Supplementary information for

Dinuclear Hg^{II} tetracarbene complex-triggered aggregation-induced emission for rapid and selective sensing of Hg²⁺ and organomercury species

Bin Yuan,^a Dong-Xia Wang,^b Li-Na Zhu,^{*a} Yan-Long Lan,^a Meng Cheng,^a Li-Ming Zhang,^a Jun-Qing Chu,^a Xiao-Zeng Li ^{*a} and De-Ming Kong ^{*b}

^aDepartment of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, People's Republic of China ^bTianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University,

Tianjin, 300071, People's Republic of China

 * Corresponding to: L.-N. Zhu, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China

E-mail address: linazhu@tju.edu.cn (L.-N. Zhu)

Dedicated to Professor Dai-Zheng Liao on the occasion of his 80th birthday

1. Synthesis and characterization of Tmbipe

Scheme S1. The synthetic route of Tmbipe

Figure S1. ¹H-NMR spectrum of Tbipe.

Figure S3. HRMS spectrum of Tmbipe.

2. Job plots for the binding of Tmbipe to Hg(II) species

Figure S4. Job's plot analysis of the interactions between Tmbipe and (a) Hg^{2+} , (b) MeHg⁺ or (c) PhHg⁺. Total concentration of Tmbipe and individual Hg(II) species was 30 μ M.

3. Rapid response of Tmbipe to Hg²⁺

Figure S5. Time-dependent changes in fluorescence of Tmbipe (10 μ M) to Hg²⁺ (20 μ M).

4. Effects of pH on the fluorescence response of Tmbipe to Hg²⁺ and organomercury species

Figure S6. pH-dependent changes in fluorescence response of **Tmbipe** (10 μ M) to Hg²⁺ (15 μ M), MeHg⁺ (15 μ M) or PhHg⁺ (15 μ M). Tris-Acetate buffers were used to adjust the pH values of the sensing systems.

5. Comparison of our method with other reported ones

Fluorescent probe	Detection limit		
	Hg ²⁺	MeHg ⁺	Reference
Tetraphenylethylene-boronic acid-based AIE probe	600 nM	Not Given	18b
Coumarin-based fluorescent probe ATC-Hg	27 nM	5.8 µM	23a
BODIPY-based phenylthiourea derivatives	33 nM	64 nM	23b
Fluorogenic polymer	6.6 µM	1.6 µM	23c
DNA interacting fluorogenic probes	$(5.0\pm1.0)\mu\text{M}$	$(9.9\pm1.1)\mu\text{M}$	23d
Fluorene-based chemodosimeters	20 nM	44 nM	23e
2,1,3-benzothiadiazole-based chemodosimeters	160 nM	800 nM	23f
Selenolactone-based fluorescent chemodosimeter	20 nM	Not Given	23g
Rhodamine hydrazide derivatives	Not Given	200 nM	23h
Tetraphenylethylene-based AIE probe	63 nM	94 nM	This work

 Table S1. Comparison of several Hg²⁺ and methylmercury-sensing probes

6. Imaging of Hg(II) species in living cells

Figure S7. Detection of Hg(II) species in (a) HL7704 human adult hepatocyte cells and (b) MCF-7 human breast cancer cells.