Supporting Information for:

Pd-Catalyzed Dearomative Arylborylation of Indoles

Chong Shen,^{a,†} Nicolas Zeidan,^{b,†} Quan Wu,^{a,†} Christian B. J. Breuers,^b Ren-Rong Liu,^a Yi-Xia Jia^{*,a,c} and Mark Lautens^{*,b}

a. College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China

b. Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada

c. Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

Contents:

1. General information	S2
2. Substrate and ligand synthesis	S3
3. Pd-catalyzed dearomative arylborylation of indoles	S24
4. Enantioselctive Pd-catalyzed dearomative arylborylation of indoles	
5. Synthetic transformations of product 3a	S74
6. Single-crystal X-ray of 3a	

1. General information

Reactions and manipulations involving organometallic or moisture sensitive compounds were carried out under dry nitrogen and glassware heated under oven for two hours prior to use. ¹H and ¹³C spectra were recorded on Bruker AVANCE III 500 MHz using CDCl₃ or CD₃OD as solvent with TMS as internal standard. Anhydrous THF and toluene were freshly distilled over Na and benzophenone. Anhydrous DCM, DCE, CH₃CN were freshly distilled over calcium hydride. Melting points were measured on a Buchi B-545 apparatus and uncorrected. Commercial reagents were used as received without further purification unless otherwise noticed. HRMS were recorded on Agilent 6210 TOF LC/MS mass spectrometer. Column chromatography was carried out using silica gel (200-300 mesh).

2. Substrate and ligand synthesis

As shown in Scheme S1, all of the substrates were synthesized according to the procedure that we published previously.¹ The bromo-substrates **1a-1q** are known compounds, while the chloro-analogues are new.

Route 1

Scheme S1. Preparation of *N*-acylindole bromo-substrates. Reaction Conditions: (i) Ketone, polyphosphoric acid, 110 °C, 4–6 h; (ii) 2-halobenzoyl chloride, NaH, THF, r. t., overnight; (iii) Ketone, Pd(OAc)₂, Bu₄NBr, O₂, DMSO, 100 °C, 24 h.

Procedure for the synthesis of chloro-substrates: To a suspension of benzoic acid derivatives (2.2 equiv) in DCM (1 M) and a few drops of DMF, was added oxalyl chloride (2.2 equiv). Stirring was complete when the reaction stopped evolving gas and a homogeneous solution was observed. The solvent was evaporated, and the acyl-chloride formed was redissolved in THF (1 M). In a second flask, a solution of indole (1 equiv) in THF (1 M) was added NaH (1.2 equiv) and was stirred for 10 minutes. The solution of acyl-chloride was added to the deprotonated indole and the reaction was stirred for 2 hours. The reaction was quenched with $NH_4Cl_{(aq)}$ slowly and was extracted with EtOAc. After evaporation, the crude product was columned.

(2-chlorophenyl)(2-methyl-1H-indol-1-yl)methanone (1a')

¹ Shen, C.; Liu, R.-R.; Fan, R.-J.; Li, Y.-L.; Xu, T.-F.; Gao, J.-R.; Jia, Y.-X. J. Am. Chem. Soc. 2015, 137, 4936.

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes to pentanes:NEt₃ 40:1 (v/v). The product was isolated as a white solid (60% yield, mp = 58–59 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.46 (m, 4H), 7.45–7.39 (m, 2H), 7.23 (td, *J* = 7.5, 1.0 Hz, 1H), 7.14 (ddd, *J* = 8.5, 7.3, 1.3 Hz, 1H), 6.42 (p, *J* = 1.1 Hz, 1H), 2.27 (d, *J* = 1.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 137.2, 136.8, 136.4, 132.0, 131.7, 130.3, 129.9, 129.2, 127.4, 123.7, 123.6, 119.8, 114.9, 110.4, 16.2. HRMS *m/z* (DART+): calculated for C₁₆H₁₃ClNO ([M+H]⁺) 270.0686, found 270.0685.

(2-chloro-3-methylphenyl)(2-methyl-1H-indol-1-yl)methanone (1r)

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes to pentanes:EtOAc 50:1 (v/v). The product was isolated as a white solid (47% yield, mp = 85–86 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.38 (m, 3H), 7.32–7.30 (m, 2H), 7.20 (td, *J* = 7.5, 1.0 Hz, 1H), 7.11 (ddd, *J* = 8.5, 7.3, 1.3 Hz, 1H), 6.40 (t, *J* = 1.0 Hz, 1H), 2.45 (d, *J* = 0.7 Hz, 3H), 2.24 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 137.8, 137.3, 136.8, 136.8, 133.0, 131.4, 129.9, 127.0, 126.5, 123.7, 123.5, 119.7, 115.0, 110.3, 20.2, 16.2. HRMS *m/z* (DART+): calculated for C₁₇H₁₅CINO ([M+H]⁺) 284.0842, found 284.0849.

(2-chloro-4-methoxyphenyl)(2-methyl-1H-indol-1-yl)methanone (1d')

The crude reaction mixture was purified on silica by flash chromatography. Two columns were required, first eluting with pentanes:EtOAc 10:1 (v/v), then pentanes:DCM:toluene 2:2:1 (v/v/v). The product was isolated as a white solid (31% yield, mp = 105–106 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.42 (m, 2H), 7.30–7.24 (m, 1H), 7.20–7.16 (m, 1H), 7.09 (ddd, J = 8.5, 7.2, 1.3 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 6.92 (dd, J = 8.6, 2.5 Hz, 1H), 6.41–6.39 (m, 1H), 3.88 (s, 3H), 2.31 (d, J = 1.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 162.2, 137.4, 136.8, 133.5, 131.1, 129.8, 128.3, 123.4, 123.2, 119.7, 115.7, 114.4, 113.3, 109.7, 55.8, 16.0. HRMS *m/z* (DART+): calculated for C₁₇H₁₅ClNO₂ ([M+H]⁺) 300.0791, found 300.0790.

7.7.5.46 7.7.5.45 7.7.5.

(2-chloro-4-fluorophenyl)(2-methyl-1H-indol-1-yl)methanone (1s)

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes to pentanes:Et₂O 100:1 (v/v). The product was isolated as a white solid (35% yield, mp = 51–52 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.51 (dd, *J* = 8.6, 5.8 Hz, 1H), 7.46 (ddd, *J* = 7.7, 1.3, 0.7 Hz, 1H), 7.32 (dq, *J* = 8.3, 0.9 Hz, 1H), 7.27–7.19 (m, 2H), 7.17–7.11 (m, 2H), 6.42 (t, *J* = 1.1 Hz, 1H), 2.28 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 163.8 (d, *J* = 255.6 Hz), 137.2, 136.8, 133.5 (d, *J* = 10.8 Hz), 132.8 (d, *J* = 3.8 Hz), 131.2 (d, *J* = 9.4 Hz), 130.0, 123.8, 123.8, 120.0, 118.1 (d, *J* = 24.9 Hz), 115.1 (d, *J* = 21.8 Hz), 114.7, 110.5, 16.3. ¹⁹F NMR (377 MHz, CDCl₃)

δ -105.88 (q, J = 7.9 Hz). HRMS m/z (DART+): calculated for C₁₆H₁₂ClFNO ([M+H]⁺): 288.0591, found 288.0590.

(2-chloro-5-fluorophenyl)(2-methyl-1H-indol-1-yl)methanone (1t)

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes to pentanes:Et₂O 100:1 (v/v). The product was isolated as a white solid (36% yield, mp = 73–75 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.48–7.43 (m, 2H), 7.42–7.39 (m, 1H), 7.25–7.19 (m, 3H), 7.14 (ddd, J = 8.5, 7.3, 1.4 Hz, 1H), 6.43 (t, J = 1.2 Hz, 1H), 2.28 (d, J = 1.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.4 (d, J = 2.0 Hz), 161.2 (d, J = 250.3 Hz), 137.7 (d, J = 7.2 Hz), 136.9, 136.6, 131.9 (d, J = 8.0 Hz), 129.9, 126.7 (d, J = 3.6 Hz), 123.9, 123.8, 119.9, 119.1 (d, J = 22.8 Hz), 116.3 (d, J = 24.7 Hz), 114.7, 110.8, 16.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -112.96 (td, J = 8.0 4.6 Hz). HRMS *m/z* (DART+): calculated for C₁₆H₁₂ClFNO ([M+H]⁺): 288.0591,

found 288.0584.

(2-chlorophenyl)(5-fluoro-2-methyl-1H-indol-1-yl)methanone (1u)

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes to pentanes:Et₂O 100:1 (v/v). The product was isolated as a white solid (47% yield, mp = 84–85 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.56–7.38 (m, 5H), 7.10 (dd, J = 8.6, 2.6 Hz, 1H), 6.85 (td, J = 9.1, 2.6 Hz, 1H), 6.36 (p, J = 1.2 Hz, 1H), 2.19 (d, J = 1.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 159.8 (d, J = 240.0 Hz), 138.9, 136.3, 133.2 (d, J = 1.4 Hz), 132.2, 131.8, 131.1 (d, J = 10.0 Hz), 130.5, 129.3, 127.6, 116.1 (d, J = 9.1 Hz), 111.3 (d, J = 24.7 Hz), 110.2 (d, J = 3.7 Hz), 105.6 (d, J = 23.8 Hz), 16.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -119.68 (td, J = 8.6, 8.2, 4.6 Hz). HRMS m/z (DART+): calculated for C₁₆H₁₂ClFNO ([M+H]⁺): 288.0591, found

(2-chlorophenyl)(5-methoxy-2-methyl-1H-indol-1-yl)methanone (1v)

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes to pentanes:NEt₃ 20:1 (v/v). The product was isolated as a white solid (41% yield, mp = 54–55 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.46 (m, 3H), 7.43–7.39 (m, 1H), 7.31 (d, *J* = 9.0 Hz, 1H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.72 (dd, *J* = 9.0, 2.6 Hz, 1H), 6.33 (dt, *J* = 1.9, 0.9 Hz, 1H), 3.82 (s, 3H), 2.20 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 156.4, 137.9, 136.4, 131.8, 131.6, 131.4, 130.9, 130.2, 129.1, 127.3, 115.7, 111.6, 110.4, 102.9, 55.6, 16.2. HRMS *m/z* (DART+): calculated for C₁₇H₁₅ClNO₂ ([M+H]⁺): 300.0791, found 300.0784.

(2-chlorophenyl)(2-phenyl-1H-indol-1-yl)methanone (1j')

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes to pentanes:Et₂O 100:1 (v/v). The product was isolated as a white solid (46% yield, mp = 86–87 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (ddt, *J* = 8.1, 1.4, 0.8 Hz, 1H), 7.61 (ddd, *J* = 7.3, 1.6, 0.7 Hz, 1H), 7.40–7.29 (m, 2H), 7.28–7.25 (m, 2H), 7.21 (ddd, *J* = 7.6, 1.6, 0.6 Hz, 1H), 7.16–7.08 (m, 5H), 7.03 (ddd, *J* = 7.7, 6.7, 1.9 Hz, 1H), 6.66 (d, *J* = 0.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 140.5, 137.8, 135.6, 132.8, 132.5, 131.8, 130.6, 129.9, 129.5, 128.8, 127.7, 127.7, 126.3, 125.0, 124.0, 120.6, 115.2, 111.4. HRMS *m/z* (DART+): calculated for C₂₁H₁₅ClNO ([M+H]⁺): 332.0842, found 332.0844.

(2-chlorophenyl)(2-(4-fluorophenyl)-1H-indol-1-yl)methanone (1w)

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes to pentanes:MTBE 50:1 (v/v). The product was isolated as a white solid (21% yield, mp = 94–96 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.11 (ddt, J = 8.2, 1.4, 0.8 Hz, 1H), 7.60 (ddd, J = 7.2, 1.7, 0.7 Hz, 1H), 7.39–7.31 (m, 2H), 7.25–7.21 (m, 3H), 7.18 (ddd, J = 8.1, 7.2, 1.7 Hz, 1H), 7.13 (ddd, J = 8.2, 1.4, 0.5 Hz, 1H), 7.08 (td, J = 7.5, 1.3 Hz, 1H), 6.85–6.80 (m, 2H), 6.64 (d, J = 0.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 162.1 (d, J = 248.2 Hz), 139.3, 137.6, 135.5, 132.3, 131.9,

130.6 (d, J = 7.6 Hz), 130.5, 130.0, 129.3, 128.9 (d, J = 3.6 Hz), 126.5, 125.2, 124.1, 120.6, 115.2, 114.8 (d, J = 21.9 Hz), 111.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -113.45 (ddd, J = 13.9, 9.0, 5.6 Hz). HRMS m/z (DART+): calculated for C₂₁H₁₄ClFNO ([M+H]⁺): 350.0748, found 350.0743.

(2-chloropyridin-3-yl)(2-methyl-1H-indol-1-yl)methanone (1X)

The crude reaction mixture was purified on silica by flash chromatography, eluting with pentanes:EtOAc 10:1 to 5:1 (v/v). The product was isolated as a white solid (38% yield, mp = 66–67 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.60 (dd, *J* = 4.9, 2.0 Hz, 1H), 7.85 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.48–7.41 (m, 3H), 7.23 (td, *J* = 7.5, 1.0 Hz, 1H), 7.15 (ddd, *J* = 8.6, 7.3, 1.3 Hz, 1H), 6.44 (p, *J* = 1.2 Hz, 1H), 2.23 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.2, 151.5, 148.0, 138.0, 136.7, 136.6, 132.9, 130.0, 124.1, 124.0, 122.7, 120.0, 114.8, 111.1, 16.5. HRMS *m/z* (DART+): calculated for C₁₅H₁₂ClN₂O ([M+H]⁺): 271.0638, found 271.0630.

88.88 88.60 88.85 88.60 88.85

Synthesis of Ligand L1: The preparation of the chiral phosphoramidite ligand was followed literature procedures with some modifications. ² To a solution of dicyclohexylamine (20.0 mmol) in dry THF (15 mL) at 0 °C was added *n*-BuLi (2.5 M in hexanes, 20 mmol) dropwise over 5 min under nitrogen atmosphere. After stirring at 0 °C for 30 min, PCl₃ (60.0 mmol) was added to the reaction mixture in one portion. The resulting mixture was warmed to room temperature, stirred for 1 h, and then concentrated at room temperature. The remaining PCl₃ was removed under vacuum. Dry THF (30 mL) was then added to the resulting residue. After stirring for 10 min, the mixture was cooled to 0 °C, followed by addition of a solution of 3,3'-disubstituted binaphthyl compound (10.0 mmol) and Et₃N (33.0 mmol) in dry THF

² C. R. Smith, T. V. RajanBabu, Org. Lett. 2008, 10, 1657.

(15 mL). The mixture was warmed to room temperature and stirred for overnight, after which it was filtered and the solid was washed with THF. After evaporation under vacuum, the residue was purified by chromatography on silica gel, eluting with PE: DCM = 10:1 (v/v) to afford the ligands.

White solid, m.p.: 74-75 °C, yield 60%, $[\alpha]_D^{20} = -293.2$ (*c* 0.2, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, *J* = 13.5 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.5 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 2H), 7.42-7.40 (m, 2H), 7.30-7.19 (m, 4H), 6.99 (dd, *J* = 17.5, 8.8 Hz, 4H), 3.88 (s, 3H), 3.87 (s, 3H), 2.58 (s, 2H), 1.60-1.20 (m, 8H), 1.00-0.86 (m, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 159.0, 148.2, 148.0, 134.5, 133.4, 132.4, 131.5, 131.0, 130.7, 130.4, 129.6, 128.8, 128.2, 128.0, 126.9, 125.5, 125.2, 124.7, 124.4, 123.3, 113.3, 55.4, 54.2, 31.9, 29.7, 29.4, 26.4, 25.4, 22.7, 14.1. HRMS *m/z* (ESI⁺): calculate for C₄₆H₄₇NO₄P ([M+H]⁺): 708.3237, found 708.3238.

3. Pd-catalyzed dearomative arylborylation of indoles

To a dried Schlenk tube were added $Pd(OAc)_2$ (2.3 mg, 0.01 mmol) and PPh_3 (5.2 mg, 0.02 mmol) under N₂, 2.0 mL DCE or DCM was then introduced via a syringe. The resulting mixture was stirred at room temperature for 1 h, after which *N*-benzoylindoles (0.2 mmol) and B₂pin₂ (0.4 mmol) were added and the tube was sealed using Teflon cap. The mixture was stirred at 60 °C or 70 °C (oil bath) until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v) to afford the products.

10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3a**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 193-195 °C; 87% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.56 (td, *J* = 7.5, 1.0 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.14 (d, *J* = 7.0 Hz, 1H), 7.06 (td, *J* = 7.5, 1.0 Hz, 1H), 2.92 (s, 1H), 1.66 (s, 3H), 0.84 (s, 6H), 0.68 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 150.0, 138.8, 138.6, 133.6, 132.0, 128.4, 127.1, 124.58, 124.56, 124.4, 122.6, 117.4, 83.4, 73.9, 28.6, 24.3, 23.8. HRMS *m/z* (ESI+): Calculated for C₂₂H₂₅BNO₃ ([M+H]⁺): 362.1922, Found 362.1921.

10,10b-dimethyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3b**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 129-131 °C; 78% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.29 (s, 1H), 7.25 (t, *J* = 7.0 Hz, 2H), 7.13 (d, *J* = 7.5 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 2.90 (s, 1H), 2.47 (s, 3H), 1.65 (s, 3H), 0.85 (s, 6H), 0.70 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 150.5, 142.7, 138.9, 138.6, 130.9, 129.3, 127.1, 124.6, 124.5, 124.3, 123.2, 117.3, 83.4, 73.7, 28.7, 24.3, 23.8, 21.8. HRMS *m/z* (ESI+): Calculated for C₂₃H₂₇BNO₃ ([M+H]⁺): 376.2079, Found 376.2046.

9,10b-dimethyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3c**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 226-229 °C; 88% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (dd, *J* = 10.0, 8.0 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.0 Hz, 1H), 7.26 (td, *J* = 8.0, 0.5 Hz, 1H), 7.16 (d, *J* = 7.0 Hz, 1H), 7.06 (td, *J* = 7.5, 1.0 Hz, 1H), 3.00 (s, 1H), 2.51 (s, 3H), 1.70 (s, 3H), 0.84 (s, 6H), 0.69 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 148.1, 138.7, 138.1, 134.1, 133.8, 132.6, 128.6, 127.1, 124.5, 124.3, 122.3, 117.2, 83.4, 74.2, 26.4, 24.3, 23.8, 18.7. HRMS *m/z* (ESI+): Calculated for C₂₃H₂₇BNO₃ ([M+H]⁺):

9-methoxy-10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**3d**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 243-245 °C; 76% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 7.5 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 1H), 7.34 (d, *J* = 2.5 Hz, 1H), 7.26 (td, *J* = 7.5, 1.0 Hz, 1H), 7.15 – 7.11 (m, 2H), 7.06 (td, *J* = 7.5, 1.0 Hz, 1H), 3.88 (s, 3H), 2.89 (s, 1H), 1.64 (s, 3H), 0.86 (s, 6H), 0.72 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 160.4, 142.4, 139.0, 138.6, 135.0, 127.1, 124.6, 124.4, 123.5, 120.2, 117.3, 107.2, 83.4, 73.7, 55.8, 28.7, 24.5, 23.9. HRMS *m/z* (ESI+): Calculated for C₂₃H₂₇BNO₄ ([M+H]⁺): 392.2028, Found 392.2044.

9-chloro-10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**3e**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 148-150 °C; 61% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 1.5 Hz, 1H), 7.44 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.27–7.24 (m, 1H), 7.15 (d, *J* = 7.5 Hz, 1H), 7.07 (td, *J* = 7.5, 1.0 Hz, 1H), 2.91 (s, 1H), 1.66 (s, 3H), 0.88 (s, 6H), 0.75 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 151.9, 138.42, 138.38, 138.2, 131.9, 128.8, 127.2, 125.8, 124.72, 124.65, 123.2, 117.3, 83.6, 73.6, 28.6, 25.0, 24.4. HRMS *m/z* (ESI+): Calculated for C₂₂H₂₄BCINO₃

8,10b-dimethyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3f**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 225-227 °C; 90% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.29 (s, 1H), 7.25 (t, *J* = 7.0 Hz, 2H), 7.13 (d, *J* = 7.5 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 2.90 (s, 1H), 2.47 (s, 3H), 1.65 (s, 3H), 0.85 (s, 6H), 0.70 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 150.5, 142.7, 138.9, 138.6, 130.9, 129.3, 127.1, 124.6, 124.5, 124.3, 123.2, 117.3, 83.4, 73.7, 28.7, 24.3, 23.8, 21.8. HRMS *m/z* (ESI+): Calculated for C₂₃H₂₇BNO₃ ([M+H]⁺): 376.2079, Found 376.2043.

8-chloro-10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**3g**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 184-186 °C; 65% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 2.0 Hz, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.54 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.29 (s, 1H), 7.15 (d, *J* = 7.5 Hz, 1H), 7.08 (td, *J* = 7.5, 1.0 Hz, 1H), 2.91 (s, 1H), 1.65 (s, 3H), 0.87 (s, 6H), 0.73 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 148.3, 138.5, 138.3, 135.5, 134.7, 132.0, 127.3, 124.72, 124.71, 124.6, 123.8, 117.4, 83.6, 73.8, 28.5, 24.4, 23.8. HRMS *m/z* (ESI+): Calculated for C₂₂H₂₄BClNO₃ ([M+H]⁺):

S34

8,9-dimethoxy-10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3h**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 59-61 °C; 92% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 7.5 Hz, 1H), 7.31 (s, 1H), 7.25 (td, *J* = 7.5, 1.0 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.04 (td, *J* = 7.5, 1.0 Hz, 1H), 6.96 (s, 1H), 3.99 (s, 3H), 3.94 (s, 3H), 2.87 (s, 1H), 1.64 (s, 3H), 0.87 (s, 6H), 0.73 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.5, 153.0, 149.9, 144.0, 138.9, 138.6, 127.1, 125.4, 124.6, 124.2, 117.1, 106.0, 105.0, 83.4, 73.6, 56.29, 56.25, 28.8, 24.5, 23.9. HRMS *m*/*z* (ESI+): Calculated for C₂₄H₂₉BNO₅ ([M+H] ⁺): 422.2133, Found 422.2159.

10b-benzyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3i**):

The reaction was in DCM at 70 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 121-122 °C; 62% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 7.5 Hz, 1H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.55–7.51 (m, 2H), 7.38 – 7.34 (m, 1H), 7.32–7.27 (m, 1H), 7.16 (d, *J* = 7.0 Hz, 1H), 7.07 (td, *J* = 7.5, 1.0 Hz, 1H), 7.04–6.99 (m, 3H), 6.78 (dd, *J* = 7.5, 1.5 Hz, 2H), 3.30 (d, *J* = 13.5 Hz, 1H), 3.22 (d, *J* = 13.5 Hz, 1H), 3.09 (s, 1H), 0.84 (s, 6H), 0.67 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 147.5, 138.9, 138.8, 134.7, 134.5, 131.4, 130.2, 128.4, 127.4, 127.3, 126.4, 124.6, 124.4, 124.3, 123.2, 117.1, 83.5, 76.8, 46.1, 24.4, 23.8. HRMS *m/z* (ESI+): Calculated for C₂₄H₂₉BNO₅ ([M+H]⁺):
438.2235, Found 438.2245.

10b-phenyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3j**):

The reaction was in DCM at 70 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 180-183 °C; 65% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.66–7.63 (m, 2H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.49 (td, *J* = 7.5, 1.0 Hz, 1H), 7.41 (td, *J* = 7.5, 1.0 Hz, 1H), 7.31 – 7.28 (m, 2H), 7.27–7.23 (m, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.5 Hz, 1H), 7.02 (td, *J* = 7.5, 1.0 Hz, 1H), 3.62 (s, 1H), 0.89 (s, 6H), 0.73 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.7, 149.3, 144.2, 139.1, 138.6, 133.1, 132.3, 128.6, 128.4, 127.6, 127.2, 124.8, 124.7, 124.6, 124.2, 123.7, 117.3, 83.7, 79.0, 24.4, 23.9. HRMS *m/z* (ESI+): Calculated for C₂₇H₂₇BNO₃ ([M+H]⁺): 424.2079, Found 424.2049.

11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b-(p-tolyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3**k):

The reaction was in DCM at 70 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 165–168 °C; 70% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 7.5 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.56–7.50 (m, 3H), 7.48 (td, *J* = 7.5, 1.0 Hz, 1H), 7.40 (td, *J* = 7.5, 1.0 Hz, 1H), 7.24 (td, *J* = 7.5, 1.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 7.5 Hz, 1H), 7.01 (td, *J* = 7.0, 1.0 Hz, 1H), 3.60 (s, 1H), 2.26 (s, 3H), 0.88 (s, 6H), 0.73 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.7, 149.5, 141.2, 139.1, 138.7, 137.4, 133.2, 132.3, 129.3, 128.3, 127.2, 124.7, 124.7, 124.6, 124.2, 123.6, 117.3, 83.6,

6.09-014 ľ 1 9.0 5.0 4.5 f1 (ppm) 0.5 7.5 2.0 1.5 1.0 8.5 4.0 3.5 3.0 2.5 8.0 7.0 6.5 6.0 5.5 141. 20 138. 70 138. 70 137. 37 137. 37 128. 31 128. 31 128. 31 128. 31 128. 469 128. 469 128. 469 128. 469 128. 461 128 - 83. 63 \sim 78. 90 77. 25 77. 25 77. 25 77. 25 77. 70 $\overline{}^{24.42}_{23.91}$ 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10

78.9, 24.4, 23.9, 20.9. HRMS *m/z* (ESI+): Calculated for C₂₈H₂₉BNO₃ ([M+H] ⁺): 438.2235, Found 438.2214.

11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b-(m-tolyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3l**):

The reaction was in DCM at 70 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 160–163 °C; 72% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.50 - 7.38 (m, 4H), 7.25 (td, *J* = 7.5, 1.0 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.0 Hz, 1H), 7.03–6.99 (m, 2H), 3.63 (s, 1H), 2.30 (s, 3H), 0.89 (s, 6H), 0.73 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.7, 149.4, 144.1, 139.2, 138.7, 138.3, 133.1, 132.3, 128.5, 128.4, 128.3, 127.2, 125.4, 124.7, 124.6, 124.2, 123.7, 121.9, 117.3, 83.7, 79.0, 24.4, 23.9, 21.5. HRMS *m/z* (ESI+): Calculated for C₂₈H₂₉BNO₃ ([M+H]⁺): 438.2235, Found 438.2245.

10b-(naphthalen-2-yl)-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**3m**):

The reaction was in DCM at 70 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 198-200 °C; 67% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.06 (s, 1H), 7.89 (d, *J* = 7.5 Hz, 1H), 7.86–7.74 (m, 5H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.48 (td, *J* = 7.5, 1.0 Hz, 1H), 7.45–7.40 (m, 3H), 7.26 (td, *J* = 7.5, 1.0 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.01 (td, *J* = 7.5, 1.0 Hz, 1H), 3.77 (s, 1H), 0.92 (s, 6H), 0.76 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 149.2, 141.1, 139.1, 138.6, 133.2, 133.0, 132.7, 132.3, 128.7, 128.5, 128.2, 127.4, 127.2, 126.3, 126.1, 124.8, 124.7, 124.2, 123.7, 123.3, 123.2, 117.4, 83.7, 79.1, 24.4, 23.9. HRMS *m/z* (ESI+): Calculated for C₃₁H₂₉BNO₃ ([M+H] ⁺): 474.2235, Found 474.2257.

10b-(furan-2-yl)-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3n**):

The reaction was in DCM at 70 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); yellow solid, Mp = 136-138 °C; 53% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.5 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.56 (td, *J* = 7.5, 1.0 Hz, 1H), 7.49 (td, *J* = 7.5, 1.0 Hz, 1H), 7.34–7.31 (m, 1H), 7.25 (td, *J* = 8.0, 1.0 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.05 (td, *J* = 7.5, 1.0 Hz, 1H), 6.21 – 6.18 (m, 2H), 3.60 (s, 1H), 0.87 (s, 6H), 0.71 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.7, 154.8, 146.9, 142.8, 139.3, 138.4, 133.4, 132.3, 128.9, 127.2, 124.70, 124.66, 124.3, 123.9, 117.3, 110.2, 106.0, 83.7, 74.9, 24.4, 23.9. HRMS *m/z* (ESI+): Calculated for C₂₅H₂₅BNO₄ ([M+H] ⁺): 414.1871, Found 414.1865.

10b-cyclopropyl-2-methoxy-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3o**):

The reaction was in DCM at 70 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 138-141 °C; 61% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 7.5 Hz, 1H), 7.56–7.48 (m, 3H), 7.45 (td, *J* = 7.5, 1.0 Hz, 1H), 6.74 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.69 (d, *J* = 2.5 Hz, 1H), 3.79 (s, 3H), 3.03 (s, 1H), 1.43 - 1.37 (m, 1H), 0.87 (s, 6H), 0.69 (s, 6H), 0.45–0.21 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 157.0, 149.6, 140.7, 133.8, 133.7, 131.8, 128.3, 124.4, 122.8, 116.9, 111.2, 111.0, 83.5, 76.1, 55.6, 24.5, 23.9, 21.7, 2.2, 0.4. HRMS *m/z* (ESI+): Calculated for C₂₅H₂₉BNO₄ ([M+H] ⁺): 418.2184, Found 418.2188.

2-isopropyl-10b-phenyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3p**):

The reaction was in DCE at 60 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 146-149 °C; 76% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 7.5 Hz, 1H), 7.70–7.64 (m, 3H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.47 (td, *J* = 7.5, 1.0 Hz, 1H), 7.39 (td, *J* = 7.5, 1.0 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.23–7.19 (m, 1H), 6.92 (s, 1H), 3.59 (s, 1H), 2.83 (hept, *J* = 7.0 Hz, 1H), 1.19 (d, *J* = 1.5 Hz, 3H), 1.17 (d, *J* = 1.5 Hz, 3H), 0.88 (s, 6H), 0.74 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.9, 149.5, 145.6, 144.3, 138.6, 137.0, 133.2, 132.2, 128.6, 128.3, 127.6, 125.2, 124.9, 124.6, 123.5, 122.3, 116.9,

83.6, 79.1, 33.9, 24.5, 24.3, 24.2, 23.9, 23.8. HRMS m/z (ESI+): Calculated for C₃₀H₃₃BNO₃

([M+H]⁺): 466.2548, Found 466.2542.

2-methyl-10b-phenyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (**3q**):

The reaction was in DCM at 70 °C (oil bath). Purified by chromatography on silica gel very quickly, eluting with ethyl acetate/petroleum ether 1:5 (v/v); white solid, Mp = 92-94 °C; 64% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 7.5 Hz, 1H), 7.67–7.62 (m, 3H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.47 (td, *J* = 7.5, 1.0 Hz, 1H), 7.40 (td, *J* = 7.5, 1.0 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.22–7.18 (m, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.87 (s, 1H), 3.57 (s, 1H), 2.27 (s, 3H), 0.90 (s, 6H), 0.73 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 149.2, 144.3, 138.7, 136.7, 134.4, 133.3, 132.1, 128.6, 128.3, 127.7, 127.6, 124.9, 124.8, 124.6, 123.7, 116.9, 83.6, 79.2, 24.4, 23.9, 21.2. HRMS *m/z* (ESI+): Calculated for C₂₈H₂₉BNO₃ ([M+H]⁺): 438.2235, Found 438.2241.

100 90 fl (ppm)

4. Enantioselctive Pd-catalyzed dearomative arylborylation of indoles

General Procedure: In a dry and purged 1D vial, Pd(dba)₂ (5 mol%) and L2 (10 mol%) were pre-stirred in 2 mL of MTBE at 40 °C for 15 minutes. The catalyst solution was transferred (washing with 2 mL of MTBE, total 4 mL) into a Schlenk tube containing the corresponding aryl-chloride (0.2 mmol) and **Mixed-Boron** (3 equiv). NEt₃ (5 equiv) was added and the reaction was sealed and heated to 100 °C for 18 h. The reaction was filtered through silica and purified by column chromatography.

Optimization: Reactions were run as outlined above. Ligand structures on following page.

88

88

nd

nr

27

Entry	Х	Solvent	Additive	Changes to condition	Yield (%)
1	Br	PhMe	CsPiv	B_2Pin_2	43
2	Br	PhMe	_	-	49
3	Br	DCE	_	-	34
4	Br	THF:MTBE	_	-	78
5	Br	MTBE	-	_	73
6	Ι	MTBE	-	_	40
7	Cl	MTBE	_	-	15
8	Cl	MTBE	K_2CO_3	B_2Pin_2	n.r
9	Cl	MTBE	NEt_3 (3 eq)	_	50
Follow	ing en	tries using L2			
10	Cl	MTBE	NEt_3 (3 eq)	_	65

TMG (3 eq)

^{*i*} Pr_2NEt (3 eq)

SI-Table 1. Optimization of the enantioselective arylborylation

11

12

Cl

Cl

MTBE

MTBE

	13	Cl	MTBE	NEt_3 (3 eq)	80 °C	nr				
	14	Cl	MTBE	NEt_3 (3 eq)	10 mol% L2	68	91			
	15	Cl	MTBE	NEt_3 (5 eq)	3 eq mixed-boron	74	94			
Ligand screen using conditions in entry 15:										
	16	Cl	MTBE	Net_3 (5 eq)	L3	17	78			
	17	Cl	MTBE	Net_3 (5 eq)	L4	70	91			
	18	Cl	MTBE	Net_3 (5 eq)	L5	trace	_			
	19	Cl	MTBE	Net_3 (5 eq)	L6	trace	-			
	20	Cl	MTBE	Net_3 (5 eq)	L7	72	87			
	21	Cl	MTBE	Net_3 (5 eq)	L8	12	n.d			
	22	Cl	MTBE	Net_3 (5 eq)	L9	34	86			

Note: Binap derivatives, basic Josiphos and Walphos ligands, Prophos, Binapine were all ineffective in the reactions (data not shown).

10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6H-isoindolo[2,1a]indol-6-one (**3a**):

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (53.5 mg, 0.148 mmol, 74%). $[\alpha]_D^{20} = +90.7$ (c 1.0, CHCl₃), 94% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10,

 $0.75 \text{ mL/min}, t_{\text{major}} = 9.9 \text{ min}, t_{\text{minor}} = 7.8 \text{ min}.$

10,10b-dimethyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (**3r**):

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (44.4 mg, 0.118 mmol), 59%, mp = 161–162 °C. $[\alpha]_D^{20} = +125.2$ (c 1.0, CHCl₃), 79% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 8.7 min, t_{minor} = 7.6 min. ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.66 (m, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.30 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.25 (td, *J* = 7.7, 1.4 Hz, 1H), 7.14 (ddt, *J* = 7.5, 1.3, 0.7 Hz, 1H), 7.04 (td, *J* = 7.5, 1.1 Hz, 1H), 2.98 (s, 1H), 2.49 (s, 3H), 1.68 (s, 3H), 0.82 (s, 6H), 0.67 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 148.0, 138.6, 138.1, 134.1, 133.8, 132.6, 128.6, 127.2, 124.5, 124.3, 122.3, 117.2, 83.4, 74.2, 26.4, 24.3, 23.8, 18.7. HRMS *m/z* (DART+): Calculated for C₂₃H₂₇BNO₃ ([M+H]⁺): 376.2079, Found

376.2046.

9-methoxy-10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6H-

isoindolo[2,1-a]indol-6-one (3d):

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (69.2 mg, 0.177 mmol), 88%. $[\alpha]_D^{20} = +172.4$ (c 1.0, CHCl₃), 68% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 13.5 min, t_{minor} = 10.8 min.

(10bR,11S) - 9 - fluoro - 10b - methyl - 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) - 10b, 11 - (4,4,5,5 - tetramethyl - 1,5,5 - t

dihydro-6H-isoindolo[2,1-a]indol-6-one (3s)

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (49.0 mg, 0.129 mmol), 65%, mp = 152–154 °C. $[\alpha]_D^{20} = +87.3$ (c 1.0, CHCl₃), 68% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 10.7 min, t_{minor} = 8.5 min. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (ddd, *J* = 8.0, 5.1, 0.8 Hz, 1H), 7.64 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.25 (td, *J* = 7.6, 1.3 Hz, 1H), 7.17–7.12 (m, 3H), 7.05 (td, *J* = 7.5, 1.1 Hz, 1H), 2.90 (s, 1H), 1.64 (s, 3H), 0.86 (s, 6H), 0.73 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 165.5 (d, *J* = 252.5 Hz), 152.8 (d, *J* = 9.3 Hz), 138.6, 138.1, 129.5 (d, *J* = 2.2 Hz), 127.2, 126.7 (d, *J* = 9.6 Hz), 124.7, 124.5, 117.3, 115.9 (d, *J* = 23.4 Hz), 110.1 (d, *J* = 23.8 Hz), 83.6, 73.5 (d, *J* = 2.6 Hz), 28.6, 24.4, 23.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -106.75 (dt, *J* = 9.0, 4.5 Hz). HRMS m/z (DART+): Calculated for C₂₂H₂₄BFNO₃

 $([M+H]^+)$ 380.1833, found 380.1832.

(10bR,11S)-10-fluoro-10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3t**)

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (50.3 mg, 0.133 mmol), 66%, mp = 170–172 °C. $[\alpha]_D^{20} = +72.7$ (c 1.0, CHCl₃), 91% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 8.6 min, t_{minor} = 6.8 min. ¹H NMR (500 MHz, CDCl₃) δ 7.67–7.63 (m, 1H), 7.51 (dd, *J* = 7.7, 2.5 Hz, 1H), 7.43 (dd, *J* = 8.3, 4.4 Hz, 1H), 7.28–7.23 (m, 3H), 7.14 (ddt, *J* = 7.4, 1.3, 0.7 Hz, 1H), 7.06 (td, *J* = 7.5, 1.1 Hz, 1H), 2.90 (s, 1H), 1.64 (s, 3H), 0.85 (s, 6H), 0.72 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7 (d, *J* = 3.3 Hz), 163.1 (d, *J* = 247.7 Hz), 145.6 (d, *J* = 2.6 Hz), 138.6, 138.34, 135.8 (d, *J* = 8.4 Hz), 127.2, 124.7, 124.7, 124.0 (d, *J* = 8.4 Hz), 119.2 (d, *J* = 23.5 Hz), 117.4, 111.2 (d, *J* = 23.2 Hz), 83.5, 73.7, 28.6, 24.4, 23.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -112.89 – -113.09 (m). HRMS m/z (DART+): Calculated for C₂₂H₂₄BFNO₃ ([M+H]⁺) 380.1833, found 380.1836.

Totals :

(10bR,11S)-2-fluoro-10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3u**)

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (44.6 mg, 0.118 mmol), 59%, mp = 193–194 °C. $[\alpha]_D^{20} = +86.0$ (c 1.0, CHCl₃), 91% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 10.1 min, t_{minor} = 8.4 min. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.61–7.53 (m, 2H), 7.49–7.43 (m, 2H), 6.97–6.91 (m, 1H), 6.85 (ddd, *J* = 8.3, 2.5, 0.8 Hz, 1H), 2.89 (s, 1H), 1.65 (s, 3H), 0.83 (s, 6H), 0.67 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 160.2 (d, *J* = 242.2 Hz), 149.7, 140.9 (d, *J* = 8.5 Hz), 134.8 (d, *J* = 2.2 Hz), 133.4, 132.1, 128.6, 124.7, 122.7, 117.9 (d, *J* = 9.0 Hz), 113.5 (d, *J* = 23.5 Hz), 112.2 (d, *J* = 24.3 Hz), 83.7, 74.5, 28.5, 24.4, 23.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -118.53 – -118.71 (m). HRMS m/z (DART+): Calculated for C₂₂H₂₄BFNO₃ ([M+H]⁺) 380.1833, found 380.1837.

(10bR,11S)-2-methoxy-10b-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3v**)

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (50.7 mg, 0.129 mmol), 65%, mp = 189–191 °C. $[\alpha]_D^{20} = +28.6$ (c 1.0, CHCl3), 93% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 16.2 min, t_{minor} = 10.8 min. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.53 (td, *J* = 7.4, 1.2 Hz, 1H), 7.48–7.42 (m, 2H), 6.77 (ddd, *J* = 8.5, 2.6, 0.5 Hz, 1H), 6.71 s(dd, *J* = 2.6, 0.8 Hz, 1H), 3.78 (s, 3H), 2.86 (s, 1H), 1.64 (s, 3H), 0.83 (s, 6H), 0.66 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 157.0, 149.9, 140.5, 133.8, 132.4, 131.8, 128.4, 124.5, 122.5, 117.7, 111.6, 111.3, 83.5, 74.3, 55.6, 28.5, 24.4, 23.9. HRMS m/z (DART+): Calculated for C₂₃H₂₇BNO₄ ([M+H]⁺) 392.2033, found 392.2028.

7.84
7.82
7.83
7.84
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.83
7.84
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55</l

S67

10b-phenyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11-dihydro-6H-isoindolo[2,1a]indol-6-one (**3j**)

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (61.8 mg, 0.146 mmol), 73%. $[\alpha]_D^{20} = +219.1$ (c 1.0, CHCl₃), 94% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 11.1 min, t_{minor} = 12.9 min.

(10bS,11S)-10b-(4-fluorophenyl)-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10b,11dihydro-6H-isoindolo[2,1-a]indol-6-one (**3w**)

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (35.0 mg, 0.0793 mmol), 40%, mp = 163–165 °C. $[\alpha]_D^{20} = +183.2$ (c 1.0, CHCl₃), 94% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 10.5 min, t_{minor} = 13.1 min. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.75 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.61–7.56 (m, 2H), 7.53–7.45 (m, 2H), 7.40 (td, *J* = 7.3, 1.3 Hz, 1H), 7.23 (td, *J* = 7.6, 1.4 Hz, 1H), 7.08–7.04 (m, 1H), 7.01 (td, *J* = 7.5, 1.1 Hz, 1H), 6.97–6.91 (m, 2H), 3.56 (s, 1H), 0.86 (s, 6H), 0.71 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 162.1 (d, *J* = 246.6 Hz), 149.2, 139.9 (d, *J* = 3.1 Hz), 139.0, 138.4, 133.0, 132.4, 128.5, 127.3, 126.6 (d, *J* = 8.1 Hz), 124.9, 124.7, 124.2, 123.6, 117.4, 115.5 (d, *J* =

21.6 Hz), 83.7, 78.6, 24.4, 23.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.95 – -115.03 (m). HRMS m/z (DART+): Calculated for C₂₇H₂₆BFNO₃ ([M+H]⁺) 442.1990, found 442.1994.

(11S,11aR)-11a-methyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-11,11a-dihydro-5Hpyrido[2',3':3,4]pyrrolo[1,2-a]indol-5-one (**3X**)

Product was purified by silica flash chromatography, eluting with pentanes/ethyl acetate/DCM 10:1:1 (v/v/v). Product isolated as a white solid (58.7mg, 0.162 mmol), 81%, mp = 120–122 °C. $[\alpha]_D^{20} = +105.6$ (c 1.0, CHCl3), 82% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 12.4 min, t_{minor} = 8.5 min. ¹H NMR (500 MHz, CDCl₃) δ 8.72 (dd, *J* = 4.9, 1.6 Hz, 1H), 8.12 (dd, J = 7.7, 1.6 Hz, 1H), 7.68 (ddt, *J* = 7.7, 1.0, 0.5 Hz, 1H), 7.39 (dd, *J* = 7.7, 4.9 Hz, 1H), 7.27 (tdd, *J* = 7.6, 1.3, 0.6 Hz, 1H), 7.20 (ddt, *J* = 7.6, 1.4, 0.7 Hz, 1H), 7.08 (td, *J* = 7.5, 1.2 Hz, 1H), 3.01 (s, 1H), 1.71 (s, 3H), 0.86 (s, 6H), 0.71 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 169.7, 166.5, 152.5, 138.4, 137.9, 132.6, 127.4, 127.3, 124.9, 124.8, 123.1, 117.5, 83.4, 74.7, 27.0, 24.5, 23.7. HRMS m/z (DART+): Calculated for C₂₁H₂₄BN₂O₃ ([M+H]⁺) 363.1880, found 363.1878.

.80 f1 (ppm) . 150 . 70 . 60 . 40 Ċ

Totals :

5. Synthetic transformations of product 3a

Oxidation of 3a to 11-hydroxy-10b-methyl-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (4):

The oxidation was performed according to the literature procedure.³ In a reaction vial, **3a** (72.2 mg, 0.2 mmol) was dissolved in THF/H₂O (1:1, 2 mL). NaBO₃•4H₂O (153.9 mg, 1.0 mmol) was then added at room temperature. After stirred for 2 h, the reaction mixture was extracted three times with EtOAc, dried over MgSO₄, and filtered. The crude mixture was purified by flash column chromatography (SiO₂, ethyl acetate/ petroleum ether, 1:1) to afford the product **4** as a white solid (50.2 mg, 0.2 mmol), >99%, mp = 99–101 °C. $[\alpha]_D^{20} = +178.4$ (c 1.0, CHCl₃), 93% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 70/30, 0.8 mL/min, t_{major} = 11.1 min, t_{minor} = 6.4 min. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (td, *J* = 7.5, 1.0 Hz, 1H), 7.58 – 7.50 (m, 4H), 7.46 (td, *J* = 7.5, 1.0 Hz, 1H), 7.36 (td, *J* = 7.5, 1.0 Hz, 1H), 7.23 (td, *J* = 7.5, 1.0 Hz, 1H), 4.86 (s, 1H), 2.62 (s, 1H), 1.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 147.0, 139.2, 137.0, 133.1, 132.5, 130.4, 128.8, 126.7, 124.8, 124.4, 123.2, 117.8, 76.2, 76.0, 24.5. HRMS *m/z* (DART+): Calculated for C₁₆H₁₄NO₂ ([M+H]⁺): 252.1019, Found 252.1022.

³ Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem. Int. Ed. 2015, 54, 8809.

Oxidation of 4 to10b-methyl-6H-isoindolo[2,1-a]indole-6,11(10bH)-dione (5):⁴

In a reaction vial, alcohol **4** (50.3 mg, 0.2 mmol) was dissolved in CHCl₃ (2 mL). Pyridinium chlorochromate (64.7 mg, 0.6 mmol) was then added at room temperature. And the reaction mixture was heated to 35 °C and stirred overnight. The solvent was then removed under vacuum and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/pentanes 1:5 (v/v) to afford the product **7** as a white solid (42.4 mg, 0.17 mmol), 85%. $[\alpha]_D^{20} = +578.9$ (c 1.0, CHCl₃), 92% ee, [Daicel Chiralpak IA column (25 cm × 0.46 cm), *n*-hexane/*i*-PrOH = 90/10, 0.75 mL/min, t_{major} = 11.0 min, t_{minor} = 12.8 min. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 1H), 7.87–7.82 (m, 2H), 7.80 – 7.75 (m, 2H), 7.72 (td, *J* = 7.5, 1.0 Hz, 1H), 7.54 (td, *J* = 7.5, 1.0 Hz, 1H), 1.82 (s, 3H).

⁴ Liu, R.-R.; Wang, Y.-G.; Li, Y.-L.; Huang, B.-B.; Liang, R.-X.; Jia, Y.-X. Angew. Chem. Int. Ed. 2017, 56, 7475.

Procedure for the preparation of potassium trifluoro (10b-methyl-6-oxo-10b,11-dihydro-6Hisoindolo[2,1-a]indol-11-yl) borate 6:

The reaction was performed according to the literature procedure.⁵ To a solution of **3a** (144.5mg, 0.40 mmol) in MeOH (1 mL), a saturated aqueous solution of potassium hydrogen fluoride (4.5 M, 0.5 mL) was added dropwise and the mixture was stirred at room temperature for 4 h. The solvent was then removed in vacuo to afford a solid, which was dried under vacuum overnight. The solid was then washed by acetone (3×4.0 mL) and the collected organic phase was concentrated in vacuo to afford a concentrated acetone solution containing product (~1.0 mL). After addition of Et₂O (10 mL) to the acetone solution a precipitate was obtained, which was filtered and dried to give compound **6** as a white solid, Mp = 188-190 °C; 91% yield; ¹H NMR (500 MHz, CD₃OD) δ 7.73 (d, *J* = 7.5 Hz, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.60 – 7.55 (m, 1H), 7.52

⁵ Feng, Q.; Yang, K.; Song, Q.-L. Chem. Commun. 2015, 51, 15394.

(d, J = 8.0 Hz, 1H), 7.43 (t, J = 7.0 Hz, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.07–7.02 (m, 1H), 2.43 (d, J = 5.0 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (125 MHz, CD₃OD) δ 170.5, 154.0, 146.1, 138.6, 134.1, 132.7, 128.4, 126.9, 125.8, 125.7, 125.2, 124.2, 117.1, 76.8, 49.9, 30.2. HRMS *m/z* (ESI+): Calculated for C₁₆H₁₂BF₃NNaO ([M-K+Na]⁺): 325.0862, Found 325.0988.

Procedure for the preparation of *N*-(10b-methyl-6-oxo-10b,11-dihydro-6H-isoindolo[2,1a]indol-11-yl)acetamide (7):

The reaction was performed according to the literature procedure.⁶ To a dried Schlenk tube were added copper diacetate monohydrate (59.9 mg, 0.20 mmol) and **6** (58.5 mg, 0.20 mmol), 2.0 mL acetonitrile was then introduced via syringe. 2.0 equivalent boron trifluoride (in solution in ether, ca. 48% BF₃) was then added, and the tube was sealed using Teflon cap. The mixture was stirred 15 h at 100 °C (oil bath). The reaction media was poured in 5 mL of water and extracted with ethyl acetate (3×3 mL). The combined organic layers were washed with brine (5 mL) and dried over MgSO₄, filtered, and concentrated under reduce pressure. The crude was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:1 (v/v) to afford the product 7 as a white solid, Mp = 256-258 °C; 64% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.54 (m, 4H), 7.47 – 7.40 (m, 3H), 7.22 (td, *J* = 7.5, 1.0 Hz, 1H), 5.81 (d, *J* = 9.0 Hz, 1H), 5.43 (d, *J* = 9.0 Hz, 1H), 1.67 (s, 3H), 1.64 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.3, 168.3, 147.3, 139.4, 134.8, 132.8, 132.6, 130.2, 129.0, 126.9, 125.0, 124.4, 123.7, 117.5, 76.1, 56.6, 25.6, 22.6. HRMS *m/z* (ESI+): Calculated for C₁₈H₁₆N₂NaO₂ ([M+Na]⁺): 315.1104, Found 315. 1098.

⁶ Cazorla, C.; Métay, E.; Lemaire, M. Tetrahedron, 2011, 67, 8615.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

6. Single-crystal X-ray of 3a

7/11/2018

7/

checkCIF/PLATON report

No syntax errors found. Please wait while processing

Datablack: d1866a a

CIF dictionary Interpreting this report

Bond precisio	on: = 0	.0000 A	Wavelength=1	.54178	
Cell:	a=9.9629(2)	b=10.4616(2)	c=18.5419(3)		
	alpha=90	beta=90.923(1)	gamma=90		
Temperature::	150 K				
	Calcu	lated	Reported		
/olume	1932.	33(6)	1932.33(6)		
space group	P 21		P 21		
all group	P 2yb		P 2yb		
Noiety formu]	la C22 H	24 B N 03	C22 H24 B M	03	
Sum formula	C22 H	24 B N 03	C22 H24 B M	03	
1r	361.2	3	361.23		
Dx,g cm-3	1.242		1.242		
Z	4		4		
Mu (mm-1)	0.646		0.646		
-000	768.0		768.0		
F000'	770.2	4			
n,k,lmax	11,12	,22	11,12,22		
Nref	6984[3699]	6794		
Tmin,Tmax	0.877	,0.896	0.690,0.75	1	
ſmin'	0.851				
Correction me AbsCorr = MUl	ethod= # Repor LTI-SCAN	ted T Limits: Tmin=	0.690 Tmax=0.753		
ata complete	eness= 1.84/0.	97 Theta(max)	= 67.563		
R(reflections	s)= 0.0401(66	70) wR2(re	flections)= 0.1049(67	94)	
S = 1.043	Nn	ar= 947			
The following	g ALERTS were g	generated. Each ALE	RT has the format		
he following test-n lick on the Alert lev LAT089_ALERT Author Res Data at Th	g ALERTS were g name_ALERT_alen hyperlinks for vel A [_3_A Poor Data response: Data v	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 A 93% Note Both mo	RT has the format (Zmax < 18) with CuKalpha data.	3.85 Note Percentage of I>2sigg ic unit have whole	(1)
The following test-n click on the Alert lev PLATO89_ALERT Author Re: Data at Th molecule d	g ALERTS were f name_ALERT_ale(hyperlinks for vel A [3_A Poor Data esponse: Data v teta(Max) Still isorder and th	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 A 93% Note Both mo is increases the nun	RT has the format he test. (Zmax < 18) with CuKalpha data. lecules in the asymmetr aber of parameters.	3.85 Note Percentage of I>2sig ic unit have whole :kCIF/PLATON report	(1)
The following test-n tlick on the Alert lev LATO89 ALERT Author Re Data at Th molecule d	g ALERTS were hame_ALERT_ale: hyperlinks for vel A [3]A Poor Dat: asponse: Data v teta(Max) Still lisorder and th	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 / 93% Note Both mo is increases the nun	RT has the format (Zmax < 18) with CuKalpha data. Lecules in the asymmetr ber of parameters.	3.85 Note Percentage of I>2sig ic unit have whole :kCIF/PLATON report	(I)
The following test-n tick on the Alert lev Nuthor Re: Data at Th molecule d 2018 Alert leve	g ALERTS were g name_ALERT_aler hyperlinks for vel A I <u>3 A</u> Poor Data sponse: Data v teta(Max) Still lisorder and th	generated. Each ALE rt-type_alert-level more details of t a / Parameter Ratio vere collected 0.83 A 93% Note Both mo is increases the nun	RT has the format (Zmax < 18) (with CuKalpha data. Lecules in the asymmetr aber of parameters.	3.85 Note Percentage of I>2sig ic unit have whole :kCIF/PLATON report	(1)
The following test-n lick on the Alert lev PLATORS ALERT Author Re: Data at Th molecule d 2018 Alert leve AT911 ALERT	g ALERTS were g name_ALERT_aler hyperlinks for vel A [_3_A Poor Data sponse: Data w teta(Max) Still isorder and th	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 A 93% Note Both mo is increases the nun	RT has the format (Zmax < 18) with CuKalpha data. lecules in the asymmetr in the of parameters. chee in & STh/L= 0.600	3.85 Note Percentage of I>2sig ic unit have whole #CIF/PLATON report 53 Report	(1)
The following test-n click on the Alert leve Data at Th molecule d 2018 Alert leve Atent leve	g ALERTS were g name ALERT_alet hyperlinks for vel A L_3_A Poor Data sponse: Data v teta(Max) Still lisorder and th el C Missing FC	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 / 93% Note Both mo is increases the nun CF Refl Between Thm	RT has the format (Zmax < 18) with CuKalpha data. lecules in the asymmetr lecules in the asymmetr ber of parameters. cher in & STh/L= 0.600	3.85 Note Percentage of I>2sig ic unit have whole :KCIF/PLATON report 53 Report	(1)
The following test-n lick on the Alert leve Author Re: Data at Th molecule d 2018 Alert leve AT911 ALERT Alert leve	g ALERTS were g hame_ALERT_aler hyperlinks for vel A A Poor Data reponse: Data v teta(Max) Still lisorder and th	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 A 93% Note Both mo is increases the nun	RT has the format	3.85 Note Percentage of I>2sig ic unit have whole :::KCIF/PLATON report 53 Report	(1)
The following test-n lick on the Alert lev Data98 ALERT Author Rec Data at Th molecule d 2018 Alert leve AT911 ALERT Alert leve AT902 ALERT	ALERTS were in anne ALERT aler name ALERT aler hyperlinks for vel A L.3.A Poor Data sponse: Data v teta(Max) Still lisorder and th el C 3.C Missing FC el G 2.6 Number of	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 A 93% Note Both mo is increases the nun CF Refl Between Thm Distance or Angle	RT has the format	3.85 Note Percentage of I>2sig ic unit have whole KCIF/PLATON report 53 Report	(1)
the following test-n ilick on the Alert leve Data at Th molecule d 2018 Alert leve Alert leve Alert leve Alert leve Alert leve Alert leve	ALERTS were (hame_ALERT_ale) hyperlinks for vel A I_3_A Poor Data sponse: Data v teta(Max) Still isorder and th el C 3_C Missing FC el G 2_G Number of 4_G the CUT	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 / 93% Note Both mo is increases the nun CF Refl Between Thm Distance or Angle Uiso or Uij Restra	RT has the format	3.85 Note Percentage of I>2sig ic unit have whole %CIF/PLATON report 53 Report 108 Note 108 Report	(1)
The following test-n lick on the Alert lev Author Re: Data at Th molecule d 2018 Alert leve AT911 ALERT Alert leve AT902 ALERT AI003 ALERT A1003 ALERT	s ALERTS were g hame_ALERT_aler hyperlinks for vel A A Poor Data sponse: Data v teta(Max) Still lisorder and th el C <u></u> Missing FC el G <u></u> Number of <u></u> G Number of <u></u> G the CIF_ER	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 A 93% Note Both mo is increases the nun CF Refl Between Thm Distance or Angle Uiso or Uij Restra mbedded .res File C	RT has the format (Zmax < 18) with CuKalpha data. lecules in the asymmetry inter of parameters.	3.85 Note Percentage of I>2sig ic unit have whole KCIF/PLATON report 53 Report 108 Note 108 Report 2 Report	(1)
The following test-n click on the Alert leve Data at Th molecule d 2018 Alert leve AT911 ALERT Alert leve AT902 ALERT AT903 ALERT AT175 ALERT AT175 ALERT AT173 ALERT	ALERTS were (ane ALERT_alet hyperlinks for vel A 	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 A 93% Note Both mo is increases the num Distance or Angle Uiso or Uij Restra mbedded .res File C mbedded .res File C	RT has the format	3.85 Note Percentage of I>2sig ic unit have whole KCIF/PLATON report 53 Report 108 Note 108 Report 2 Report 2 Report 5 4 S u	(1)
the following test-n ilick on the Alert leve Data at Th molecule d 2018 Alert leve Alert leve Alert Alert Alert Alert Alert Alert Alert Alert	s ALERTS were g hame_ALERT_aler hyperlinks for vel A A Poor Dat: sponse: Data v teta(Max) Still lisorder and th el C C Missing FC el G S Number of S Number ofS Number of S Number ofS Number of _	generated. Each ALE rt-type_alert-level r more details of t a / Parameter Ratio vere collected 0.83 / 93% Note Both mo is increases the num Distance or Angle Uiso or Uij Restra mbedded .res File C mbedded .res File C Test Diff for 02 due Disorder2	RT has the format	3.85 Note Percentage of I>2sig ic unit have whole KCIF/PLATON report 53 Report 108 Note 108 Report 2 Report 2 Report 6.4 s.u. 100% Note	(1)

44.32 Check

107.2 Degree

And y other FLAT353 Alerts PLAT220 ALERT 4 G Number of Unusual/Non-Standard Labels PLAT251 ALERT 4 G Nodel has Chirality at C1A (Chiral SPGR) And 3 other PLAT791 Alerts 16 Note R Verify More ... <u>PLAT860 ALERT 3 G</u> Number of Least-Squares Restraints <u>PLAT909 ALERT 3 G</u> Percentage of I>2sig(I) Data at Theta(Max) Still <u>PLAT978 ALERT 2 G</u> Number C-C Bonds with Positive Residual Density. More 2087 Note 93% Note 5 Info 1 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 29 ALERT level G = General information/check it is not something unexpected Ø ALERT type 1 CIF construction/syntax error, inconsistent or missing data
12 ALERT type 2 Indicator that the structure model may be wrong or deficient
8 ALERT type 3 Indicator that the structure quality may be low
11 ALERT type 4 Improvement, methodology, query or suggestion
Ø ALERT type 5 Informative message, check

And 5 other PLAISD Alerts More ... <u>PLAIS04 ALERT 4 6</u> Non-Integer Number of Atoms in Resd 1 And 3 other PLAI304 Alerts

More ... <u>PLAT395 ALERT 2 G</u> Deviating X-O-Y Angle From 120 for 02A And 7 other PLAT395 Alerts

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more scrious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual