, 16H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.54, 136.88, 134.20, 133.83, 133.67, 132.64, 129.45, 129.40, 128.14, 128.03, 127.67, 126.26, 126.03, 125.98, 125.81, 125.33, 123.47, 110.33, 108.12, 45.11, 32.05, 31.14, 30.62, 29.87, 29.79, 29.76, 29.68, 29.49, 28.31, 27.63, 22.83, 21.22, 14.26. HRMS (DART) calcd for [C₃₅H₄₆Cl]⁺ ([M+H]⁺): 501.3283, found: 501.3278.

Following the general procedure **B**, **6j** was obtained as a liquid (69 mg, 69% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.57 (d, J = 4.0 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.12 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 4.0 Hz, 1H), 3.59 (t, J = 6.4 Hz, 2H), 2.70 – 2.64 (m, 2H), 2.56 – 2.52 (m, 2H), 2.50 (s, 3H), 2.33 (s, 3H), 2.09 – 2.01 (m, 2H), 1.58 – 1.52 (m, 2H), 1.41 – 1.36 (m, 2H), 1.29 – 1.23 (m, 16H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 205.25, 190.63, 151.59, 142.28, 137.49, 133.38, 132.60, 129.46, 126.27, 123.62, 111.90, 103.73, 44.60, 32.03, 30.92, 30.76, 29.78, 29.76, 29.61, 29.48, 28.43, 28.13, 26.56, 22.81, 21.23, 14.24. HRMS (DART) calcd for [C₃₁H₄₄OCIS]⁺ ([M+H]⁺): 499.2796, found: 499.2792.

Synthetic applications

a) Synthesis of indenyl iodide 7 with NIS

In a flame-dried Schlenk tube was charged with allene (**1a**, 0.2 mmol), NIS (0.6 mmol) and CH₃CN (1 mL). The resulting suspension was stirred at 80 $^{\circ}$ C for 10 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the products **7a** and **7b** as a mixture in 75% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.18 (m, 3H), 7.14 – 6.78 (m, 5H), 3.70 – 3.34 (m, 2H), 2.88 – 2.53 (m, 2H), 2.51 – 2.00 (m, 6H), 1.77 – 1.55 (m, 1H), 1.46 – 1.05 (m, 20H), 0.89 – 0.85 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.40, 151.95, 148.43, 146.03, 143.01, 141.73, 140.75, 138.66, 136.45, 135.74, 129.20, 128.47, 127.59, 126.90, 126.69, 126.65, 126.55, 125.82, 124.13, 123.33, 118.79, 118.74, 116.58, 112.66, 63.58, 62.88, 45.58, 44.62, 34.55, 32.01, 31.99, 31.96, 31.15, 29.92, 29.90, 29.76, 29.72, 29.71, 29.68, 29.66, 29.62, 29.60, 29.44, 29.42, 29.39, 28.16, 27.20, 26.30, 22.78, 22.70, 21.56, 21.11, 14.23. HRMS (DART) calcd for $[C_{31}H_{42}CII]^+$ ([M+H]⁺): 576.2014, found: 576.2008.

b) Synthesis of 1 H-indene 8

In a flame-dried Schlenk tube was charged with allene (**6i**, 0.1 mmol), H_2SO_4 (1 mL) and CH_3CH_2OH (0.2 mL). The resulting suspension was stirred at room temperature for 1 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product **8** in 60% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (s, 1H), 7.22 – 7.15 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 1H), 6.85 – 6.75 (m, 1H), 6.72 – 6.60 (m, 1H), 6.25 (s, 1H), 3.40 (t, *J* = 6.7 Hz, 2H), 2.58 – 2.43 (m, 3H), 2.41 (s, 3H), 2.22 – 2.07 (m, 1H), 1.70 – 1.56 (m, 3H), 1.42 – 1.23 (m, 19H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.17 (dd, *J* = 250.2, 11.5 Hz), 161.80 (dd, *J* = 247.8, 12.3 Hz), 149.40, 143.33, 142.02, 134.14 (d, *J* = 3.0 Hz), 134.12, 129.00 (dd, *J* = 9.1, 6.7 Hz), 127.90, 125.81 (dd, *J* = 12.3, 3.8 Hz), 124.59 (d, *J* = 2.8 Hz), 119.60, 110.61 (dd, *J* = 20.3, 3.4 Hz), 104.68 (dd, *J* = 28.0, 25.0 Hz), 57.28 (d, *J* = 3.2 Hz), 45.50, 33.87, 33.81, 31.96, 29.72, 29.69, 29.67, 29.53, 29.40, 28.17, 27.90, 27.52, 22.74, 21.72, 14.17. HRMS (DART) calcd for $[C_{31}H_{42}ClF_2]^+$ ([M+H]⁺): 487.2938, found: 487.2934.

c) Synthesis of 2H-pyran 9

In a flame-dried Schlenk tube was charged with allene (**4m**, 0.1 mmol), CF_3COOH (2 equiv) and DCM (0.2 mL). The resulting suspension was stirred at room temperature for 1 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product **9** in 51% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 7.3 Hz, 4H), 7.33 – 7.24 (m, 4H), 7.24 – 7.20 (m, 1H), 7.20 – 7.15 (m, 1H), 6.44 (s, 1H), 3.99 – 3.86 (m, 1H), 3.57 (td, J = 11.1, 3.6 Hz, 1H), 2.75 – 2.56 (m, 1H), 2.23 – 2.14 (m, 1H), 1.87 – 1.66 (m, 2H), 1.24 – 1.12 (m, 20H), 0.80 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.95, 140.62, 134.90, 128.48, 128.21, 127.46, 126.74, 126.19, 125.10, 78.34, 60.47, 43.98, 31.95, 30.03, 29.67, 29.60, 29.39, 27.25, 23.90, 22.73, 14.17. HRMS (DART) calcd for [C₂₉H₄₁O]⁺ ([M+H]⁺): 405.3152, found: 405.3149.

d) Synthesis of 2H-pyran 10

In a flame-dried Schlenk tube was charged with allene (**4m**, 0.1 mmol), NIS (2 equiv) and CH₃CN (0.2 mL). The resulting suspension was stirred at room temperature for 10 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product **10** in 56% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.60 (m, 2H), 7.44 – 7.31 (m, 6H), 7.25 – 7.20 (m, 2H), 3.78 – 3.68 (m, 1H), 3.67 – 3.58 (m, 1H), 2.88 – 2.74 (m, 1H), 2.43 – 2.33 (m, 2H), 2.27 – 2.18 (m, 1H), 1.76 – 1.63 (m, 1H), 1.61 – 1.50 (m, 1H), 1.42 – 1.26 (m, 18H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 146.25, 146.24, 142.31, 128.50, 128.33, 128.00, 127.85, 127.80, 127.56, 105.63, 81.80, 58.73, 40.83, 35.03, 31.98, 30.00, 29.79, 29.76, 29.74, 29.72, 29.69, 29.42, 23.36, 22.75, 14.19. HRMS (DART) calcd for $[C_{29}H_{40}OI]^+$ ([M+H]⁺): 531.2118, found: 531.2114.

Preliminary mechanism study

a) Radical trapping experiment

In a flame-dried Schlenk tube, $Cu(CH_3CN)_4BF_4$ (0.01 mmol, 5 mol %) and Py-Box ligand (±)-L16 (0.014 mmol, 7 mol %) were dissolved in THF (1 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then 1,3-enyne (0.2 mmol, 1.0 equiv), peroxide (0.3 mmol, 1.5 equiv), PhB(OH)₂ (0.6 mmol, 3 equiv), DIPEA (0.6 mmol, 3 equiv) and TEMPO (3 mmol) were sequentially added. The reaction mixture was stirred at rt for 5 hours. The solution was filtrated with ethyl acetate on silica gel, and then detected by GC-MS. No desired coupling product was detected, but compound **11** was detected by GC-MS analysis.

b) Radical clock experiments

Ring-opening reaction:

In a flame-dried Schlenk tube, $Cu(CH_3CN)_4BF_4$ (0.01 mmol, 5 mol %) and Py-Box ligand (±)-L16 (0.014 mmol, 7 mol %) were dissolved in THF (1 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then 1,3-enyne 12 (0.2 mmol, 1.0 equiv), peroxide 2e (0.3 mmol, 1.5 equiv), PhB(OH)₂ (0.6 mmol, 3 equiv) and DIPEA (0.6 mmol, 3 equiv) were sequentially added. The reaction mixture was stirred at rt for 5 hours. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product 13 in

52% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (d, J = 7.7 Hz, 2H), 7.46 – 7.26 (m, 6H), 7.26 – 7.17 (m, 2H), 3.46 (t, J = 6.7 Hz, 2H), 2.55 (t, J = 6.8 Hz, 2H), 1.82 – 1.67 (m, 3H), 1.59 – 1.49 (m, 4H), 0.89 – 0.85 (m, 2H), 0.64 – 0.40 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.22, 137.23, 136.54, 128.54, 128.44, 126.95, 126.93, 126.17, 125.80, 112.60, 110.03, 45.10, 32.56, 30.09, 27.28, 26.90, 11.33, 6.96, 6.90. HRMS (DART) calcd for $[C_{23}H_{26}Cl]^+$ ([M+H]⁺): 337.1718, found: 337.1715.

Ring closing reaction

In a flame-dried Schlenk tube, $Cu(CH_3CN)_4BF_4$ (0.01 mmol, 5 mol %) and Py-Box ligand (±)-L16 (0.014 mmol, 7 mol %) were dissolved in THF (1 mL) under a nitrogen atmosphere, and

the mixture was stirred at room temperature for 30 minutes. Then 1,3-enyne **14** (0.2 mmol, 1.0 equiv), peroxide **2e** (0.3 mmol, 1.5 equiv), PhB(OH)₂ (0.6 mmol, 3 equiv) and DIPEA (0.6 mmol, 3 equiv) were sequentially added. The reaction mixture was stirred at rt for 5 hours. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product **15** in 58% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.41 (m, 4H), 7.34 – 7.15 (m, 11H), 6.32 (d, J = 15.9 Hz, 1H), 6.20 (dt, J = 15.8, 6.8 Hz, 1H), 3.43 (t, J = 6.7 Hz, 2H), 2.67 – 2.53 (m, 4H), 2.30 (q, J = 6.9 Hz, 2H), 1.82 – 1.69 (m, 4H), 1.65 – 1.47 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 205.21, 137.78, 136.86, 136.82, 130.50, 130.33, 128.61, 128.58, 128.56, 126.95, 126.92, 126.01, 125.97, 109.21, 109.12, 45.16, 33.07, 32.61, 30.26, 29.90, 27.92, 27.45, 27.03. HRMS (DART) calcd for $[C_{31}H_{34}CI]^+$ ([M+H]⁺): 441.2344, found: 441.2340.

In a flame-dried Schlenk tube, $Cu(CH_3CN)_4BF_4$ (0.01 mmol, 5 mol %) and Py-Box ligand (±)-L16 (0.014 mmol, 7 mol %) were dissolved in THF (1 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then 1,3-enyne 1a (0.2 mmol, 1.0 equiv), peroxide 16 (0.3 mmol, 1.5 equiv), PhB(OH)₂ (0.6 mmol, 3 equiv) and DIPEA (0.6 mmol, 3 equiv) were sequentially added. The reaction mixture was stirred at rt for 5 hours. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the products 17a and 17b in 28% and 15% yields.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.41 (m, 2H), 7.35 – 7.28 (m, 4H), 7.24 – 7.19 (m, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 5.85 – 5.68 (m, 1H), 5.02 – 4.85 (m, 2H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.70 (t, *J* = 7.4 Hz, 2H), 2.53 (t, *J* = 7.6 Hz, 2H), 2.33 (s, 3H), 2.11 – 1.96 (m, 4H), 1.62 – 1.56 (m, 2H), 1.45 – 1.36 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 204.66, 139.07, 136.73, 136.64, 133.53, 129.28, 128.54, 126.87, 125.83, 114.29, 109.84, 107.74, 44.98, 33.82, 30.98, 30.42, 29.23, 28.81, 28.01, 27.53, 21.13. HRMS (EI+) calcd for [C₂₆H₃₁Cl]⁺ ([M]⁺): 378.2114, found: 378.2108.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.39 (m, 2H), 7.37 – 7.26 (m, 4H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.71 (t, *J* = 7.5 Hz, 2H), 2.60 – 2.44 (m, 2H), 2.33 (s, 3H), 2.11 – 1.99 (m, 2H), 1.90 – 1.70 (m, 3H), 1.58 (td, *J* = 11.4, 10.3, 3.3 Hz, 4H),

1.53 - 1.40 (m, 2H), 1.17 - 1.03 (m, 2H).¹³C NMR (100 MHz, Chloroform-*d*) δ 204.65, 136.70, 133.56, 129.27, 128.52, 126.83, 125.84, 125.82, 110.02, 107.60, 44.99, 40.21, 34.58, 32.73, 32.67, 30.97, 29.74, 27.51, 25.20, 21.13. HRMS (EI+) calcd for $[C_{26}H_{31}CI]^+$ ([M]⁺): 378.2114, found: 378.2110.

c) Radical dimerization

In a flame-dried Schlenk tube, $Cu(CH_3CN)_4BF_4$ (0.01 mmol, 5 mol%) and Py-Box ligand L10 (0.014 mmol, 7 mol%) were dissolved in THF (1 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Then 1,3-enyne 18 (0.2 mmol, 1.0 equiv), peroxide 2h (0.3 mmol, 1.5 equiv), PhB(OH)₂ (0.6 mmol, 3 equiv) and DIPEA (0.6 mmol, 3 equiv) were sequentially added. The reaction mixture was stirred at rt for 5 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the products 19 in 28% yields, and a mixture of homocoupling dimers in 60% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.27 (m, 4H), 7.29 – 7.15 (m, 6H), 7.06 (dd, J = 8.1, 4.1 Hz, 4H), 3.55 (s, 3H), 2.57 (t, J = 7.6 Hz, 2H), 2.34 – 2.21 (m, 8H), 2.02 – 1.83 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 206.46, 173.96, 137.10, 137.03, 136.93, 133.84, 132.97, 129.35, 129.19, 128.43, 128.32, 128.22, 127.25, 125.92, 113.07, 108.06, 51.55, 33.70, 29.83, 23.27, 21.23, 21.16. HRMS (ESI) calcd for $[C_{28}H_{28}O_2Na]^+$ ([M+Na]⁺): 419.1982, found: 419.1981.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 7.8 Hz, 4H), 7.36 (d, *J* = 7.9 Hz, 4H), 7.14 (t, *J* = 8.9 Hz, 8H), 3.54 (s, 6H), 2.60 – 2.44 (m, 2H), 2.37 (s, 6H), 2.36 (s, 6H), 2.24 – 2.14 (m, 4H), 1.65 – 1.57 (m, 4H), 1.43 – 1.32 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.99, 137.97, 136.52, 136.00, 131.32, 129.08, 127.80, 120.65, 91.79, 87.88, 54.69, 51.36, 35.65, 34.31, 21.52, 21.12, 21.07. HRMS (ESI) calcd for [C₄₄H₄₆O₄Na]⁺ ([M+Na]⁺): 661.3288, found: 661.3289.

Single crystal data of 20

Table S2. Crystal data and structure refinement for data.

Identification code	Compound-20	Compound-20	
Empirical formula	C44 H46 O4	C44 H46 O4	
Formula weight	638.81	638.81	
Temperature	99.99(10) K	99.99(10) K	
Wavelength	1.3405 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 10.8484(4) Å	α= 76.980(4)°.	
	b = 11.0591(5) Å	$\beta = 84.293(3)^{\circ}.$	
	c = 15.2489(6) Å	$\gamma = 86.909(3)^{\circ}.$	
Volume	1772.66(13) Å ³		
Z	2		
Density (calculated)	1.197 Mg/m ³	1.197 Mg/m ³	
Absorption coefficient	0.374 mm ⁻¹	0.374 mm ⁻¹	
F(000)	684	684	
Crystal size	$0.15 \ge 0.08 \ge 0.07 \text{ mm}^3$	0.15 x 0.08 x 0.07 mm ³	
Theta range for data collection	2.596 to 60.549°.	2.596 to 60.549°.	
Index ranges	-13<=h<=14, -14<=k<=	-13<=h<=14, -14<=k<=14, -18<=l<=19	
Reflections collected	24617	24617	
Independent reflections	7932 [R(int) = 0.0281]	7932 [R(int) = 0.0281]	
Completeness to theta = 53.543°	99.9 %	99.9 %	
Absorption correction	Semi-empirical from eq	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.81422	1.00000 and 0.81422	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	7932 / 0 / 439	7932 / 0 / 439	
Goodness-of-fit on F ²	1.085		
	37		

Final R indices [I>2sigma(I)]	R1 = 0.0449, wR2 = 0.1234
R indices (all data)	R1 = 0.0516, wR2 = 0.1283
Extinction coefficient	n/a
Largest diff. peak and hole	0.401 and -0.291 e.Å-3

Reference

- 1. X.-R. Song, Y.-P. Han, Y.-F. Qiu, Z.-H. Qiu, X.-Y. Liu, P.-F. Xu, Y.-M. Liang, *Chem. Eur. J.* 2014, **20**, 12046.
- 2. M. Wakayama, H. Nemoto, M. Shibuya, Tetrahedron Lett. 1996, 37, 5397.
- X. Zhu, W. Deng, M. F. Chiou, C. Ye, W. Jian, Y. Zeng, Y. Jiao, L. Ge, Y. Li, X. Zhang and H. Bao, J. Am. Chem. Soc. 2019, 141, 548.
- 4. W. Yan, X. Ye, N. G. Akhmedov, J. L. Petersen and X. Shi, Or.g Lett. 2012, 14, 2358.
- 5. T. Chen, C. Guo, M. Goto and L. B. Han, Chem. Commun. 2013, 49, 7498.
- 6. C. Ye, B. Qian, Y. Li, M. Su, D. Li and H. Bao, Org. Lett. 2018, 20, 3202.
- 7. H. Zhou, L. Ge, J. Song, W. Jian, Y. Li, C. Li and H. Bao, *iScience*, 2018, 3, 255.

NMR spectra

