SUPPORTING INFORMATION

Selective High-resolution DNP-enhanced NMR of

Biomolecular Binding Sites

Ildefonso Marin-Montesinos,^a David Goyard,^b Emilie Gillon,^c Olivier Renaudet,^b Anne Imberty,^c Sabine Hediger^a and Gaël De Paëpe^{*a}

^a Univ. Grenoble Alpes, CEA, CNRS, INAC-MEM, Grenoble, France.

^b Univ. Grenoble Alpes, CNRS, DCM, Grenoble, France.

^c Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France.

1) Aromatic region of Sel-DNP spectra for k = 1, 0.8, and 0.7

2) Sel-DNP spectra for k = 0.6 and k = 0.4

3) Conformations of the PA-ligand in the LecA binding site

4) DQ/SQ 2D dipolar recoupling sequence using R16⁷₂

5) Table of residues involved in the binding of D-galactose

6) Assignment table of LecA based on Sel-DNP

7) Chemical analysis of compounds 1, 2, 4, and 5

1) Aromatic region of Sel-DNP spectra for k = 1, 0.8, and 0.7

Figure S1. Aromatic region of Sel-DNP ¹³C-¹³C DQ/SQ one-bond correlation spectra obtained with k = 1 (a), k = 0.8 (b), and k = 0.7 (c), compared in (d) to the reference spectrum S_0 obtained with AMUPol as PA. Contours are set to the same levels as for **Fig. 3**. Further Sel-DNP spectra for k = 0.6 and 0.4 are given in **Fig. S2**.

2) Sel-DNP spectra for *k* = 0.6 and *k* = 0.4

Figure S2. Sel-DNP ¹³C-¹³C DQ/SQ one-bond correlation spectra obtained with k = 0.6 and 0.4. (a) and (d) aliphatic region, (b) and (e) CO-aliphatic region, (c) and (f) aromatic region. New residues appearing in the k = 0.6, respectively k = 0.4, Sel-DNP spectra are labelled in burgundy, respectively in orange. Resonances belonging to residues, which already partially appear in Sel-DNP spectra of higher k are labelled in black (k = 1), blue (k = 0.8) or purple (k = 0.7). Contours are set at the same levels as for **Fig. 3**.

3) Conformations of the PA-ligand in the LecA binding site

Figure S3. Representation of three possible low-energy conformations of the PA-ligand in the LecA binding site with the phenyl-galactoside moiety in the position observed in the crystal state. a) Lateral view and b) top view.

4) DQ/SQ 2D dipolar recoupling pulse sequence using $R16_2^7$

Figure S4. Pulse sequence used to record the ¹³C-¹³C DQ-SQ dipolar correlation experiments of **Fig. 1c and d**. For DNP-enhanced spectra, microwave irradiation is on during the entire experiment.

5) Table of residues involved in the binding of D-galactose

Table S1. Amino acid residues of LecA involved in the binding of galactose according to the X-ray structure PDB ID 10K0 (Ref: Cioci, G.; Mitchell, E. P.; Gautier, C.; Wimmerová, M.; Sudakevitz, D.; Pérez, S.; Gilboa-Garber, N.; Imberty, A. FEBS Lett. 2003, 555, 297.)

АА Туре	Ca ²⁺	Ca ²⁺ / D-Gal	D-Gal
Thr	-	T104	-
Tyr	Y105	Y36	-
Gly	G106	-	-
Asn	N108	N107	-
Asp	D100	-	-
His	-	-	H50
Gln	-	-	Q53
Pro	-	-	P51
Val	-	-	V101

6) Assignment table of LecA based on Sel-DNP

δ(ppm)	6		^	^	^	^	^	<u> </u>	^	^	6	C'
Residues	Cα	C _β	Cγ	$C_{\delta 1}$	$C_{\delta 2}$	C _{ε1}	C _{ε2}	C _{E3}	$C_{\eta 1}$	C _{η2}	Cζ	Ľ
³⁴ A	49.2	21.0	-	-	-	-	-	-	-	-	-	-
³⁵ S	55.7	61.6	-	-	-	-	-	-	-	-	-	175.6
³⁶ Y	63.2	37.5	132.3	131.6	131.6	119.0	119.0	-	-	-	156.9	178.1
³⁷ G	42.6	-	-	-	-	-	-	-	-	-	-	173.3
³⁸ P	61.5	31.6	26.6	49.7	-	-	-	-	-	-	-	176.3
³⁹ T	61.4	67.2	19.4	-	-	-	-	-	-	-	-	178.0
⁴⁰ Q	55.7	26.0	30.7	181.8	-	-	-	-	-	-	-	177.1
⁴¹ K	-	28.9	24.2	29.6	-	41.2	-	-	-	-	-	-
⁴² W	56.4	30.9	110.7	-	130.0	-	138.9	-	-	-	-	-
⁴⁶ G	43.6	-	-	-	-	-	-	-	-	-	-	173.9
⁴⁷ D	51.0	36.4	176.9	-	-	-	-	-	-	-	-	174.8
⁴⁸ R	54.4	29.3	42.7	23.7	-	-	-	-	-	-	-	174.7
⁴⁹ E	54.8	28.0	35.7	185.3	-	-	-	-	-	-	-	175.2
⁵⁰ H	59.7	25.7	129.1	121.3	-	-	-	-	-	-	-	178.4
⁵¹ P	63.7	31.5	26.8	51.6	-	-	-	-	-	-	-	178.1
⁵² D	50.5	35.8	176.3	-	-	-	-	-	-	-	-	174.6
⁵³ Q	54.6	26.9	31.0	182.5	-	-	-	-	-	-	-	176.1
⁵⁴ G	44.3	-	-	-	-	-	-	-	-	-	-	174.5
⁵⁵ L	58.8	41.0	26.7	21.0	-	-	-	-	-	-	-	178.3
56	59.3	37.4	26.0	12.3	-	-	-	-	-	-	-	175.1
⁵⁸ H	59.4	27.5	-	-	-	-	-	-	-	-	-	178.8
⁶⁰ A	50.1	17.1	-	-	-	-	-	-	-	-	-	-
⁶¹ F	56.8	38.8	-	-	-	-	-	-	-	-	-	177.5
¹⁰⁰ D	53.0	37.5	181.0	-	-	-	-	-	-	-	-	175.2
¹⁰¹ V	59.3	32.3	20.1	-	-	-	-	-	-	-	-	175.8
¹⁰² P	62.9	32.1	24.5	49.8	-	-	-	-	-	-	-	178.9
¹⁰³ G	45.5	-	-	-	-	-	-	-	-	-	-	-
¹⁰⁴ T	60.9	70.4	18.0	-	-	-	-	-	-	-	-	177.4
¹⁰⁵ Y	62.5	36.4	-	-	-	-	-		-	-	-	177.3
¹⁰⁶ G	45.6	-	-	-	-	-	-	-	-	-	-	179.0
¹⁰⁷ N	54.1	39.9	181.7	-	-	-	-	-	-	-	-	178.7
¹⁰⁸ N	52.5	44.0	180.8	-	-	-	-	-	-	-	-	181.2
¹⁰⁹ S	58.8	64.4	-	-	-	-	-	-	-	-	-	173.4

Table S2. Chemical shift values for the assigned residues of LecA (same color code as for Fig. 3, S1, and S2).

7) Chemical analysis of compounds 1, 2, 4, and 5

Data for compound 1.

Obtained as a white solid after lyophilization (489 mg, 0.86 mmol, 83%); RP-HPLC: $R_t = 6.61 \text{ min} (C_{18}, \lambda = 214 \text{ nm}, 0-40\% \text{ B in 15 min}); {}^{1}\text{H} \text{ NMR} (CD_3OD, 400 \text{ MHz}) \delta 7.90 (d, 2H,$ *J*= 8.6 Hz, 2×H-Ar), 7.11 (d, 2H,*J*= 8.5 Hz, 2×H-Ar), 5.47 (d, 1H,*J*= 2.7 Hz, H-4), 5.35-5.45 (m, 2H, H-1, H-2), 5.27 (dd, 1H,*J*= 9.8, 3.0 Hz, H-3), 4.35 (t, 1H,*J*= 6.4 Hz, H-5), 4.18 (d, 2H,*J*= 6.6 Hz, 2×H-6), 4.01 (s, 2H, CH₂-Gly), 3.51 (t, 2H,*J*= 5.5 Hz, CH₂CH₂NH₂), 3.08 (t, 2H,*J* $= 5.6 Hz, CH₂CH₂NH₂), 2.18, 2.05, 2.04, 1.98 (4s, 12H, 4×CH₃-acetyl); {}^{13}C NMR (CD₃OD$ *d* $₆, 100 MHz) \delta 173.2, 172.0, 171.9, 171.4, 171.2, 170.0 (7C, C=O), 161.1 (C-Ar), 130.5 (2×CH-Ar), 129.2 (C-Ar), 117.3 (2×CH-Ar), 99.4 (C-1), 72.3 (C-5), 72.2 (C-3), 70.1 (C-2), 68.7 (C-4), 62.6 (C-6), 44.3 (CH₂-Gly), 41.0 (CH₂CH₂NH₂), 38.2 (CH₂CH₂NH₂), 20.6, 20.5, 20.5, 20.5 (4×CH₃-acetyl); HMRS [ESI +] (M+H)⁺$ *m/z*calcd. for C₂₅H₃₄N₃O₁₂, 568.2142 found 568.2140.

Figure S5. ¹H NMR spectrum of compound **1**.

Figure S6. ¹³C NMR spectrum of compound **1**.

Figure S8. Analytical RP-HPLC spectrum of compound 1.

Data for compound 2.

Obtained as a slightly orange solid after lyophilization (151 mg, 0.21 mmol, 72%); RP-HPLC: $R_t = 8.53 \text{ min} (C_{18}, \lambda = 214 \text{ nm}, 5-40\% \text{ B in 15 min}); {}^{1}\text{H} NMR (CD_3OD, 400 MHz) & 7.90 (d, 2H,$ *J*= 8.5 Hz, 2×H-Ar), 7.12 (d, 2H,*J*= 8.6 Hz, 2×H-Ar), 5.47 (d, 1H,*J*= 3.0 Hz, H-4), 5.36-5.44 (m, 2H, H-1, H-2), 5.27 (dd, 1H,*J*= 9.9, 3.1 Hz, H-3), 4.35 (t, 1H,*J*= 6.5 Hz, H-5), 4.18 (d, 2H,*J*= 6.6 Hz, 2×H-6), 3.99 (s, 2H, CH₂-Gly), 3.55 (t, 2H,*J*= 5.4 Hz, CH₂CH₂NH₂), 3.48-3.51 (m, 1H, CH-TEMPO), 3.19 (t, 2H,*J*= 5.3 Hz, CH₂CH₂NH₂), 2.18, 2.05, 2.04, 2.01, 1.98 (4s, 12H, 4×CH₃-acetyl), 1.99-2.01 (m, 2H, 2×CH-TEMPO), 1.57 (t, 2H,*J* $= 12.2 Hz, 2×CH-TEMPO), 1.21, 1.17 (2s, 12H, 2×CH₃-TEMPO); {}^{13}\text{C} NMR (CD₃OD$ *d*₆, 100 MHz) & 173.6, 172.0, 171.9, 171.4, 171.3, 170.1 (6C, C=O), 161.1 (C-Ar), 130.5 (2×CH-Ar), 129.0 (C-Ar), 117.3 (2×CH-Ar), 99.4 (C-1), 72.3 (C-5), 72.2 (C-3), 70.1 (C-2), 68.7 (C-4), 62.6 (C-6), 59.6 (2×C-TEMPO), 51.4 (CH-TEMPO), 46.0 (*C*H₂CH₂NH), 44.6 (CH₂-Gly), 42.3 (2×CH₂-TEMPO), 37.1 (CH₂CH₂NH), 32.8 (2×CH₃-TEMPO), 20.6, 20.5, 20.5, 20.5 (4×CH₃-acetyl), 20.0 (2×CH₃-TEMPO); HMRS [ESI +] (M+H)⁺*m/z*calcd. for C₃₄H₅₀N₄O₁₃, 722.3374 found 722.3360.

Figure S9. ¹H NMR spectrum of compound **2**.

Figure S10. ¹³C NMR spectrum of compound **2**.

Figure S11. HRMS spectrum of compound 2.

Figure S12. Analytical RP-HPLC of compound 2.

Data for compound 4.

Obtained as a slightly orange solid after lyophilization (39 mg, 0.041 mmol, 41%); RP-HPLC: $R_t = 10.59$ min (C_{18} , $\lambda = 214$ nm, 5-40% B in 15 min); HMRS [ESI +] (M+H)⁺ m/z calcd. for $C_{46}H_{72}N_5O_{16}$, 950.4974 found 950.4941.

Figure S13. ¹H NMR of compound 4.

Figure S14. ¹³C NMR of compound 4.

Figure S15. HRMS spectrum of compound 4.

Figure S16. Analytical RP-HPLC of compound 4.

Data for compound 5.

Obtained as a slightly orange solid after lyophilization (15 mg, 0.019 mmol, 92%); RP-HPLC: $R_t = 7.21 \text{ min} (C_{18}, \lambda = 214 \text{ nm}, 5-40\% \text{ B in 15 min})$; HMRS [ESI +] (M+H)⁺ m/z calcd. for $C_{38}H_{64}N_5O_{12}$, 782.4551 found 782.4537.

Figure S17. HRMS spectrum of compound 5.

Figure S18. Analytical RP-HPLC of compound 5.