Hydroxy Group-Enabled Highly Regio- and Stereo-selective

Hydrocarboxylation of Alkynes

Chaofan Huang,^a Hui Qian,^a Wanli Zhang,^{a*} and Shengming Ma^{a,b*}

^a Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China

General information	S2
Screening of palladium catalyst, ligand, reaction temperature and solvent	S3-S5
Experimental details and analytical data	S6-S41
Synthetic applications	S41-S44
Mechanistic studies	S44-S63
References	S64
¹ H, ¹³ C, ¹⁹ F NMR, and HPLC spectra of the products	S64-S230

General Information. NMR spectra were taken with an Agilent-400 spectrometer (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR) in CDCl₃ or d_6 -DMSO. All ¹H NMR experiments were measured with tetramethylsilane (0 ppm) in CDCl₃ or the signal of residual DMSO (2.50 ppm) in d_6 -DMSO as the internal reference; ¹³C NMR experiments were measured in relative to the signal of CDCl₃ (77.0 ppm) or the signal of d_6 -DMSO (39.52 ppm); ¹⁹F NMR experiments were measured in relative to the signal of CFCl₃ (0 ppm) in CDCl₃. All reactions were carried out in flame-dried Schlenk tubes. Pd(TFA)₂ was purchased from J&K Chemicals, Merver Chemical Technology CO., Ltd, and Macklin Biochemical Co., Ltd; DPEphos was purchased from Acros Organics or Energy Chemical; 2,2'-Bis(dicyclohexylphosphino)-1,1'-biphenyl was purchased from Strem Chemicals, Inc.; (PhO)₂POOH was purchased from Energy Chemical and purified through stirring with 1 N HCl, extracting with dichloromethane, and removing solvents under vacuum; MeOH was purchased from Sinopharm Chemical Reagent Co., Ltd; "BuLi was purchased from Energy Chemical and Infinity Scientific (Beijing) Co. Ltd. Petroleum ether (b.p. 60-90 °C) was purchased from Shanghai Titan Scientific Co., Ltd. Toluene was dried over sodium wire with benzophenone as the indicator and distilled freshly before use. THF was dried over sodium wire. The reaction should be conducted in a hood working efficiently due to the toxicity of CO gas. All the temperatures are referred to the oil baths used. Recoveries of substrates were determined by ¹H NMR analysis using dibromomethane as the internal standard. The starting propargylic alcohols were synthesized according to the reported procedures.¹

	Li Q (PhO	[Pd] (4 mol%) gand (6 mol%)) ₂ POOH (5 mol%) eOH (8.0 equiv.)	6) H	CO ₂ Me
N-	//	oluene (5 mL)) balloon, 80 °C	ЮН N (<i>E</i>)-	
Entry	[Pd]	Ligand	NMR yield of (<i>E</i>)- 2a (%) ^{<i>b</i>}	Recovery of $1a (\%)^{b}$
1	$[PdCl(\pi-allyl)]_2$	DPEphos	66	25
2	$Pd_2(dba)_3$	DPEphos	57	34
3	$Pd(t-Bu_2-PPh)_2$	DPEphos	78	12
4	$Pd(PPh_3)_4$	DPEphos	82	15
5	$Pd(PPh_3)_2Cl_2$	DPEphos	-	99
6	$Pd(TFA)_2$	DPEphos	82	6
7	$Pd(OAc)_2$	DPEphos	70	4
8	PdCl ₂	DPEphos	2	86
9	PdBr ₂	DPEphos	5	95
10	$[PdCl(\pi-cinamyl)]_2$	DPEphos	46	44
11	$Pd(acac)_2$	DPEphos	59	25
12	$Pd(TFA)_2$	BINAP	26	67
13	$Pd(TFA)_2$	DPPB	33	43
14	$Pd(TFA)_2$	L_1	32	69
15	$Pd(TFA)_2$	L_2	6	54
$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & $				

Table S1 Screening of palladium catalyst and ligand for substrate 1a^{*a*}

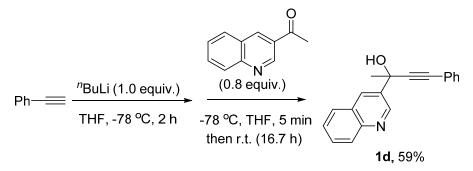
^{*a*} **Condition A**: **1a** (1.0 mmol), [Pd] (4 mol%), ligand (6 mol%), (PhO)₂POOH (5 mol%), MeOH (8.0 mmol), CO balloon, toluene (5 mL), 80 °C, 16 h. ^{*b*} Determined by ¹H NMR analysis using CH₂Br₂ as the internal standard.

Table S2 Screening of temperature ^a

HO	——Ph 1a	Pd(TFA) ₂ (4 mol%) DPEphos (6 mol%) (PhO) ₂ POOH (5 mol%) MeOH (8.0 equiv.) Toluene (5 mL) CO balloon, T °C	H CO ₂ Me OH Ph (<i>E</i>)- 2 a
Entry	T / °C	NMR yield of (E)-2a (%) b	Recovery of $1a (\%)^{b}$
1	80	82	6
2	85	9	68
3	70	90	-
4	60	90	-
5	50	45	53
6 ^c	60	89	-

^{*a*} Condition A: 1a (1.0 mmol), Pd(TFA)₂ (4 mol%), DPEphos (6 mol%), (PhO)₂POOH (5 mol%), MeOH (8.0 mmol), CO balloon, toluene (5 mL), 80 °C, 16 h. ^{*b*} Determined by ¹H NMR analysis using CH₂Br₂ as the internal standard. ^{*c*} The reaction was carried out without (PhO)₂POOH.

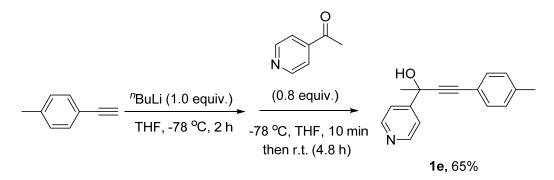
но	——————————————————————————————————————	[Pd] (4 mol Ligand (6 mo MeOH (8.0 eo	ol%)	H CO ₂ Me	PCy ₂
<i>n</i> -C₅H ₁₁		Toluene (5.0	,	$C_5H_{11} OH$ Ph	PCy ₂
1	k	CO balloon, 6	50 °C	(<i>E</i>)- 2 k	
				<i>、</i> ,	L ₁
Entry	[Pd]	Ligand	T/°C	NMR yield of (<i>E</i>)-2k	Recovery
	[Iu]	Ligand	17 C	(%) ^b	of 1k (%) ^b
1^{c}	$Pd(TFA)_2$	DPEphos	60	35	-
2^{c}	$Pd(TFA)_2$	DPEphos	50	49	-
3 ^c	$Pd(TFA)_2$	DPEphos	40	28	48
4	PdCl ₂	DPEphos	50	-	93
5	$Pd(OAc)_2$	DPEphos	50	4	97
6	$Pd(PPh_3)_4$	DPEphos	50	-	96
7	$Pd(TFA)_2$	PPh ₃	60	4	90
8	$Pd(TFA)_2$	Zhedaphos	50	1	100
9	$Pd(TFA)_2$	Sphos	50	11	88
10	$Pd(TFA)_2$	BINAP	50	40	44
11	$Pd(TFA)_2$	Xantphos	50	10	70
12	$Pd(TFA)_2$	DPPB	50	17	66
13	$Pd(TFA)_2$	DPPP	50	20	67
14	$Pd(TFA)_2$	DPPF	50	2	94
15	$Pd(TFA)_2$	$\mathbf{L_1}$	50	58	46
16	$Pd(TFA)_2$	BIPHEP	50	5	96
17 ^{c,d}	$Pd(TFA)_2$	\mathbf{L}_{1}	50	79	18
$18^{c,d}$	$Pd(TFA)_2$	L_1	60	95	trace
19 ^{<i>c,d,e</i>}	$Pd(TFA)_2$	L_1	60	77	trace
19 ^{<i>c,d,f</i>}	$Pd(TFA)_2$	L_1	60	99(95)	-


Table S3 Screening of palladium catalyst and ligand for substrate 1k^{*a*}

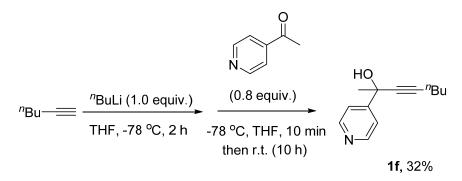
^{*a*} **Conditions B**: **1k** (0.4 mmol), [Pd] (4 mol%), ligand (6 mol%), MeOH (8.0 mmol), CO balloon, toluene (5.0 mL), 16 h. ^{*b*} Yield and recovery were determined by ¹H NMR analysis using CH₂Br₂ as the internal standard, and the isolated yield is shown in the parentheses. ^{*c*} The reaction scale was 1.0 mmol. ^{*d*} The reaction time was extended to 24 h. ^{*e*} The reaction was carried out with 16.0 mmol of MeOH.

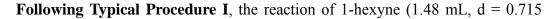
Experimental details and analytical data

1. Synthesis of propargylic alcohols

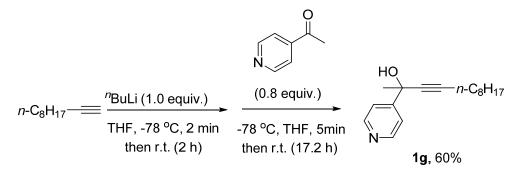

(1) Preparation of 4-phenyl-2-(quinolin-3-yl)but-3-yn-2-ol (1d)¹ (hcf-1-185)

Typical Procedure I: To an oven-dried flask (100 mL) were added phenylacetylene (2.80 mL, d = 0.93 g/mL, 2.6040 g, 25 mmol) and THF (50 mL). Then a solution of ⁿBuLi (2.5 M in hexane, 10 mL, 25 mmol) was added dropwise at -78 °C over 5 min. under argon. After being stirred at -78 °C for 2 h, a solution of 1-(quinolin-3-yl)ethan-1-one (3.5298 g, 20 mmol) in THF (10 mL) was added dropwise over 5 min. The resulting mixture was warmed up to room temperature, stirred for 16.7 h, and quenched with a saturated aqueous solution of NH₄Cl (10 mL). After extraction with ethyl acetate (40 mL x 3), the organic layer was dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford 1d (3.3012 g, 59%) [eluent: dichloromethane/ethyl acetate = 20/1 (1050 mL), 10/1 (1100 mL), 1/1 (1000 mL)]: brown solid, m.p. 135.6-136.1 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃): $\delta = 9.24$ (s, 1 H, Ar-H), 8.44 (s, 1 H, Ar-H), 8.12 (d, J = 8.0 Hz, 1 H, Ar-H), 7.80 (d, J = 6.4 Hz, 1 H, Ar-H), 7.73-7.59 (m, 1 H, Ar-H), 7.59-7.47 (m, 1 H, Ar-H), 7.47-7.38 (m, 2 H, Ar-H), 7.38-7.18 (m, 3 H, Ar-H), 4.48-3.88 (br, 1 H, OH), 1.95 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.8, 147.0, 138.6, 131.7, 129.5, 128.7, 128.6, 128.3, 128.1, 127.4, 126.9, 122.1, 127.4, 126.9, 122.1, 127.4, 126.9, 122.1, 127.4, 126.9, 122.1, 127.4, 126.9, 128.4, 128$ 91.7, 85.6, 68.7, 33.2; **MS** (70 eV, EI) m/z (%): 274 (M⁺+1, 13.85), 273 (M⁺, 60.93), 230 (100); **IR** (neat): *v* = 3111, 2990, 2931, 2813, 2232, 1574, 1494, 1421, 1177, 1093, 1056 cm⁻¹; Anal. Calcd. for C₁₉H₁₅NO: C 83.49, H 5.53, N 5.12; found C 83.49, H

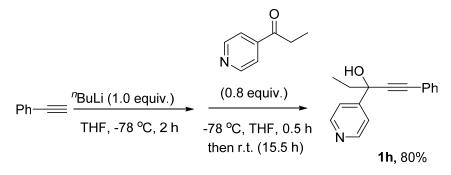

5.60, N 5.20.

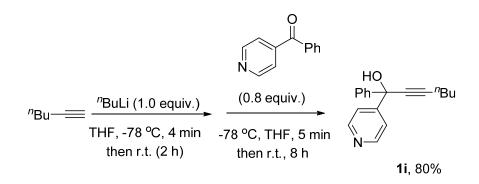

(2) Preparation of 2-(pyridin-4-yl)-4-(p-tolyl)but-3-yn-2-ol (1e)¹ (hcf-1-146)

Following Typical Procedure I, the reaction of 4-methylphenylacetylene (1.4825 g, 12.5 mmol)/THF (30 mL), ^{*n*}BuLi (2.5 M in hexane, 5 mL, 12.5 mmol), and 1-(pyridin-4-yl)ethan-1-one (1.11 mL, d = 1.095 g/mL, 1.2154 g, 10 mmol)/THF (30 mL) afforded **1e** (1.5424 g, 65%): [eluent: petroleum ether/ethyl acetate = 3/1 (1000 mL), 1/1 (1000 mL), then recrystallization (petroleum ether/ethyl acetate)]: white solid, m.p. 151.2-151.9 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃): δ = 8.59-8.51 (m, 2 H, Ar-H), 7.65-7.57 (m, 2 H, Ar-H), 7.33 (d, *J* = 7.6 Hz, 2 H, Ar-H), 7.12 (d, *J* = 8.0 Hz, 2 H, Ar-H), 4.35-4.05 (br, 1 H, OH), 2.35 (s, 3 H, CH₃), 1.82 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 155.2, 149.5, 138.9, 131.6, 129.1, 120.1, 119.0, 90.6, 85.4, 69.2, 33.1, 21.5; MS (70 eV, EI) *m/z* (%): 238 (M⁺+1, 3.00), 237 (M⁺, 17.78), 222 (100); IR (neat): *v* = 3154, 3036, 2976, 2918, 2857, 2235, 1600, 1422, 1142, 1001 cm⁻¹; Anal. Calcd. for C₁₆H₁₅NO: C 80.98, H 6.37, N 5.90; found C 80.85, H 6.38, N 5.82.


(3) Preparation of 2-(pyridin-4-yl)oct-3-yn-2-ol (1f)¹ (hcf-2-147)

g/mL, 1.0582 g, 12.5 mmol)/THF (30 mL), "BuLi (2.5 M in hexane, 5 mL, 12.5 mmol), and 1-(pyridin-4-yl)ethan-1-one (1.11 mL, d = 1.095 g/mL, 1.2045 g, 12.5 mmol)/THF (10 mL) afforded 1f (0.6505 g, 32%) [eluent: petroleum ether/ethyl acetate = 3/1 (1000 mL), 1/1 (1000 mL), then recrystallization (petroleum ether/dichloromethane)]: yellow solid, m.p. 60.9-61.6 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.51-8.38$ (m, 2 H, Ar-H), 7.62-7.52 (m, 2 H, Ar-H), 5.69 (brs, 1 H, OH), 2.24 (t, J = 6.8 Hz, 2 H, CH₂), 1.71 (s, 3 H, CH₃), 1.57-1.29 (m, 4 H, 2 x CH₂), 0.89 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 155.8, 149.2, 120.2, 85.9, 82.8, 68.7, 33.4, 30.6, 21.9, 18.3, 149.2, 120$ 13.5; **MS** (70 eV, EI) m/z (%): 203 (M⁺, 1.90), 188 (100); **IR** (neat): v = 3088, 3052,2957, 2928, 2868, 2239, 1602, 1414, 1185, 1113, 1005 cm⁻¹; Anal. Calcd. for C₁₃H₁₇NO: C 76.81, H 8.43, N 6.89; found C 76.72, H 8.30, N 6.92.

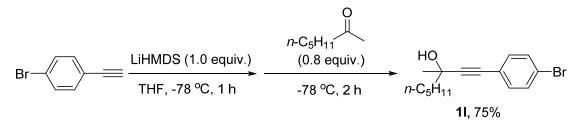

(4) Preparation of 2-(pyridin-4-yl)dec-3-yn-2-ol (1g)¹ (hcf-2-11)


Typical Procedure II: To an oven-dried flask (100 mL) were added 1-decyne (2.30 mL, d = 0.767 g/mL, 1.7641 g, 12.5 mmol) and THF (20 mL). Then a solution of ^{*n*}BuLi (2.5 M in hexane, 5 mL, 12.5 mmol) was added dropwise at -78 °C over 2 min. under argon. Then the reaction mixture was warmed up to room temperature. After stirring at room temperature for 2 h, the mixture was cooled to -78 °C, then a solution of 1-(quinolin-3-yl)ethan-1-one (3.5298 g, 20 mmol) in THF (10 mL) was added dropwise over 5 min. The resulting mixture was warmed up to room temperature, stirred for 17.2 h, and quenched with a saturated aqueous solution of NH₄Cl (10 mL). After extraction with ethyl acetate (40 mL x 3), the organic layer was dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford **1g**

(1.5598 g, 60%) as an oil [eluent: dichloromethane/ethyl acetate = 5/1 (600 mL), 3/1 (400 mL), 1/1 (200 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 8.55 (d, *J* = 6.0 Hz, 2 H, Ar-H), 7.54 (dd, *J*₁ = 4.8 Hz, *J*₂ = 1.60 Hz, 2 H, Ar-H), 3.29 (brs, 1 H, OH), 2.26 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.71(s, 3 H, CH₃), 1.59-1.47 (m, 2 H, CH₂), 1.44-1.19 (m, 10 H, 5 x CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 155.9, 149.2, 120.2, 86.0, 82.8, 68.6, 33.3, 31.7, 29.1, 29.0, 28.8, 28.5, 22.6, 18.6, 14.0; **MS** (70 eV, EI) *m/z* (%): 259 (M⁺, 2.46), 244 (100); **IR** (neat): *v* = 3151, 2924, 2854, 2243, 1600, 1463, 1413, 1104, 1064, 1004 cm⁻¹; **HRMS** calcd for C₁₇H₂₅NO [M⁺]: 259.1936, found: 259.1934.

```
(5) Preparation of 1-phenyl-3-(pyridin-4-yl)pent-1-yn-3-ol (1h)<sup>1</sup> (hcf-1-164)
```

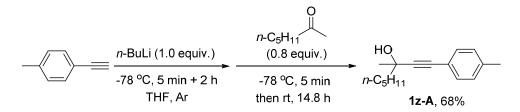

Following Typical Procedure I, the reaction of phenylacetylene (5.60 mL, d =0.93 g/mL, 5.2080 g, 50 mmol)/THF (50 mL), "BuLi (2.5 M in hexane, 20 mL, 50 mmol), and 1-(pyridin-4-yl)propan-1-one (5.33 mL, d = 1.034 g/mL, 5.5112 g, 40 mmol)/THF (20 mL) afforded 1h (7.6483 g, 80%) [recrystallization (petroleum ether/dichloromethane)]: brown solid: m.p. 108.6-110.1 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.49$ (d, J = 2.4 Hz, 2 H, Ar-H), 7.65-7.52 (m, 2 H, Ar-H), 7.48-7.38 (m, 2 H, Ar-H), 7.38-7.27 (m, 3 H, Ar-H), 5.08 (brs, 1 H, OH), 2.11-1.89 (m, 2 H, CH₂), 1.02 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃): $\delta = 154.4$, 149.1, 131.7, 128.6, 128.3, 122.2, 120.8, 90.4, 86.2, 72.8, 38.2, 8.8; **MS** (70 eV, EI) m/z (%): 237 (M⁺, 1.61), 208 (100); **IR** (neat): v = 3128, 3056, 2969, 2931, 2872, 2223, 1600, 1453, 1429, 1130, 1070, 1002 cm⁻¹; Anal. Calcd. for C₁₆H₁₅NO: C 80.98, H 6.37, N 5.90; found C 80.92, H 6.51, N 6.09. (6) Preparation of 1-phenyl-1-(pyridin-4-yl)hept-2-yn-1-ol (1i)¹ (hcf-1-188)


Following Typical Procedure II, the reaction of 1-hexyne (2.96 mL, d = 0.715 g/mL, 2.1164 g, 25 mmol)/THF (50 mL), ^{*n*}BuLi (2.5 M in hexane, 10 mL, 25 mmol), and phenyl(pyridin-4-yl)methanone (3.7020 g, 20 mmol)/THF (10 mL) afforded **1i** (4.2988 g, 80%) [recrystallization (petroleum ether/ethyl acetate)]: white solid, m.p. 123.5-124.0 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃): δ = 8.45 (d, *J* = 6.4 Hz, 2 H, Ar-H), 7.59 (d, *J* = 6.8 Hz, 2 H, Ar-H), 7.50 (d, *J* = 6.0 Hz, 2 H, Ar-H), 7.38-7.21 (m, 3 H, Ar-H), 4.18 (s, 1 H, OH), 2.32 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.61-1.49 (m, 2 H, CH₂), 1.48-1.35 (m, 2 H, CH₂), 0.91(t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 155.0, 149.1, 144.5, 128.3, 127.8, 125.9, 120.8, 88.7, 82.0, 73.2, 30.5, 21.9, 18.5, 13.5; MS (70 eV, EI) *m/z* (%): 266 (M⁺+1, 2.87), 265 (M⁺, 9.93), 208 (100); **IR** (neat): *v* = 3081, 3052, 2961, 2930, 2873, 2830, 2240, 1599, 1449, 1145, 1042, 1003 cm⁻¹; Anal. Calcd. for C₁₈H₁₉NO: C 81.47, H 7.22, N 5.28; found C 81.40, H 7.42, N 5.27.

(7) Preparation of 2-(4-nitrophenyl)dec-3-yn-2-ol $(1j)^{1}$ (hcf-2-52)

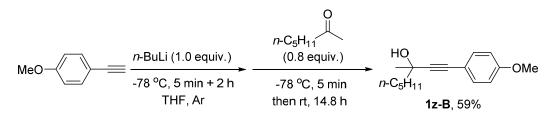

Following Typical Procedure I, the reaction of 1-octyne (3.0 mL, d = 0.746 g/mL, 2.2380 g, 20 mmol)/THF (20 mL), "BuLi (2.5 M in hexane, 8.0 mL, 20 mmol), and 1-(4-nitrophenyl)ethan-1-one (2.6950 g, 16 mmol)/THF (10 mL) afforded 1j (2.4635 g, 81%) as a yellow oil [eluent: petroleum ether 200 mL, petroleum ether

/ethyl acetate = 20/1 (800 mL)]: ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.20$ (d, J = 8.8 Hz, 2 H, Ar-H), 7.82 (d, J = 8.8 Hz, 2 H, Ar-H), 2.46 (s, 1 H, OH), 2.27 (t, J = 7.0 Hz, 2 H, CH₂), 1.75 (s, 3 H, CH₃), 1.59-1.49 (m, 2 H, CH₂), 1.45-1.24 (m, 6 H, 3 x CH₂), 0.90 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.3$, 147.2, 126.0, 123.5, 86.9, 82.6, 69.6, 33.8, 31.2, 28.5, 28.4, 22.5, 18.6, 14.0; MS (ESI) *m/z*: 298 (M+Na⁺), 258 (M-OH)⁺; **IR** (neat): v = 3415, 2929, 2858, 2244, 1603, 1518, 1343, 1087, 1014 cm⁻¹; **HRMS** calcd for C₁₆H₂₂NO₃ [M+H⁺]: 276.1594, found: 276.1593. (8) **Preparation of 1-(4-bromophenyl)-3-methyloct-1-yn-3-ol (11)** ¹ (hcf-2-56)

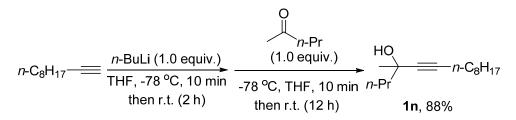

Following Typical Procedure I, the reaction of 4-bromophenylacetylene (3.7341 g, 20 mmol)/THF (30 mL), LiHMDS (1.0 M in tetrahydrofuran, 20 mL, 20 mmol), and heptan-2-one (2.25 mL, d = 0.82 g/mL, 1.8450 g, 16 mmol)/THF (10 mL) afforded **11** (3.5417 g, 75%) as a yellow oil [eluent: petroleum ether (200 mL), petroleum ether /ethyl acetate = 20/1 (1050 mL)]: **¹H NMR** (400 MHz, CDCl₃): δ = 7.43 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.27 (d, *J* = 8.4 Hz, 2 H, Ar-H), 2.03 (s, 1 H, OH), 1.80-1.67 (m, 2 H, CH₂), 1.63-1.48 (m, 5 H, CH₂ and CH₃), 1.43-1.27 (m, 4 H, 2 x CH₂), 0.91 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 133.0, 131.5, 122.4, 121.7, 94.1, 82.2, 68.6, 43.6, 31.8, 29.7, 24.4, 22.5, 14.0; MS (70 eV, EI) *m/z* (%): 296 (M⁺ (⁸¹Br), 4.75), 294 (M⁺ (⁷⁹Br), 5.02), 223 (100); **IR** (neat): *v* = 3349, 2954, 2931, 2860, 1485, 1462, 1370, 1128, 1070, 1010 cm⁻¹; **HRMS** calcd for C₁₅H₁₉⁷⁹BrO [M⁺]: 294.0619, found: 294.0617.

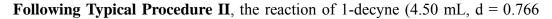
(9) Preparation of 1-(methoxycarbonylphenyl)-3-methyloct-1-yn-3-ol (1y)¹ (hcf-3-138)

Following Typical Procedure I, the reaction of methyl 4-ethynylbenzoate (3.3029 g, 20 mmol)/THF (30 mL), LiHMDS (1.3 M in tetrahydrofuran, 15.4 mL, 20 mmol), and heptan-2-one (2.3 mL, d = 0.82 g/mL, 1.886 g, 16 mmol)/THF (10 mL) afforded **1y** (2.1314 g, 48%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL), 10/1 (1100 mL), 5/1 (600 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.46 (d, *J* = 8.8 Hz, 2 H, Ar-H), 3.92 (s, 3 H, CO₂Me), 2.18-2.02 (m, 1 H, OH), 1.82-1.68 (m, 2 H, CH₂), 1.67-1.46 (m, 5 H, CH₂ and CH₃), 1.43-1.26 (m, 4 H, 2 x CH₂), 0.92 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 166.5, 131.6, 129.5, 129.4, 127.6, 96.1, 82.5, 68.7, 52.2, 43.6, 31.9, 29.7, 24.4, 22.5, 14.0; MS (70 eV, EI) *m/z* (%): 274 (M⁺, 1.53), 203 (100); **IR** (neat): *v* = 3436, 2953, 2934, 2870, 1724, , 1605, 1436, 1273, 1175, 1107 cm⁻¹; **HRMS** calcd for C₁₇H₂₂O₃ [M]⁺: 274.1569, found: 274.1573.

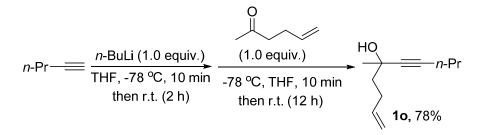

(10) Preparation of 1-(4-methylphenyl)-3-methyloct-1-yn-3-ol (1z-A)¹ (hcf-3-139)

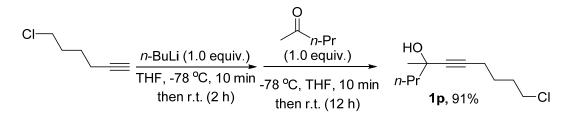
Following Typical Procedure I, the reaction of 4-methylphenylacetylene (2.6 mL, d = 0.916 g/mL, 2.3816 g, 20 mmol)/THF (30 mL), ^{*n*}BuLi (2.5 M in tetrahydrofuran, 8 mL, 20 mmol), and heptan-2-one (2.3 mL, d = 0.82 g/mL, 1.886 g, 16 mmol)/THF (10 mL) afforded **1z-A** (2.5351 g, 68%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL), 20/1 (1050 mL), 10/1 (550 mL)]: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30$ (d, J = 8.0 Hz, 2 H, Ar-H), 7.10 (d, J = 8.0 Hz, 2 H, Ar-H), 2.34 (s, 3 H, CH₃), 2.03-1.96 (m, 1 H, OH), 1.79-1.66 (m, 2 H, CH₂), 1.62-1.46 (m, 5 H, CH₂)


and CH₃), 1.41-1.26 (m, 4 H, 2 x CH₂), 0.91 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 138.3$, 131.5, 129.0, 119.7, 92.3, 83.3, 68.7, 43.8, 31.9, 29.9, 24.4, 22.6, 21.4, 14.0; **MS** (70 eV, EI) m/z (%): 231 (M⁺+1, 1.62), 230 (M⁺, 3.97), 159 (100); **IR** (neat): v = 3357, 2954, 2932, 2861, 1509, 1456, 1370, 1129, 1040 cm⁻¹; **HRMS** calcd for C₁₆H₂₂O [M]⁺: 230.1665, found: 230.1665.

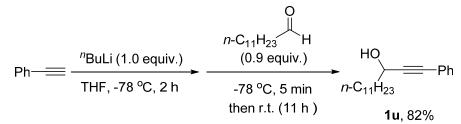

(11) Preparation of 1-(4-methoxyphenyl)-3-methyloct-1-yn-3-ol (1z-B) ¹ (hcf-3-140)

Following Typical Procedure I, the reaction of 4-methoxyphenylacetylene (2.6 mL, d = 1.019 g/mL, 2.6494 g, 20 mmol)/THF (30 mL), ^{*n*}BuLi (2.5 M in tetrahydrofuran, 8 mL, 20 mmol), and heptan-2-one (2.3 mL, d = 0.82 g/mL, 1.886 g, 16 mmol)/THF (10 mL) afforded **1z-B** (2.3524 g, 59%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL), 20/1 (1050 mL), 10/1 (550 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.35 (d, *J* = 8.8 Hz, 2 H, Ar-H), 6.82 (d, *J* = 8.8 Hz, 2 H, Ar-H), 3.80 (s, 3 H, OCH₃), 2.07-1.97 (m, 1 H, OH), 1.79-1.65 (m, 2 H, CH₂), 1.64-1.46 (m, 5 H, CH₂ and CH₃), 1.43-1.25 (m, 4 H, 2 x CH₂), 0.91 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 159.5, 133.1, 114.9, 113.9, 91.6, 83.1, 68.7, 55.3, 43.8, 31.9, 29.9, 24.4, 22.6, 14.0; MS (70 eV, EI) *m/z* (%): 246 (M⁺, 11.93), 175 (100); **IR** (neat): *v* = 3393, 2955, 2933, 2870, 2227, 1606, 1509, 1465, 1288, 1245, 1031 cm⁻¹; **HRMS** calcd for C₁₆H₂₂O₂ [M]⁺: 246.1614, found: 246.1621.


(12) Preparation of 4-methyltetradec-5-yn-4-ol (1n)¹ (zwl-11-164)

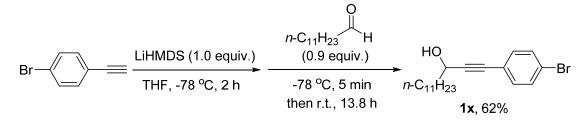

g/mL, 3.4470 g, 25 mmol) in THF (30 mL), ^{*n*}BuLi (2.5 M in hexane, 10 mL, 25 mmol), and 2-pentanone (2.70 mL, d = 0.809 g/mL, 2.1843 g, 25 mmol) in THF (20 mL) afforded **1n** (4.1919 g, 88%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1]: ¹**H NMR** (400 MHz, CDCl₃): δ = 2.18 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.97-1.85 (m, 1 H, OH), 1.65-1.57 (m, 2 H, CH₂), 1.57-1.42 (m, 7 H, CH₃ and 2 x CH₂), 1.42-1.20 (m, 10 H, 5 x CH₂), 0.96 (t, *J* = 7.2 Hz, 3 H, CH₃), 0.88 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃): δ = 84.1, 83.7, 68.3, 46.2, 31.8, 30.1, 29.2, 29.0, 28.8, 28.7, 22.6, 18.6, 18.1, 14.2, 14.1; **MS** (ESI) *m/z*: 239 (M+MeOH-OH)⁺, 225 (M+H)⁺, 207 (M-OH)⁺; **IR** (neat): *v* = 3375, 2926, 2856, 2236, 1461, 1370, 1131, 1051, 1012 cm⁻¹; **HRMS** calcd for C₁₅H₂₉O [M+H⁺]: 225.2213, found: 225.2212.

(13) Preparation of 5-methyldec-1-en-6-yn-5-ol (10)¹ (zwl-11-166)


Following Typical Procedure II, the reaction of 1-pentyne (2.50 mL, d = 0.691 g/mL, 1.7275 g, 25 mmol) in THF (30 mL), ^{*n*}BuLi (2.5 M in hexane, 10 mL, 25 mmol), and 5-hexen-2-one (2.90 mL, d = 0.847 g/mL, 2.4563 g, 25 mmol) in THF (20 mL) afforded **10** (3.2455 g, 78%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1]: ¹H NMR (400 MHz, CDCl₃): δ = 5.94-5.81 (m, 1 H, =CH), 5.07 (dd, J_1 = 17.2 Hz, J_2 = 1.6 Hz, 1 H, =CH₂), 4.97 (d, J = 10.4 Hz, 1 H, =CH₂), 2.39-2.20 (m, 2 H, CH₂), 2.18 (t, J = 7.0 Hz, 2 H, CH₂), 2.07-2.00 (m, 1 H, OH), 1.80-1.65 (m, 2 H, CH₂), 1.57-1.48 (m, 2 H, CH₂), 1.47 (s, 3 H, CH₃), 0.98 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 138.6, 114.6, 84.0, 83.8, 68.2, 42.9, 30.3, 29.3, 22.1, 20.5, 13.4; MS (ESI) *m/z*: 181 (M+MeOH-OH)⁺, 149 (M-OH)⁺; IR (neat): v = 3362, 2967, 2934, 2872, 2239, 1641, 1453, 1370, 1335, 1125, 1080 cm⁻¹; HRMS calcd for C₁₁H₁₉O [M+H⁺]: 167.1430, found: 167.1430.

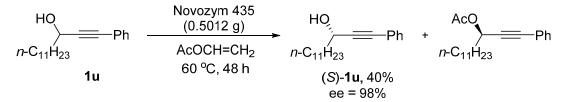
(14) Preparation of 10-chloro-4-methyldec-5-yn-4-ol (1p)¹ (zwl-11-185)

Following Typical Procedure II, the reaction of 6-chloro-1-hexyne (3.10 mL, d = 0.962 g/mL, 2.9822 g, 25 mmol) in THF (30 mL), ^{*n*}BuLi (2.5 M in hexane, 10 mL, 25 mmol), and 2-pentanone (2.70 mL, d = 0.809 g/mL, 2.1843 g, 25 mmol) in THF (20 mL) afforded **1p** (4.6781 g, 91%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1]: ¹**H NMR** (400 MHz, CDCl₃): δ = 3.57 (t, *J* = 6.6 Hz, 2 H, CH₂), 2.24 (t, *J* = 7.0 Hz, 2 H, CH₂), 2.16-1.98 (m, 1 H, OH), 1.95-1.81 (m, 2 H, CH₂), 1.72-1.38 (m, 9 H, CH₃ and 3 x CH₂), 0.95 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 84.8, 82.5, 68.1, 46.1, 44.4, 31.5, 30.0, 25.7, 18.0, 17.8, 14.1; MS (ESI) *m/z*: 219 (M(³⁷Cl)+MeOH-OH)⁺, 217 (M(³⁵Cl)+MeOH-OH)⁺; **IR** (neat): *v* = 3419, 2957, 2934, 2872, 1455, 1369, 1333, 1316, 1131, 1051, 1011 cm⁻¹; **HRMS** calcd for C₁₁H₁₉O³⁵Cl [M⁺]: 202.1124, found: 202.1121.


(15) Preparation of 3-methyl-1-phenyltetradec-1-yn-3-ol (1u)¹ (hcf-2-71)

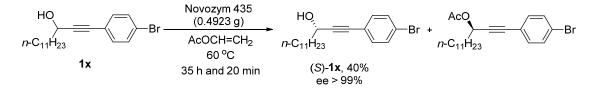
Following Typical Procedure I, the reaction of phenylacetylene (2.24 mL, d = 0.93 g/mL, 2.0832 g, 20 mmol)/THF (20 mL), ^{*n*}BuLi (2.5 M in hexane, 8.0 mL, 20 mmol), and dodecanal (4.1 mL, d = 0.831 g/mL, 3.4071 g, 18 mmol)/THF (10 mL) afforded **1u** (4.2117 g, 82%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (880 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.48-7.37 (m, 2 H, Ar-H), 7.35-7.25 (m, 3 H, Ar-H), 4.59 (q, *J* = 6.0 Hz, 1 H, CH), 2.23-2.10 (m, 1 H, OH), 1.86-1.71 (m, 2 H, CH₂), 1.58-1.42 (m, 2 H, CH₂), 1.42-1.18 (m, 16 H, 8 x CH₂), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 131.6, 128.3, 128.2, 122.7, 90.3, 84.7, 62.9, 37.9, 31.9, 29.61, 29.60, 29.54, 29.51, 29.31, 29.26, 25.2, 22.6,

14.1; **MS** (EI 70 ev *m/z*) (%): 286 (M⁺, 2.65), 131 (100); **IR** (neat): v = 3349, 2956, 2916, 2847, 1597, 1487, 1464, 1126, 1058, 1037 cm⁻¹; **HRMS** calcd for C₂₀H₃₀O [M]⁺: 286.2297, found: 286.2298.


(16) Preparation of 1-(4-bromophenyl)tetradec-1-yn-3-ol (1x)¹ (hcf-2-109)

Following Typical Procedure I, the reaction of 4-bromophenylacetylene (3.7330 g, 20 mmol)/THF (20 mL), LiHMDS (1.0 M in tetrahydrofuran, 20 mL, 20 mmol), and dodecanal (4.1 mL, d = 0.831 g/mL, 3.4071 g, 18 mmol)/THF (10 mL) afforded **1x** (4.0665 g, 62%) [eluent: petroleum ether/ethyl ether/DCM = 50/1/1 (520 mL), 20/1/1 (550 mL), 10/1/1 (600 mL)]: white solid, m.p. 40.2-40.9 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃): δ = 7.44 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.28 (d, *J* = 8.4 Hz, 2 H, Ar-H), 4.58 (q, *J* = 6.3 Hz, 1 H, CH), 1.87 (d, *J* = 5.2 Hz, 1 H, OH), 1.84-1.72 (m, 2 H, CH₂), 1.56-1.44 (m, 2 H, CH₂), 1.41-1.18 (m, 16 H, 8 x CH₂), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 133.1, 131.5, 122.6, 121.6, 91.4, 83.7, 63.0, 37.8, 31.9, 29.62, 29.60, 29.54, 29.51, 29.3, 29.2, 25.2, 22.7, 14.1; MS (EI 70 ev *m/z*) (%): 366 (M⁺ (⁸¹Br), 5.85), 364 (M⁺ (⁷⁹Br), 5.64), 211 (100); IR (neat): *v* = 3364, 2951, 2914, 2847, 1670, 1484, 1465, 1257, 1057, 1012 cm⁻¹; Anal. Calcd. for C₂₀H₂₉⁷⁹BrO: C 65.75, H 8.00; found C 65.79, H 8.06.

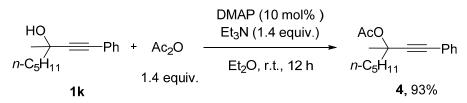
2. Synthesis of optically active propargylic alcohols


(1) Preparation of (S)-3-methyl-1-phenyltetradec-1-yn-3-ol ((S)-1u)² (hcf-2-93)

Typical Procedure III: To a flask (100 mL) were added **1u** (2.0295 g, 7 mmol) and vinyl acetate (25 mL). Then Novozym 435 (0.5012 g)/vinyl acetate (25 mL) was added. The resulting mixture was stirred at 60 °C for 48 h. After that, the resulting

mixture was filtered through a funnel and concentrated. The residue was purified by column chromatography on silica gel to afford (*S*)-**1u** (0.8118 g, 40%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL), 10/1 (550 mL)]: 98% ee (HPLC conditions: PA-2 column, hexane/*i*-PrOH = 95/5, 0.7 mL/min, λ = 214 nm, t_R (minor) = 8.5 min, t_R (major) = 9.2 min); $[\alpha]^{20}_D$ = +7.95 (*c* = 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.48-7.38 (m, 2 H, Ar-H), 7.36-7.28 (m, 3 H, Ar-H), 4.60 (q, *J* = 6.3 Hz, 1 H, CH), 1.89-1.73 (m, 3 H, OH and CH₂), 1.60-1.45 (m, 2 H, CH₂), 1.42-1.18 (m, 16 H, 8 x CH₂), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 131.7, 128.3, 128.2, 122.7, 90.2, 84.8, 63.0, 37.9, 31.9, 29.64, 29.61, 29.56, 29.5, 29.33, 29.28, 25.2, 22.7, 14.1; MS (EI 70 ev *m/z*) (%): 286 (M⁺, 2.27), 131 (100); **IR** (neat): *v* = 3348, 2956, 2916, 2848, 1597, 1487, 1464, 1125, 1058, 1037 cm⁻¹; **HRMS** calcd for C₂₀H₃₀O [M] ⁺: 286.2297, found: 286.2296.

(2) Preparation of (S)-1-(4-bromophenyl)tetradec-1-yn-3-ol ((S)-1x)² (hcf-2-111)

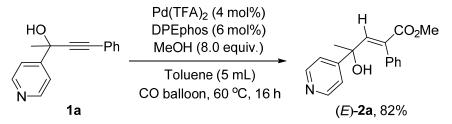

Following **Typical Procedure III**, the reaction of **1x** (2.1922 g, 6 mmol) and Novozym 435 (0.4923 g)/vinyl acetate (50 mL) afforded (*S*)-**1x** (0.8767 g, 40%) [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL), 10/1 (550 mL)]: white solid, m.p. 40.0-40.8 °C (petroleum ether/ethyl acetate); >99% ee (HPLC conditions: PA-2 column, hexane/*i*-PrOH = 100/1, 0.7 mL/min, λ = 214 nm, *t*_R (major) = 38.8 min); [α]²⁰_D = +8.2 (*c* = 1.00, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃): δ = 7.43 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.28 (d, *J* = 8.4 Hz, 2 H, Ar-H), 4.57 (q, *J* = 6.1 Hz, 1 H, CH), 2.04-1.94 (m, 1 H, OH), 1.86-1.72 (m, 2 H, CH₂), 1.56-1.43 (m, 2 H, CH₂), 1.40-1.18 (m, 16 H, 8 x CH₂), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 133.1, 131.5, 122.6, 121.6, 91.4, 83.7, 63.0, 37.8, 31.9, 29.63, 29.61, 29.54, 29.51, 29.3, 29.2, 25.2, 22.7, 14.1; MS (EI 70 ev *m/z*) (%): 366 (M⁺(⁸¹Br), 4.77), 364 (M⁺(⁷⁹Br), 4.94), 211 (100); **IR** (neat): *v* = 3357, 2914, 2848, 1475, 1413, 1256, 1121, 1058 cm⁻¹; Anal. Calcd. for C₂₀H₂₉⁷⁹BrO: C 65.75, H 8.00; found C 65.69, H 8.04.

3. Preparation of 3-methyl-1-phenyloct-1-yn-3-yl methyl ether (3)³ (hcf-2-148)

	NaH (3.0 equiv.)	CH ₃ I (3.0 equiv.)	MeO
/ 111 · n-C₅H ₁₁	THF, 0 °C, 1 h	r.t., 12 h	<i>n</i> -C ₅ H ₁₁
1k			3 , 79%

To a flame-dried Schlenk tube were added 1k (1.7297 g, 8 mmol) and THF (10 mL). Then NaH (0.9613 g, 24 mmol) was added at 0 °C under argon. After stirring at $0 \,^{\circ}$ C for 1 h, iodomethane (1.5 mL, d = 2.28 g/mL, 3.42 g, 24 mmol) was added. The resulting mixture was warmed up to room temperature, stirred for 12 h, and quenched with water (20 mL). After extraction with ethyl acetate (20 mL x 3), the organic layer was washed with brine (10 mL) and dried with anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford **3** (1.4516 g, 79%) as a colorless oil [eluent: petroleum ether 100 mL to petroleum ether/ethyl acetate = 100/1 (~810 mL)]: ¹H **NMR** (400 MHz, CDCl₃): $\delta = 7.48-7.39$ (m, 2 H, Ar-H), 7.36-7.26 (m, 3 H, Ar-H), 3.42 (s, 3 H, OMe), 1.83-1.66 (m, 2 H, CH₂), 1.65-1.42 (m, 5 H, CH₂ and CH₃), 1.41-1.23 (m, 4 H, 2 x CH₂), 0.91 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 131.7, 128.2, 128.1, 123.0, 90.5, 85.2, 74.0, 51.4, 41.3, 32.0, 25.6, 24.0, 22.6, 14.0; **MS** (EI 70 ev m/z) (%): 230 (M⁺, 1.02), 159 (100); **IR** (neat): v = 2981, 2934, 2862, 2823, 1598, 1490, 1462, 1169, 1078 cm⁻¹; HRMS calcd for C₁₆H₂₂O [M]⁺: 230.1671, found: 230.1674.

4. Preparation of 3-methyl-1-phenyloct-1-yn-3-yl acetate (4)⁴ (hcf-2-146)



To a flask were added **1k** (1.0809 g, 5 mmol) and Et₂O (50 mL). Then acetic anhydride (0.66 mL, d = 1.08 g/mL, 0.7128 g, 7 mmol), trimethylamine (0.97 mL, d = 0.73 g/mL, 0.7081 g, 7 mmol), and DMAP (61.3 mg, 0.5 mmol) were added

sequentially. The resulting mixture was stirred at room temperature for 12 h and concentrated under reduced pressure. After that, the crude product was purified by column chromatography on silica gel to afford **4** (1.2071 g, 93%) as a colorless oil [eluent: petroleum ether 100 mL to petroleum ether/ ethyl acetate = 100/1 (~500 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.48-7.39 (m, 2 H, Ar-H), 7.34-7.23 (m, 3 H, Ar-H), 2.10-1.96 (m, 4 H, one proton of CH₂ and CH₃), 1.94-1.81 (m, 1 H, one proton of CH₂), 1.74 (s, 3 H, CH₃), 1.64-1.44 (m, 2 H, CH₂), 1.42-1.28 (m, 4 H, 2 x CH₂), 0.91 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 169.3, 131.8, 128.2, 128.1, 122.7, 89.5, 84.9, 75.8, 41.5, 31.7, 26.5, 23.9, 22.5, 22.0, 14.0; MS (EI 70 ev *m/z*) (%): 258 (M⁺, 1.02), 160 (100); **IR** (neat): *v* = 2954, 2932, 2864, 2240, 1742, 1490, 1367, 1232, 1149, 1122, 1012 cm⁻¹; HRMS calcd for C₁₇H₂₂O₂ [M]⁺: 258.1620, found: 258.1622.

5. Synthesis of 3-hydroxyl-2(*E*)-alkenoates

(1) Preparation of methyl (*E*)-4-hydroxy-2-phenyl-4-(pyridin-4-yl)pent-2-enoate ((*E*)-2a) (hcf-1-197)

Typical Procedure IV: To a flame-dried Schlenk tube were added $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), DPEphos (32.3 mg, 0.06 mmol), **1a** (223.3 mg, 1 mmol), and MeOH (259.6 mg, 8.0 mmol)/toluene (5 mL) sequentially under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO for 16 h. After that, the resulting mixture was diluted with 3 mL of ethyl acetate, filtered through a short column of silica gel (3 cm) eluted with ethyl acetate (20 x 2 mL), and concentrated. The residue was purified by column chromatography on silica gel to afford impure

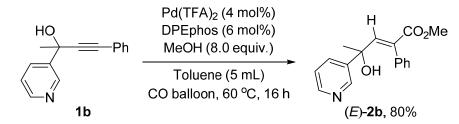
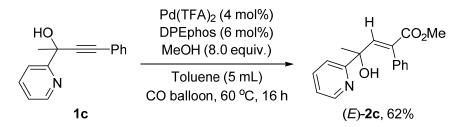

(E)-2a (241.3 mg) [eluent: dichloromethane/ethyl acetate = 5/1 (480 mL), 3/1 (200 mL), ethyl acetate (300 mL)], then recrystallized (petroleum ether/dichloromethane) to afford (E)-2a (232.1 mg, 82%): white solid, m.p. 112.9-113.5 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.43$ (d, J = 6.0 Hz, 2 H, Ar-H), 7.41 (s, 1 H, =CH), 7.33-7.17 (m, 5 H, Ar-H), 7.01-6.92 (m, 2 H, Ar-H), 3.71 (s, 3 H, CO₂Me), 3.17 (s, 1 H, OH), 1.59 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.4, 155.9, 149.6, 147.4, 134.0, 133.4, 129.2, 128.3, 128.2, 120.0, 73.8, 52.6,$ 31.2; **MS** (ESI) m/z: 284 (M+H⁺); **IR** (neat): v = 3033, 2987, 2965, 2810, 2673, 1713, 1603, 1415, 1230, 1021 cm⁻¹; Anal. Calcd. for C₁₇H₁₇NO₃: C 72.07, H 6.05, N 4.94; found C 72.05, H 6.02, N 5.00.

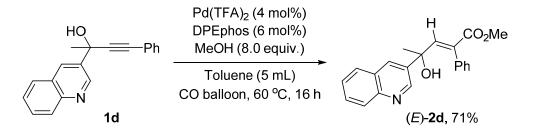
Figure S1

(E)-2a: $C_{17}H_{17}NO_3$, MW = 283.32, monoclinic, space group P2(1)/n, final R indices $[I > 2\sigma(I)], R_1 = 0.0539, wR_2 = 0.1472; R \text{ indices (all data)}, R_1 = 0.0765, wR_2 = 0.1585,$ a = 9.0342(9) Å, b = 14.3895(15) Å, c = 14.5074(15) Å, $a = 90^{\circ}$, $\beta = 101.707(3)^{\circ}$, $\gamma = 100.000$ 90°, V = 1846.7(3) Å³, T = 296(2) K, Z = 4, reflections collected/unique 3255/3255 [*R*int = 0.0000], no. of observations [> $2\sigma(I)$] 2244, parameters: 190. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif. CCDC-1571775

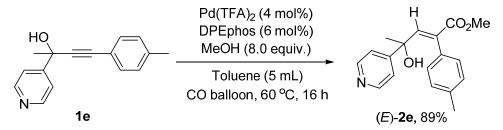

(2) Preparation of methyl (E)-4-hydroxy-2-phenyl-4-(pyridin-3-yl)pent-2-enoate ((*E*)-2b) (hcf-1-198)

Following Typical Procedure IV, the reaction of Pd(TFA)₂ (13.6 mg, 0.04

mmol), DPEphos (32.3 mg, 0.06 mmol), **1b** (223.4 mg, 1 mmol), and MeOH (261.1 mg, 8 mmol)/toluene (5 mL) afforded (*E*)-**2b** (225.4 mg, 80%) [eluent: dichloromethane/ethyl acetate = 5/1 (480 mL), 3/1 (200 mL), ethyl acetate (300 mL)]: white solid, m.p. 108.5-109.1 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃): δ = 8.53 (d, *J* = 2.0 Hz, 1 H, Ar-H), 8.41 (dd, *J*₁ = 4.8 Hz, *J*₂ = 1.6 Hz, 1 H, Ar-H), 7.61 (dt, *J*₁ = 8.0 Hz, *J*₂ = 1.9 Hz, 1 H, Ar-H), 7.44 (s, 1 H, =CH), 7.33-7.21 (m, 3 H, Ar-H), 7.21-7.15 (m, 1 H, Ar-H), 7.02-6.93 (m, 2 H, Ar-H), 3.71 (s, 3 H, CO₂Me), 2.79 (s, 1 H, OH), 1.64 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 167.5, 148.1, 148.0, 146.9, 142.4, 134.1, 133.0, 132.7, 129.2, 128.14, 128.09, 123.1, 73.3, 52.5, 31.1; MS (ESI) *m/z*: 284 (M+H⁺); IR (neat): *v* = 3166, 2988, 2966, 2809, 1713, 1642, 1431, 1237, 1034, 1019 cm⁻¹; Anal. Calcd. for C₁₇H₁₇NO₃: C 72.07, H 6.05, N 4.94; found C 72.05, H 6.10, N 4.89.

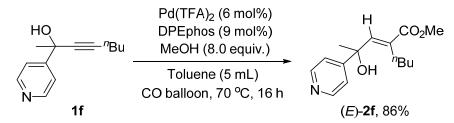

(3) Preparation of methyl (*E*)-4-hydroxy-2-phenyl-4-(pyridin-2-yl)pent-2-enoate ((*E*)-2c) (hcf-2-2)

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), DPEPhos (32.3 mg, 0.06 mmol), **1c** (223.5 mg, 1 mmol), and MeOH (259.7 mg, 8 mmol)/toluene (5 mL) afforded (*E*)-**2c** (176.1 mg, 62%) as a yellow oil [eluent: dichloromethane 200 mL to dichloromethane/ethyl acetate = 30/1]: ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.41$ (d, J = 4.8 Hz, 1 H, Ar-H), 7.58 (td, $J_1 = 7.8$ Hz, $J_2 = 1.6$ Hz, 1 H, Ar-H), 7.39 (s, 1 H, =CH), 7.25-7.17 (m, 4 H, Ar-H), 7.13 (dd, $J_1 = 7.0$ Hz, $J_2 = 5.0$ Hz, 1 H, Ar-H), 7.02-6.90 (m, 2 H, Ar-H), 4.65 (br, 1 H, OH), 3.69 (s, 3 H, CO₂Me), 1.60 (s, 3 H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 168.0$, 163.1, 148.5, 147.5, 136.8, 135.0, 133.1, 129.4, 127.5, 127.3, 122.1, 119.9, 73.9, 52.3, 29.7; **MS** (70 eV, EI) *m/z* (%): 284(M⁺+1, 6.07), 283 (M⁺, 31.07), 162 (100); **IR** (neat): v = 3400, 3056, 2980, 2950, 1713, 1589, 1433, 1241, 1195, 1072, 1019 cm⁻¹; **HRMS** calcd for


C₁₇H₁₇NO₃ [M]⁺: 283.1208, found: 283.1212.

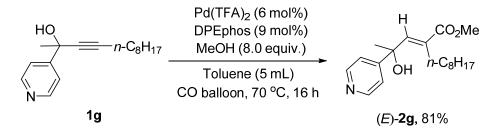
(4) Preparation of methyl (*E*)-4-hydroxy-2-phenyl-4-(quinolin-3-yl)pent-2-enoate ((*E*)-2d) (hcf-2-3)

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), DPEPhos (32.3 mg, 0.06 mmol), **1d** (273.3 mg, 1 mmol), and MeOH (260.1 mg, 8 mmol)/toluene (5 mL) afforded impure (*E*)-**2d** (243.4 mg) [eluent: dichloromethane/ethyl acetate = 40/1 (205 mL), 20/1 (420 mL), ethyl acetate (200 mL)], then recrystallized (petroleum ether/dichloromethane) to afford pure (*E*)-**2d** (236.7 mg, 71%): white solid, m.p. 137.7-138.5 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.92$ (d, *J* = 2.4 Hz, 1 H, Ar-H), 8.08 (d, *J* = 8.8 Hz, 1 H, Ar-H), 7.97 (d, *J* = 1.6 Hz, 1 H, =CH), 7.79-7.66 (m, 2 H, Ar-H), 7.59-7.49 (m, 2 H, Ar-H), 7.26-7.14 (m, 3 H, Ar-H), 7.02-6.93 (m, 2 H, Ar-H), 3.73 (s, 3 H, CO₂Me), 2.35-2.25 (m, 1 H, OH), 1.76 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.5$, 148.8, 147.9, 146.9, 139.4, 134.0, 133.3, 131.4, 129.4, 129.2, 128.9, 128.1, 127.9, 127.3, 126.8, 73.6, 52.5, 31.1; MS (70 eV, EI) *m/z* (%): 333 (M⁺, 3.38), 230 (100); **IR** (neat): $\nu = 3174$, 3055, 2992, 2948, 2922, 2851, 1709, 1433, 1254, 1198, 1113, 1036, 1021 cm⁻¹; Anal. Calcd. for C₂₁H₁₉NO₃: C 75.66, H 5.74, N 4.20; found C 75.31, H 5.78, N 4.19.

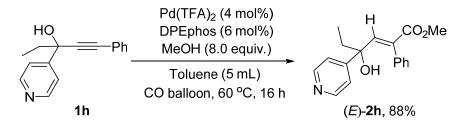

(5) Preparation of methyl (*E*)-4-hydroxy-4-(pyridin-4-yl)-2-(p-tolyl)pent-2-enoate ((*E*)-2e) (hcf-2-15)

Following Typical Procedure IV, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04

mmol), DPEPhos (32.3 mg, 0.06 mmol), **1e** (237.2 mg, 1 mmol), and MeOH (258.1 mg, 8 mmol)/toluene (5 mL) afforded (*E*)-**2e** (264.6 mg, 89%) [eluent: dichloromethane/ethyl acetate = 5/1 (480 mL), 3/1 (200 mL), ethyl acetate (200 mL)]: white solid, m.p. 105.9-106.4 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃): δ = 8.49 (d, *J* = 6.0 Hz, 2 H, Ar-H), 7.40 (s, 1 H, =CH), 7.24 (d, *J* = 6.4 Hz, 2 H, Ar-H), 7.09 (d, *J* = 7.6 Hz, 2 H, Ar-H), 6.87 (d, *J* = 7.6 Hz, 2 H, Ar-H), 3.72 (s, 3 H, CO₂Me), 2.61 (s, 1 H, OH), 2.34 (s, 3 H, CH₃), 1.60 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 167.6, 156.1, 149.4, 147.3, 138.1, 133.2, 130.8, 129.1, 128.9, 120.1, 73.7, 52.5, 31.1, 21.2; MS (70 eV, EI) *m/z* (%): 298 (M⁺+1, 2.12), 297 (M⁺, 10.45), 194 (100); **IR** (neat): *v* = 3121, 3030, 2974, 2956, 2860, 2814, 1708, 1601, 1413, 1260, 1222, 1172, 1018 cm⁻¹; Anal. Calcd. for C₁₈H₁₉NO₃: C 72.71, H 6.44, N 4.71; found C 72.89, H 6.33, N 4.61.

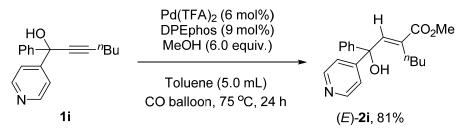

(6) Preparation of methyl (*E*)-2-(2-hydroxy-2-(pyridin-4-yl)propylidene)hexanoate ((*E*)-2f) (hcf-2-4)

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (20.4 mg, 0.06 mmol), DPEphos (48.5 mg, 0.09 mmol), **1f** (203.3 mg, 1 mmol), and MeOH (260.4 mg, 8 mmol)/toluene (5 mL) afforded impure (*E*)-2**f** (230.1 mg) [eluent: dichloromethane/ethyl acetate = 5/1 (480 mL), ethyl acetate 300 mL], then recrystallized (petroleum ether/dichloromethane) to afford pure (*E*)-2**f** (226.5 mg, 86%): white solid, m.p. 97.5-98.4 °C (petroleum ether/dichloromethane); ¹**H NMR** (400 MHz, CDCl₃): δ = 8.55 (d, *J* = 5.6 Hz, 2 H, Ar-H), 7.44-7.35 (m, 2 H, Ar-H), 7.02 (s, 1 H, =CH), 3.75 (s, 3 H, CO₂Me), 2.81-2.48 (br, 1 H, OH), 2.32-2.20 (m, 2 H, CH₂), 1.72 (s, 3 H, CH₃), 1.28-0.98 (m, 4 H, 2 X CH₂), 0.77 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃): δ = 168.6, 157.0, 149.1, 144.9, 136.2, 120.4, 72.8, 51.9, 32.3, 30.7, 27.2, 22.8, 13.6; **MS** (ESI) *m/z*: 264 (M+H⁺); **IR** (neat): *v* = 3163, 2962,


2931, 2861, 1708, 1599, 1432, 1409, 1267, 1173, 1080 cm⁻¹; Anal. Calcd. for C₁₅H₂₁NO₃: C 68.42, H 8.04, N 5.32; found C 68.35, H 7.96, N 5.20.

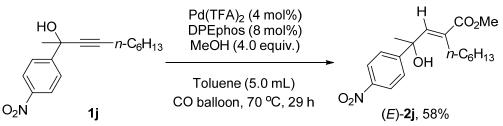
(7) Preparation of methyl (*E*)-2-(2-hydroxy-2-(pyridin-4-yl)propylidene)decanoate ((*E*)-2g) (hcf-2-27)

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (20.4 mg, 0.06 mmol), DPEphos (48.5 mg, 0.09 mmol), **1g** (259.6 mg, 1 mmol)/toluene (4.0 mL), and MeOH (259.7 mg, 8 mmol)/toluene (1.0 mL) afforded (*E*)-**2g** (258.9 mg, 81%) as a yellow oil [First run: eluent: dichloromethane/ethyl acetate = 5/1 (480 mL), 1/1 (200 mL) to ethyl acetate (100 mL) got the impure product. Second run: eluent: dichloromethane/ethyl acetate = 10/1 (440 mL), 5/1 (480 mL), 3/1 (200 mL), 1/1 (100 mL) got the pure (*E*)-**2g**]: ¹**H NMR** (400 MHz, CDCl₃): δ = 8.54 (brs, 2 H, Ar-H), 7.40 (d, *J* = 4.8 Hz, 2 H, Ar-H), 7.01 (s, 1 H, =CH), 3.75 (s, 3 H, CO₂Me), 2.90-2.58 (m, 1 H, OH), 2.38-2.17 (m, 2 H, CH₂), 1.71 (s, 3 H, CH₃), 1.38-0.98 (m, 12 H, 6 X CH₂), 0.87 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 157.2, 149.2, 144.6, 136.4, 120.5, 72.9, 51.9, 32.4, 31.7, 29.8, 29.14, 29.08, 28.7, 27.6, 22.6, 14.0; **MS** (70 eV, EI) *m/z* (%): 319 (M⁺, 1.64), 276 (100); **IR** (neat): *v* = 3148, 2920, 2852, 1719, 1601, 1434, 1246, 1224, 1195, 1086, 1065, 1003 cm⁻¹; **HRMS** calcd for C₁₉H₂₉NO₃ [M⁺]: 319.2147, found: 319.2143.

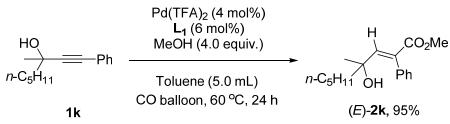

(8) Preparation of methyl (*E*)-4-hydroxy-2-phenyl-4-(pyridin-4-yl)hex-2-enoate ((*E*)-2h) (hcf-1-199)

Following Typical Procedure IV, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04

mmol), DPEphos (32.4 mg, 0.06 mmol), **1h** (237.1 mg, 1 mmol), and MeOH (260.1 mg, 8 mmol)/toluene (5 mL) afforded impure (*E*)-**2h** (265.1 mg) [eluent: dichloromethane/ethyl acetate = 5/1 (480 mL), ethyl acetate (300 mL)], then recrystallized (petroleum ether/dichloromethane) to afford pure (*E*)-**2h** (262.3 mg, 88%): white solid, m.p. 104.1-104.9 °C (petroleum ether/ethyl acetate); ¹**H** NMR (400 MHz, CDCl₃): δ = 8.53 (d, *J* = 4.6 Hz, 2 H, Ar-H), 7.41 (s, 1 H, =CH), 7.37-7.25 (m, 3 H, Ar-H), 7.21 (dd, *J*₁ = 4.8 Hz, *J*₂ = 1.60 Hz, 2 H, Ar-H), 7.02-6.92 (m, 2 H, Ar-H), 3.72 (s, 3 H, CO₂Me), 2.03 (s, 1 H, OH), 2.01-1.80 (m, 2 H, CH₂), 0.83 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 167.4, 154.9, 149.6, 147.0, 134.0, 133.7, 129.2, 128.4, 128.3, 120.3, 76.4, 52.5, 36.6, 7.6; MS (ESI) *m/z*: 298 (M+H⁺); **IR** (neat): *v* = 3101, 3054, 2956, 2927, 2848, 1711, 1602, 1429, 1242, 1007 cm⁻¹; Anal. Calcd. for C₁₈H₁₉NO₃: C 72.71, H 6.44, N 4.71; found C 72.65, H 6.48, N 4.60.

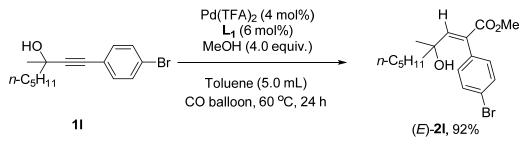

(9) Preparation of methyl (*E*)-2-(2-hydroxy-2-phenyl-2-(pyridin-4-yl)ethylidene)hexanoate ((*E*)-2i) (hcf-2-70)

Following **Typical Procedure IV**, the reaction of $Pd(TFA)_2$ (20.4 mg, 0.06 mmol), DPEPhos (48.5 mg, 0.09 mmol), **1i** (265.4 mg, 1 mmol), and MeOH (193.1 mg, 6 mmol)/toluene (5.0 mL) afforded (*E*)-**2i** (263.6 mg, 81%) as a white solid [eluent: dichloromethane (1000 mL) to dichloromethane/ethyl acetate = 5/1 (480 mL), 3/1 (200 mL)]: m.p. 92.5-93.0 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (d, *J* = 4.8 Hz, 2 H, Ar-H), 7.47-7.16 (m, 8 H, Ar-H and =CH), 5.33 (brs, 1 H, OH), 3.72 (s, 3 H, CO₂Me), 2.36 (t, *J* = 7.4 Hz, 2 H, CH₂), 1.24-1.02 (m, 4 H, 2 X CH₂), 0.73 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 156.3, 148.9, 145.8, 143.8, 137.2, 128.4, 127.6, 126.2, 121.3, 77.4, 51.9, 30.7, 27.5, 22.8, 13.6; MS (EI 70 ev) *m/z* (%): 325 (M⁺, 4.23), 187 (100); **IR** (neat): *v* =


3086, 2948, 2860, 1715, 1597, 1436, 1262, 1247, 1208, 1129, 1021, 1003 cm⁻¹; **HRMS** calcd for $C_{20}H_{23}NO_3 [M]^+$: 325.1678, found: 325.1681.

(10) Preparation of methyl (*E*)-2-(2-hydroxy-2-(4-nitrophenyl)propylideneoctanoate ((*E*)-2j) (hcf-2-82)

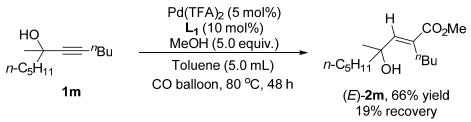
Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), DPEphos(43.1 mg, 0.08 mmol), **1j** (275.4 mg, 1 mmol)/toluene (4.0 mL), and MeOH (129.9 mg, 4 mmol)/toluene (1.0 mL) afforded (*E*)-**2j** (194.5 mg, 58%) as a white solid [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (1100 mL), 5/1 (240 mL)]: m.p. 90.1-90.5 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃): δ = 8.20 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.66 (d, *J* = 9.2 Hz, 2 H, Ar-H), 7.06 (s, 1 H, =CH), 3.75 (s, 3 H, CO₂Me), 2.30-2.15 (m, 2 H, CH₂), 2.07 (s, 1 H, OH), 1.75 (s, 3 H, CH₃), 1.28-0.95 (m, 8 H, 4 x CH₂), 0.82 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 168.5, 154.5, 146.8, 144.6, 136.8, 126.1, 123.5, 73.7, 52.1, 33.2, 31.4, 29.4, 28.6, 27.7, 22.4, 13.9; MS (EI 70 ev) *m/z* (%): 335 (M⁺, 1.28), 292 (100); **IR** (neat): *v* = 3488, 3111, 3077, 2963, 2922, 2857, 1699, 1516, 1348, 1243, 1174, 1090 cm⁻¹; Anal. Calcd. for C₁₈H₂₅NO₅: C 64.46, H 7.51, N 4.18; found C 64.39, H 7.52, N 4.04.


(11) Preparation of methyl (*E*)-4-hydroxy-4-methyl-2-phenylnon-2-enoate ((*E*)-2k) (hcf-2-46)

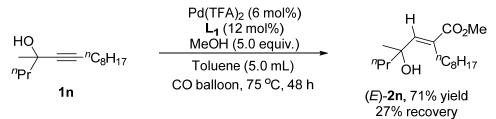

Following **Typical Procedure IV**, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.5 mg, 1 mmol)/toluene (4.0 mL), and MeOH (129.9 mg, 4 mmol)/toluene (1.0 mL) afforded (*E*)-**2k** (262.7 mg, 95%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (440 mL)]: ¹**H**

NMR (400 MHz, CDCl₃): $\delta = 7.41-7.30$ (m, 3 H, Ar-H), 7.24-7.17 (m, 2 H, Ar-H), 7.08 (s, 1 H, =CH), 3.70 (s, 3 H, CO₂Me), 1.56-1.44 (m, 2 H, CH₂), 1.41-1.18 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.88 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃): $\delta = 167.9$, 149.5, 135.1, 131.4, 129.4, 128.1, 127.9, 74.3, 52.3, 43.1, 32.1, 29.0, 23.6, 22.5, 14.0; **MS** (ESI) m/z: 299 (M+Na)⁺, 259 (M-OH)⁺; **IR** (neat): v =3486, 2953, 2931, 2860, 1716, 1637, 1435, 1238, 1197, 1020 cm⁻¹; **HRMS** calcd for C₁₇H₂₅O₃ [M+H⁺]: 277.1798, found: 277.1795.

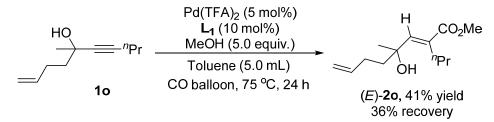
(12) Preparation of methyl (*E*)-2-(4-bromophenyl)-4-hydroxy-4-methylnon-2enoate ((*E*)-2l) (hcf-2-60)



Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **11** (295.1 mg, 1 mmol)/toluene (4.0 mL), and MeOH (131.1 mg, 4 mmol)/toluene (1.0 mL) afforded (*E*)-**21** (326.7 mg, 92%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (440 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.49 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.07 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.08 (s, 1 H, =CH), 3.71 (s, 3 H, CO₂Me), 1.58-1.45 (m, 2 H, CH₂), 1.44-1.10 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃): δ = 167.5, 150.1, 134.2, 131.20, 131.17, 130.5, 122.0, 74.3, 52.4, 43.1, 32.1, 28.9, 23.6, 22.5, 14.0; **MS** (ESI) *m/z*: 339 (M(⁸¹Br)-OH)⁺, 337 (M(⁷⁹Br)-OH)⁺; **IR** (neat): *v* = 3489, 2952, 2930, 2859, 1714, 1487, 1434, 1237, 1071, 1010 cm⁻¹; **HRMS** calcd for C₁₇H₂₄⁷⁹BrO₃ [M+H⁺]: 355.0903, found: 355.0900. **Gram scale synthesis methyl** (*E*)-**2-(4-bromophenyl)-4-hydroxy-4-methylnon-2-enoate ((***E***)-21**) (hcf-**2-97**)

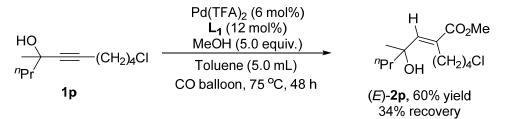

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (54.4 mg, 0.16 mmol), **L**₁ (131.2 mg, 0.24 mmol), **1l** (1.1811 g, 4 mmol)/toluene (16.0 mL), and MeOH (513.9 mg, 16 mmol)/toluene (4.0 mL) afforded (*E*)-**2l** (1.2650 g, 89%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL), 20/1 (525 mL), 5/1 (600 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.49 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.076 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.078 (s, 1 H, =CH), 3.71 (s, 3 H, CO₂Me), 1.56-1.46 (m, 2 H, CH₂), 1.42-1.18 (m, 9 H, 3 x CH₂ and CH₃), 1.15 (s, 1 H, OH), 0.89 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 167.5, 150.1, 134.2, 131.2, 131.1, 130.4, 121.9, 74.3, 52.4, 43.1, 32.0, 28.9, 23.6, 22.5, 14.0.

(13) Preparation of methyl (*E*)-2-butyl-4-hydroxy-4-methylnon-2-enoate ((*E*)-2m) (hcf-2-92)

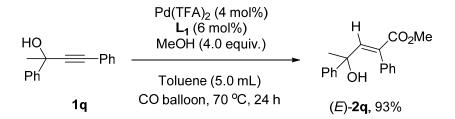

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (17.0 mg, 0.05 mmol), **L**₁ (54.7 mg, 0.10 mmol), **1m** (196.3 mg, 1 mmol)/toluene (4.0 mL), and MeOH (160.5 mg, 5 mmol)/toluene (1.0 mL) afforded (*E*)-**2m** (169.2 mg, 66%) (19% of **1m** remained based on ¹H NMR analysis of the crude product) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (~410 mL), 20/1 (840 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 6.66 (s, 1 H, =CH), 3.73 (s, 3 H, CO₂Me), 2.65-2.51 (m, 2 H, CH₂), 1.71-1.53 (m, 3 H, CH₂ and OH), 1.47-1.21 (m, 13 H, 5 x CH₂ and CH₃), 0.98-0.83 (m, 6 H, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 169.1, 146.0, 133.3, 74.0, 51.8, 43.6, 32.3, 32.2, 29.0, 26.7, 23.6, 23.0, 22.5, 14.0, 13.9; MS (ESI) *m/z*: 239 (M-OH)⁺; **IR** (neat): *v* = 3496, 2955, 2931, 2861, 1698, 1459, 1436, 1262, 1207,

1123 cm⁻¹; HRMS calcd for C₁₅H₂₇O₂ [M-OH]⁺: 239.2006, found: 239.2005.
(14) Preparation of methyl (*E*)-2-octyl-4-hydroxy-4-methylhept-2-enoate ((*E*)-2n)
(zwl-11-198)

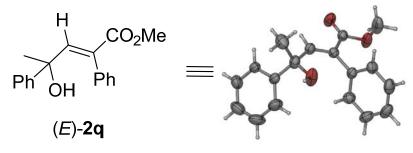
Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (20.6 mg, 0.06 mmol), **L**₁ (65.7 mg, 0.12 mmol), **1n** (224.5 mg, 1 mmol)/toluene (4.0 mL), and MeOH (160.1 mg, 5 mmol)/toluene (1.0 mL) afforded (*E*)-**2n** (202.1 mg, 71%) (27% of **1n** remained based on ¹H NMR analysis of the crude product) as an oil [eluent: petroleum ether/ethyl ether/dichloromethane = 20/1/1]: ¹H NMR (400 MHz, CDCl₃): $\delta = 6.66$ (s, 1 H, =CH), 3.73 (s, 3 H, CO₂Me), 2.63-2.50 (m, 2 H, CH₂), 1.68-1.52 (m, 3 H, CH₂ and OH), 1.50-1.17 (m, 17 H, 7 x CH₂ and CH₃), 0.93 (t, *J* = 7.4 Hz, 3 H, CH₃), 0.88 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.1$, 145.9, 133.4, 74.1, 51.8, 45.9, 31.8, 30.1, 30.0, 29.4, 29.2, 29.0, 27.0, 22.6, 17.3, 14.4, 14.1; **MS** (70 eV, EI) *m/z* (%): 285 (M⁺+1, 1.00), 284 (M⁺, 1.94), 241 (100); **IR** (neat): *v* = 3507, 2957, 2925, 2855, 1699, 1641, 1459, 1436, 1233, 1177, 1125 cm⁻¹; **HRMS** calcd for C₁₇H₃₂O₃ [M]⁺: 284.2351, found: 284.2354.


(15) Preparation of methyl (*E*)-2-propyl-4-hydroxy-4-methylocta-2,7-dienoate ((*E*)-20) (zwl-11-176)

Following **Typical Procedure IV**, the reaction of $Pd(TFA)_2$ (17.2 mg, 0.05 mmol), **L**₁ (54.8 mg, 0.10 mmol), **1o** (166.4 mg, 1 mmol)/toluene (4.0 mL), and MeOH (160.4 mg, 5 mmol)/toluene (1.0 mL) afforded (*E*)-**2o** (91.1 mg, 41%) (36% of **1o** remained based on ¹H NMR analysis of the crude product) as an oil [eluent:


petroleum ether/ethyl acetate = 20/1]: ¹**H NMR** (400 MHz, CDCl₃): δ = 6.66 (s, 1 H, =CH), 5.92-5.78 (m, 1 H, =CH), 5.05 (d, *J* = 18.4 Hz, 1 H, one proton of =CH₂), 4.97 (d, *J* = 10.4 Hz, 1 H, one proton of =CH₂), 3.74 (s, 3 H, CO₂Me), 2.64-2.49 (m, 2 H, CH₂), 2.27-2.06 (m, 2 H, CH₂), 1.83-1.65 (m, 2 H, CH₂), 1.65-1.55 (m, 1 H, OH), 1.52-1.35 (m, 5 H, CH₂ and CH₃), 0.94 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 169.1, 145.7, 138.4, 133.4, 114.8, 74.0, 51.8, 42.4, 29.1, 28.9, 28.4, 23.2, 14.3; MS (ESI) *m/z*: 249 (M+Na)⁺, 209 (M-OH)⁺; IR (neat): *v* = 3498, 2958, 2932, 2872, 1698, 1641, 1436, 1268, 1219, 1171, 1121, 1060 cm⁻¹; HRMS calcd for C₁₃H₂₂O₃Na [M+Na]⁺: 249.1461, found: 249.1455.

(16) Preparation of methyl (*E*)-2-(4-chlorobutyl)-4-hydroxy-4-methylhept-2enoate ((*E*)-2p) (zwl-11-196)



Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (20.5 mg, 0.06 mmol), **L**₁ (65.7 mg, 0.12 mmol), **1p** (202.6 mg, 1 mmol)/toluene (4.0 mL), and MeOH (160.1 mg, 5 mmol)/toluene (1.0 mL) afforded (*E*)-**2p** (157.6 mg, 60%) (34% of **1p** remained based on ¹H NMR analysis of the crude product) as an oil [eluent: petroleum ether/ethyl ether/dichloromethane = 20/1/1]: ¹H NMR (400 MHz, CDCl₃): $\delta = 6.67$ (s, 1 H, =CH), 3.74 (s, 3 H, CO₂Me), 3.56 (t, *J* = 6.8 Hz, 2 H, CH₂), 2.70-2.55 (m, 2 H, CH₂), 1.88-1.78 (m, 2 H, CH₂), 1.70-1.20 (m, 10 H, OH and 3 x CH₂, and CH₃), 0.94 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9, 146.5, 132.2, 74.0, 51.7, 45.9, 44.7, 32.5, 29.0, 27.1, 25.8, 17.1, 14.3; MS (ESI)$ *m/z*: 247 (M(³⁷Cl)-OH)⁺, 245 (M(³⁵Cl)-OH)⁺; IR (neat):*v*= 3495, 2957, 2872, 1697, 1642, 1436, 1274, 1237, 1190, 1094 cm⁻¹; HRMS calcd for C₁₃H₂₃O₃³⁵Cl [M]⁺: 262.1336, found: 262.1335.

(17) Preparation of methyl (*E*)-4-hydroxy-2,4-diphenylpent-2-enoate ((*E*)-2q) (hcf-2-55)

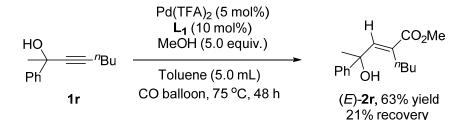
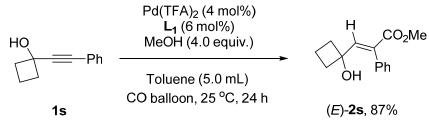
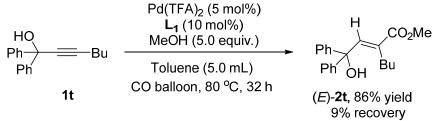

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1q** (222.3 mg, 1 mmol), and MeOH (132.1 mg, 4 mmol)/toluene (5.0 mL) afforded (*E*)-**2q** (261.8 mg, 93%) as a white solid [eluent: petroleum ether (100 mL) to petroleum ether/ethyl acetate = 20/1 (~530 mL), 10/1 (440 mL)]: m.p. 64.5-65.0 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (s, 1 H, =CH), 7.39-7.18 (m, 8 H, Ar-H), 7.06-6.96 (m, 2 H, Ar-H), 3.70 (s, 3 H, CO₂Me), 1.99 (s, 1 H, OH), 1.60 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 167.8, 149.1, 147.1, 134.6, 131.7, 129.4, 128.3, 128.1, 127.9, 127.1, 124.9, 74.8, 52.4, 31.2; MS (ESI) *m/z*: 300 (M+NH₄)⁺, 265 (M-OH)⁺; IR (neat): v = 3505, 3057, 3010, 2986, 2954, 1693, 1639, 1435, 1251, 1211, 1149 cm⁻¹; Anal. Calcd. for C₁₈H₁₈O₃: C 76.57, H 6.43; found C 76.69, H 6.58.

Figure S2

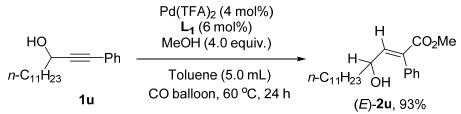

(*E*)-**2q**: C₁₈H₁₈O₃, MW = 282.32, orthorhombic, space group *P*2₁2₁2₁, final *R* indices $[I > 2\sigma(I)]$, $R_1 = 0.0278$, $wR_2 = 0.0691$; *R* indices (all data), $R_1 = 0.0288$, $wR_2 = 0.0696$, a = 7.95790(10) Å, b = 12.9023(2) Å, c = 14.8437(2) Å, $a = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 1524.08(4) Å³, T = 293(2) K, Z = 4, reflections collected/unique 15571/2710 [*R*int = 0.0285], no. of observations [> $2\sigma(I)$] 2617, parameters: 194. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. CCDC-1845002

(18) Preparation of methyl (*E*)-2-(2-hydroxy-2-phenylpropylidene)hexanoate ((*E*)-2r) (hcf-2-83)

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (17.0 mg, 0.05 mmol), **L**₁ (54.7 mg, 0.10 mmol), **1r** (202.3 mg, 1 mmol)/toluene (4.0 mL), and MeOH (161.9 mg, 5 mmol)/toluene (1.0 mL) afforded (*E*)-**2r** (165.3 mg, 63%) (21% of **1r** remained based on ¹H NMR analysis of the crude product) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (~410 mL), 20/1 (420 mL), 10/1 (220 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.51-7.42 (m, 2 H, Ar-H), 7.39-7.29 (m, 2 H, Ar-H), 7.29-7.22 (m, 1 H, Ar-H), 7.07 (s, 1 H, =CH), 3.73 (s, 3 H, CO₂Me), 2.33-2.21 (m, 2 H, CH₂), 2.03 (s, 1 H, OH), 1.74 (s, 3 H, CH₃), 1.21-1.02 (m, 4 H, 2 x CH₂), 0.76 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 147.0, 146.4, 134.6, 128.3, 127.1, 125.1, 74.3, 51.8, 31.8, 31.0, 27.2, 22.9, 13.7; MS (EI 70 ev) *m/z* (%): 262 (M⁺, 1.80), 187 (100); **IR** (neat): *v* = 3483, 2955, 2930, 2870, 1697, 1437, 1263, 1209, 1140, 1066 cm⁻¹; **HRMS** calcd for C₁₆H₂₂O₃ [M]⁺: 262.1569, found: 262.1566.

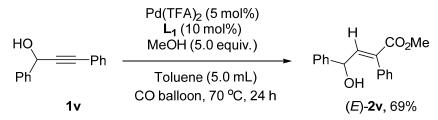

(19) Preparation of methyl (E)-3-(1-hydroxycyclobutyl)-2-phenylacrylate ((E)-2s) (hcf-2-87)

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1s** (172.2 mg, 1 mmol), and MeOH (129.9 mg, 5 mmol)/toluene (5.0 mL) afforded (*E*)-**2s** (202.1 mg, 87%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (~200 mL), 20/1 (420 mL), 10/1 (440 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.42-7.29 (m, 3 H, Ar-H), 7.32 (s, 1 H, =CH), 7.25-7.18 (m, 2 H, Ar-H), 3.74 (s, 3 H, CO₂Me), 2.28-2.16 (m, 2 H, CH₂), 2.14-2.01 (m, 2 H, CH₂), 1.94-1.78 (m, 2 H, one proton of CH₂ and OH), 1.76-1.62 (m, 1 H, one

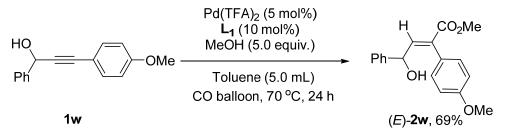

proton of CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.9$, 147.2, 134.9, 131.9, 129.5, 128.23, 128.16, 75.1, 52.4, 37.2, 13.0; MS (ESI) *m/z*: 250 (M+NH₄⁺); IR (neat): *v* = 2987, 2949, 1714, 1700, 1435, 1238, 1196, 1120 cm⁻¹; HRMS calcd for C₁₄H₂₀NO₃ [M+NH₄⁺]: 250.1438, found: 250.1437.

(20) Preparation of methyl 4-hydroxy-4-phenyl-2-(*E*)-2-phenylpent-2-enoate ((*E*)-2t) (hcf-2-89)

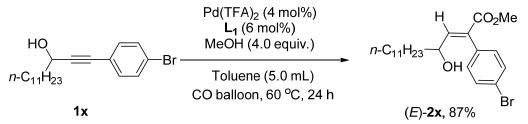
Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (17.0 mg, 0.05 mmol), **L**₁ (54.7 mg, 0.10 mmol), **1t** (264.6 mg, 1 mmol)/toluene (4.0 mL), and MeOH (160.9 mg, 5 mmol)/toluene (1.0 mL) afforded (*E*)-**2t** (279.2 mg, 86%) (9% of **1t** remained based on ¹H NMR analysis of the crude product) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (525 mL), 10/1 (220 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.48-7.20 (m, 11 H, Ar-H and =CH), 3.74 (s, 3 H, CO₂Me), 2.46-2.31 (m, 3 H, CH₂ and OH), 1.30-1.08 (m, 4 H, 2 x CH₂), 0.78 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 146.4, 144.8, 135.7, 128.3, 127.4, 126.5, 79.2, 51.9, 31.2, 27.5, 23.0, 13.8; MS (EI 70 ev) *m/z* (%): 324 (M⁺, 2.66), 187 (100); **IR** (neat): *v* = 3475, 2953, 2930, 2861, 1698, 1446, 1261, 1209, 1136 cm⁻¹; **HRMS** calcd for C₂₁H₂₄O₃ [M]⁺: 324.1725, found: 324.1722.

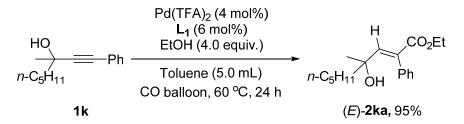

(21) Preparation of methyl (*E*)-4-hydroxy-2-phenylpentadec-2-enoate ((*E*)-2u) (hcf-2-79)

Following **Typical Procedure IV**, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1u** (286.5 mg, 1 mmol)/toluene (4.0 mL), and MeOH (128.9 mg, 4 mmol)/toluene (1.0 mL) afforded (*E*)-**2u** (322.2 mg, 93%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (440 mL), 5/1

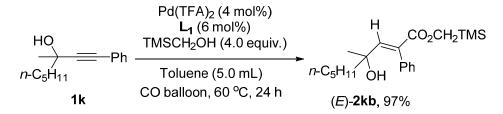

(480 mL)]: ¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.41-7.31$ (m, 3 H, Ar-H), 7.23-7.14 (m, 2 H, Ar-H), 6.92 (d, J = 9.6 Hz, 1 H, =CH), 4.18-4.09 (m, 1 H, CH), 3.75 (s, 3 H, CO₂Me), 1.71-1.44 (m, 3 H, CH₂ and OH), 1.36-1.11 (m, 18 H, 9 x CH₂), 0.88 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.5$, 145.1, 134.6, 134.2, 129.4, 128.1, 127.8, 68.7, 52.3, 36.8, 31.9, 29.6, 29.5, 29.44, 29.36, 29.31, 25.0, 22.7, 14.1; MS (EI 70 ev) m/z (%): 346 (M⁺, 1.71), 103 (100); **IR** (neat): v = 3419, 2923, 2853, 1720, 1459, 1435, 1236, 1195, 1174, 1024 cm⁻¹; **HRMS** calcd for C₂₂H₃₄O₃ [M]⁺: 346.2508, found: 346.2514.

(22) Preparation of methyl (*E*)-4-hydroxy-2,4-diphenylbut-2-enoate ((*E*)-2v) (hcf-2-125)


Following **Typical procedure IV**, the reaction of Pd(TFA)₂ (17.0 mg, 0.05 mmol), **L**₁ (54.7 mg, 0.10 mmol), **1v** (208.3 mg, 1 mmol)/toluene (4.0 mL), and MeOH (160.5 mg, 5 mmol)/toluene (1.0 mL) afforded (*E*)-**2v** (185.2 mg, 69%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 10/1 (1100 mL), 5/1 (240 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.50-7.24 (m, 8 H, Ar-H), 7.24-7.11 (m, 3 H, Ar-H and =CH), 5.19 (d, *J* = 9.2 Hz, 1 H, CH), 3.73 (s, 3 H, CO₂Me), 2.13 (brs, 1 H, OH); ¹³C **NMR** (100 MHz, CDCl₃): δ = 167.4, 143.5, 141.7, 134.3, 134.0, 129.5, 128.7, 128.1, 128.0, 126.3, 70.9, 52.3; **MS** (EI 70 ev) *m/z* (%): 269 (M⁺+1, 1.31), 268 (M⁺, 7.23), 105 (100); **IR** (neat): *v* = 3418, 1696, 1641, 1490, 1442, 1228 cm⁻¹; **HRMS** calcd for C₁₇H₁₆O₃ [M]⁺: 268.1099, found: 268.1096.

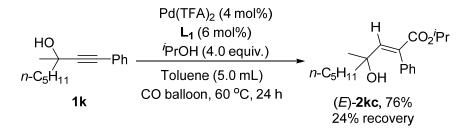

Following **Typical procedure IV**, the reaction of Pd(TFA)₂ (17.0 mg, 0.05 mmol), **L**₁ (54.7 mg, 0.10 mmol), **1w** (238.3 mg, 1 mmol)/toluene (4.0 mL), and MeOH (168.9 mg, 5 mmol)/toluene (1.0 mL) afforded (*E*)-**2w** (205.8 mg, 69%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 10/1 (880 mL), 5/1 (600 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.40-7.19 (m, 5 H, Ar-H), 7.19-7.03 (m, 3 H, Ar-H and =CH), 6.90 (d, *J* = 8.8 Hz, 2 H, Ar-H), 5.19 (d, *J* = 9.2 Hz, 1 H, CH), 3.81 (s, 3 H, CO₂Me), 3.71 (s, 3 H, OMe), 2.55 (brs, 1 H, OH); ¹³**C NMR** (100 MHz, CDCl₃): δ = 167.6, 159.3, 143.1, 141.9, 133.7, 130.8, 128.7, 128.1, 126.5, 126.3, 113.6, 71.0, 55.2, 52.3; **MS** (EI 70 ev) *m/z* (%): 299 (M⁺+1, 1.96), 298 (M⁺, 9.60), 105 (100); **IR** (neat): v = 3420, 3028, 2948, 2837, 1707, 1508, 1444, 1234, 1173, 1017 cm⁻¹; **HRMS** calcd for C₁₈H₁₈O₄ [M]⁺: 298.1205, found: 298.1208.

(24) Preparation of methyl (*E*)-2-(4-bromophenyl)-4-hydroxypentadec-2-enoate ((*E*)-2x) (hcf-2-114)

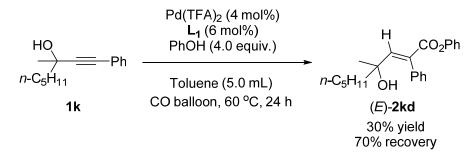

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1x** (365.4 mg, 1 mmol), and MeOH (128.7 mg, 4 mmol)/toluene (5.0 mL) afforded (*E*)-**2x** (370.1 mg, 87%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (550 mL), 5/1 (240 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.50 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.07 (d, *J* = 8.4 Hz, 2 H, Ar-H), 6.93 (d, *J* = 9.6 Hz, 1 H, =CH), 4.10 (q, *J* = 7.5 Hz, 1 H, CH), 3.75 (s, 3 H, CO₂Me), 1.71-1.43 (m, 3 H, CH₂ and OH), 1.36-1.12 (m, 18 H, 9 x CH₂), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃): δ = 167.0, 145.6, 133.4, 133.1, 131.3, 131.2, 122.1, 68.6, 52.4, 36.8, 31.9, 29.6, 29.5, 29.4, 29.35, 29.31, 25.0, 22.7, 14.1; **MS** (EI 70 ev) *m/z* (%): 426 (M⁺(⁸¹Br), 1.43), 424 (M⁺(⁷⁹Br), 1.23), 43 (100); **IR** (neat): *v* = 3427, 2922, 2852, 1720, 1487, 1435, 1236, 1071, 1032, 1010 cm⁻¹; **HRMS** calcd for C₂₂H₃₃⁷⁹BrO₃ [M]⁺: 424.1613, found: 424.1617.

(25) Preparation of ethyl (*E*)-4-hydroxy-4-methyl-2-phenylnon-2-enoate ((*E*)-2ka) (hcf-2-76)

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.3 mg, 1 mmol)/toluene (4 mL), and EtOH (185.9 mg, 4 mmol)/toluene (1 mL) afforded (*E*)-**2ka** (275.8 mg, 95%) as yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (440 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.42-7.30 (m, 3 H, Ar-H), 7.24-7.17 (m, 2 H, Ar-H), 7.05 (s, 1 H, =CH), 4.17 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂), 1.57-1.46 (m, 2 H, CH₂), 1.41-1.16 (m, 13 H, 3 x CH₂ and 2 x CH₃ and OH), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃): δ = 167.5, 149.0, 135.2, 131.7, 129.5, 128.1, 127.8, 74.3, 61.2, 43.2, 32.1, 29.0, 23.6, 22.6, 14.1, 14.0; **MS** (ESI) *m/z*: 313 (M+Na)⁺, 308 (M+NH₄)⁺, 291 (M+H)⁺, 273 (M-OH)⁺; **IR** (neat): *v* = 3483, 2955, 2931, 2860, 1713, 1463, 1444, 1233, 1189, 1037, 1027 cm⁻¹; **HRMS** calcd for C₁₈H₂₇O₃ [M+H]⁺: 291.1955, found: 291.1955.


(26) Preparation of (trimethylsilyl)methyl 4-hydroxy-4-methyl-2(*E*)-phenylnon-2-enoate ((*E*)-2kb) (hcf-3-19)

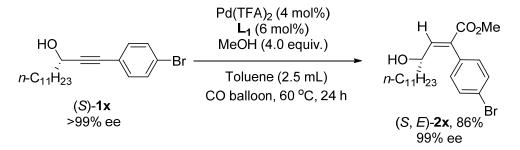
Following **Typical procedure IV**. The reaction of $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.1 mg, 1 mmol)/toluene (4 mL), and TMSCH₂OH (417.1 mg, 4 mmol)/toluene (1 mL) afforded (*E*)-**2kb** (336.7 mg, 97%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 25/1 (520 mL), 10/1 (440 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.39-7.28 (m, 3 H, Ar-H), 7.22-7.15 (m, 2 H, Ar-H), 7.05 (s, 1 H, =CH), 3.76 (s, 2 H, OCH₂), 1.57-1.47 (m, 2 H, CH₂), 1.44-1.18 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃), -0.08 (s, 9 H, 3 x CH₃); ¹³C


NMR (100 MHz, CDCl₃): δ = 168.3, 148.8, 135.5, 131.9, 129.4, 128.0, 127.7, 74.3, 58.3, 43.2, 32.1, 29.0, 23.6, 22.5, 14.0, -3.3; **MS** (EI 70 ev) *m/z* (%): 348 (M⁺, 1.58), 173 (100); **IR** (neat): *v* = 3487, 2956, 2931, 2861, 1713, 1287, 1249, 1217, 1148 cm⁻¹; **HRMS** calcd for C₂₀H₃₂O₃Si [M]⁺: 348.2121, found: 348.2110.

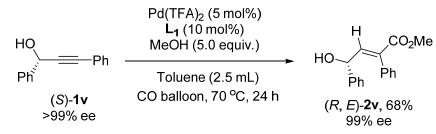
(27) Preparation of isopropyl 4-hydroxy-4-methyl-2(*E*)-phenylnon-2-enoate ((*E*)-2kc) (hcf-3-20, 28)

Following **Typical procedure IV**. The reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.5 mg, 1 mmol)/toluene (4 mL), and ^{*i*}PrOH (240.5 mg, 4 mmol)/toluene (1 mL) afforded (*E*)-**2kc** (231.1 mg, 76%) (24% of **1k** remained based on ¹H NMR analysis of the crude product) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (840 mL), 10/1 (220 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.40-7.27 (m, 3 H, Ar-H), 7.23-7.12 (m, 2 H, Ar-H), 7.01 (s, 1 H, =CH), 5.03 (hept, *J* = 6.2 Hz, 1 H, CH), 1.58-1.44 (m, 2 H, CH₂), 1.44-1.08 (m, 16 H, 3 x CH₂ and 3 x CH₃ and OH), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 166.9, 148.6, 135.3, 132.1, 129.5, 128.0, 127.7, 74.2, 68.5, 43.1, 32.1, 29.0, 23.5, 22.5, 21.7, 14.0; MS (ESI) *m/z*: 327 (M+Na)⁺, 287 (M-OH)⁺; IR (neat): *v* = 3497, 2956, 2932, 2870, 1709, 1465, 1373, 1238, 1182, 1106, 1004 cm⁻¹; HRMS calcd for C₁₉H₂₈O₃ [M]⁺: 304.2038, found: 304.2038.

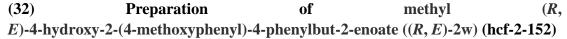
(28) Preparation of phenyl (*E*)-4-hydroxy-4-methyl-2-phenylnon-2-enoate ((*E*)-2kd) (hcf-2-77)

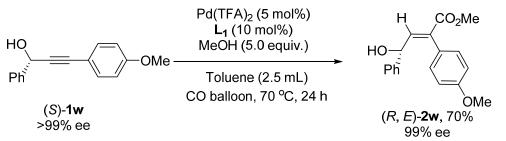

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.5 mg, 1 mmol)/toluene (5 mL), and PhOH (376.6 mg, 4 mmol) afforded (*E*)-**2kd** (101.6 mg, 30%) (70% of **1k** remained based on ¹H NMR analysis of the crude product) as a yellow oil [eluent: petroleum ether/ethyl acetate = $50/1(\sim 200 \text{ mL})$, 20/1 (630 mL), 10/1 (220 mL)]: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.54$ -7.29 (m, 7 H, Ar-H), 7.27 (s, 1 H, =CH), 7.19 (t, *J* = 7.2 Hz, 1 H, Ar-H), 7.07 (d, *J* = 7.6 Hz, 2 H, Ar-H), 1.64-1.49 (m, 2 H, CH₂), 1.48-1.19 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.90 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.0$, 151.2, 150.9, 134.7, 131.1, 129.5, 129.2, 128.2, 128.1, 125.7, 121.4, 74.4, 43.1, 32.1, 28.9, 23.6, 22.5, 14.0; MS (ESI) m/z: 361 (M+Na)⁺, 339 (M+H)⁺, 321 (M-OH)⁺; **IR** (neat): v = 3471, 2930, 2858, 1724, 1485, 1237, 1164, 1054 cm⁻¹; **HRMS** calcd for C₂₂H₂₇O₃ [M+H]⁺: 339.1955, found: 339.1977.

(29) Preparation of methyl (S, E)-4-hydroxy-2-phenylpentadec-2-enoate ((S, E)-2u) (hcf-2-96)

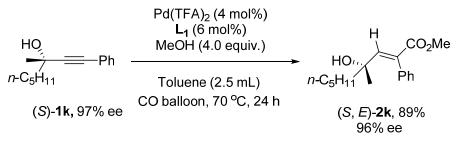

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (6.8 mg, 0.02 mmol), **L**₁ (21.9 mg, 0.04 mmol), (*S*)-**1u** (143.2 mg, 98% ee, 0.5 mmol)/toluene (2.0 mL), and MeOH (64.9 mg, 2 mmol)/toluene (0.5 mL) afforded (*S*, *E*)-**2u** (155.8 mg, 90%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (525 mL), 10/1 (550 mL), 5/1 (240 mL)]: 99% ee (HPLC conditions: PA-2 column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R (major) = 16.4 min, t_R (minor) = 15.1 min); [α]²⁰_D = -20.9 (*c* = 1.02, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃): δ = 7.44-7.30 (m, 3 H, Ar-H), 7.24-7.13 (m, 2 H, Ar-H), 6.92 (d, *J* = 9.6 Hz, 1 H, =CH), 4.13 (q, *J* = 7.5 Hz, 1 H, CH), 3.75 (s, 3 H, CO₂Me), 1.76-1.44 (m, 3 H, CH₂ and OH), 1.41-1.11 (m, 18 H, 9 x CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 167.5, 145.2, 134.5, 134.1, 129.4, 128.1, 127.8, 68.6, 52.3, 36.7, 31.9, 29.6, 29.5, 29.4, 29.34, 29.30, 25.0, 22.7, 14.1; **MS** (EI 70 ev) m/z (%): 346 (M⁺, 1.23), 103 (100); **IR** (neat): v = 3434, 2922, 2853, 1720, 1462, 1435, 1236, 1195, 1175, 1024 cm⁻¹; **HRMS** calcd for C₂₂H₃₄O₃ [M]⁺: 346.2508, found: 346.2510.

(30) Preparation of methyl (S, E)-2-(4-bromophenyl)-4-hydroxypentadec-2-enoate ((S, E)-2x) (hcf-2-118)

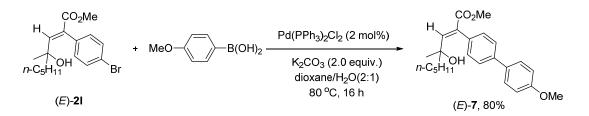



Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (6.8 mg, 0.02 mmol), **L**₁ (16.4 mg, 0.03 mmol), (*S*)-**1x** (182.7 mg, >99% ee, 0.5 mmol), and MeOH (64.9 mg, 2 mmol)/toluene (2.5 mL) afforded (*S*, *E*)-**2x** (182.9 mg, 86%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (525 mL), 10/1 (550 mL)]: 99% ee (HPLC conditions: AS-H column, hexane/*i*-PrOH = 97/3, 1.0 mL/min, λ = 214 nm, t_R (major) = 8.6 min, t_R (minor) = 7.4 min); $[\alpha]^{20}_D$ = -24.3 (*c* = 1.01, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃): δ = 7.49 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.06 (d, *J* = 8.4 Hz, 2 H, Ar-H), 6.92 (d, *J* = 9.6 Hz, 1 H, =CH), 4.08 (q, *J* = 7.5 Hz, 1 H, CH), 3.74 (s, 3 H, CO₂Me), 2.24 (brs, 1 H, OH), 1.67-1.03 (m, 20 H, 10 x CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 167.0, 145.8, 133.4, 132.9, 131.2, 131.1, 122.0, 68.5, 52.3, 36.7, 31.8, 29.54, 29.53, 29.48, 29.4, 29.30, 29.26, 24.9, 22.6, 14.0; MS (EI 70 ev) *m/z* (%): 426 (M⁺(⁸¹Br), 0.96), 424 (M⁺(⁷⁹Br), 1.12), 43 (100); **IR** (neat): *v* = 3428, 2922, 2852, 1720, 1487, 1435, 1236, 1071, 1032, 1010 cm⁻¹; **HRMS** calcd for C₂₂H₃₃⁷⁹BrO₃ [M]⁺: 424.1613, found: 424.1615.

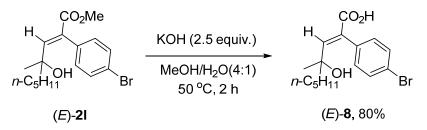
(31) Preparation of methyl (*R*, *E*)-4-hydroxy-2,4-diphenylbut-2-enoate ((*R*, *E*)-2v) (hcf-2-132)


Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (8.5 mg, 0.025 mmol), **L**₁ (27.3 mg, 0.05 mmol), (*S*)-**1v** (104.2 mg, >99% ee, 0.5 mmol)/toluene (2.0 mL), and MeOH (80.9 mg, 2.5 mmol)/toluene (0.5 mL) afforded (*R*, *E*)-**2v** (91.3 mg, 68%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 10/1 (550 mL), 5/1 (600 mL)]: 99% ee (HPLC conditions: PA-2 column, hexane/*i*-PrOH = 80/20, 0.7 mL/min, $\lambda = 214$ nm, t_R (major) = 14.0 min, t_R (minor) = 17.0 min); [α]²⁰_D = +157.6 (*c* = 1.01, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.48-7.24$ (m, 8 H, Ar-H), 7.24-7.11 (m, 3 H, Ar-H and =CH), 5.19 (d, *J* = 9.2 Hz, 1 H, CH), 3.73 (s, 3 H, CO₂Me), 2.13 (br, 1 H, OH); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 167.4$, 143.4, 141.7, 134.3, 134.0, 129.5, 128.8, 128.2, 128.1, 126.3, 71.0, 52.3; **MS** (EI 70 ev) *m/z* (%): 269 (M⁺+1, 1.51), 268 (M⁺, 7.65), 105 (100); **IR** (neat): v = 3417, 1696, 1641, 1490, 1442, 1228 cm⁻¹; **HRMS** calcd for C₁₇H₁₆O₃ [M]⁺: 268.1099, found: 268.1097.

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (8.5 mg, 0.025 mmol), **L**₁ (27.3 mg, 0.05 mmol), (*S*)-**1**w (119.1 mg, >99% ee, 0.5 mmol)/toluene (2.0 mL), and MeOH (81.1 mg, 2.5 mmol)/toluene (0.5 mL) afforded (*R*, *E*)-**2**w (104.4 mg, 70%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 10/1 (440 mL), 5/1 (600 mL)]: 99% ee (HPLC conditions: PC-2 column, hexane/*i*-PrOH = 50/50, 0.8 mL/min, $\lambda = 214$ nm, t_R (major) = 7.9 min, t_R (minor) = 13.0 min); $[\alpha]^{21}_D = +196.5$ (*c* = 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41-7.22$ (m, 5 H, Ar-H), 7.20-7.06 (m, 3 H, Ar-H and =CH), 6.90 (d, *J* = 8.4 Hz, 2 H, Ar-H), 5.20 (d, *J* = 9.2 Hz, 1 H, CH), 3.81 (s, 3 H, CO₂Me), 3.71 (s, 3 H, OMe), 2.62-2.34 (m, 1 H, OH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.6$, 159.2, 143.2, 141.9, 133.5, 130.8, 128.7, 128.0, 126.4, 126.3, 113.5, 70.9, 55.2, 52.3; MS (EI 70 ev) *m/z* (%): 299 (M⁺+1, 1.90), 298 (M⁺,

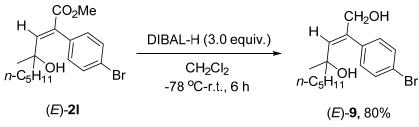

9.21), 105 (100); IR (neat): v = 3424, 3015, 2947, 2837, 1707, 1508, 1444, 1234, 1174, 1017 cm⁻¹; HRMS calcd for C₁₈H₁₈O₄ [M]⁺: 298.1205, found: 298.1202.
(33) Preparation of methyl (*S*, *E*)-4-hydroxy-4-methyl-2-phenylnon-2-enoate ((*S*, *E*)-2k) (hcf-2-128)

Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (6.8 mg, 0.02 mmol), **L**₁ (16.4 mg, 0.03 mmol), (*S*)-**1k** (108.2 mg, 97% ee, 0.5 mmol)/toluene (2.0 mL), and MeOH (64.9 mg, 2 mmol)/toluene (0.5 mL) afforded (*S*, *E*)-**2k** (123.1 mg, 89%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (440 mL)]: 96% ee (HPLC conditions: PA-2 column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 18.2 min, *t*_R (minor) = 13.9 min); $[\alpha]^{20}_{D}$ = +15.6 (*c* = 1.01, CHCl₃); **¹H NMR** (400 MHz, CDCl₃): δ = 7.42-7.30 (m, 3 H, Ar-H), 7.24-7.16 (m, 2 H, Ar-H), 7.08 (s, 1 H, =CH), 3.70 (s, 3 H, CO₂Me), 1.57-1.44 (m, 2 H, CH₂), 1.44-1.16 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.88 (t, *J* = 7.4 Hz, 3 H, CH₃); **¹³C NMR** (100 MHz, CDCl₃): δ = 167.9, 149.6, 135.0, 131.3, 129.4, 128.1, 127.8, 74.2, 52.3, 43.1, 32.0, 28.9, 23.6, 22.5, 14.0; **MS** (ESI) m/z: 299 (M+Na)⁺, 259 (M-OH)⁺; **IR** (neat): *v* = 3495, 2953, 2931, 2860, 1716, 1458, 1435, 1237, 1196, 1020 cm⁻¹; **HRMS** calcd for C₁₇H₂₄O₃ [M]⁺: 276.1725, found: 276.1722.

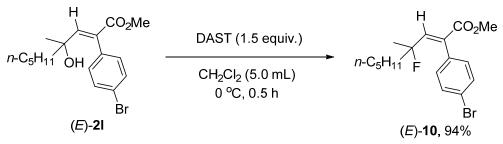

6. Synthetic applications

(1) Preparation of methyl (E)-4-hydroxy-2-(4'-methoxy-[1,1'-biphenyl]-4-yl)4-methylnon-2-enoate ((E)-7)⁵ (hcf-2-98)

To a flame-dried Schlenk tube were added Pd(PPh₃)₂Cl₂ (7.0 mg, 0.01 mmol), (4-methoxyphenyl)boronic acid (116.3 mg, 0.75 mmol), potassium carbonate (138.2 mg, 1.0 mmol), (E)-2l (177.5 mg, 0.5 mmol)/1,4-doxane (2.5 mL), and H₂O (1.25 mL) sequentially under argon. The resulting mixture was stirred at 80 °C for 16 h and then diluted with 3 mL of ethyl acetate, filtered through a short column silica gel (3 cm) eluted with ethyl acetate (20 x 2 mL), and concentrated. The residue was purified by column chromatography on silica gel to afford (E)-7 (152.8 mg, 80%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL), 20/1 (525 mL), 10/1 (550 mL), 5/1 (240 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.60-7.49 (m, 4 H, Ar-H), 7.31-7.20 (m, 2 H, Ar-H), 7.10 (s, 1 H, =CH), 6.98 (d, J = 8.8 Hz, 2 H, Ar-H), 3.85 (s, 3 H, CO₂Me), 3.73 (s, 3 H, OMe), 1.60-1.49 (m, 2 H, CH₂), 1.45 (s, 1 H, OH), 1.42-1.18 (m, 9 H, 3 x CH₂ and CH₃), 0.89 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 168.0, 159.2, 149.7, 140.3, 133.2, 133.0, 131.1, 129.9, 128.1, 126.4,$ 114.2, 74.3, 55.3, 52.4, 43.2, 32.1, 29.0, 23.7, 22.6, 14.0; MS (EI 70 ev) m/z (%): 383 $(M^{+}+1, 6.42), 382 (M^{+}, 24.86), 279 (100);$ **IR** (neat): v = 3509, 2952, 2931, 2859,1713, 1608, 1497, 1241, 1176, 1038 cm⁻¹; **HRMS** calcd for $C_{24}H_{30}O_4 [M]^+$: 382.2144, found: 382.2141.

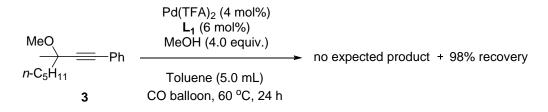

(2) Preparation of (*E*)-2-(4-bromophenyl)-4-hydroxy-4-methylnon-2-enoic acid ((*E*)-8)⁶ (hcf-2-130)

To a flame-dried Schlenk tube were added KOH (70.1 mg, 1.25 mmol), (*E*)-**2**l (177.6 mg, 0.5 mmol)/MeOH (1 mL), and H₂O (0.25 mL) sequentially. The Schlenk


tube was placed in an oil bath pre-heated at 50 °C and stirred for 2 h. To the mixture was added H₂O (5 mL), the organic layer was then washed with 3 N HCl (10 mL), extracted with ethyl acetate (5 mL x 3), washed with brine (10 mL), and dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford (E)-8 (136.5 mg, 80%) as a white solid [eluent: dichloromethane (200 mL) to dichloromethane/MeOH = 20:1]: 123.7-124.4 °C m.p. (petroleum ether/dichloromethane); ¹H NMR (400 MHz, DMSO- D_6): $\delta = 12.53$ (s, 1 H, COOH), 7.49 (d, J = 8.4 Hz, 2 H, Ar-H), 7.05 (d, J = 8.0 Hz, 2 H, Ar-H), 6.98 (s, 1 H, =CH), 4.50 (s, 1 H, OH), 1.38-1.06 (m, 8 H, 4 x CH₂), 1.00 (s, 3 H, CH₃), 0.83 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, DMSO- D_6): $\delta = 168.4, 151.2, 135.9, 131.9, 130.5,$ 130.3, 120.3, 72.2, 42.5, 31.9, 28.6, 23.3, 22.2, 14.1; MS (ESI) m/z: 325 $(M(^{81}Br)-OH)^+$, 323 $(M(^{79}Br)-OH)^+$; **IR** (neat): v = 3387, 2961, 2926, 2870, 2855,2584, 1693, 1630, 1488, 1232, 1148, 1009 cm⁻¹; Anal. Calcd. for C₁₆H₂₁⁷⁹BrO₃: C 56.32, H 6.20; found C 55.95, H 6.25.

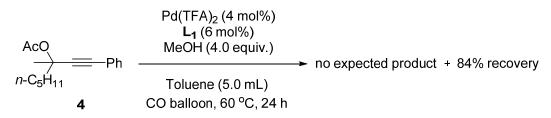
(3) Preparation of (E)-2-(4-bromophenyl)-4-hydroxy-4-methylnon-2-enoic acid ((E)-9)⁷ (hcf-2-134)

To a flame-dried Schlenk tube were added (*E*)-**21** (177.6 mg, 0.5 mmol)/ dichloromethane (5 mL). Then the resulting mixture was stirred at -78 °C with a balloon of argon for 10 min. After that, DIBAL-H (1.0 M in toluene, 1.5 mL, 1.5 mmol, 3.0 equiv.) was added dropwise within 5 mins. After 3 hours, the resulting mixture was warmed up to room temperature and stirred at room temperature for 3h as monitored by TLC. A saturated aqueous solution of potassium sodium tartrate (10 mL) was added with a cooling bath of ice-water. The resulting mixture was then stirred at room temperature for 2 h. The organic layer was separated, and the aqueous layer was extracted with DCM (3 x 5 mL). The combined organic layer was washed with brine (10 mL) and dried with anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford (*E*)-9 (130.8 mg, 80%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 10/1 (550 mL), 5/1 (600 mL), 3/1 (200 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.48 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.09 (d, *J* = 8.0 Hz, 2 H, Ar-H), 5.78 (s, 1 H, =CH), 4.17 (d, *J* = 5.2 Hz, 2 H, =CH₂), 1.62-1.51 (m, 1 H, OH), 1.51-1.40 (m, 2 H, CH₂), 1.37-1.17 (m, 9 H, 3 x CH₂ and CH₃), 1.16 (s, 1 H, OH), 0.89 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C **NMR** (100 MHz, DMSO-*D*₆): δ = 137.8, 137.5, 134.3, 131.4, 130.4, 121.5, 73.9, 68.9, 43.7, 32.2, 29.5, 23.7, 22.6, 14.1; **MS** (ESI) m/z: 351 (M(⁸¹Br)+Na)⁺, 349 (M(⁷⁹Br)+Na)⁺, 293 (M(⁸¹Br)-OH-H₂O)⁺, 291 (M(⁷⁹Br)-OH-H₂O)⁺; **IR** (neat): *v* = 3334, 2954, 2929, 2858, 1897, 1710, 1587, 1486, 1460, 1375, 1148, 1071, 1011 cm⁻¹; **HRMS** calcd for C₁₆H₂₃⁷⁹BrO₂Na [M+Na]⁺: 349.0774, found: 349.0762.



To a flame-dried Schlenk tube was added a solution of (*E*)-21 (177.9 mg, 0.5 mmol)/dichloromethane (5 mL) under argon. The resulting mixture was stirred at 0 °C for 10 min. The resulting mixture was added DAST (0.1 mL, d = 1.22 g/mL, 122.0 mg, 0.75 mmol) and stirred at 0 °C for 30 min. After that, the reaction mixture was poured into a cold sat. NaHCO₃ solution (30 mL) and extracted with CH₂Cl₂ (3 x 10 mL), washed with brine (10 mL), and dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afforded (*E*)-10 (168.1 mg, 94%) as a yellow oil [eluent: petroleum ether/ethyl ether/dichloromethane = 150/1/1]: ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.15-6.96 (m, 3 H,

Ar-H and =CH), 3.72 (s, 3 H, CO₂Me), 1.71-1.49 (m, 2 H, CH₂), 1.47-1.14 (m, 9 H, 3 x CH₂ and CH₃), 0.88 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 167.3, 145.8 (d, J = 23.5 Hz), 134.1, 131.7 (d, J = 4.6 Hz), 130.9 (d, J = 2.2 Hz), 130.7, 121.6, 96.2 (d, J = 173.8 Hz), 52.5, 40.6 (d, J = 22.8 Hz), 31.8, 26.1 (d, J =24.2 Hz), 23.2 (d, J = 3.1 Hz), 22.5, 14.0; ¹⁹F NMR (376 MHz, CDCl3): $\delta = -143.1$; MS (EI, 70 ev) m/z (%): 358 (M⁺(⁸¹Br), 45.13), 356 (M⁺(⁷⁹Br), 45.11), 146 (100); **IR** (neat): v = 2943, 2862, 1718, 1482, 1442, 1241, 1065, 1014 cm⁻¹; **HRMS** calcd for C₁₇H₂₂⁷⁹BrFO₂ [M]⁺: 356.0787, found: 356.0781.


7. Mechanistic studies:

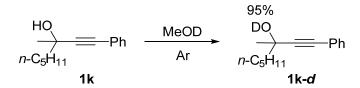
(1) Reaction of methyl ether 3 (hcf-2-154)

Following **Typical Procedure IV**, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **3** (230.4 mg, 1 mmol)/toluene (4.0 mL), and MeOH (130.0 mg, 4 mmol)/toluene (1.0 mL) was conducted for 24 h at 60 °C. Crude ¹H NMR showed that no expected product with 98% recovery of **3**.

(2) Reaction of acetate 4 (hcf-2-150)

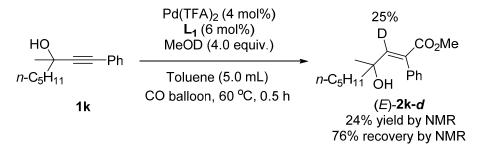

Following **Typical Procedure IV**, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **4** (258.6 mg, 1 mmol)/toluene (4.0 mL), and MeOH (129.7 mg, 4 mmol)/toluene (1.0 mL) was conducted for 24 h at 60 °C. Crude ¹H NMR showed that no expected product with 84% recovery of **4**.

(3) Reaction of internal alkyne 5 (hcf-2-176)

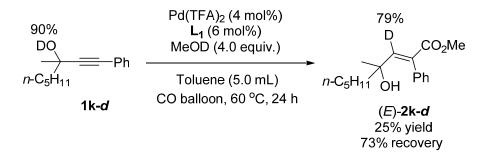

Following **Typical Procedure IV**, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **5** (158.1 mg, 1 mmol)/toluene (4.0 mL), and MeOH (130.5 mg, 4 mmol)/toluene (1.0 mL) was conducted for 24 h at 60 °C. Crude ¹H NMR showed that no expected product with 64% recovery of **5**.

(4) Preparation of 1k-*d* (hcf-3-169, hcf-3-93)

hcf-3-169:



To a solution of **1k** (649.9 mg, 3 mmol) was added MeOD (1 mL) under argon. After shaking the flask at room temperature, the mixture was evaporated under vacuum directly using the vacuum line connected to argon for 30 min. Repeating the process five times afforded **1k**-*d* as an oil with 90% D incorporation: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.45$ -7.37 (m, 2 H, Ar-H), 7.34-7.27 (m, 3 H, Ar-H), 1.79-1.69 (m, 2 H, CH₂), 1.63-1.49 (m, 5 H, CH₂ and CH₃), 1.41-1.29 (m, 4 H, 2 x CH₂), 0.91 (t, *J* = 7.0 Hz, 3 H, CH₃). The following signal is discernible for **1k**: δ 2.02 (s, 1 H, OH). hcf-3-93:


To a solution of **1k** (1.0831 g, 5 mmol) was added MeOD (2 mL) under argon. After shaking the flask at room temperature, the mixture was evaporated under vacuum directly using the vacuum line connected to argon for 30 min. Repeating the process five times afforded **1k**-*d* as an oil with 95% D incorporation: ¹H NMR (400 MHz, CDCl₃): $\delta = 7.46-7.37$ (m, 2 H, Ar-H), 7.34-7.27 (m, 3 H, Ar-H), 1.80-1.69 (m, 2 H, CH₂), 1.64-1.46 (m, 5 H, CH₂ and CH₃), 1.43-1.27 (m, 4 H, 2 x CH₂), 0.91 (t, J = 6.4 Hz, 3 H, CH₃). The following signal is discernible for **1k**: δ 2.06 (s, 1 H, OH).

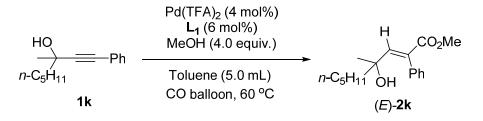
(5) Reaction of 1k with MeOD (hcf-2-182B)

To a flame-dried Schlenk tube were added $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), L_1 (32.8 mg, 0.06 mmol), **1k** (216.2 mg, 1 mmol)/toluene (4 mL), and MeOD (132.7 mg, 4.0 mmol)/toluene (1 mL) sequentially under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO for 0.5 h. After that, the resulting mixture was diluted with 3 mL of ethyl acetate, filtered through a short column of silica gel (3 cm) eluted with ethyl acetate (20 x 2 mL), and concentrated to afford the crude product. (*E*)-**2k-d** (25% deuterium incorporation) was formed as determined by NMR analysis of the crude product by using CH₂Br₂ as the internal standard.

(6) Reaction of 1k-d with MeOD (hcf-3-170)

To a flame-dried Schlenk tube were added $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), L_1 (32.8 mg, 0.06 mmol), **1k-***d* (217.1 mg, 1 mmol, 90% deuterium incorporation)/toluene (4 mL), MeOD (132.9 mg, 4.0 mmol)/toluene (1 mL) sequentially in a glove box. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the

nitrogen inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO for 24 h. After that, the resulting mixture was diluted with 3 mL of ethyl acetate, filtered through a short column of silica gel (3 cm) eluted with ethyl acetate (20 x 2 mL), and concentrated. The residue was purified by column chromatography on silica gel to afford (*E*)-**2k**-*d* (69.7 mg, 25%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (630 mL), 10/1 (220 mL)]: ¹H NMR (400 MHz, CDCl₃): δ = 7.41-7.29 (m, 3 H, Ar-H), 7.24-7.14 (m, 2 H, Ar-H), 3.69 (s, 3 H, CO₂Me), 1.56-1.44 (m, 2 H, CH₂), 1.44-1.14 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃), the following signal is discernible for (*E*)-**2k**: δ 7.08 (s, 1 H, =CH); ¹³C NMR (100 MHz, CDCl₃): δ = 167.9, 149.2 (*J* = 23.3 Hz), 135.0, 131.3, 129.4, 128.1, 127.8, 74.1, 52.3, 43.1, 32.0, 28.9, 23.6, 22.5, 14.0; the following signal is discernible for (*E*)-**2k**: 149.6, 135.05, 131.4, 74.2; MS (ESI) *m/z*: 300 (M+Na)⁺, 260 (M-OH)⁺; IR (neat): *v* = 3487, 2954, 2931, 2860, 1717, 1434, 1226, 1022 cm⁻¹; HRMS calcd for C₁₇H₂₃DO₃Na [M+Na]⁺: 300.1680, found: 300.1672.

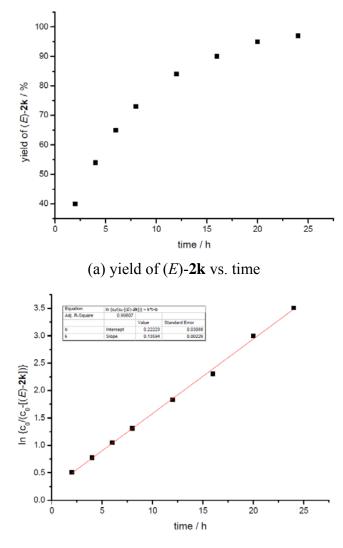

(7) ¹H-NMR spectra of 1k with different amount of methanol (hcf-2-188)

1k (21.6 mg, 0.1 mmol) was dissolved in Tol- d_8 (0.5 mL), the ¹H-NMR spectrum was shown as hcf-2-188-1. Then, 1 equiv. of MeOH (4 µL, 0.1 mmol) was added to obtain ¹H-NMR spectra as hcf-2-188-2. This operation was repeated for three times to the same NMR tube, the spectra are hcf-2-188-3, hcf-2-188-4, and hcf-2-188-5. An obvious shift of the hydroxy signal was observed.

(8) ¹H-NMR spectra of methanol with different amount of 1k (hcf-2-188C)

Methanol (16 μ L, 0.4 mmol) was dissolved in Tol-*d*₈ (0.5 mL), the ¹H-NMR spectrum was shown as hcf-2-188C-1. Then, 0.25 equiv. of **1k** (5.4 mg, 0.1 mmol) was added to obtain ¹H-NMR spectra as hcf-2-188C-5. This operation was repeated for three times to the same NMR tube, the spectra are hcf-2-188C-6, hcf-2-188C-7, and hcf-2-188C-8, an obvious shift of the hydroxy signal was observed.

(9) Kinetic Experiments (hcf-3-161)



To a flame-dried Schlenk tube were added Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.3 mg, 1 mmol)/toluene (2 mL), MeOH (128.8 mg, 4.0 mmol)/toluene (2 mL), and diphenylmethane (the internal standard, 83.6 μ L, d = 1.006 g/mL, 84.1 mg, 0.5 mmol)/toluene (1 mL) sequentially under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO and monitored at different time (see Table S4). The yields were determined by ¹H NMR measurement using diphenylmethane as the internal standard.

Table S4. For 1k:

Time / h	Yield of (<i>E</i>)- 2 k
2	40
4	54
6	65
8	73
12	84
16	90
20	95
24	97

A linear relationship was obtained for ln $\{c_0/(c_0-[(E)-2\mathbf{k}])\}$ vs. reaction time, indicating a first-order dependence of reaction rate with respect to propargylic alcohol in the rate-determining step (Figures S3).

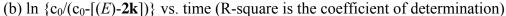
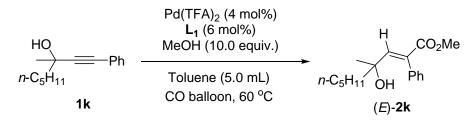
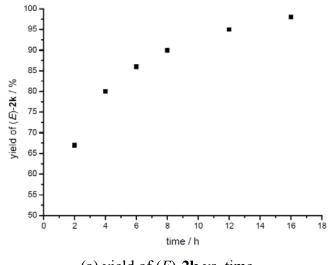
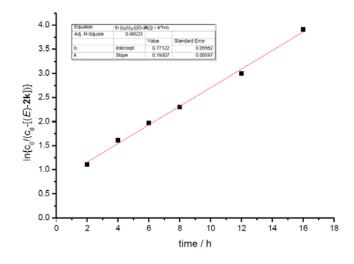



Figure S3. Determination of the reaction order on propargylic alcohol

(10) Kinetic Experiments (hcf-3-162)


To a flame-dried Schlenk tube were added Pd(TFA)₂ (13.6 mg, 0.04 mmol), L₁ (32.8 mg, 0.06 mmol), **1k** (216.3 mg, 1 mmol)/toluene (2 mL), MeOH (321.4 mg, 10.0 mmol)/toluene (2 mL), and diphenylmethane (the internal standard, 83.6 μ L, d = 1.006 g/mL, 84.1 mg, 0.5 mmol)/toluene (1 mL) sequentially under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the

argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO and monitored at different time (see Table S5). The yields were determined by ¹H NMR measurement using diphenylmethane as the internal standard.


Table S5. For 1k:

Yield of (<i>E</i>)- 2 k
67
80
86
90
95
98

A linear relationship was obtained for $\ln \{c_0/(c_0-[(E)-2\mathbf{k}])\}\$ vs. reaction time, indicating a first-order dependence of reaction rate with respect to propargylic alcohol in the rate-determining step (Figures S4).

(a) yield of (E)-2k vs. time

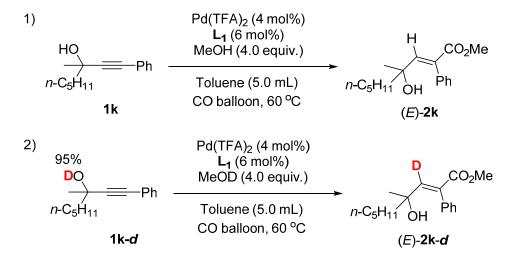

(b) $\ln \{c_0/(c_0-[(E)-2\mathbf{k}])\}$ vs. time (R-square is the coefficient of determination)

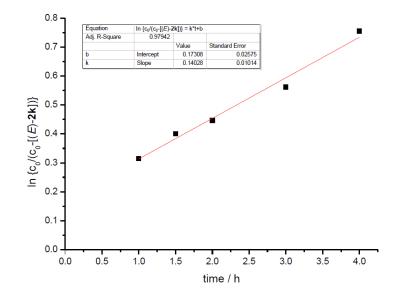
Figure S4. Determination of the reaction order on propargylic alcohol-10.0-fold MeOH

(11) Measuring the rate of H/D-scrambling (hcf-3-109)

To a solution of 1k (8.2 mg, 0.038 mmol) in CDCl₃ (1 mL) was added MeOD (6.5 μ L, 0.813 g/mL, 0.16 mmol), then the mixture was subjected to ¹H NMR analysis immediately, the H/D-exchange process was found to reach equilibrium state within 3 minutes.

(12) Kinetic Isotope Effect (KIE) Experiments (hcf-3-99, 100)

parallel reaction, $KIE = k_H/k_D = 16$


To a flame-dried Schlenk tube were added Pd(TFA)₂ (13.6 mg, 0.04 mmol), L_1 (32.8 mg, 0.06 mmol), **1k** (216.3 mg, 1 mmol)/toluene (3 mL), MeOH (128.7 mg, 4.0 mmol)/toluene (1 mL), and diphenylmethane (the internal standard, 83.6 μ L, d =

1.006 g/mL, 84.1 mg, 0.5 mmol)/toluene (1 mL) sequentially in a glove box. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the nitrogen inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO and monitored at different time (see Table S6). The yields were determined by ¹H NMR measurement using diphenylmethane as the internal standard.

Table S6. For 1k:

Time/h	1	1.5	2	3	4
NMR yield of (<i>E</i>)-2k/%	27	32	36	43	53

Due to the nature of the experiment, plots to determine the KIE were taken for **1k** (Figure S5).

Figure S5. Linear function fit for reaction rate of 1k to obtain $k_{\rm H}$

To another dried Schlenk tube were added $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), L₁ (32.8)0.06 mmol), **1k-***d* (217.2 mg, 1 mmol, 95% deuterium mg, incorporation)/toluene (3 mL), MeOD (132.6 mg, 4.0 mmol)/toluene (1 mL), and diphenylmethane (the internal standard, 83.6 μ L, d = 1.006 g/mL, 84.1 mg, 0.5 mmol)/toluene (1 mL) sequentially in a glove box. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the nitrogen inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO and monitored at different time (see Table S7). The yields were determined by ¹H NMR measurement using diphenylmethane as the internal standard.

Table S	57. For	1k- <i>d</i> :
---------	---------	-----------------------

Time/h	1.5	2	3	4	5
NMR yield of (<i>E</i>)-2k- <i>d</i> /%	9.0	9.5	10.2	11	11.8

Due to the nature of the experiment, plots to determine the KIE were taken for **1k**-*d* (Figure S6).

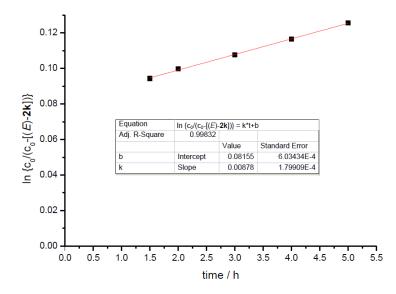
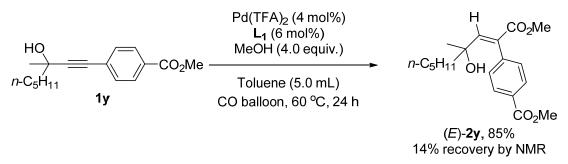
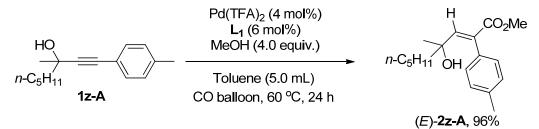
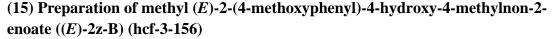



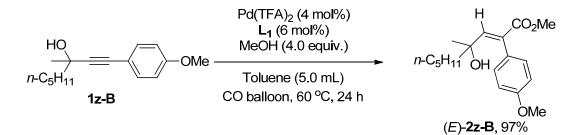
Figure S6. Linear function fit for reaction rate of 1k-d to obtain k_D

Finally, the intermolecular isotope effect value is determined as 16.

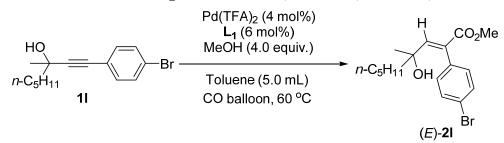
 $k_H/k_D = (0.14028)/(0.00878) = 16$


(13) Preparation of methyl (*E*)-2-(methoxycarbonylphenyl)-4-hydroxy-4-methylnon-2-enoate ((*E*)-2y) (hcf-3-155)


Following **Typical Procedure IV**, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1y** (274.4 mg, 1 mmol)/toluene (4.0 mL), and $_{S54}$


MeOH (128.8 mg, 4 mmol)/toluene (1.0 mL) afforded (*E*)-**2y** (282.9 mg, 85%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 25/1 (520 mL), 10/1 (550 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 8.03 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.28 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.10 (s, 1 H, =CH), 3.92 (s, 3 H, CO₂Me), 3.70 (s, 3 H, CO₂Me), 1.59-1.44 (m, 2 H, CH₂), 1.43-1.11 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃): δ = 167.4, 166.7, 150.2, 140.6, 130.8, 129.6, 129.4, 129.1, 74.2, 52.4, 52.1, 43.1, 32.0, 28.8, 23.6, 22.5, 14.0; **MS** (70 eV, EI) *m/z* (%): 303 (M⁺-OMe, 7.61), 231 (100); **IR** (neat): *v* = 3509, 2953, 2932, 2860, 1717, 1607, 1435, 1273, 1239, 1108, 1018 cm⁻¹; **HRMS** calcd for C₁₉H₂₆O₅ [M]⁺: 334.1780, found: 334.1778.

(14) Preparation of methyl (*E*)-2-(4-methylphenyl)-4-hydroxy-4-methylnon-2enoate ((*E*)-2z-A) (hcf-3-154)

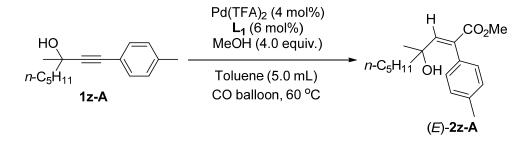


Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1z-A** (230.5 mg, 1 mmol)/toluene (4.0 mL), and MeOH (129.1 mg, 4 mmol)/toluene (1.0 mL) afforded (*E*)-**2z-A** (278.9 mg, 96%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 20/1 (420 mL), 10/1 (440 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.18 (d, *J* = 7.6 Hz, 2 H, Ar-H), 7.09 (d, *J* = 7.6 Hz, 2 H, Ar-H), 7.06 (s, 1 H, =CH), 3.70 (s, 3 H, CO₂Me), 2.36 (s, 3 H, CH₃), 1.57-1.46 (m, 2 H, CH₂), 1.46-1.40 (m, 1 H, OH), 1.40-1.17 (m, 9 H, 3 x CH₂ and CH₃), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃): δ = 168.1, 149.5, 137.7, 131.9, 131.3, 129.3, 128.9, 74.3, 52.3, 43.2, 32.1, 29.0, 23.6, 22.5, 21.2, 14.0; **MS** (70 eV, EI) *m/z* (%): 259 (M⁺-OMe, 4.72), 187 (100); **IR** (neat): *v* = 3488, 2953, 2930, 2861, 1717, 1456, 1456, 1434, 1237, 1018 cm⁻¹; **HRMS** calcd for C₁₈H₂₆O₃ [M]⁺: 290.1882, found: 290.1878.



Following **Typical Procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1z-B** (246.3 mg, 1 mmol)/toluene (4.0 mL), and MeOH (129.3 mg, 4 mmol)/toluene (1.0 mL) afforded (*E*)-**2z-B** (296.8 mg, 97%) as a yellow oil [eluent: petroleum ether/ethyl acetate = 25/1 (525 mL), 10/1 (550 mL)]: ¹**H NMR** (400 MHz, CDCl₃): δ = 7.13 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.06 (s, 1 H, =CH), 6.90 (d, *J* = 8.8 Hz, 2 H, Ar-H), 3.81 (s, 3 H, OCH₃), 3.71 (s, 3 H, CO₂Me), 1.58-1.42 (m, 3 H, CH₂ and OH), 1.41-1.15 (m, 9 H, 3 x CH₂ and CH₃), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃): δ = 168.2, 159.2, 149.6, 131.0, 130.7, 126.7, 113.7, 74.3, 55.2, 52.3, 43.2, 32.1, 29.0, 23.6, 22.5, 14.0; **MS** (70 eV, EI) *m/z* (%): 306 (M⁺, 4.39), 203 (100); **IR** (neat): *v* = 3499, 2953, 2932, 2861, 1715, 1608, 1512, 1460, 1435, 1241, 1174 cm⁻¹; **HRMS** calcd for C₁₈H₂₆O₄ [M]⁺: 306.1831, found: 306.1825. (**16) Electronic effect investigation (hcf-3-158, hcf-3-159, hcf-3-160, hcf-3-163)**

To a flame-dried Schlenk tube were added Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **11** (295.3 mg, 1 mmol)/toluene (2 mL), MeOH (129.4 mg, 4.0 mmol)/toluene (2 mL), and diphenylmethane (the internal standard, 83.6 μ L, d = 1.006 g/mL, 84.1 mg, 0.5 mmol)/toluene (1 mL) sequentially under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO and monitored at different time (see Table S8). The yields were determined by ¹H NMR measurement


using diphenylmethane as the internal standard.

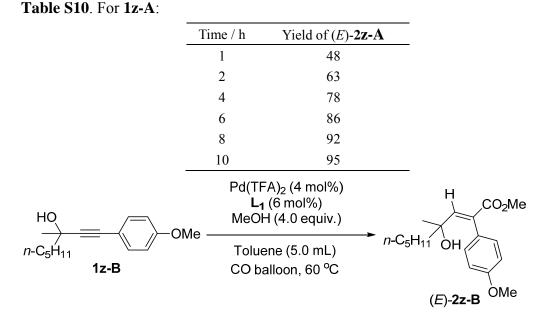
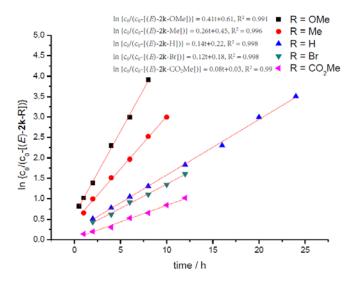

To a flame-dried Schlenk tube were added $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), L_1 (32.8 mg, 0.06 mmol), 1y (274.4 mg, 1 mmol)/toluene (2 mL), MeOH (128.9 mg, 4.0 mmol)/toluene (2 mL), and diphenylmethane (the internal standard, 83.6 μ L, d = 1.006 g/mL, 84.1 mg, 0.5 mmol)/toluene (1 mL) sequentially under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO and monitored at different time (see Table S9). The yields were determined by ¹H NMR measurement using diphenylmethane as the internal standard.

Table S9. For 1y:

Time / h	Yield of (<i>E</i>)- 2 y
1	13
2	18
4	26
6	41
8	48
10	57
12	64

To a flame-dried Schlenk tube were added Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1z-A** (230.4 mg, 1 mmol)/toluene (2 mL), MeOH (129.1 mg, 4.0 mmol)/toluene (2 mL), and diphenylmethane (the internal standard, 83.6 μ L, d = 1.006 g/mL, 84.1 mg, 0.5 mmol)/toluene (1 mL) sequentially under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO and monitored at different time (see Table S10). The yields were determined by ¹H NMR measurement using diphenylmethane as the internal standard.


To a flame-dried Schlenk tube were added Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1z-B** (246.4 mg, 1 mmol)/toluene (2 mL), MeOH (128.9 mg, 4.0 mmol)/toluene (2 mL), and diphenylmethane (the internal standard, 83.6 μ L, d = 1.006 g/mL, 84.1 mg, 0.5 mmol)/toluene (1 mL) sequentially under argon. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the

argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO and monitored at different time (see Table S11). The yields were determined by ¹H NMR measurement using diphenylmethane as the internal standard.

Table S11. For 1z-B:

Time / h	Yield of (<i>E</i>)-2 z-B
0.5	56
1	64
2	75
4	90
6	95
8	98

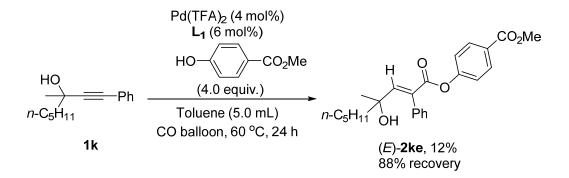
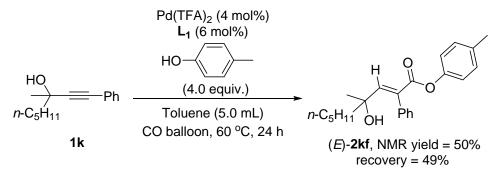
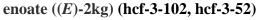

Combing the above data, a linear relationship was obtained for $\ln \{c_0/(c_0-[(E)-2\mathbf{k}-\mathbf{R}])\}\$ vs. reaction time, indicating that the electronic effect has a significant effect on the rate-determining step (Figure S7).

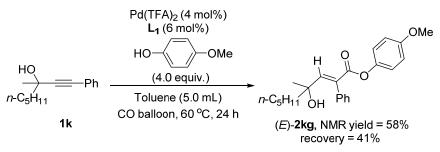
Figure S7. ln { $c_0/(c_0-[(E)-2\mathbf{k}-\mathbf{R}])$ } vs. time (R-square is the coefficient of


determination)

(17) Preparation of 4-methoxycarbonylphenyl (*E*)-4-hydroxy-4-methyl-2-phenylnon-2-enoate ((*E*)-2ke) (hcf-3-31)

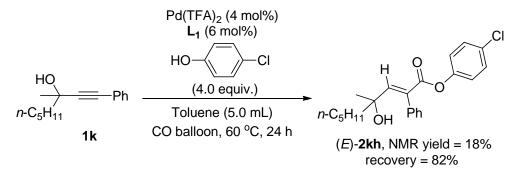
Following **Typical procedure IV**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.3 mg, 1 mmol)/toluene (4 mL), and 4-methoxycarbonylphenol (608.9 mg, 4 mmol)/toluene (1 mL) afforded (*E*)-**2ke** (46.7 mg, 12%) (88% of **1k** remained based on ¹H NMR analysis of the crude product) as a yellow oil [eluent: petroleum ether/ethyl acetate = $50/1(\sim 200 \text{ mL})$, 20/1 (630 mL), 10/1 (550 mL), 5/1 (240 mL)]: ¹H NMR (400 MHz, CDCl₃): $\delta = 8.04$ (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.46-7.27 (m, 6 H, Ar-H and =CH), 7.16 (d, *J* = 8.8 Hz, 2 H, Ar-H), 3.89 (s, 3 H, CO₂Me), 1.61-1.50 (m, 2 H, CH₂), 1.50-1.18 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.90 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.3$, 165.4, 154.6, 151.9, 134.4, 131.0, 130.8, 129.5, 128.3, 128.2, 127.6, 121.5, 74.4, 52.1, 43.1, 32.1, 28.9, 23.6, 22.5, 14.0; MS (ESI) m/z: 419 (M+Na)⁺, 414 (M+NH₄)⁺, 379 (M-OH)⁺; IR (neat): v = 3516, 2959, 2940, 2862, 1717, 1436, 1278, 1186, 1160 cm⁻¹; HRMS calcd for C₂₄H₂₈O₅Na [M+Na]⁺: 419.1829, found: 419.1820.


(18) Preparation of *p*-tolyl (*E*)-4-hydroxy-4-methyl-2-phenylnon-2-enoate ((*E*)-2kf) (hcf-3-101, hcf-3-38)



Typical Procedure V: To a flame-dried Schlenk tube were added $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.3 mg, 1 mmol)/toluene (4 mL), and *p*-cresol (432.8 mg, 4.0 mmol)/toluene (1 mL) sequentially under argon. The resulting

mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO for three times. Then the resulting mixture was stirred at 60 °C with a balloon of CO for 24 h. After that, the resulting mixture was diluted with 3 mL of ethyl acetate, filtered through a short column of silica gel (3 cm) eluted with ethyl acetate (20 x 2 mL), and concentrated. The crude product was purified by column chromatography on silica gel to afford impure mixture (410.7 mg) [eluent: petroleum ether/ethyl acetate = 50/1 (~200 mL), 20/1 (1050 mL), 10/1 (440 mL)] as a solid containing (E)-2kf (162.1 mg, 0.46 mmol, 46%) and p-cresol (248.6 mg, 2.30 mmol) since the Rf values of p-cresol and product are almost the same [50% of (*E*)-2kf and 49% of 1k were detected based on ¹H NMR analysis of the crude product]. The pure sample of (E)-2kf was prepared as a yellow oil by preparative thin layer chromatography (TLC, 20 x 20 cm²) eluted with petroleum ether/ethyl acetate = 3/1: ¹H NMR (400 MHz, CDCl₃): δ = 7.48-7.28 (m, 5) H, Ar-H), 7.25 (s, 1 H, =CH), 7.13 (d, J = 8.0 Hz, 2 H, Ar-H), 6.94 (d, J = 8.4 Hz, 2 H, Ar-H), 2.31 (s, 3 H, CH₃), 1.64-1.49 (m, 2 H, CH₂), 1.49-1.19 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.89 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.2$, 151.0, 148.7, 135.3, 134.8, 131.2, 129.8, 129.6, 128.2, 128.0, 121.1, 74.4, 43.1, 32.1, 29.0, 23.6, 22.5, 20.8, 14.0; **MS** (EI 70 ev) m/z (%): 352 (M⁺, 1.16), 43 (100); **IR** (neat): $v = 3502, 2956, 2931, 2861, 1731, 1507, 1213, 1192, 1167 \text{ cm}^{-1}$; **HRMS** calcd for C₂₃H₂₈O₃ [M]⁺: 352.2038, found: 352.2042.


(19) Preparation of 4-methoxyphenyl (E)-4-hydroxy-4-methyl-2-phenylnon-2-

Following **Typical procedure V**, the reaction of $Pd(TFA)_2$ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.3 mg, 1 mmol)/toluene (3 mL), and 4-methoxyphenol (496.9 mg, 4 mmol)/toluene (2 mL) afforded a solid (574.5 mg) [eluent: petroleum ether/ethyl acetate = 50/1 (~200 mL), 20/1 (1050 mL), 10/1 (440 mL)] containing (*E*)-**2kg** (206.2 mg, 0.56 mmol, 56%) and 4-methoxyphenol (368.3mg, 2.97 mmol) since the Rf values of 4-methoxyphenol and product are almost the same [58% of (*E*)-**2kg** and 41% of **1k** were detected based on ¹H NMR analysis of the crude product]. The pure sample of (*E*)-**2kg** was prepared as a yellow oil by preparative thin layer chromatography (TLC, 20 x 20 cm²) eluted with petroleum ether/ethyl acetate = 3/1: ¹H NMR (400 MHz, CDCl₃): δ = 7.51-7.28 (m, 5 H, Ar-H), 7.25 (s, 1 H, =CH), 6.98 (d, *J* = 8.8 Hz, 2 H, Ar-H), 6.84 (d, *J* = 8.8 Hz, 2 H, Ar-H), 3.76 (s, 3 H, OMe), 1.66-1.49 (m, 2 H, CH₂), 1.49-1.19 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.89 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 157.1, 151.0, 144.5, 134.8, 131.2, 129.5, 128.2, 128.0, 122.2, 114.3, 74.4, 55.5, 43.1, 32.1, 28.9, 23.6, 22.5, 14.0; MS (EI 70 ev) *m/z* (%): 368 (M⁺, 6.06), 43 (100); **IR** (neat): ν = 3487, 2948, 2937, 2869, 2844, 1724, 1509, 1238, 1194, 1172, 1158 cm⁻¹; **HRMS** calcd for C₂₃H₂₈O₄ [M]⁺: 368.1988, found: 368.1993.

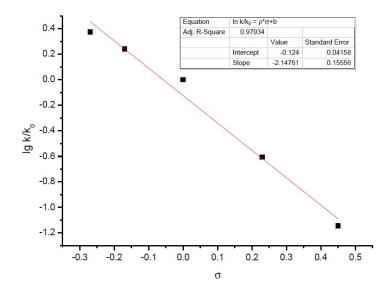
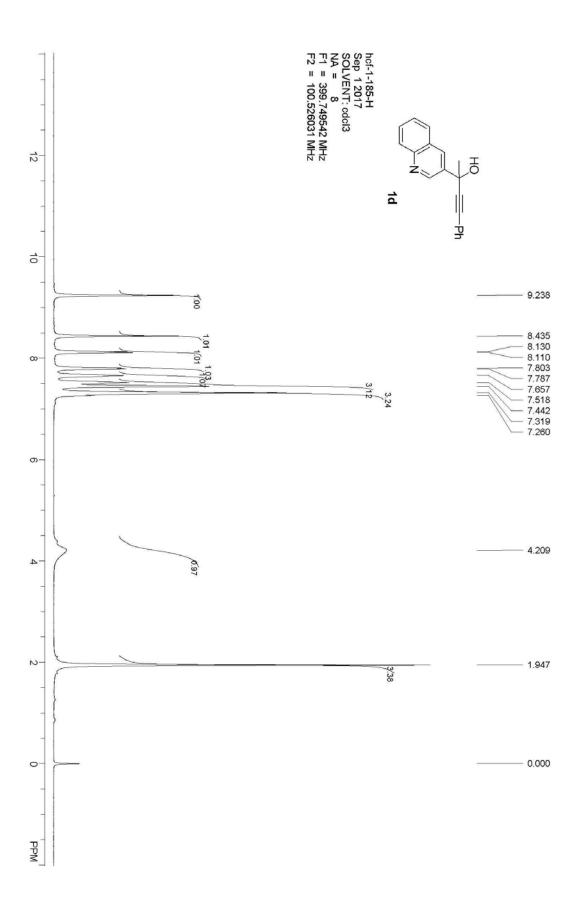
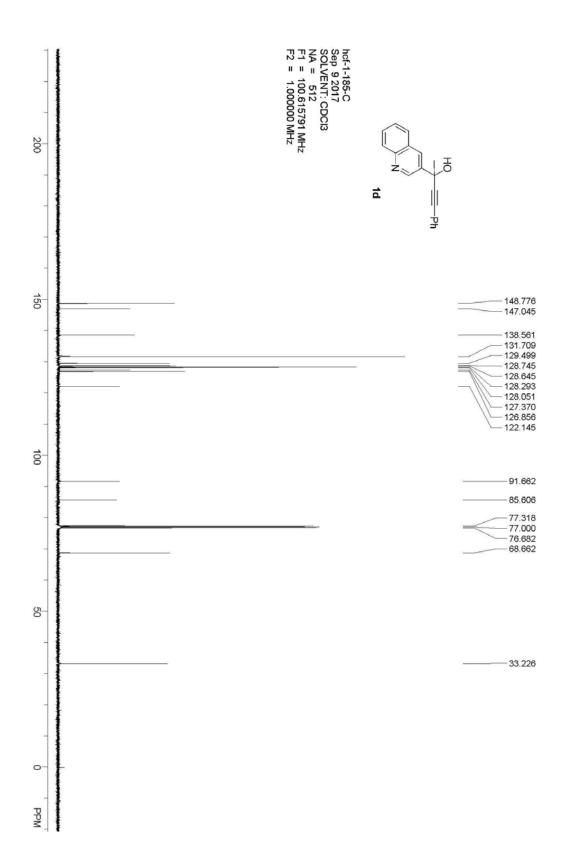
(20) Preparation of 4-chlorophenyl (*E*)-4-hydroxy-4-methyl-2-phenylnon-2enoate ((*E*)-2kh) (hcf-3-103, hcf-3-53)

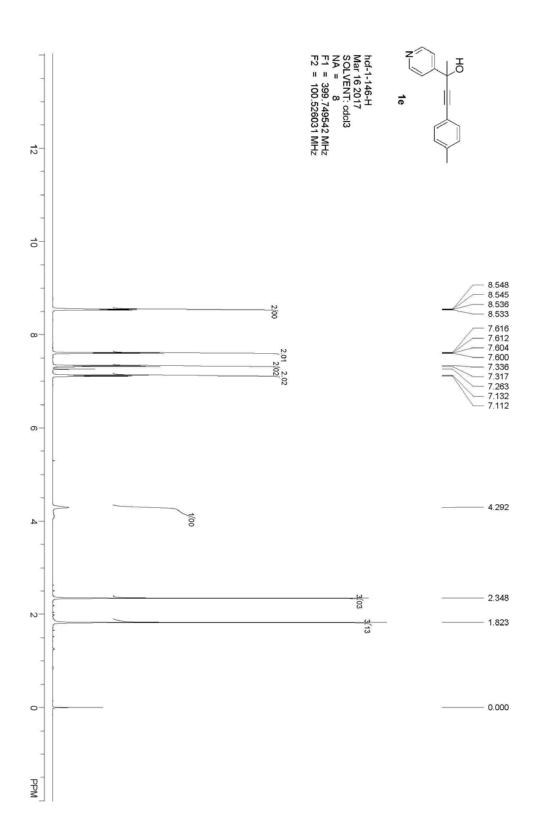
Following **Typical procedure V**, the reaction of Pd(TFA)₂ (13.6 mg, 0.04 mmol), **L**₁ (32.8 mg, 0.06 mmol), **1k** (216.4 mg, 1 mmol)/toluene (3 mL), and 4-chlorophenol (514.5 mg, 4 mmol)/toluene (2 mL) afforded a solid (189.3 mg) [eluent: petroleum ether/ethyl acetate = 50/1 (~200 mL), 20/1 (1050 mL), 10/1 (440 mL)] containing (*E*)-**2kh** (63.4 mg, 0.17 mmol, 17%) and 4-chlorophenol (125.9mg, 0.98 mmol) since the Rf values of 4-chlorophenol and product are almost the same [18% of (*E*)-**2kh** and 82% of **1k** were detected based on ¹H NMR analysis of the crude product]. The pure sample of (*E*)-**2kh** was prepared as a yellow oil by preparative thin layer chromatography (TLC, 20 x 20 cm²) eluted with petroleum ether/ethyl acetate = 3/1: ¹H NMR (400 MHz, CDCl₃): δ = 7.47-7.22 (m, 8 H, Ar-H and =CH), 7.02 (d, *J* = 8.8 Hz, 2 H, Ar-H), 1.64-1.49 (m, 2 H, CH₂), 1.49-1.19 (m, 10 H, 3 x CH₂ and CH₃ and OH), 0.89 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 165.7, 151.7, 149.4, 134.5, 131.1, 130.9, 129.5, 129.3, 128.3, 128.2, 122.9, 74.4, 43.1, 32.1, 28.9, 23.6, 22.5, 14.0; MS (ESI) m/z: 397 (M(³⁷Cl)+Na)⁺, 395 (M(³⁵Cl)+Na)⁺, 357 (M(³⁷Cl)-OH)⁺, 355 (M(³⁵Cl)-OH)⁺; **IR** (neat): *v* = 3437, 2958, 2931, 2871, 1732, 1486, 1196, 1164, 1090, 1014 cm⁻¹; **HRMS** calcd for C₂₂H₂₅³⁵ClO₃Na [M+Na]⁺: 395.1384, found: 395.1377.

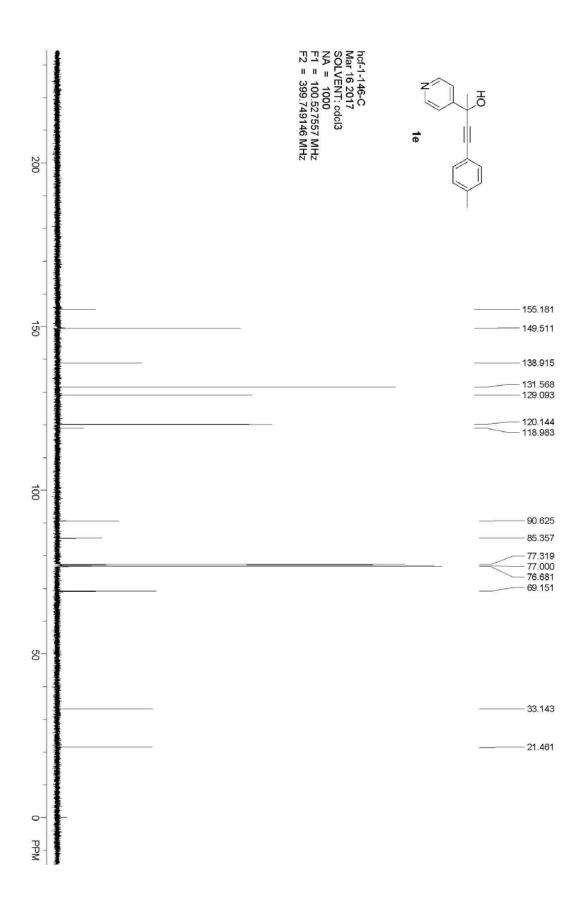
The negative value for ρ points out the reaction favors phenols with electron-donating groups (Table 12, Figure S8).

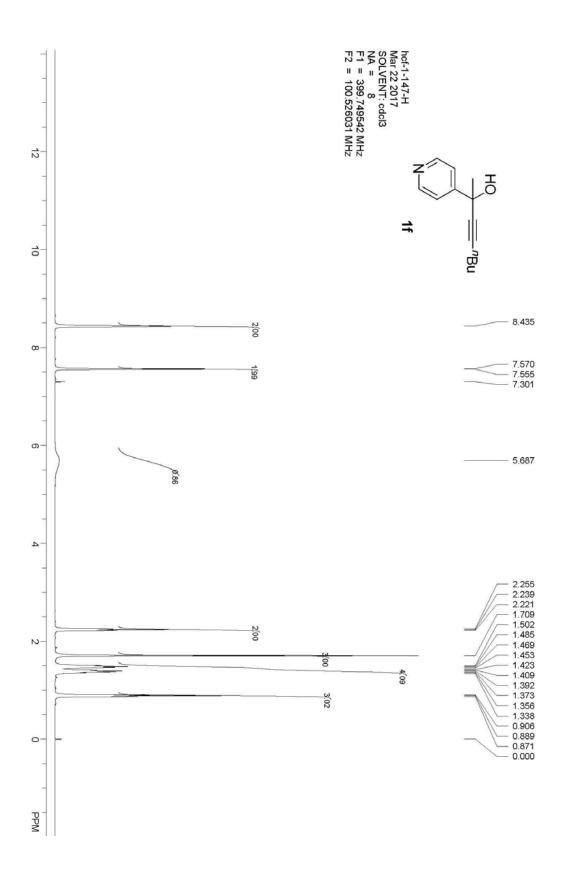
HO → <i>n</i> -C₅H ₁₁	 1k	HC —Ph To	TFA) ₂ (4 mol%) L ₁ (6 mol%) D- (4.0 equiv.) Iuene (5.0 mL) Illoon, 60 °C, 0.5 h	H O n-C ₅ H ₁₁ OH Ph (E)- 2	R
		entry	R	Yield/%	
		1	Н	11	
		2	MeO ₂ C	3.5	
		3	Me	14	
		4	MeO	16	
		5	Cl	6	

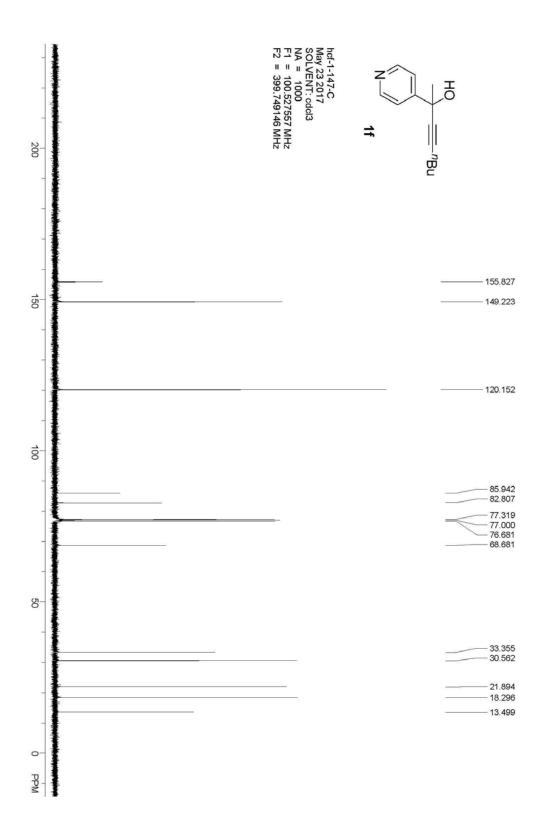
Table 12. Hammett study with phenols bearing various substituents

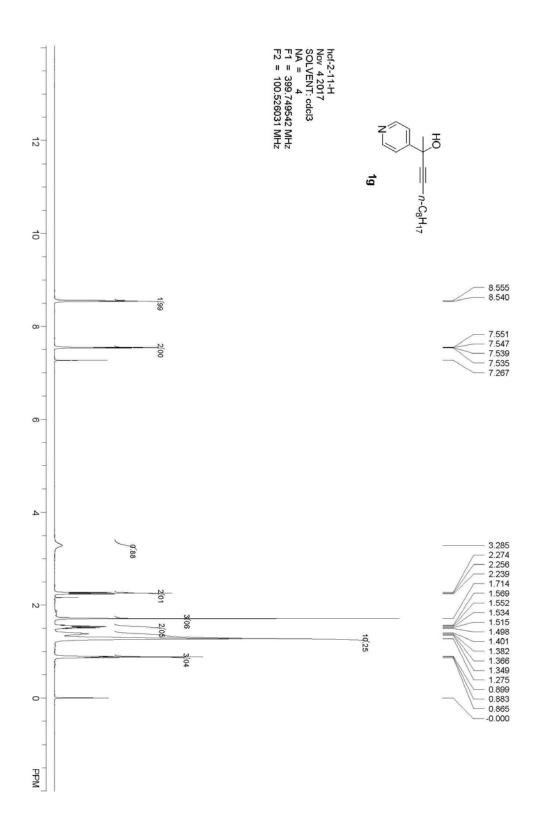




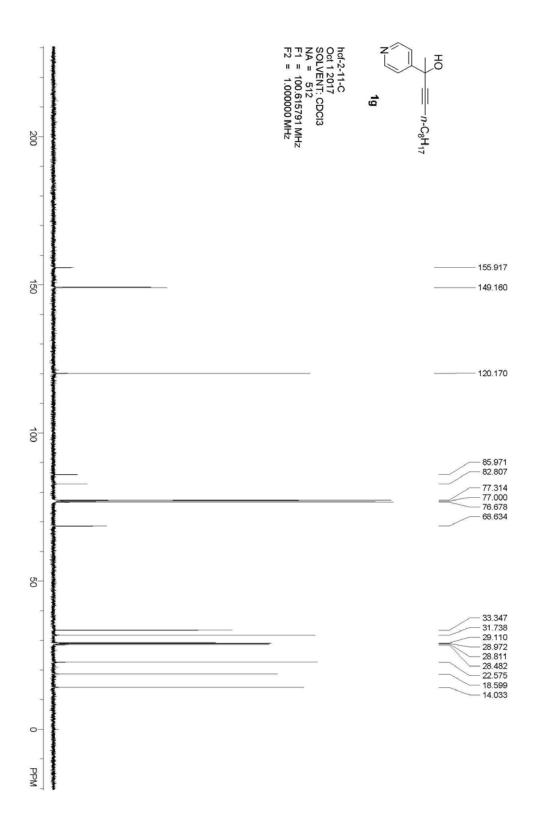

Figure S8. Hammett equation of phenols with varying acidity

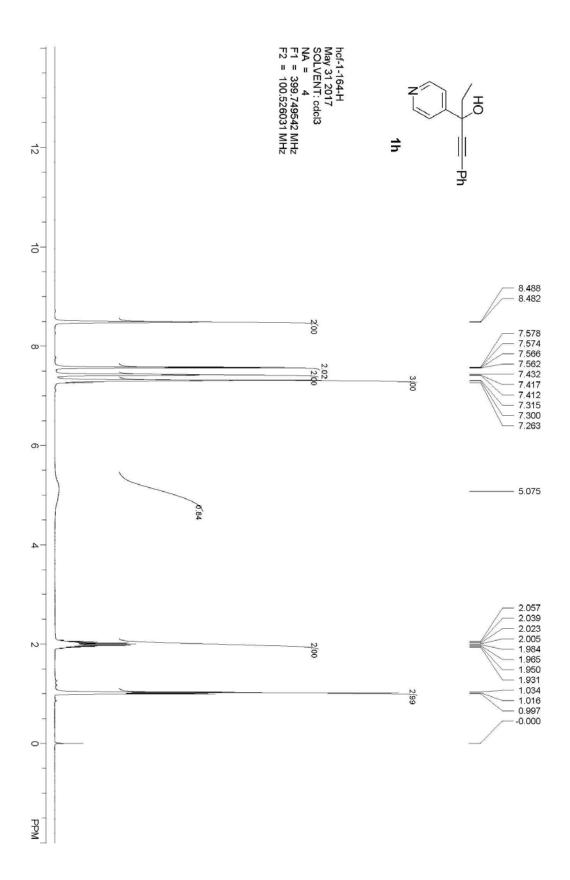

References:

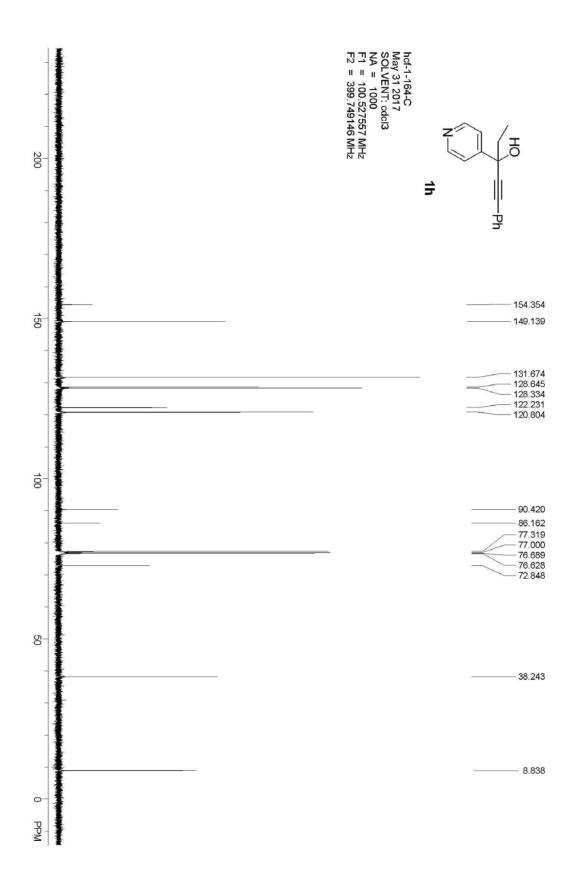

- 1. W. Zhang, C. Huang, Y. Yuan, S. Ma, Chem. Commun. 2017, 53, 12430.
- 2. Xu, D.; Li, Z.; Ma, S. Tetrahedron Lett. 2003, 44, 6343.
- 3. Kim N.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2018, 57, 4722.
- 4. Dai, J.; Duan, X.; Zhou, J.; Fu, C.; Ma, S. Chin. J. Chem. 2018, 36, 387.
- 5. Eleya, N.; Mahal, A.; Hein, M.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2011, 353, 2761.
- Tang, X.; Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Tang, Y.; Zhang, J.; Yu,
 Q.; Fu, C.; Ma, S. Org. Chem. Front. 2015, 2, 688.
- 7. Rajaram, S.; Ramulu, U.; Aravind, S. Babu, K. S. Helv. Chim. Acta. 2015, 98, 650.
- 8. Grée, D.; Vallerie, L.; Grée, R. J. Org. Chem. 2001, 66, 2374.

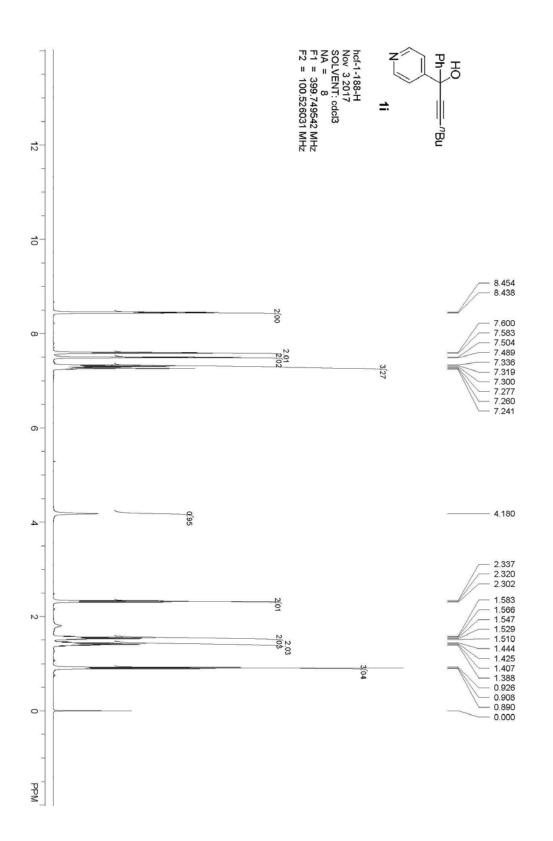


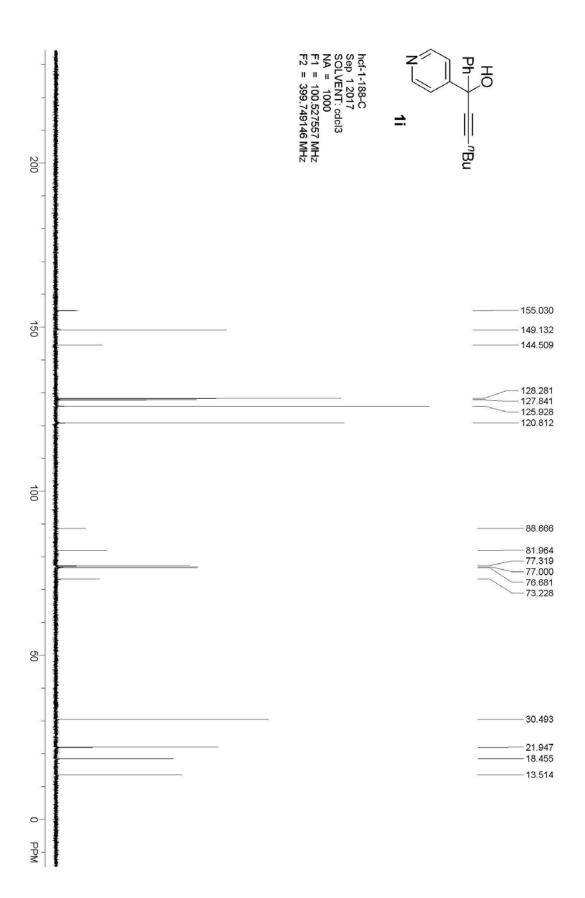


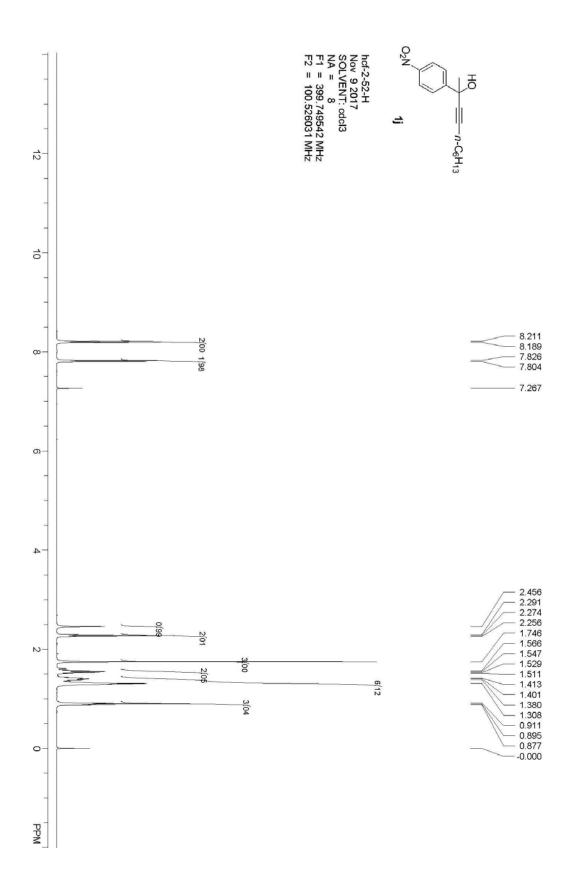


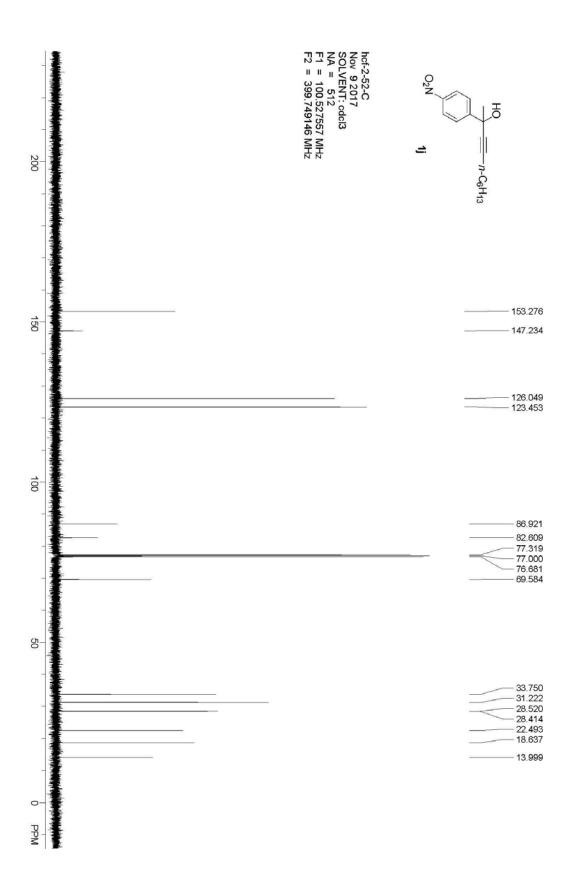


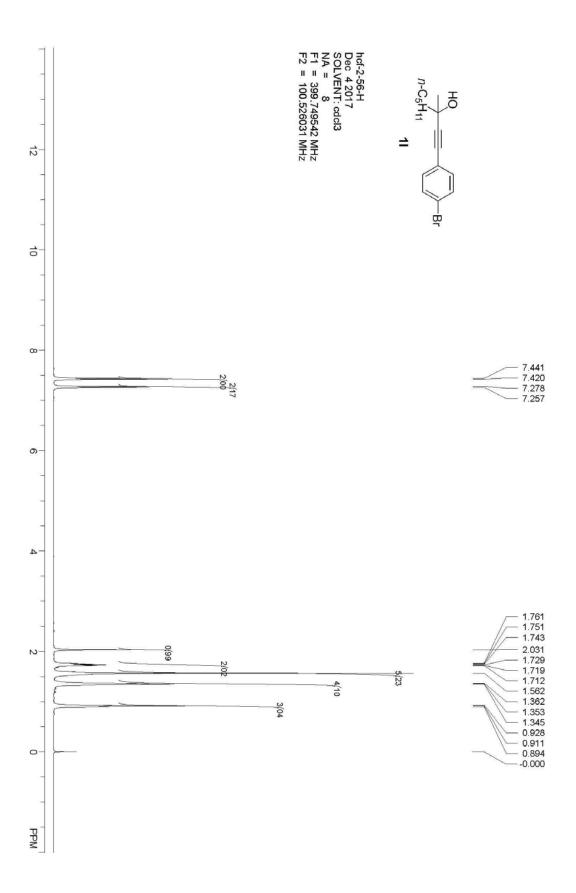

S70

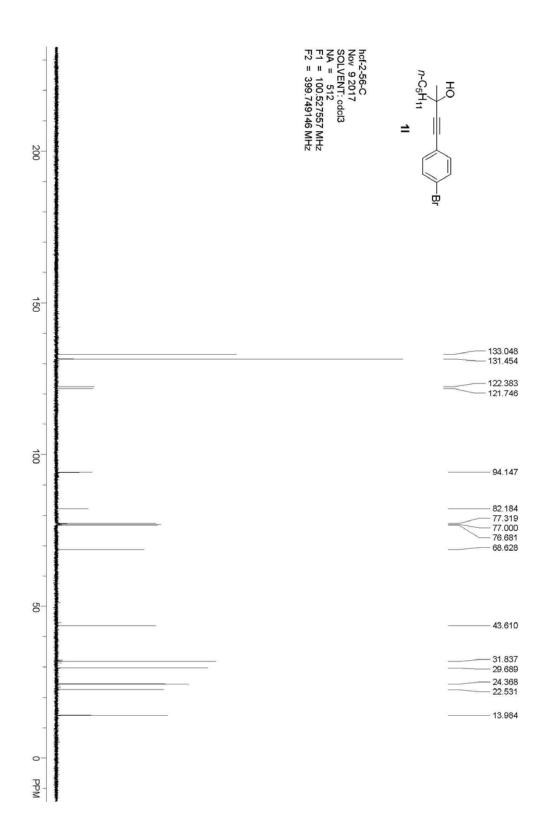


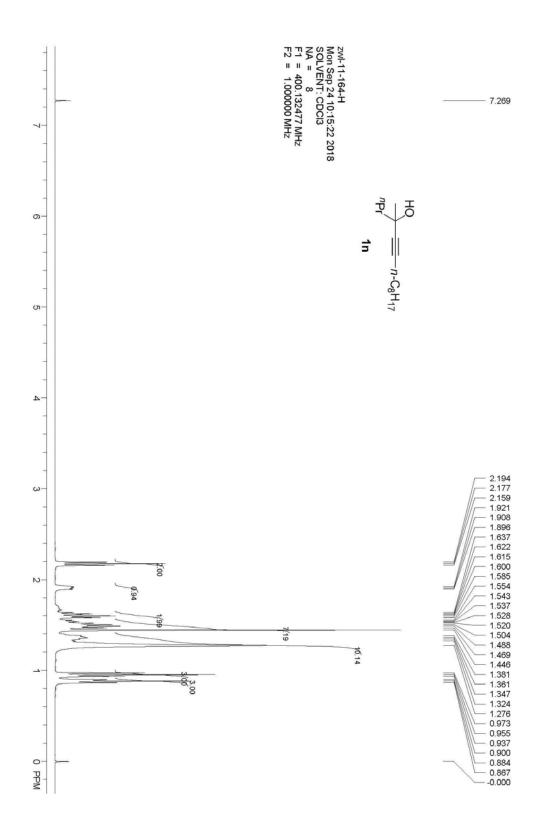


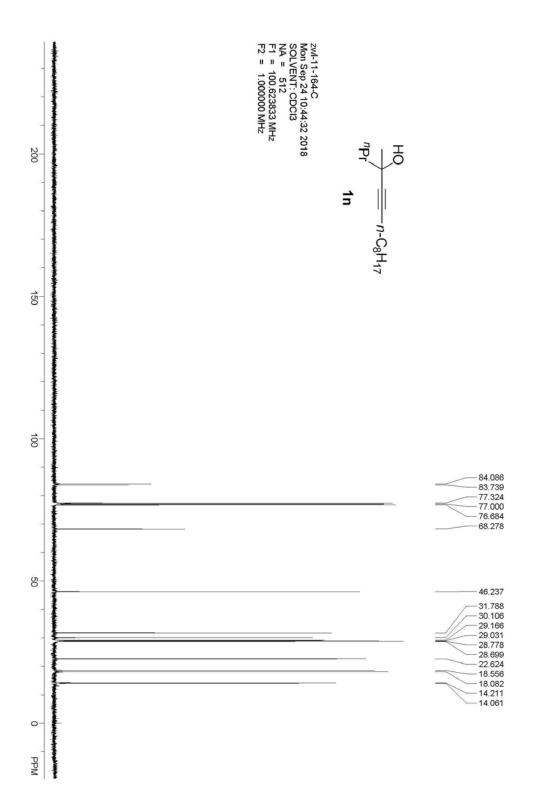


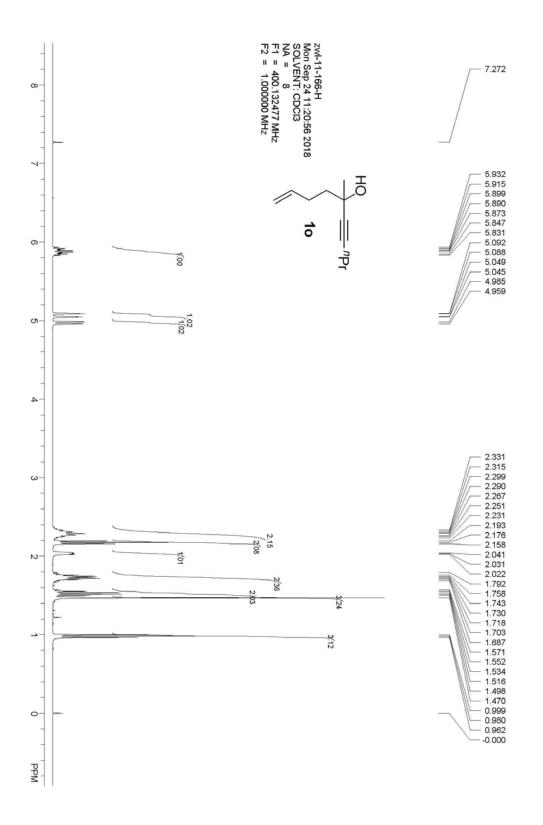


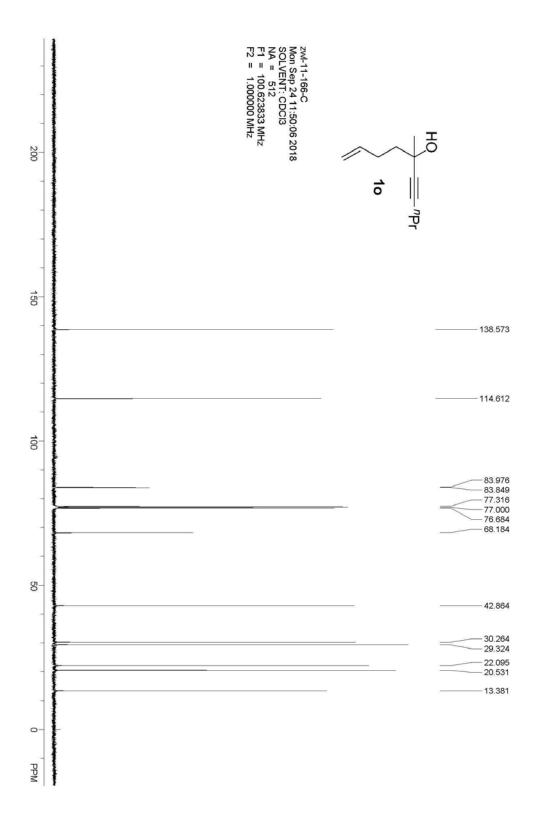


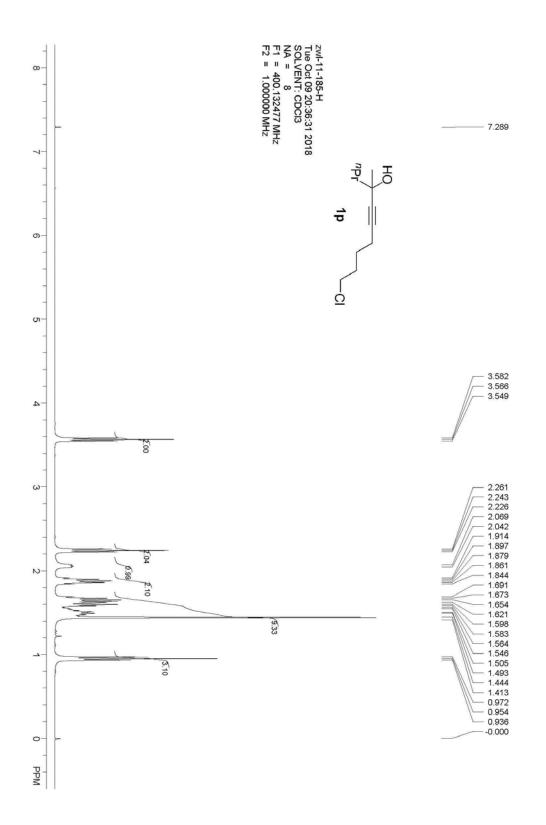


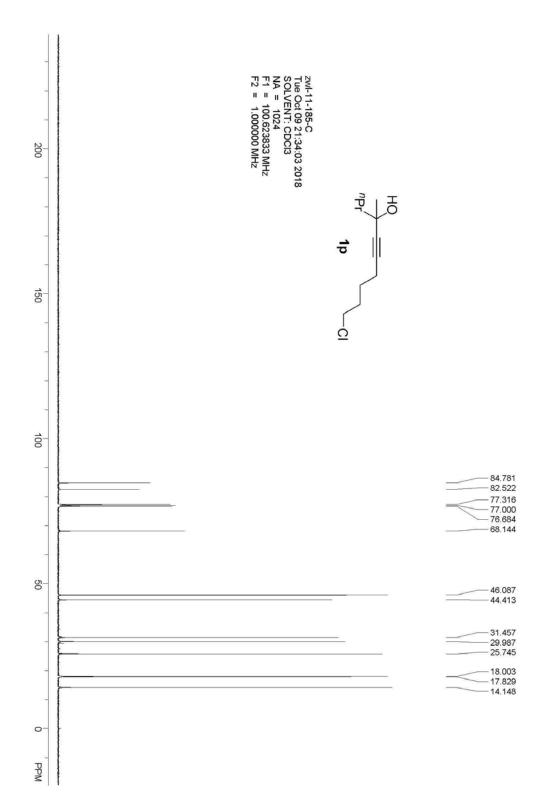


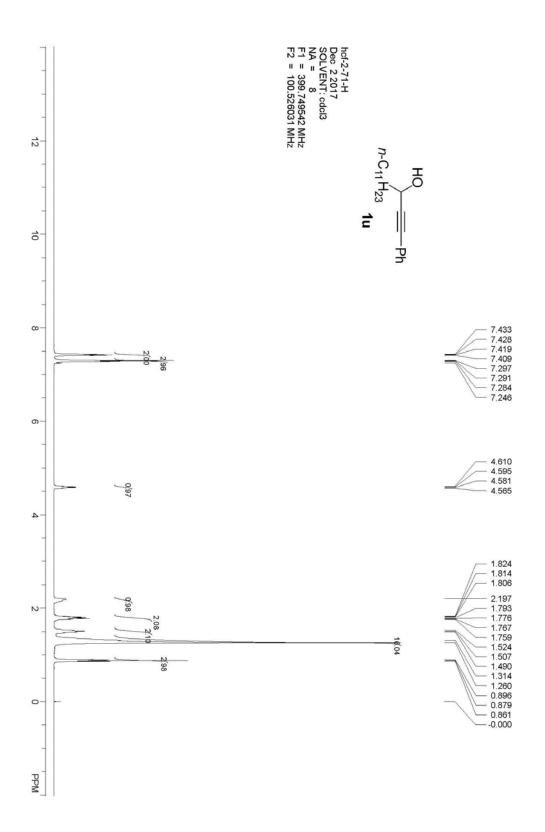


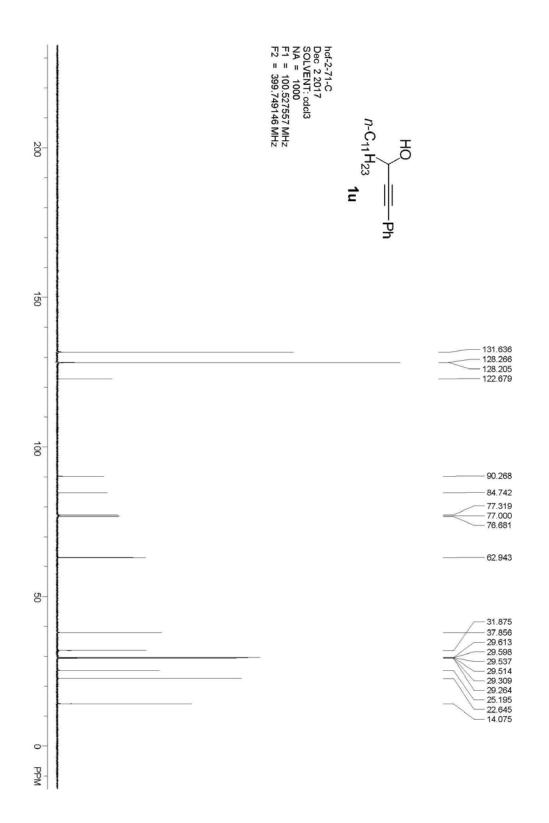


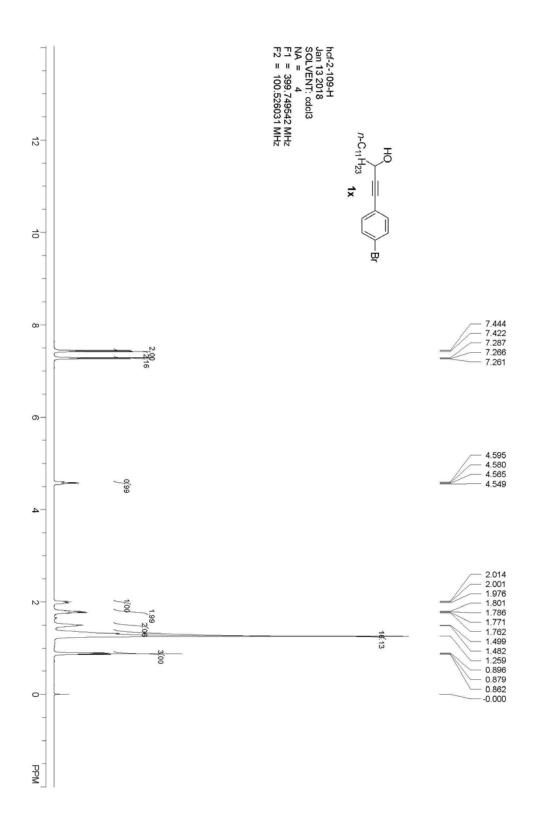




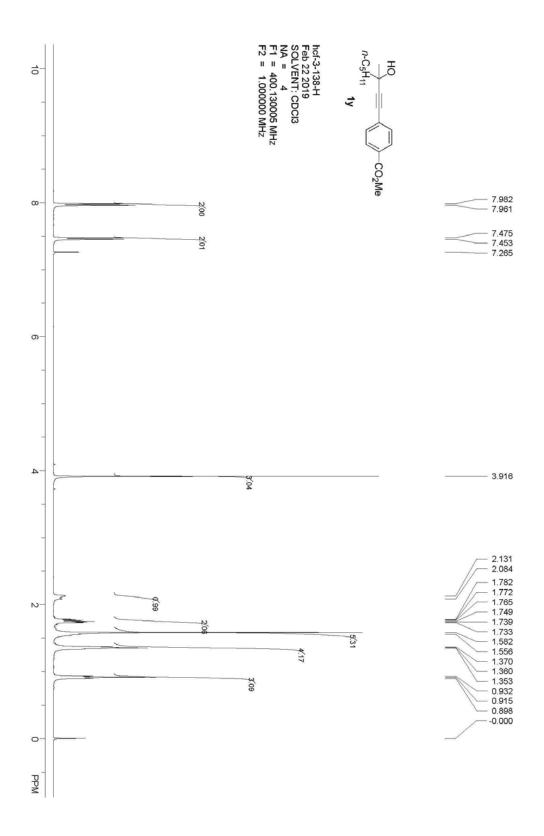


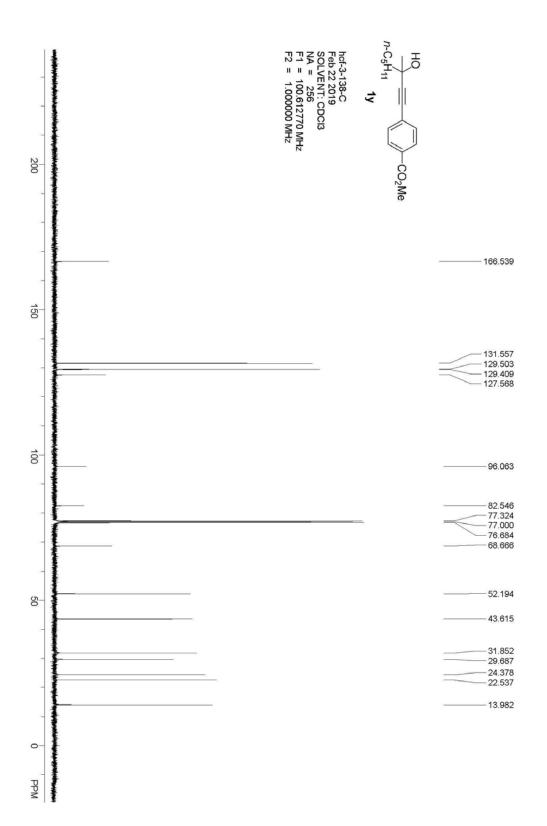


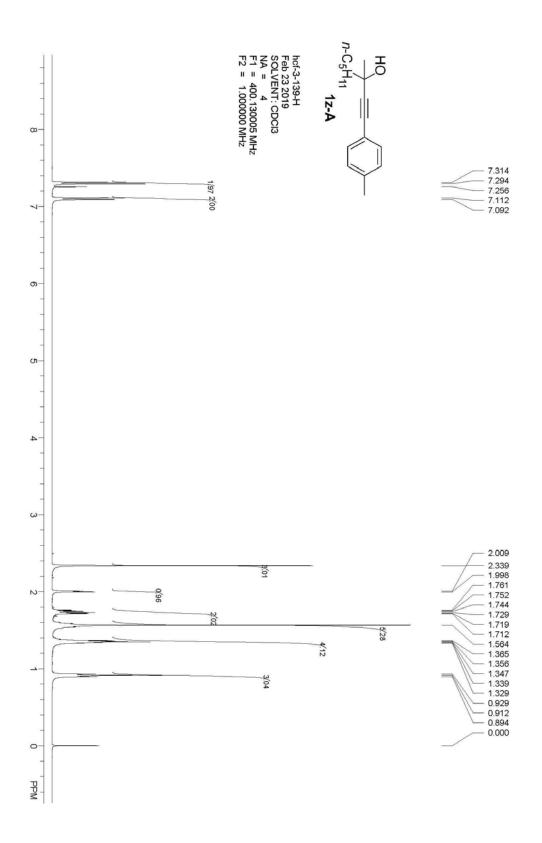


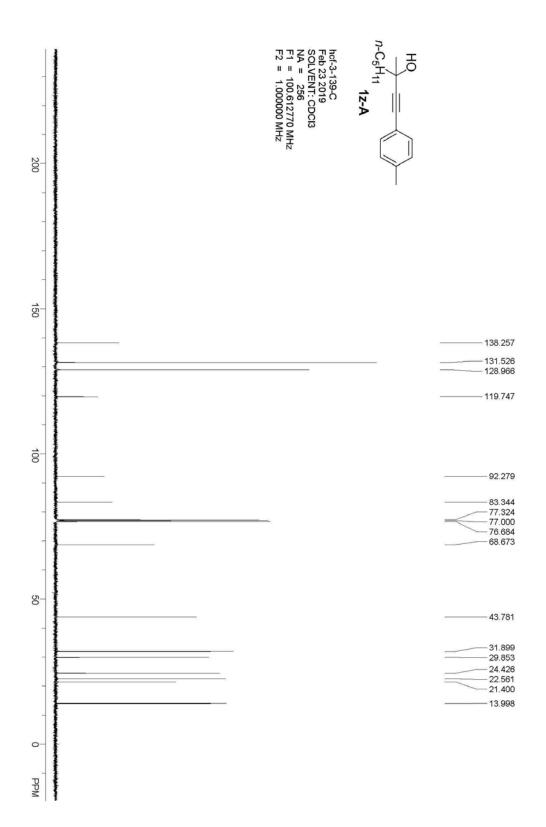


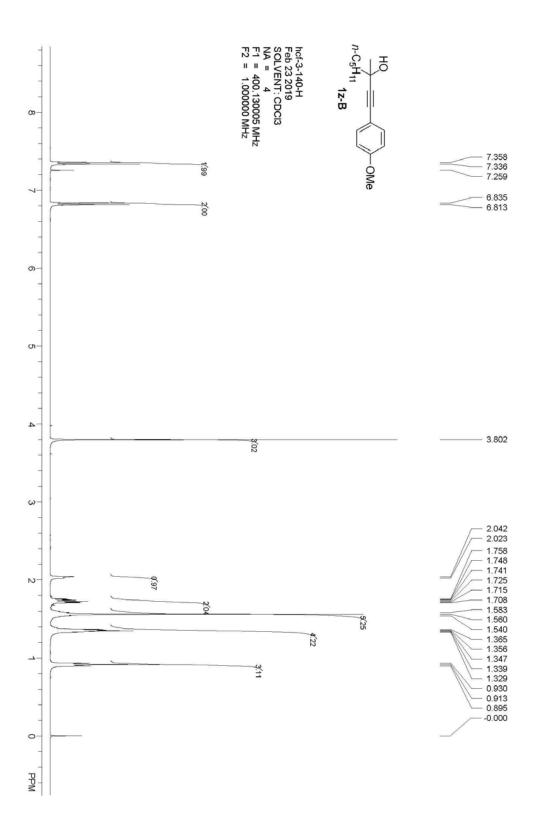
S86

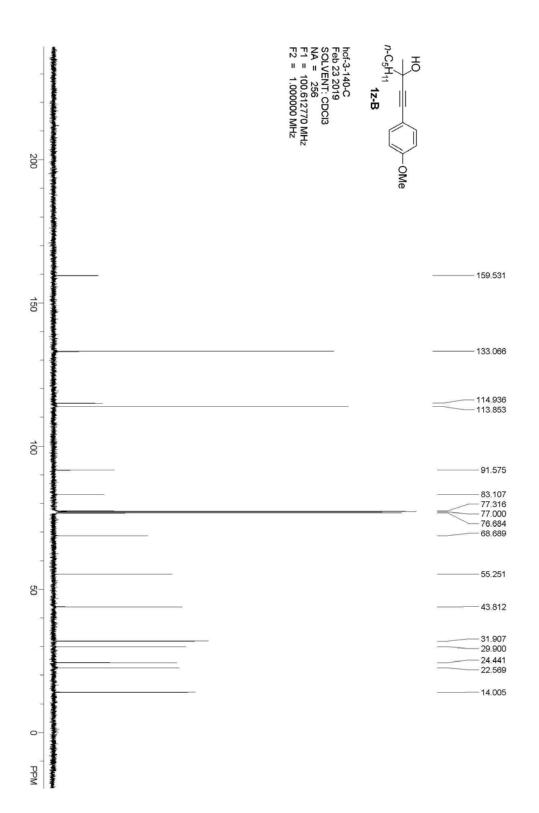


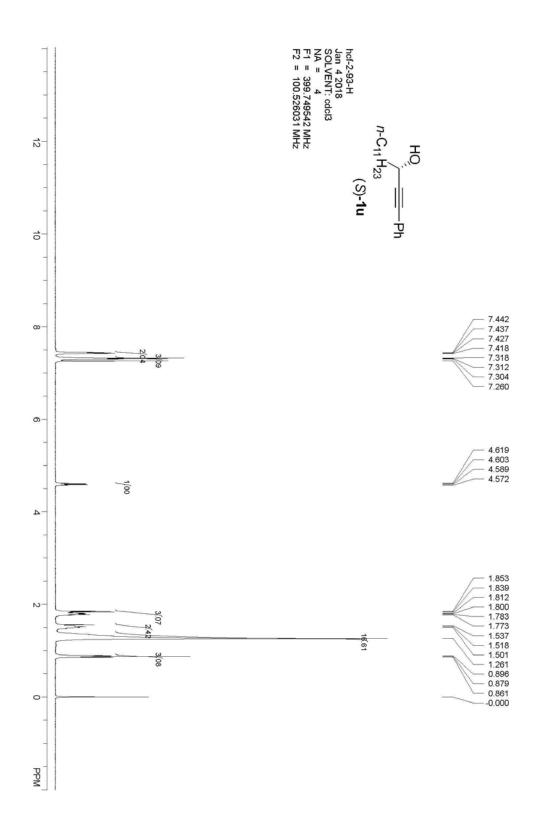


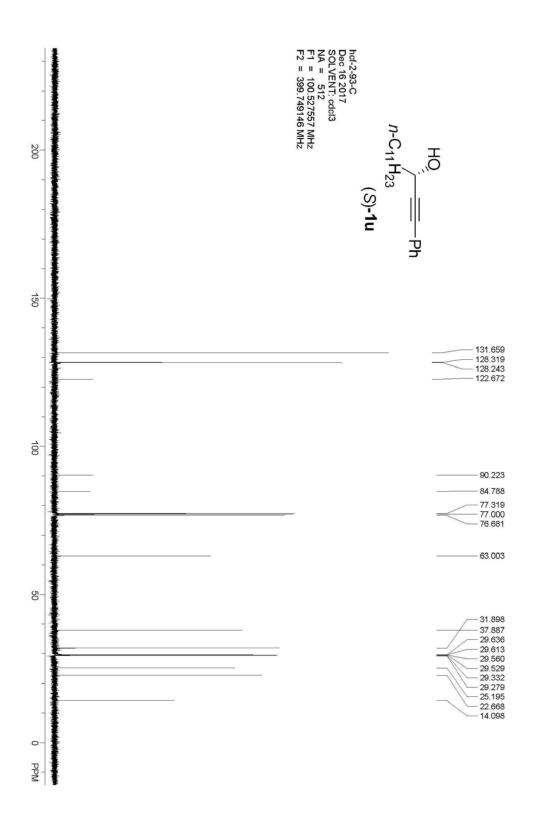


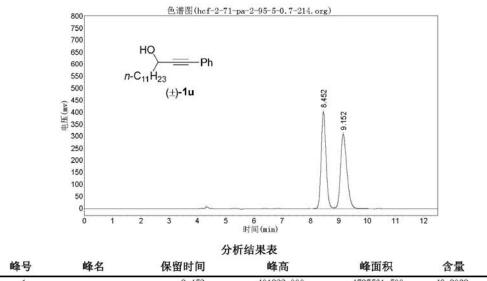








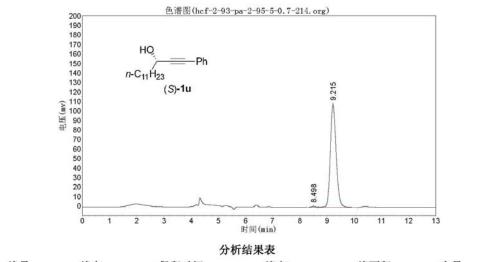




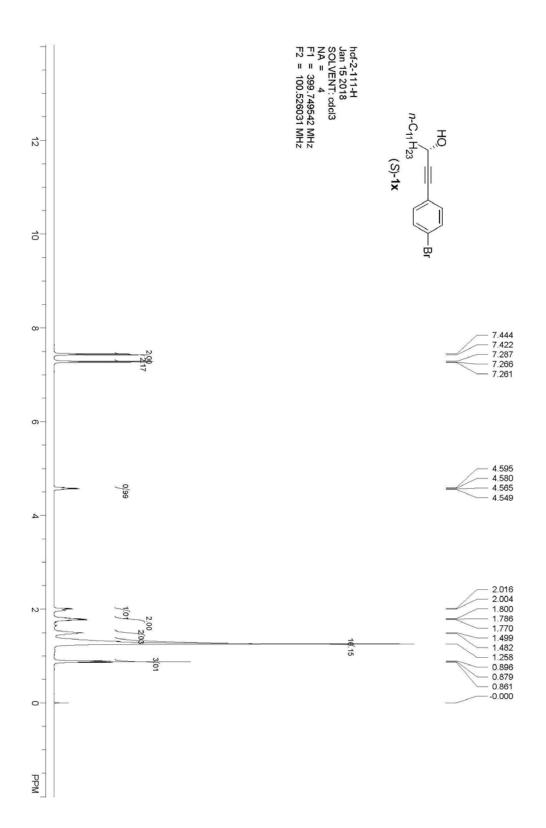
hcf-2-71-pa-2-95-5-0.7-214

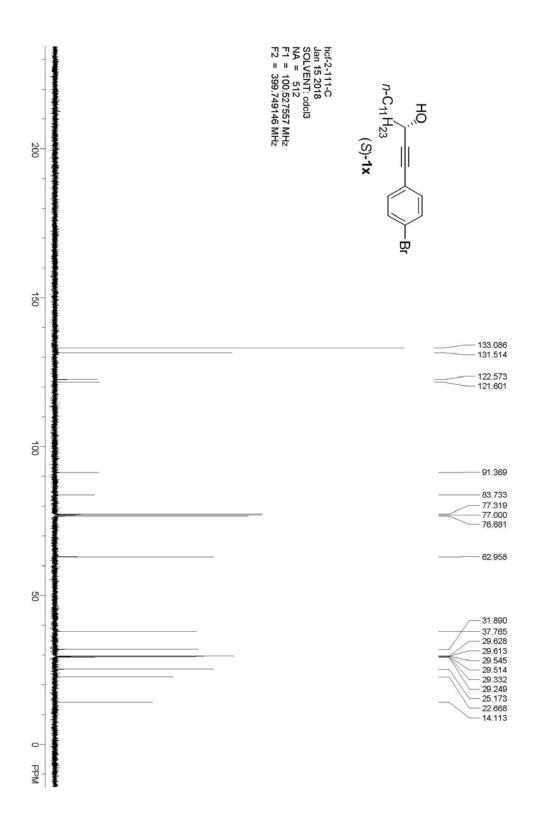
报告时间: 2017-12-21, 18:24:23

实验时间: 2017-12-21, 16:55:54 谱图文件:D:\zhuguangjiong\hcf\20171221\hcf-2-71-pa-2-95-5-0.7-214.org



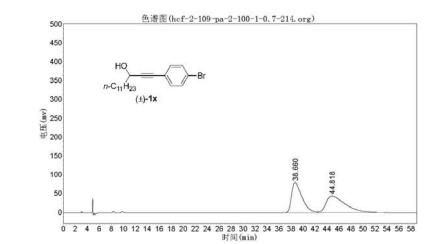
14 J	*+ D	医田可可	~~ [10]	"手 山 小	口里	
1		8.452	401822.000	4787561.500	49.8038	
2		9.152	309477.500	4825286.500	50.1962	
总计			711299. 500	9612848.000	100.0000	_


hcf-2-93-pa-2-95-5-0.7-214


报告时间: 2017-12-21, 18:25:50

实验时间: 2017-12-21, 17:13:49 谱图文件:D:\zhuguangjiong\hcf\20171221\hcf-2-93-pa-2-95-5-0.7-214.org

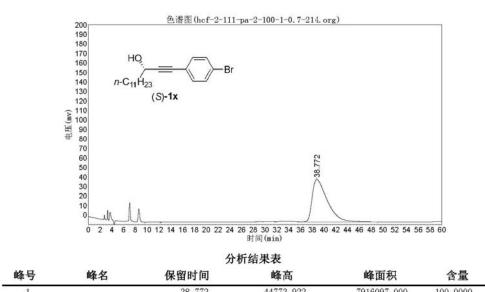
峰号	峰名	保留时间	峰高	峰面积	含量
1		8.498	1178.903	14763. 397	0.9050
2		9.215	108352.688	1616500.625	99.0950
总计			109531.590	1631264.022	100.0000



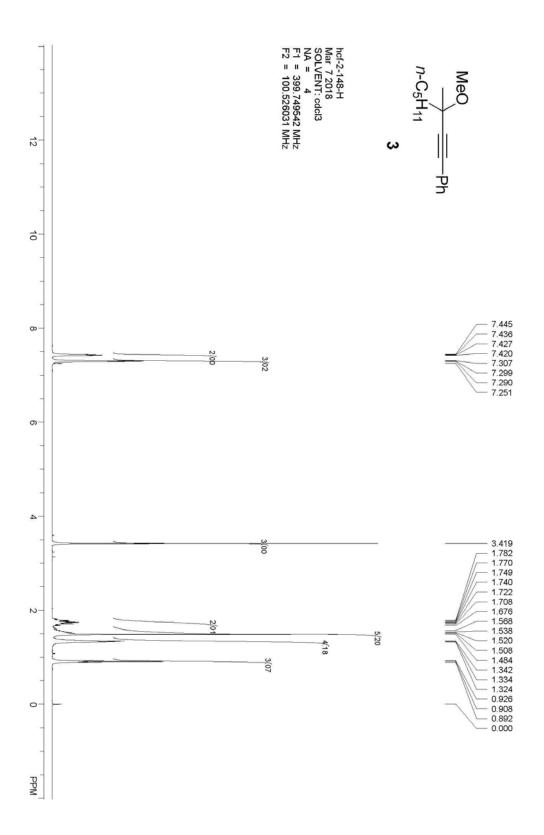
hcf-2-109-pa-2-100-1-0.7-214

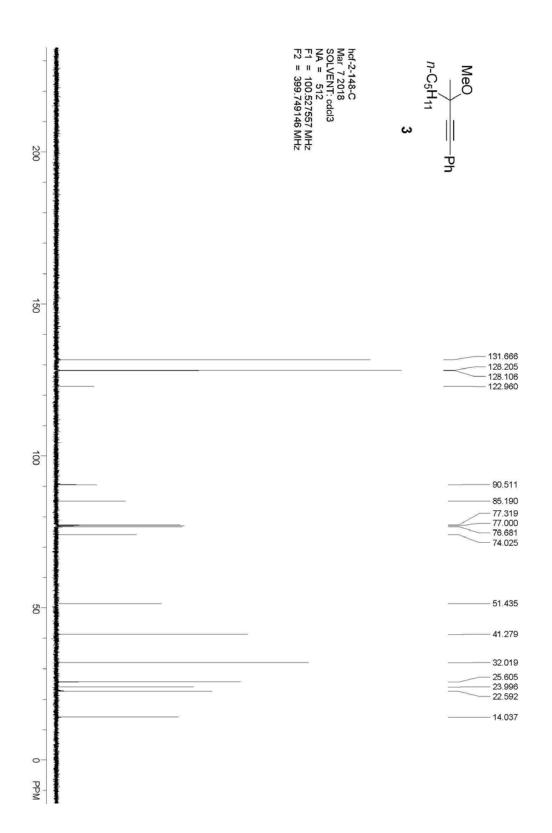
报告时间: 2018-01-31, 16:49:52

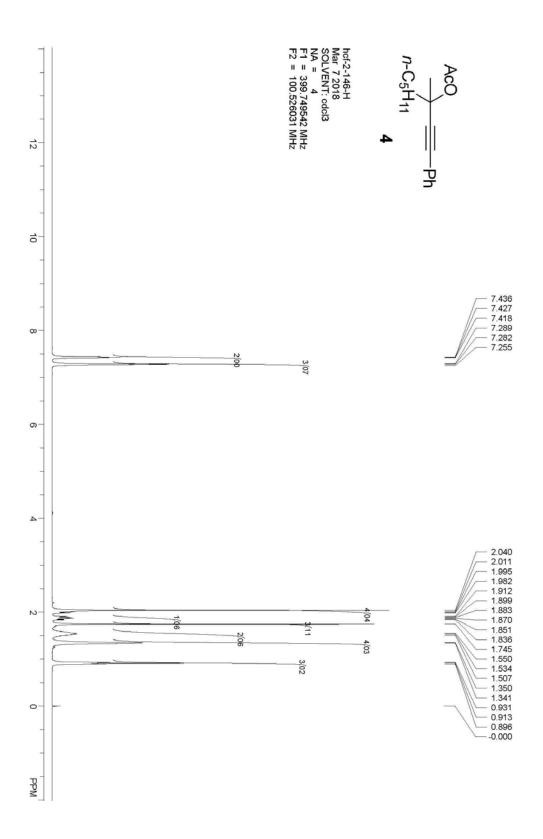
实验时间: 2018-01-31, 15:44:41 谱图文件:D:\zhuguangjiong\hef\20180131\hef-2-109-pa-2-100-1-0. 7-214. org

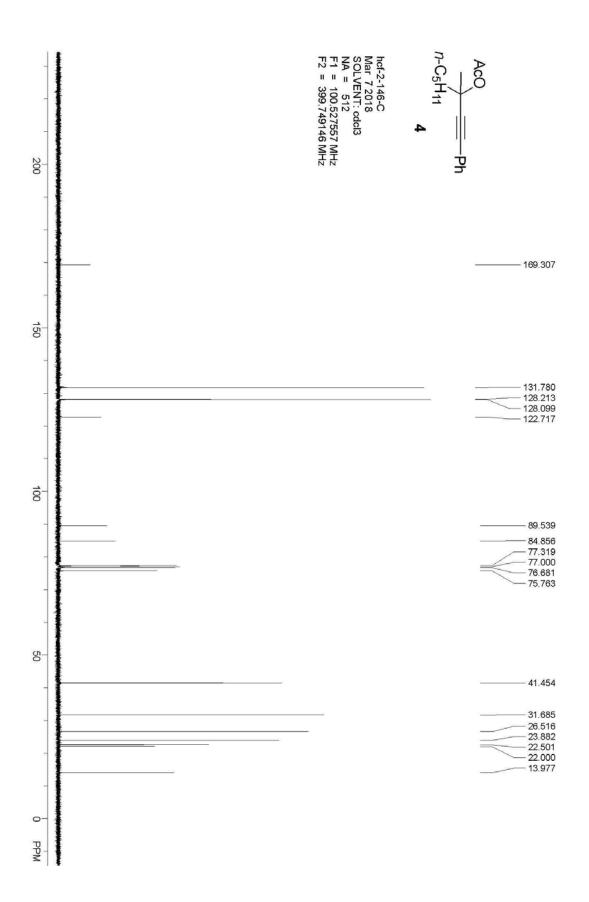


分析结果表					
峰号	峰名	保留时间	峰高	峰面积	含量
1		38.660	79432.055	9596410.000	49.7081
2		44.818	43692.844	9709120.000	50.2919
总计			123124.898	19305530.000	100.0000

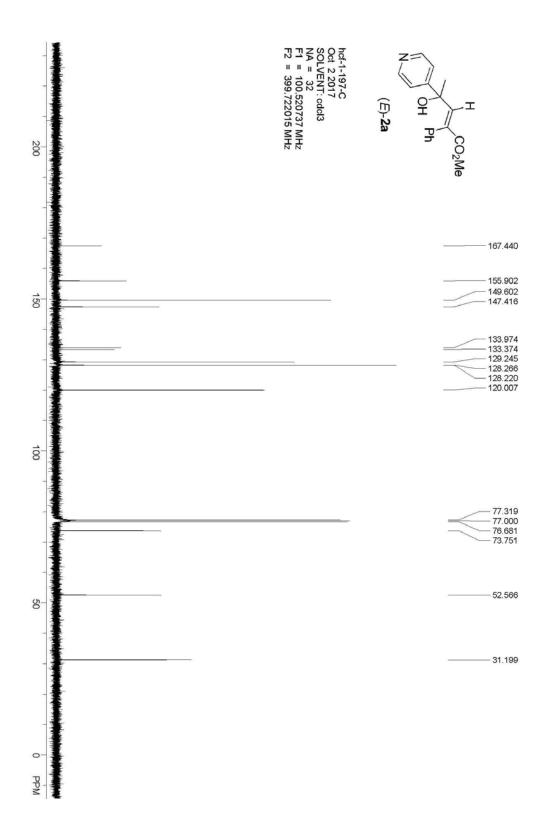

hcf-2-111-pa-2-100-1-0.7-214

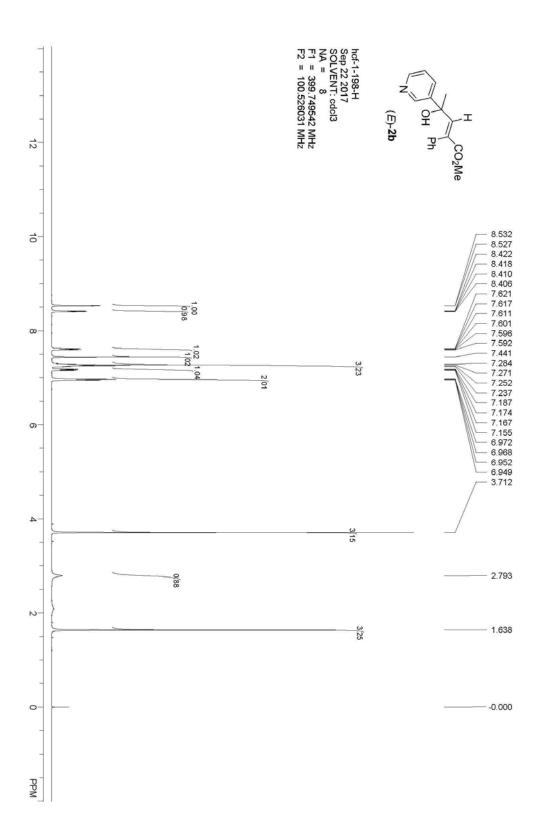

报告时间: 2018-01-31, 16:51:26

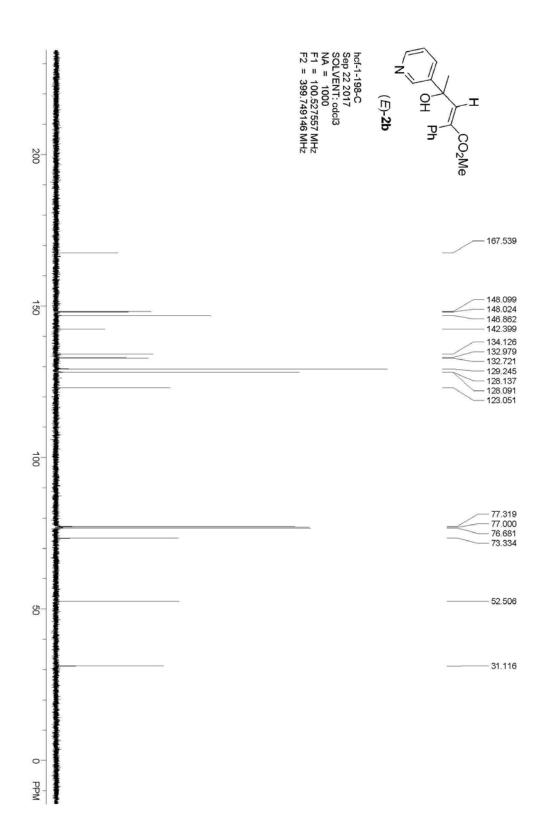

实验时间: 2018-01-31, 14:40:55 谱图文件:D:\zhuguangjiong\hef\20180131\hef-2-111-pa-2-100-1-0. 7-214. org

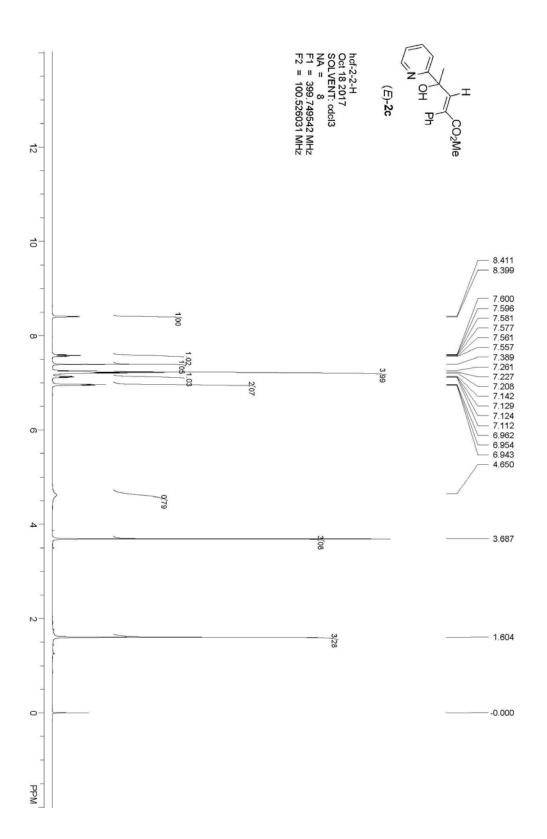


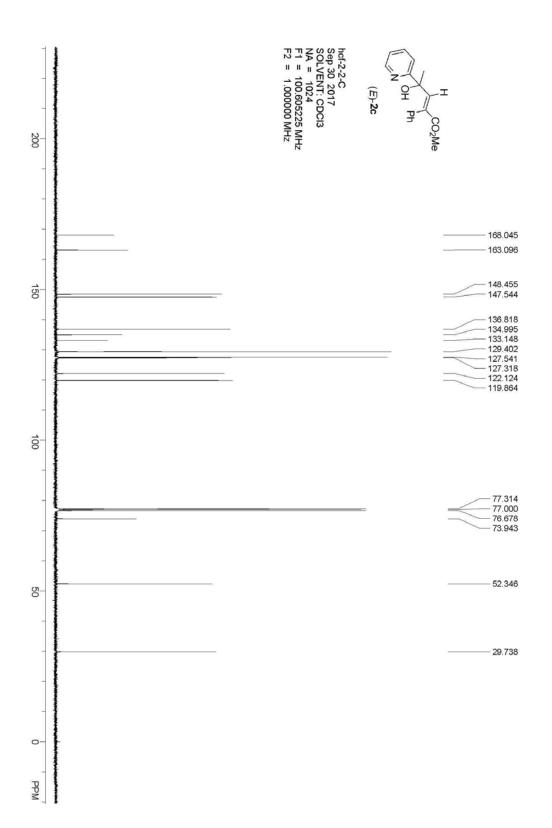

1	38.772	44773.922	7916097.000	100.0000
总计		44773.922	7916097.000	100.0000

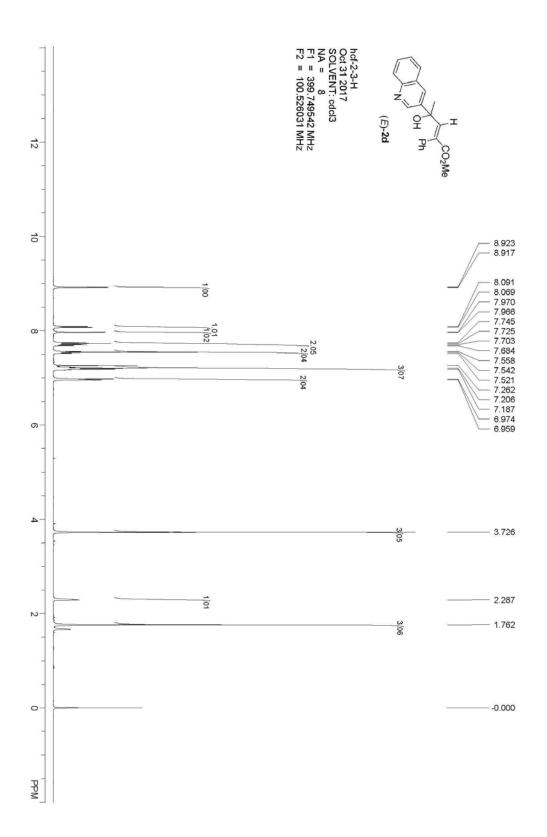


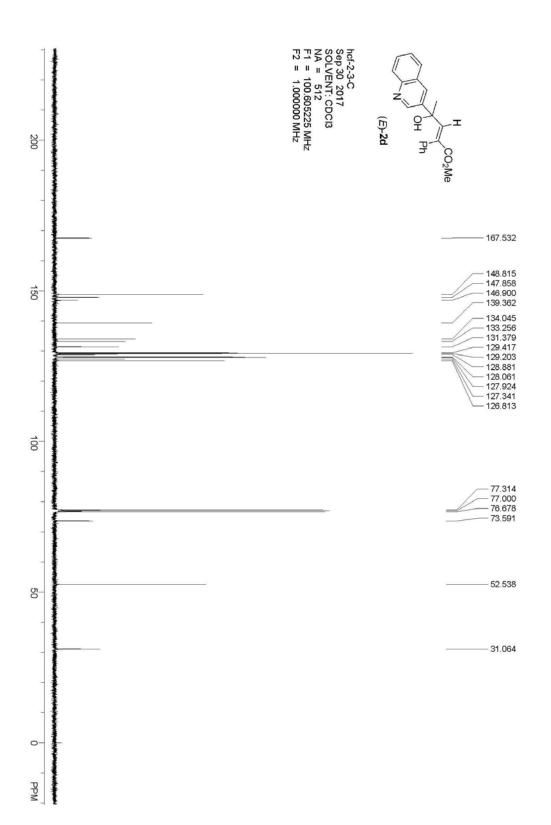


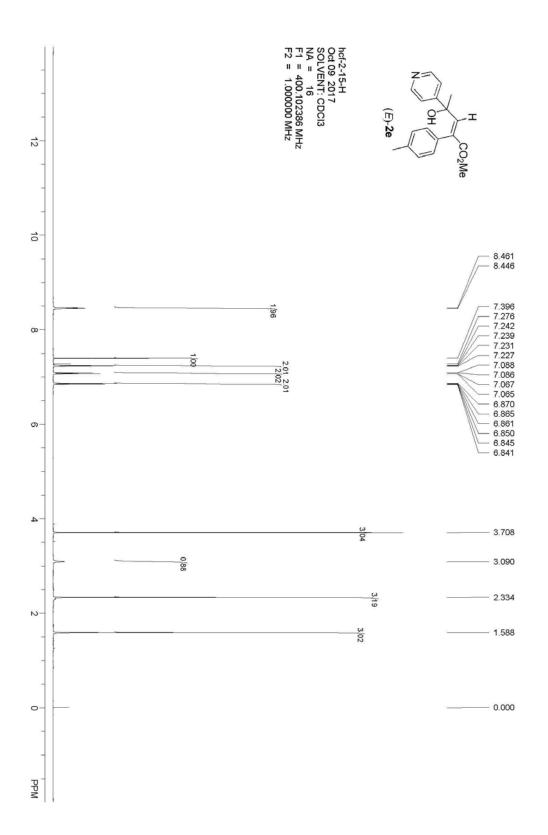


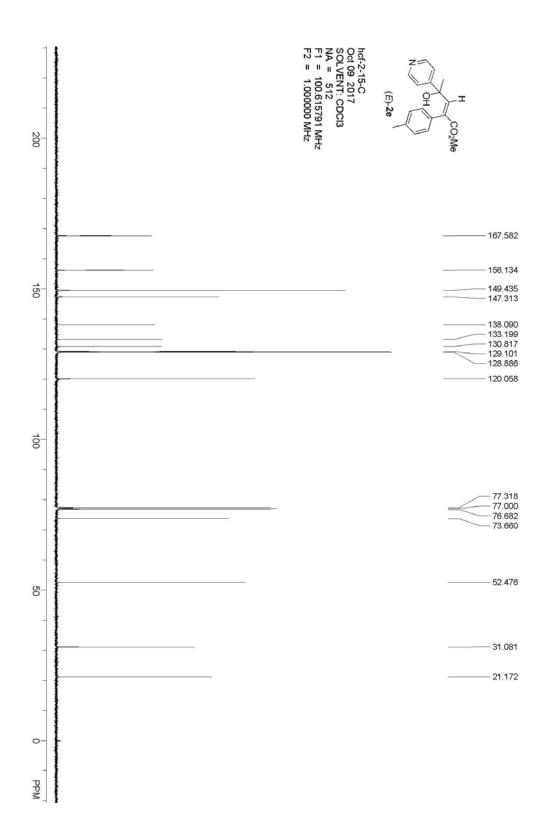


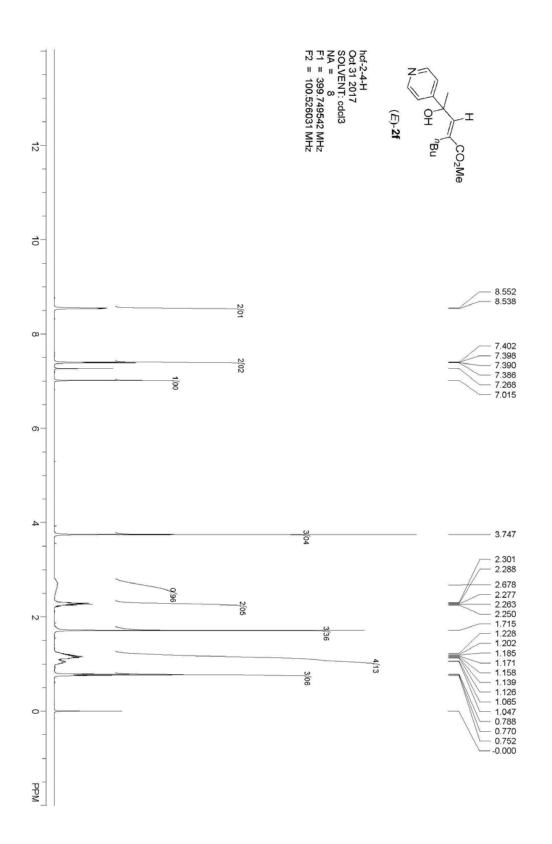


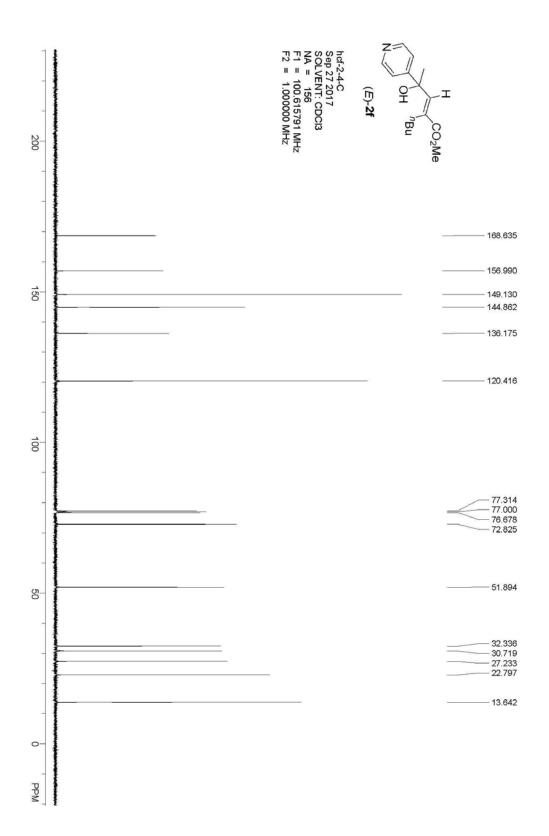


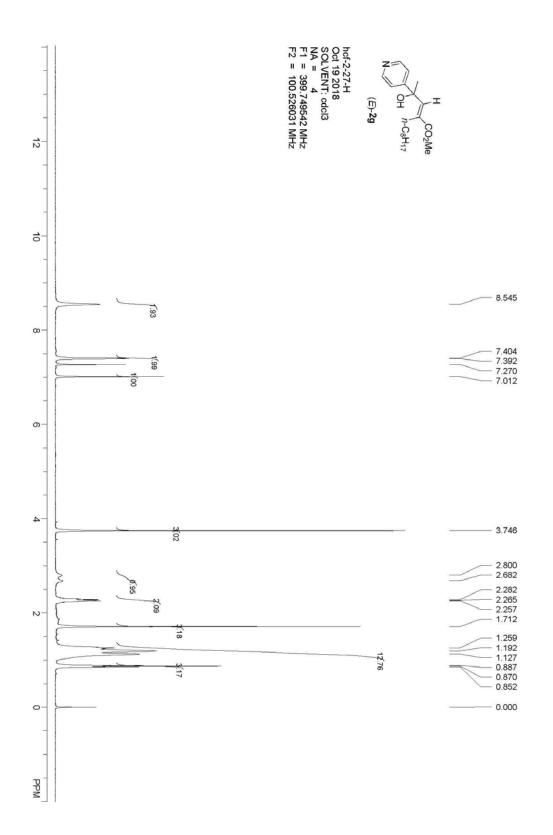


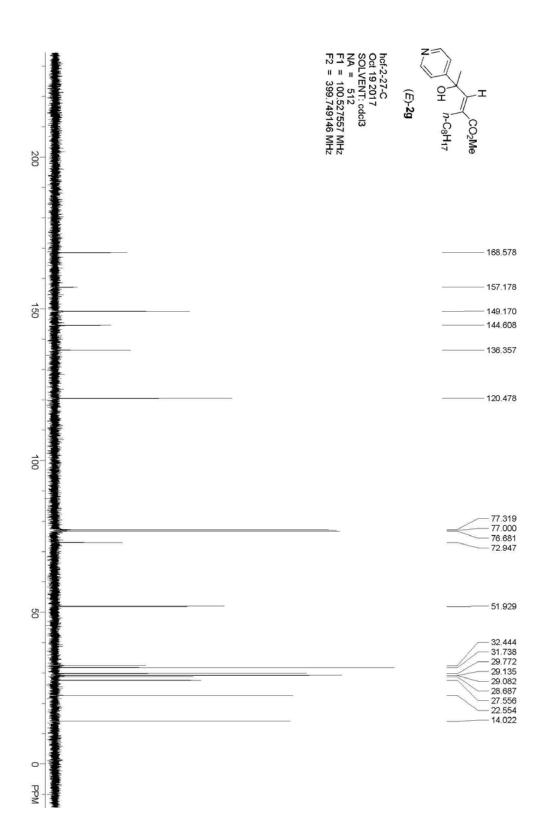


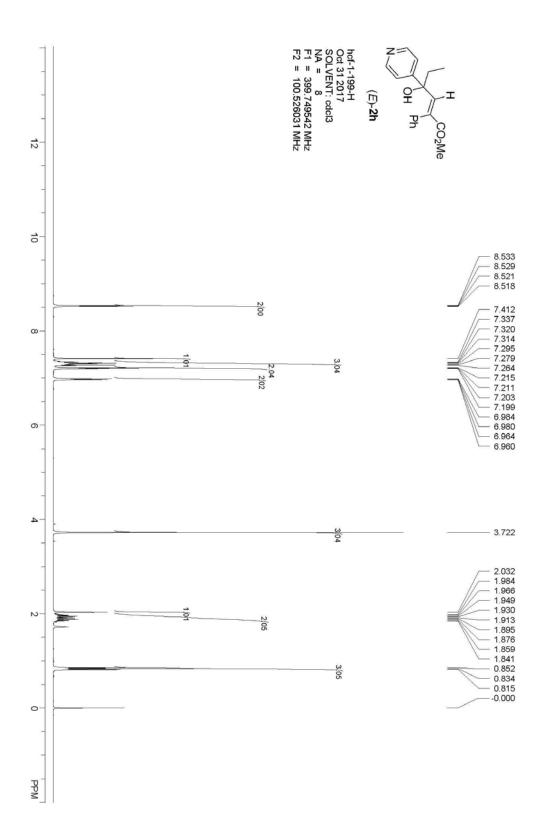


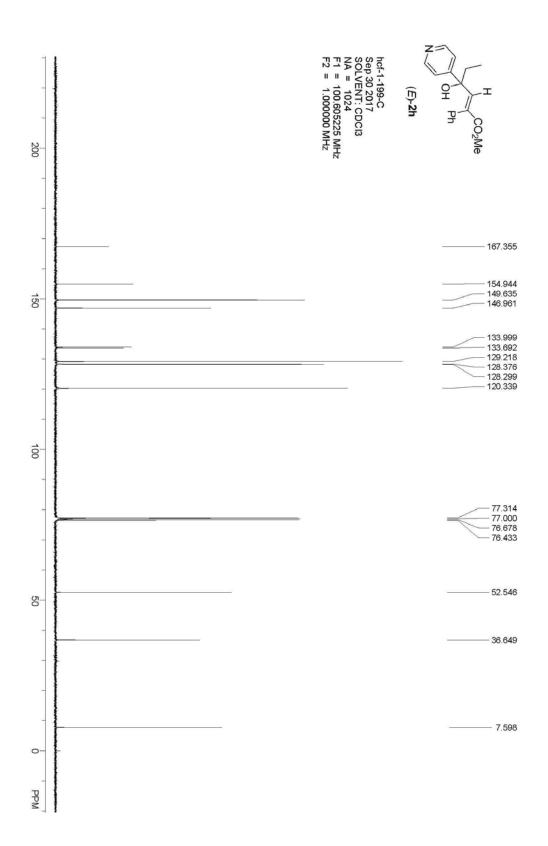


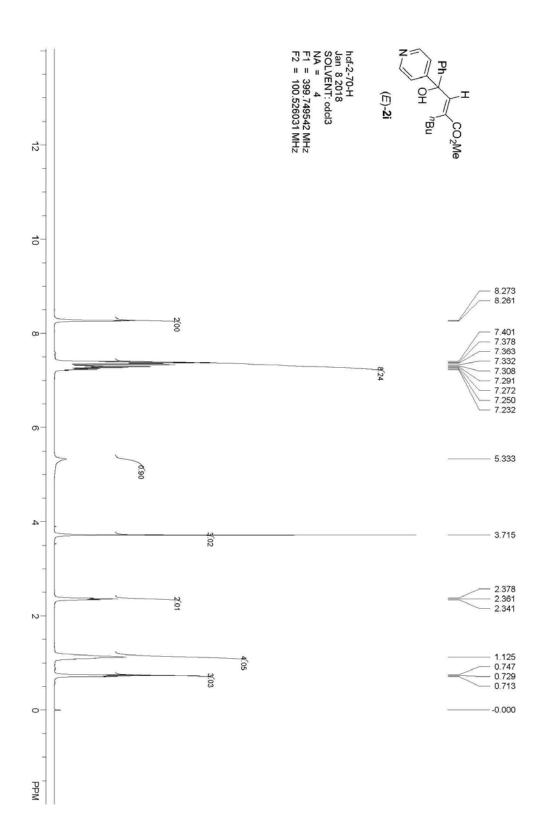


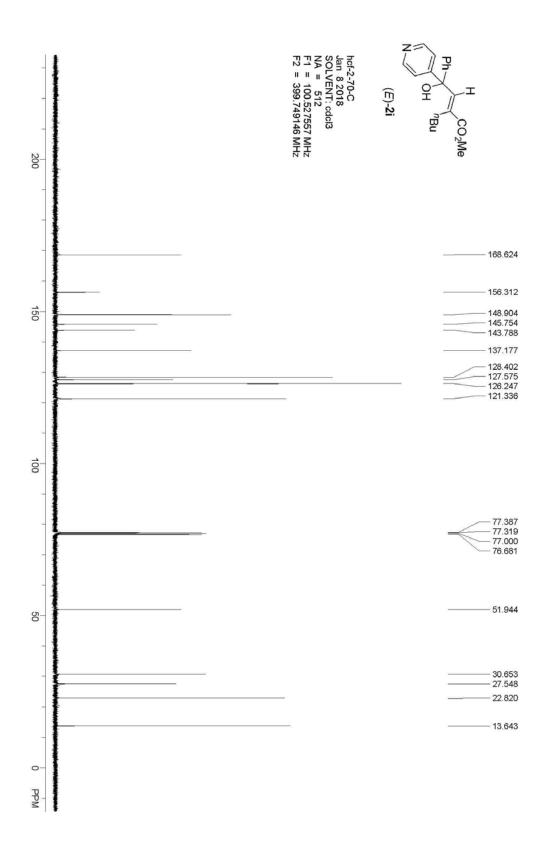


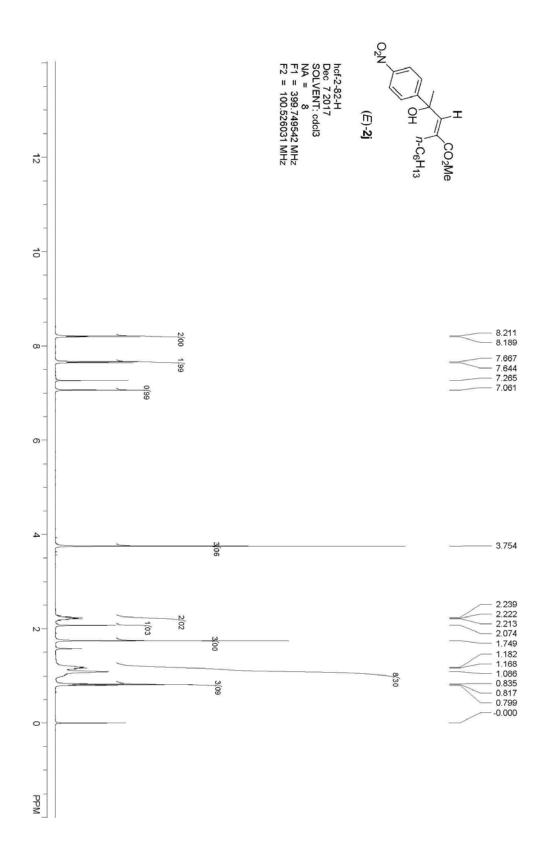


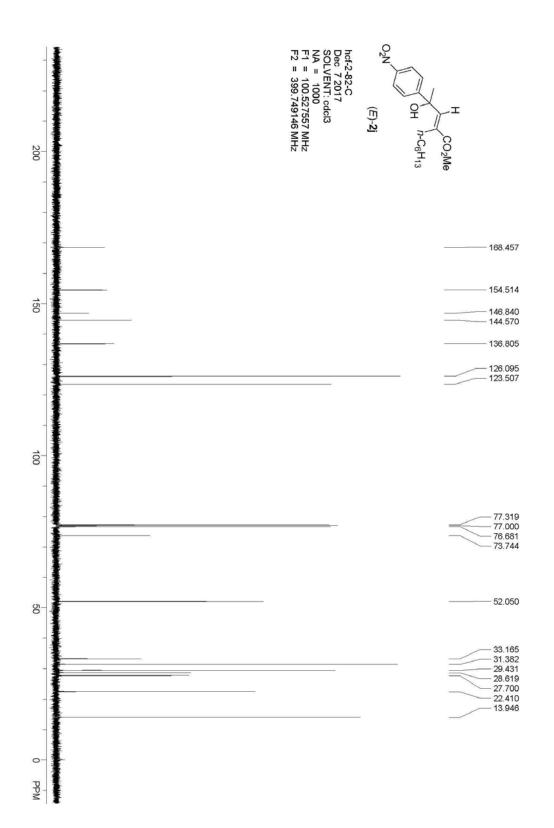


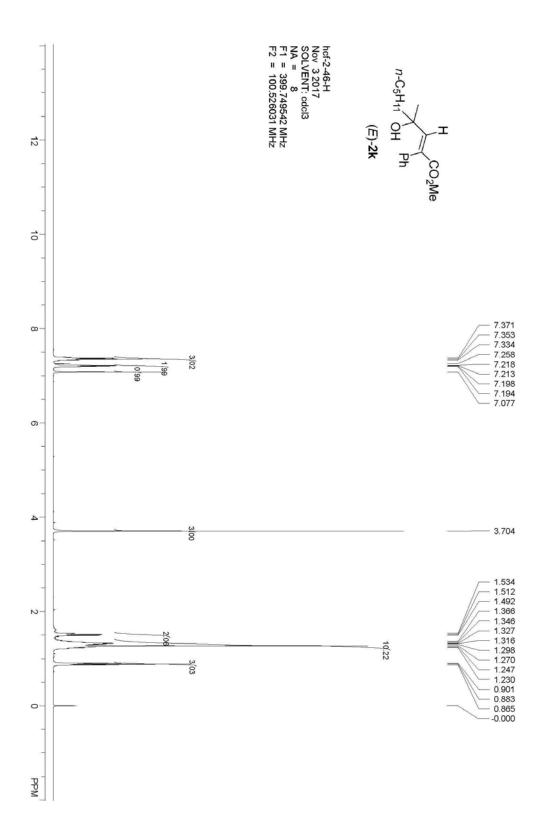


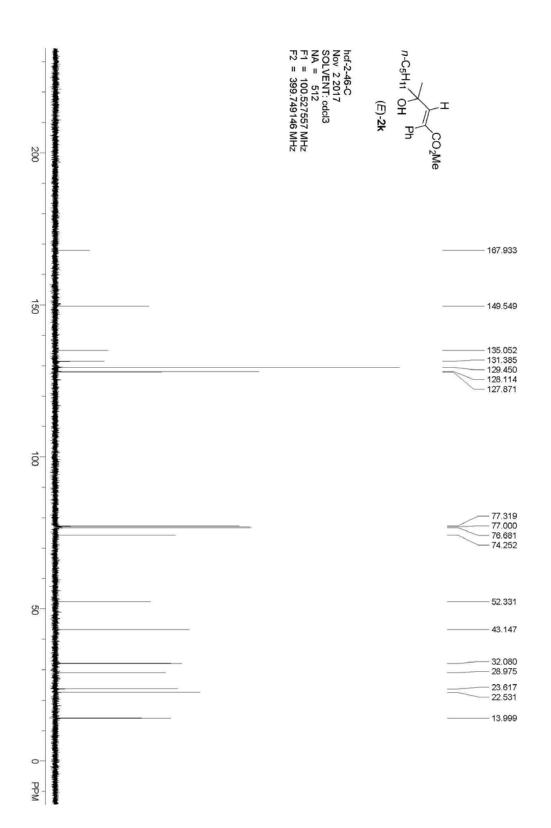


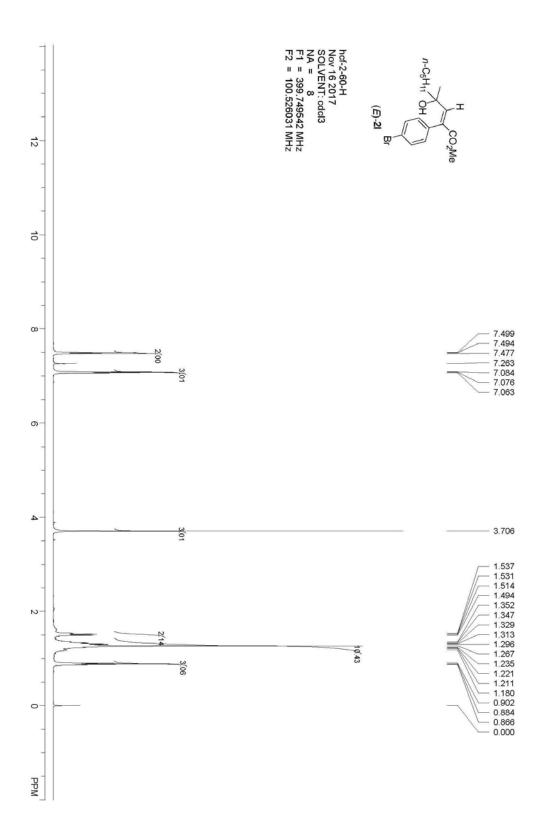


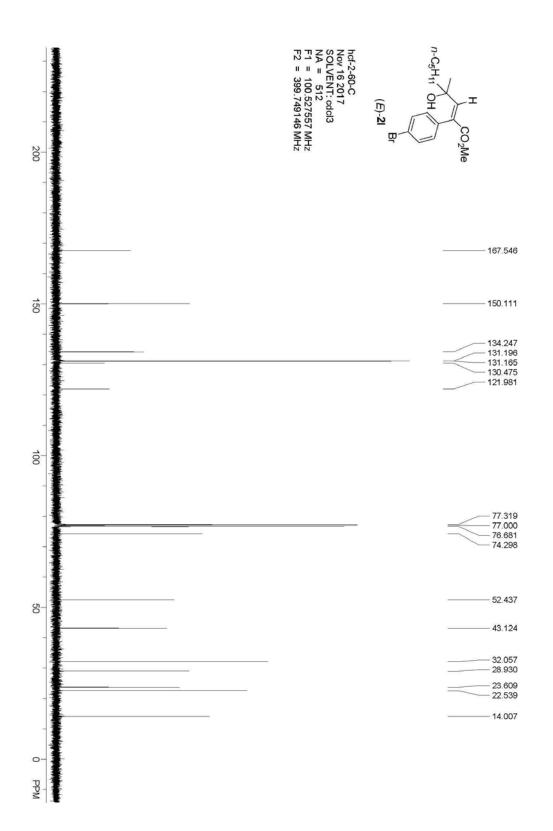


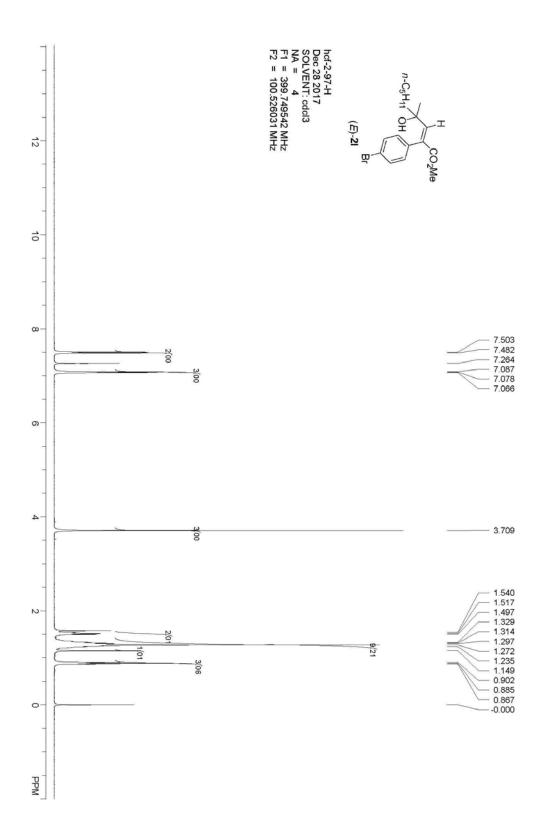


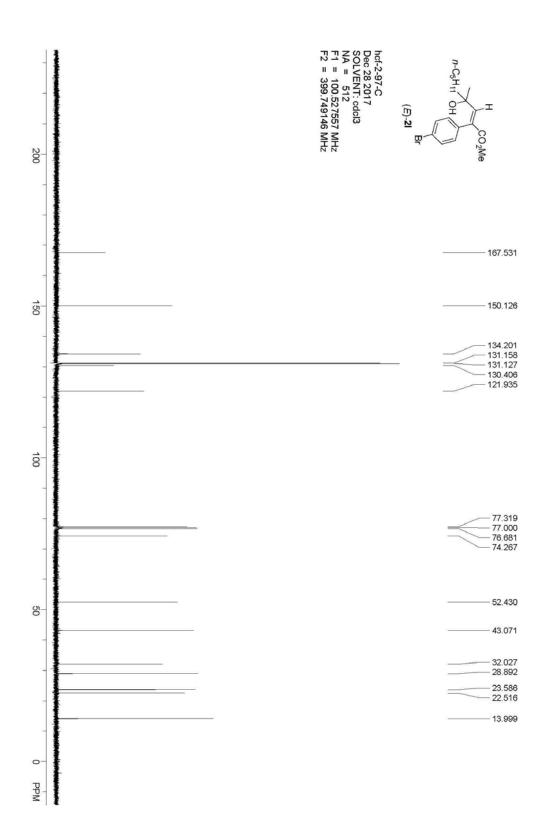


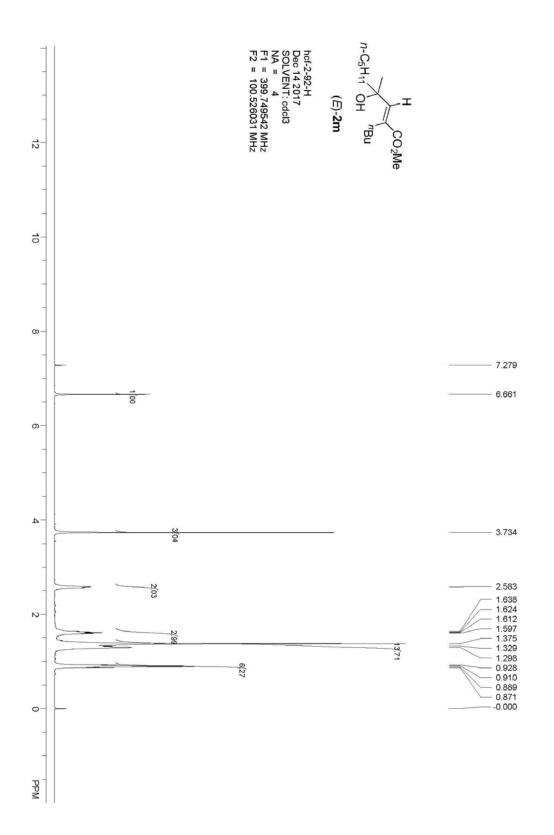


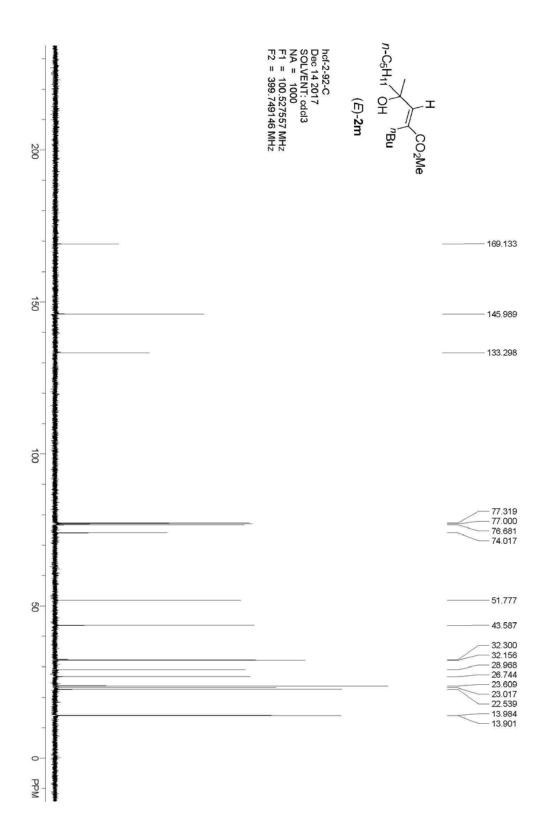


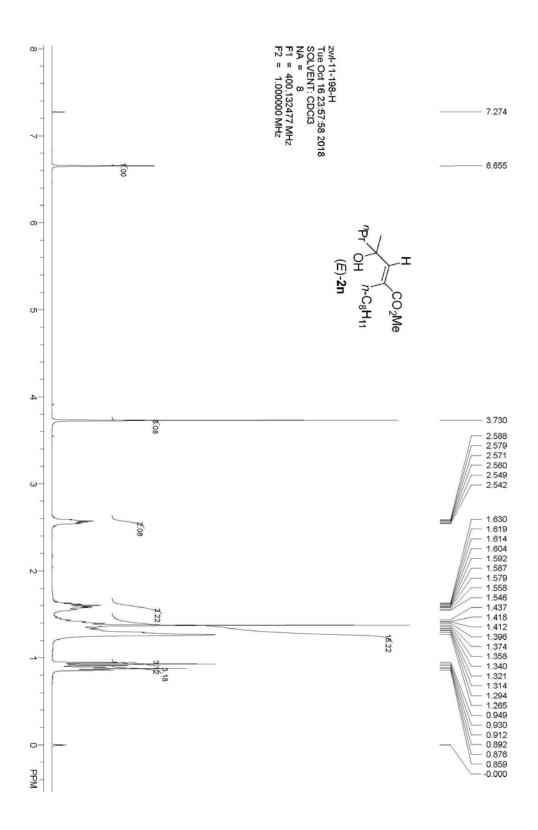


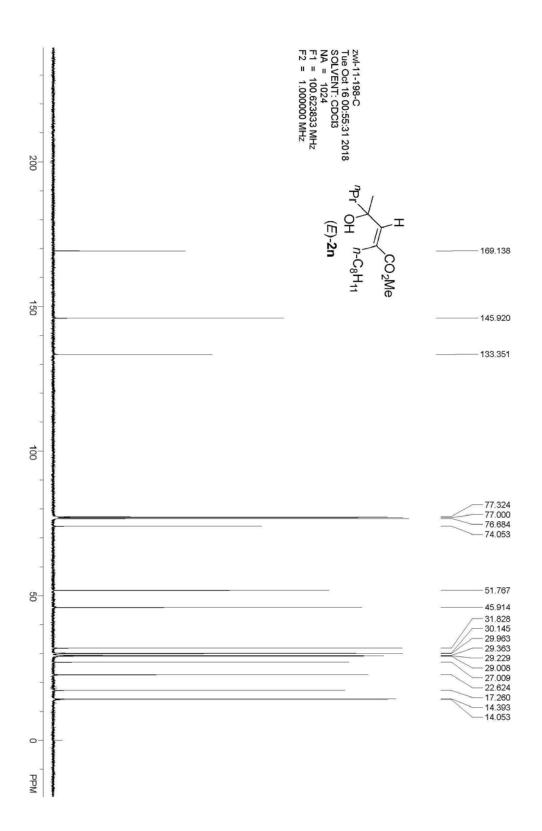


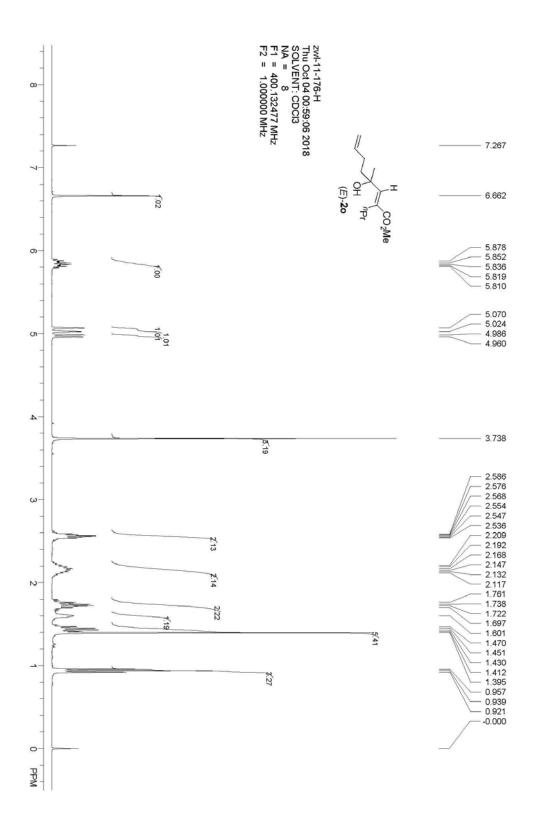


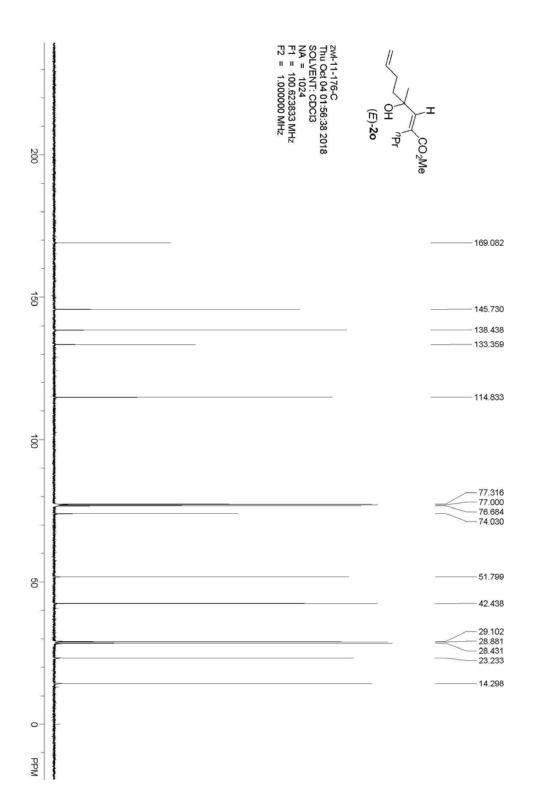


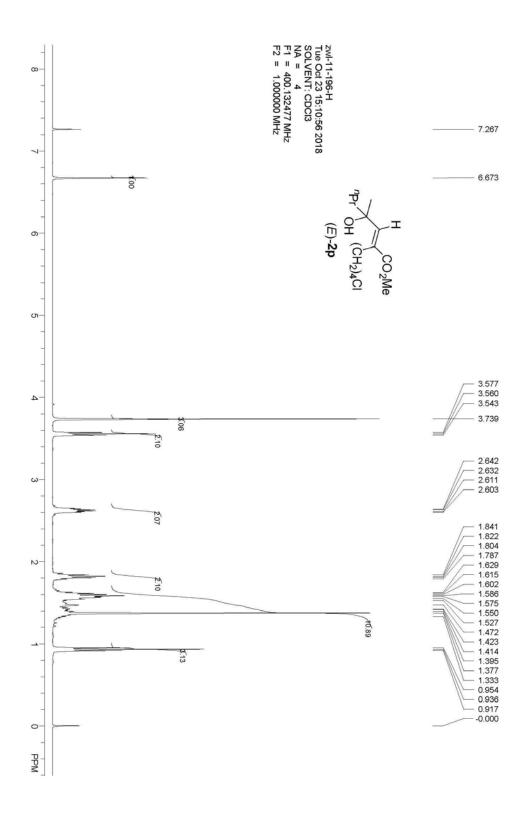


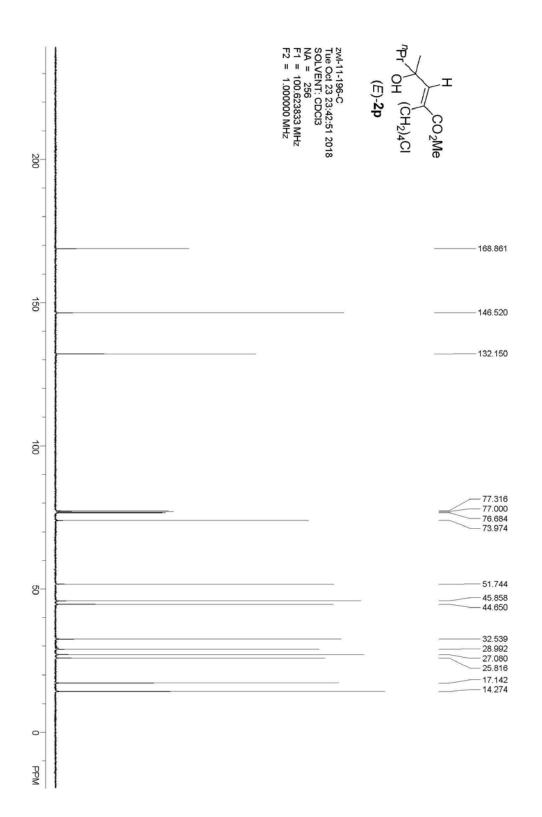


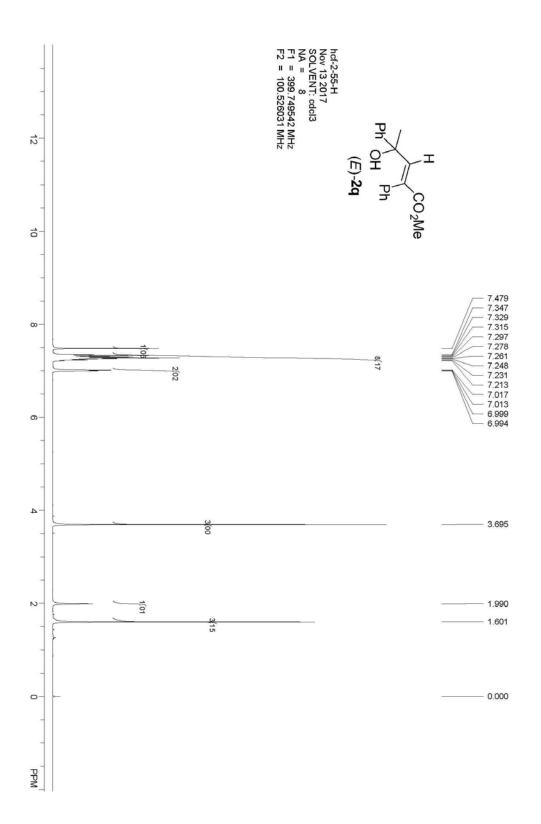


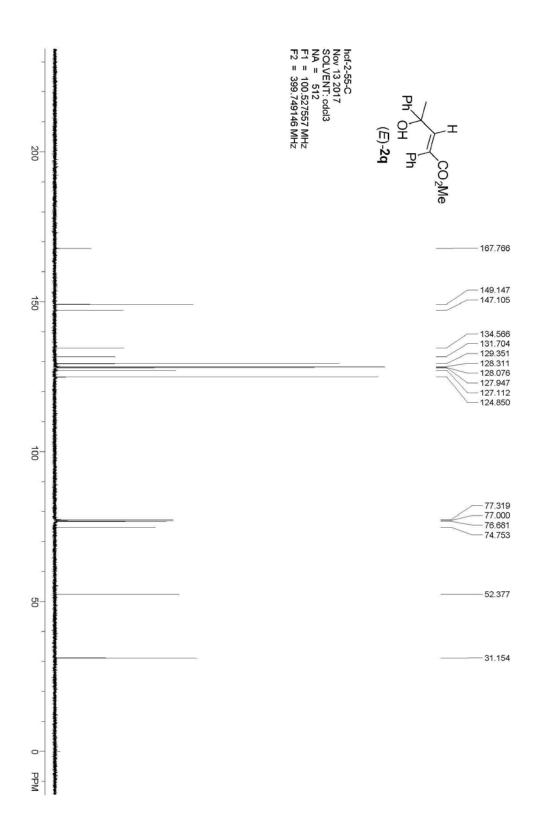


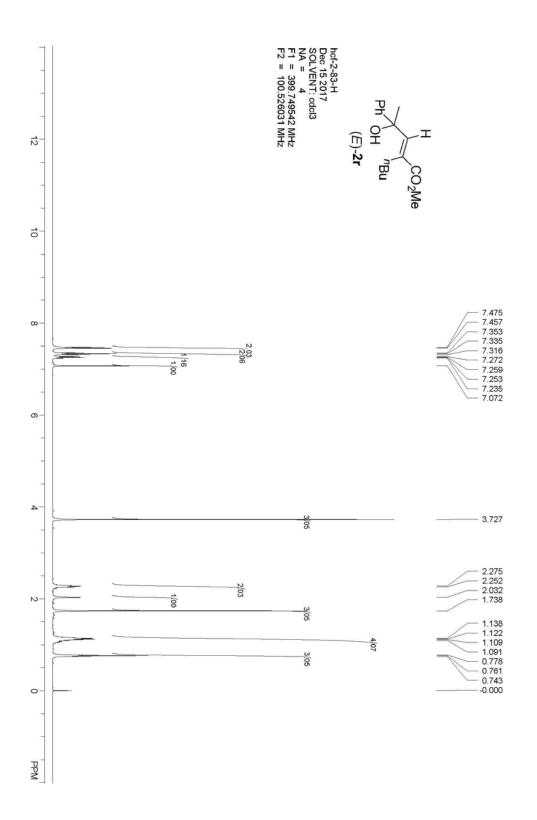


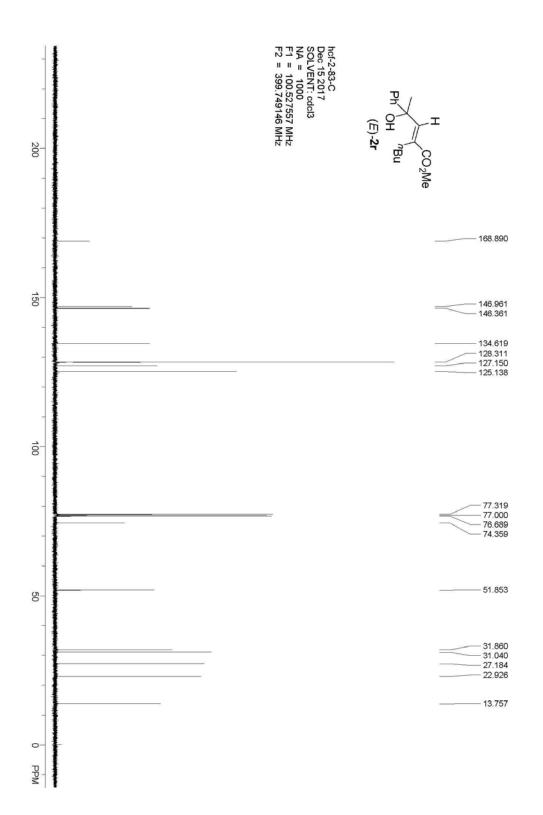


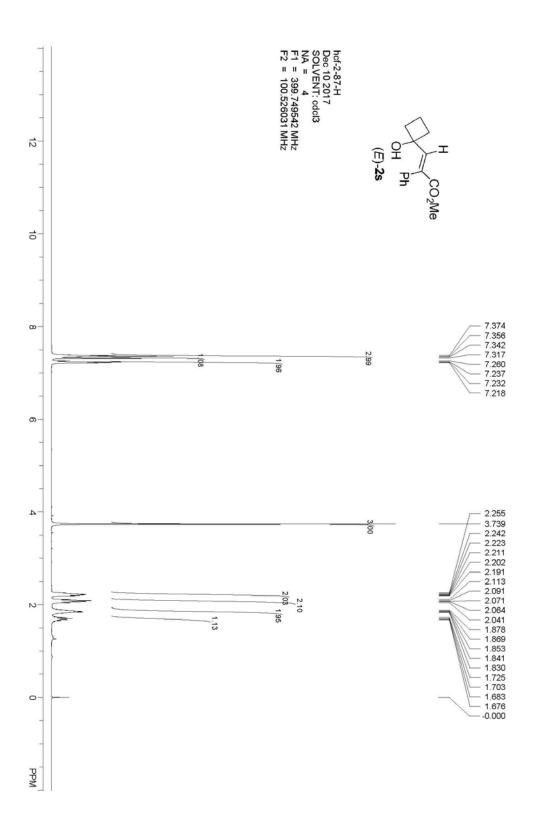


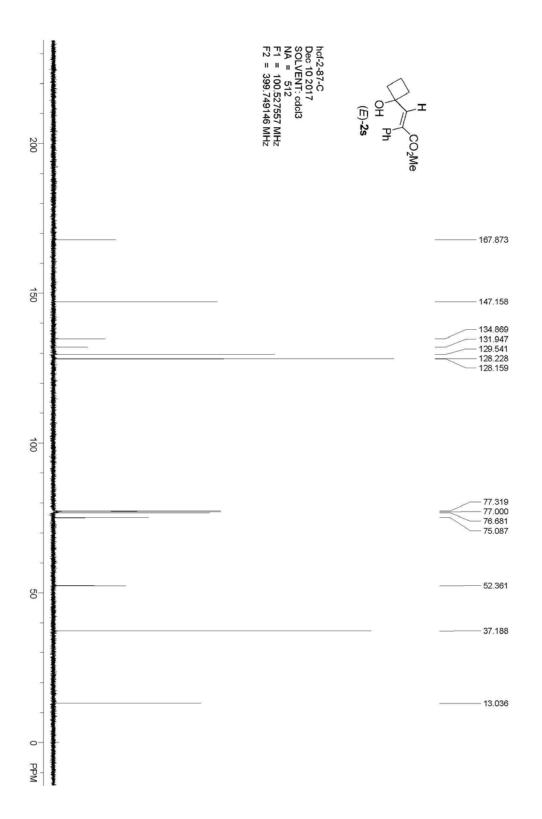


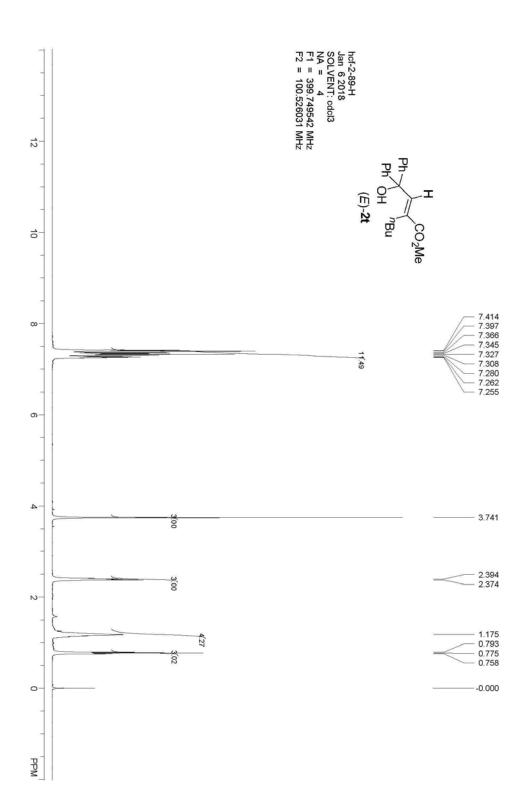


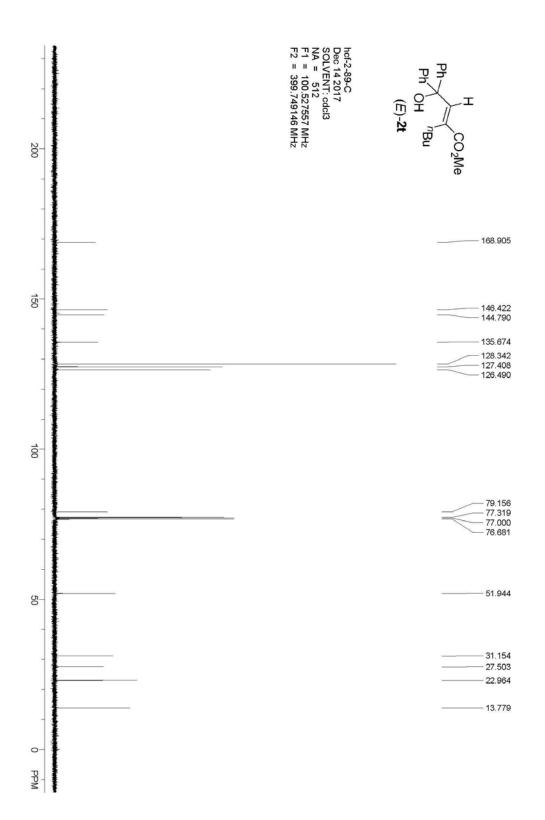


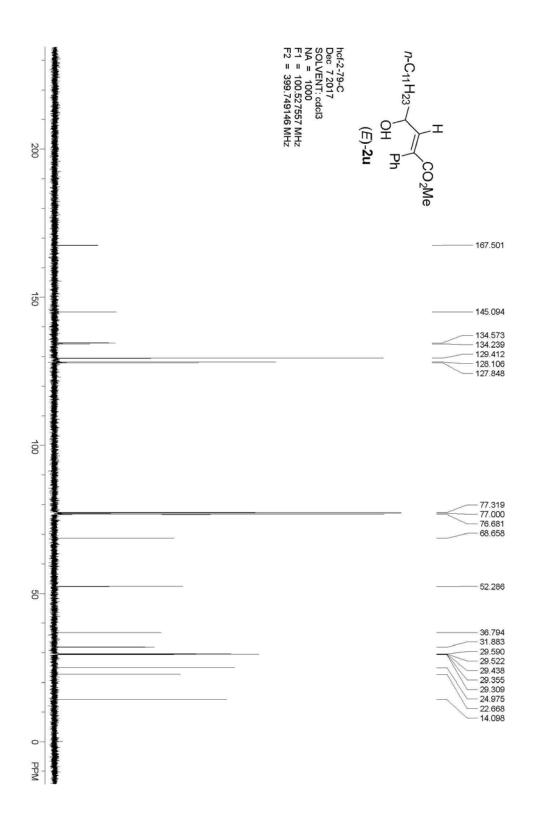


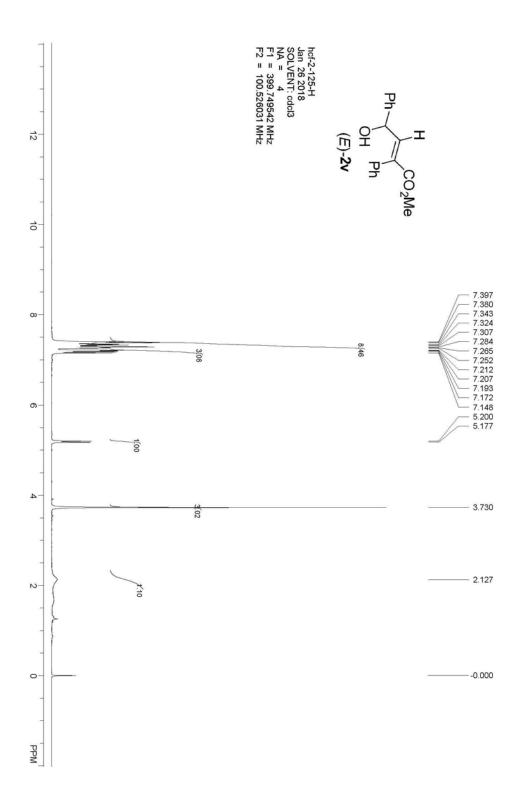


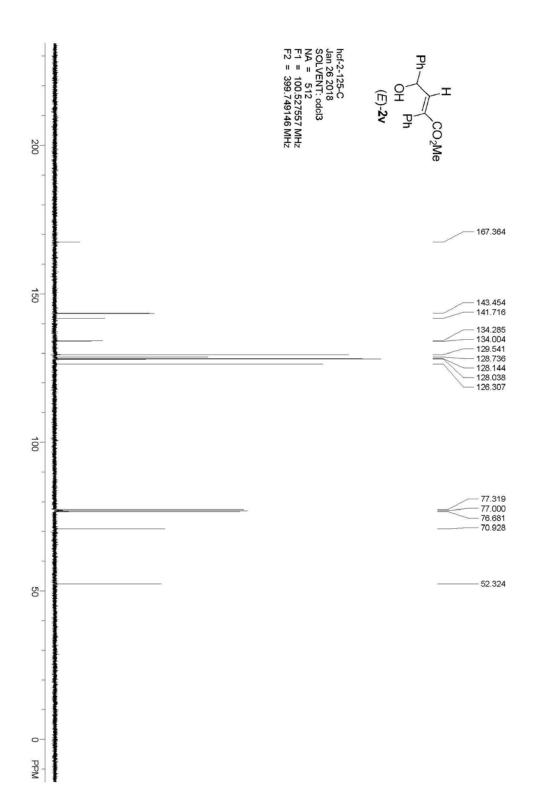


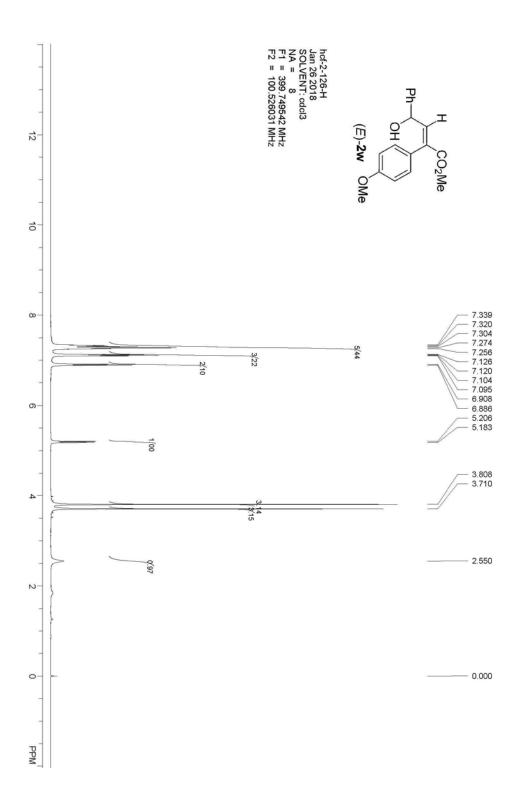


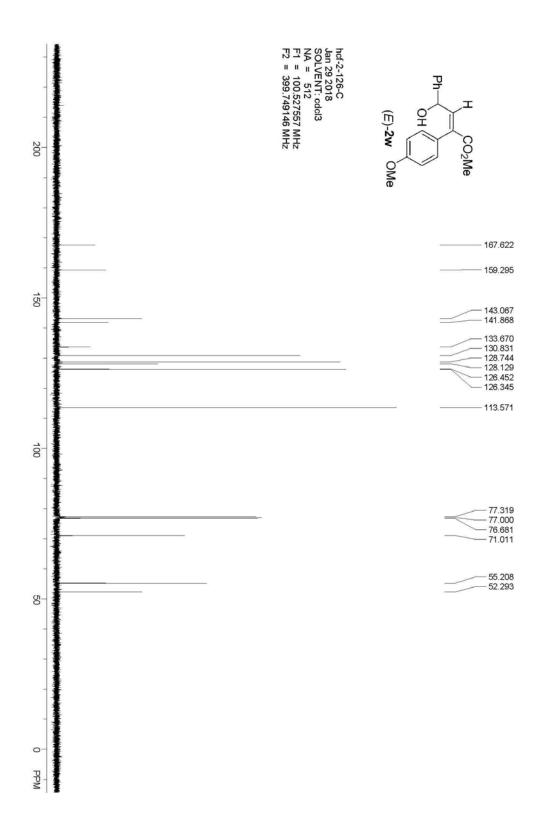


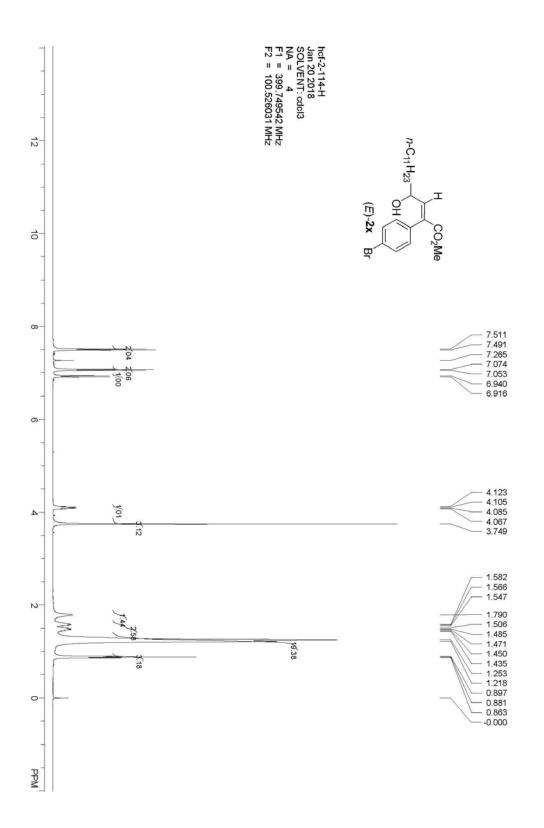


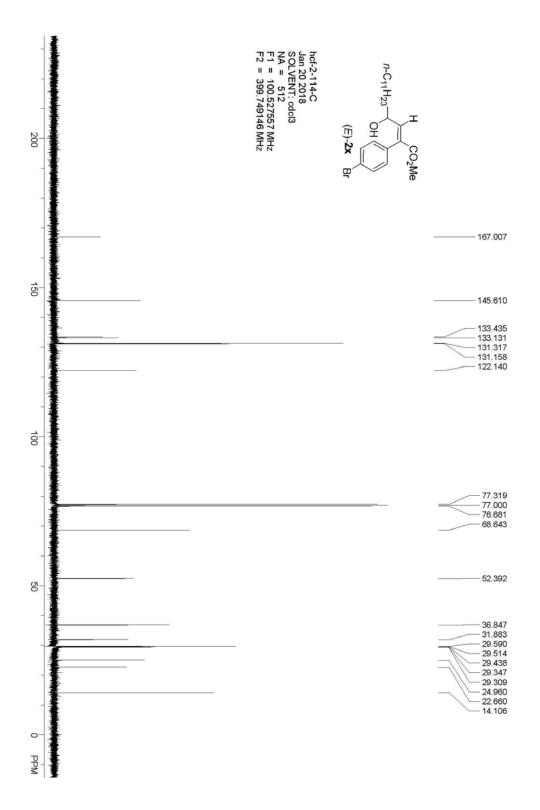


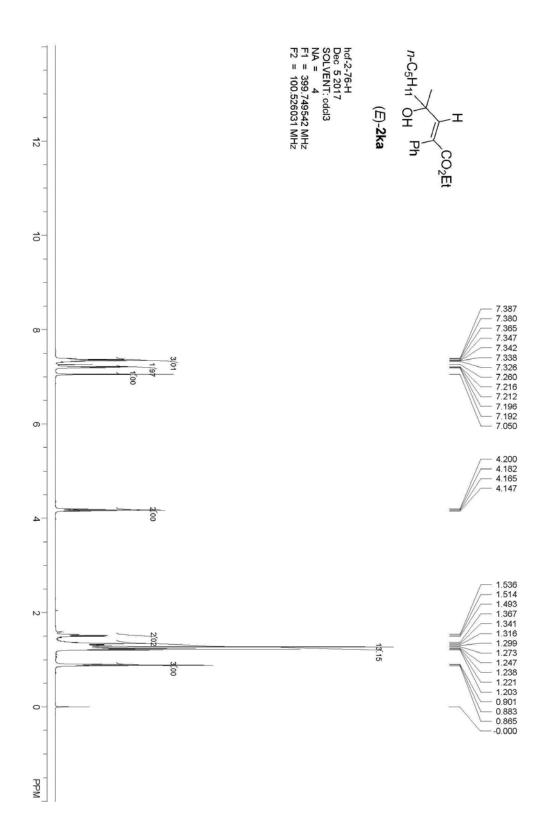


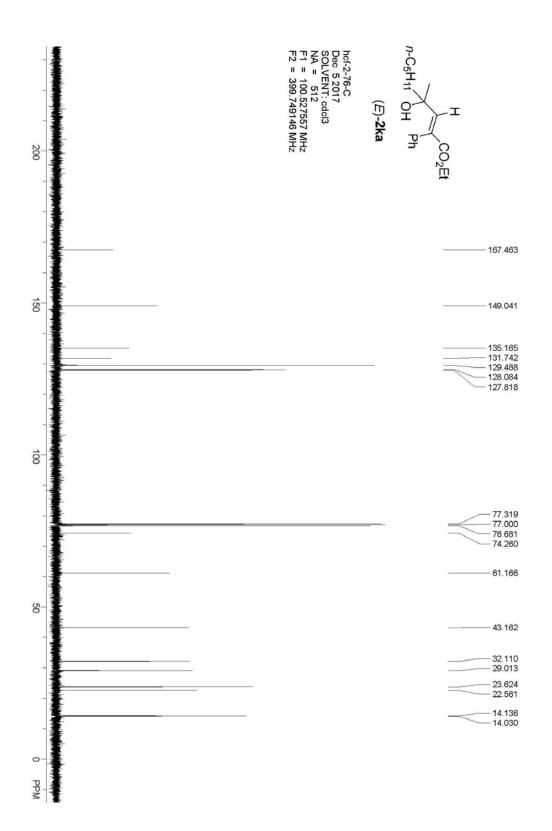


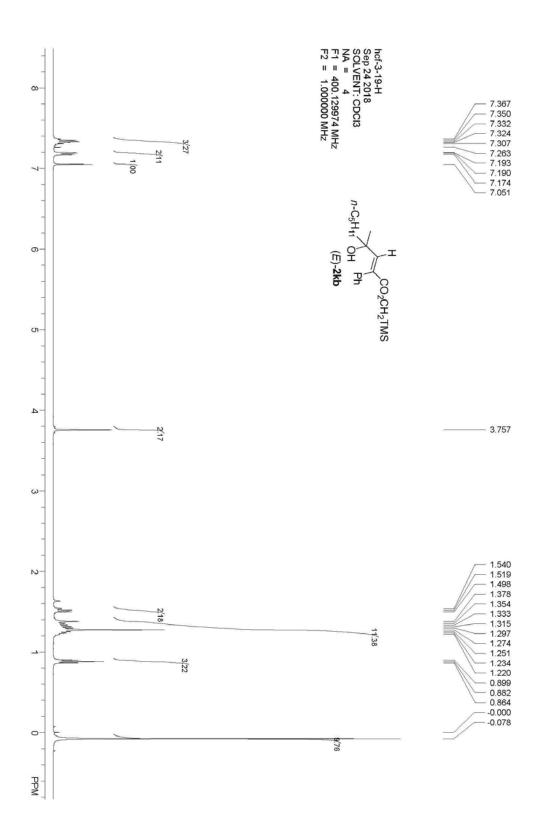


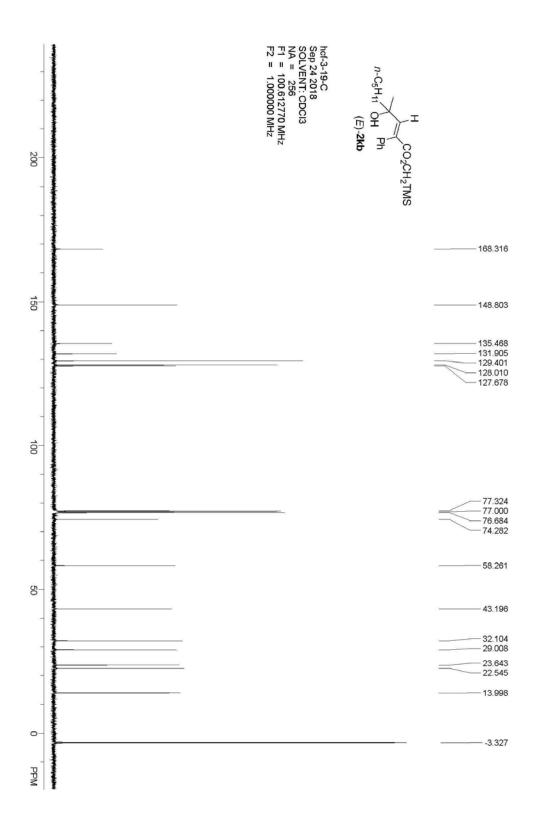


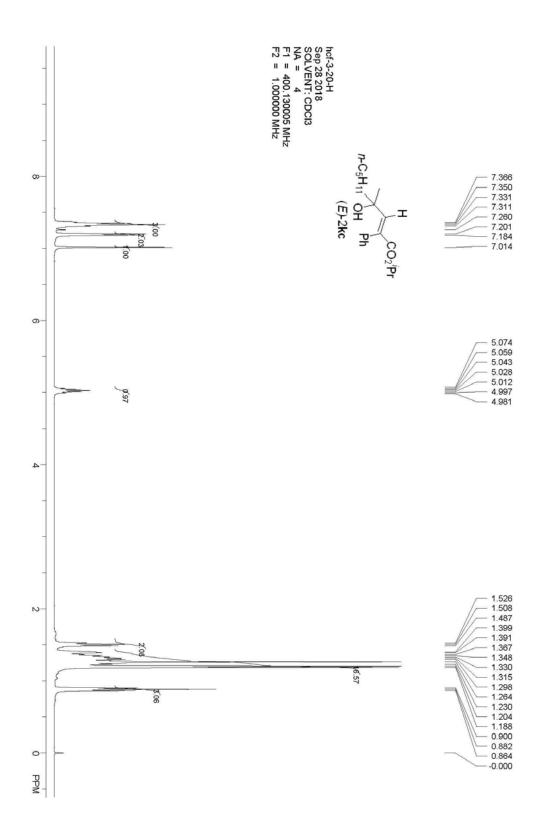


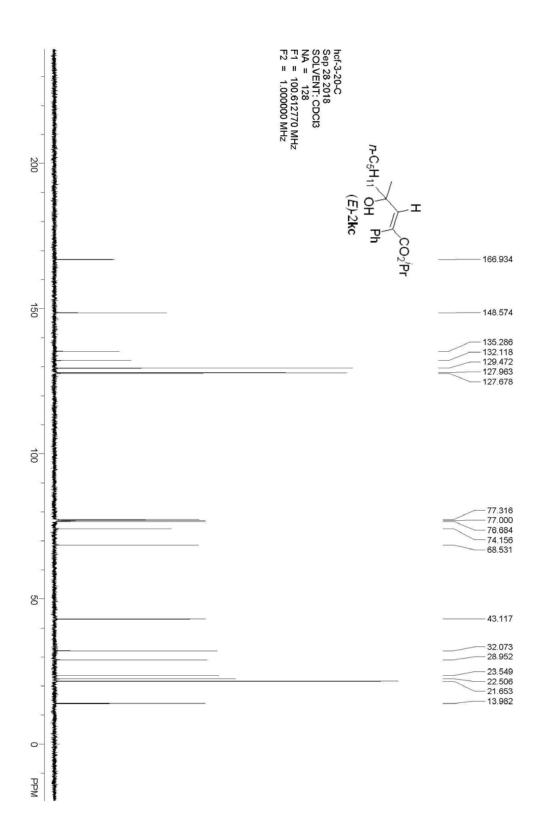


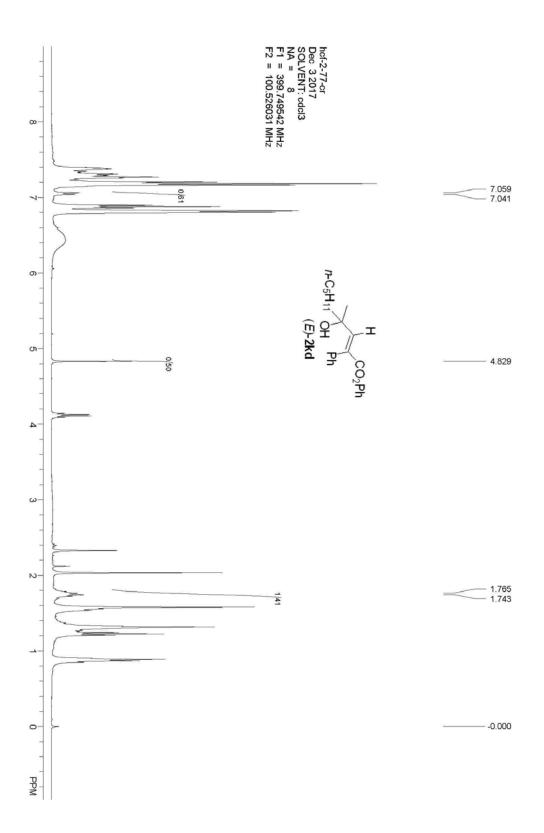


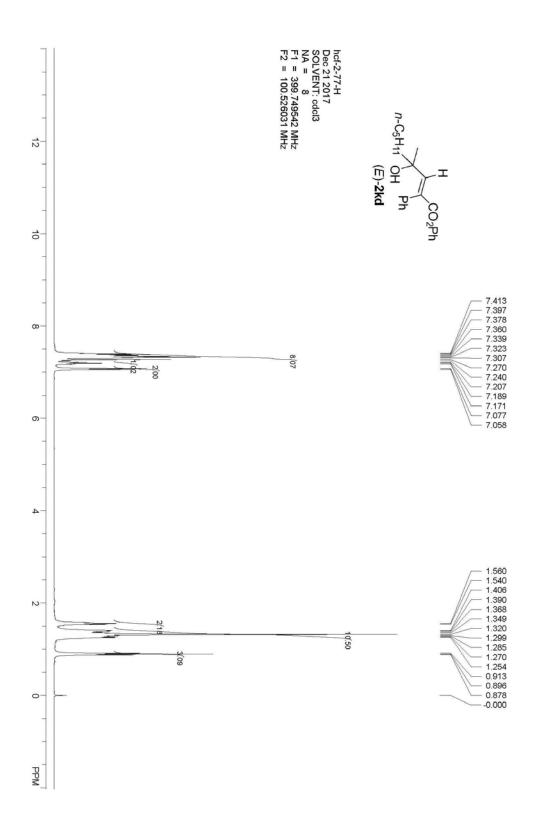


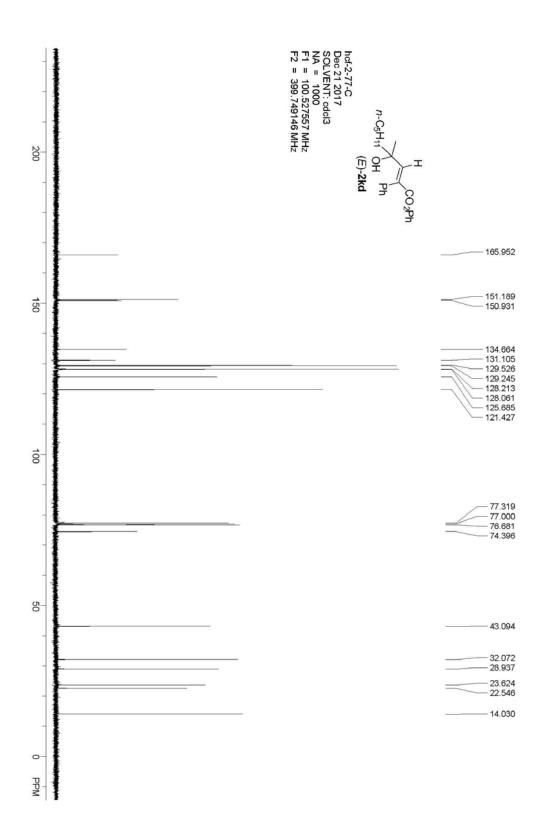


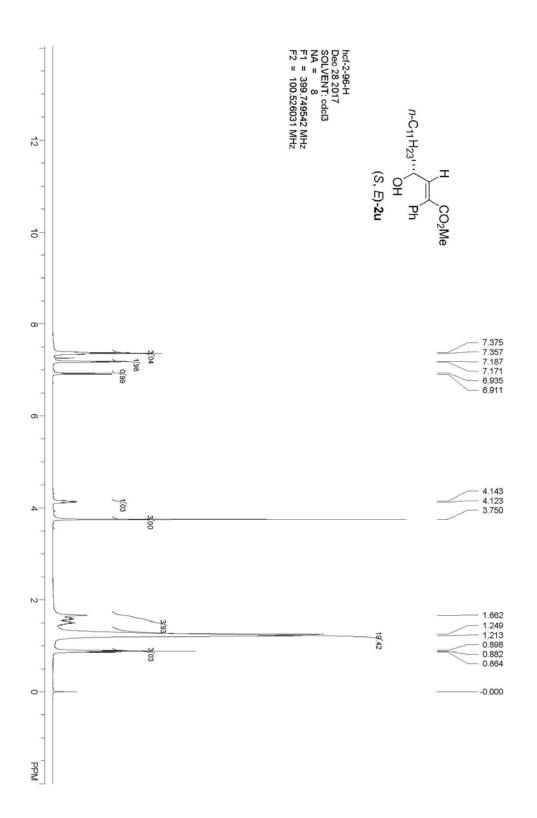


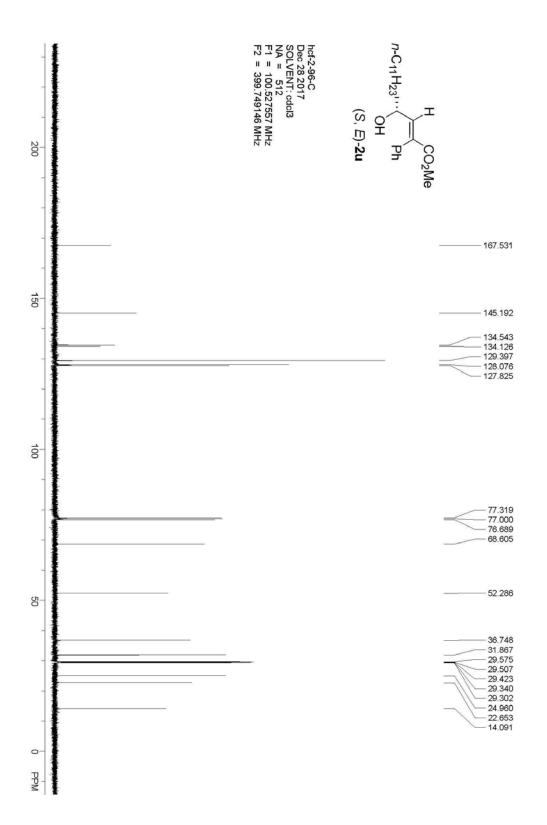


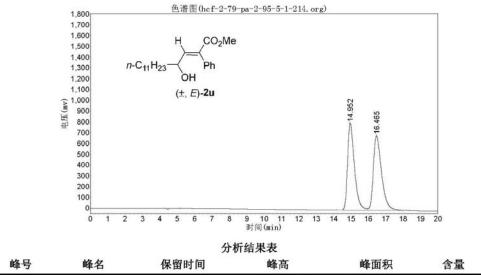








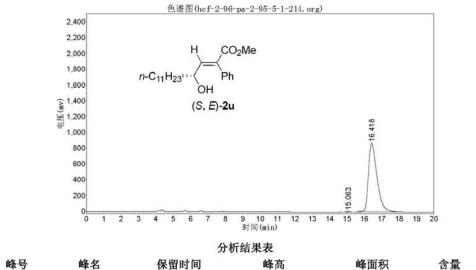




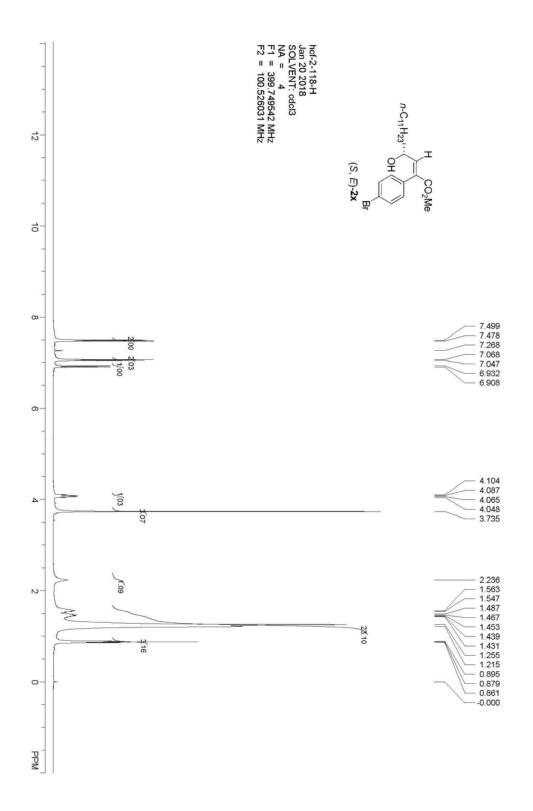
hcf-2-79-pa-2-95-5-1-214

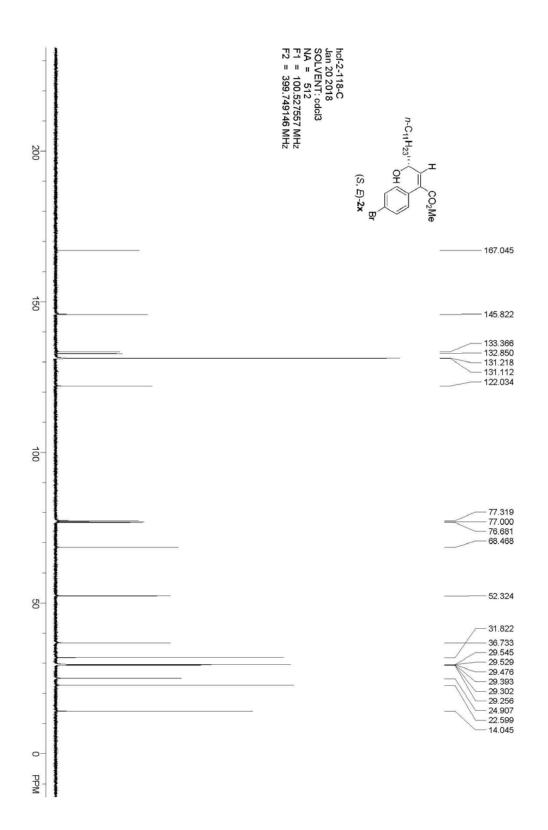
报告时间: 2018-01-04, 17:48:59

実验时间: 2018-01-04, 17:07:27 谱图文件:D:\zhuguangjiong\hcf\20180104\hcf-2-79-pa-2-95-5-1-214. org



唯亏	唯名	保留时间	峰向	峰曲积	百重	
1		14.952	806185.750	22177016.000	49.5640	
2		16.465	689829.250	22567178.000	50.4360	
总计			1496015.000	44744194.000	100.0000	

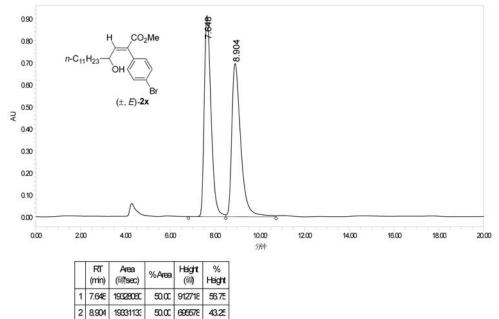

hcf-2-96-pa-2-95-5-1-214


报告时间: 2018-01-04, 17:50:52

实验时间: 2018-01-04, 17:28:11 谱图文件:D:\zhuguangjiong\hcf\20180104\hcf-2-96-pa-2-95-5-1-214.org

四年 与	呼石	休田时间	四年 [61]	峰山尔	山里	
1		15.063	3885.598	95790.781	0.3263	
2		16.418	864572.563	29259652.000	99.6737	
总计			868458.160	29355442.781	100.0000	

中国科学院上海有机化学研究所 defaults for copy


Breeze user (Breeze)

Project Name

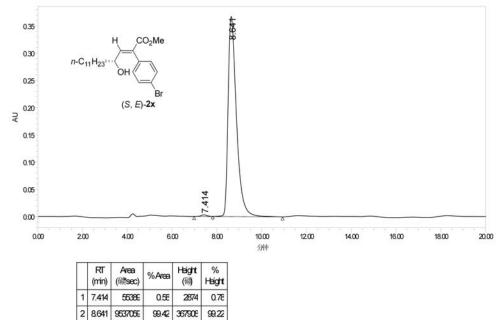
Reported by User.

	SAMPLE	INFORMATIO	NC
Sample Name:	hcy-2-114-as-h-97-3-1-214	Acquired By:	Breeze
Sample Type:	末知	Date Acquired	2018/1/24 10:55:38 CST
Vial:	999	Acq. Method:	zgj97
Injection#.	285	Date Processed	2018/1/24 15:23:10 CST
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time	20.00 Minutes	Channel Desc.:	W2489 ChA 214nm
Column Type:		Sample Set Name	

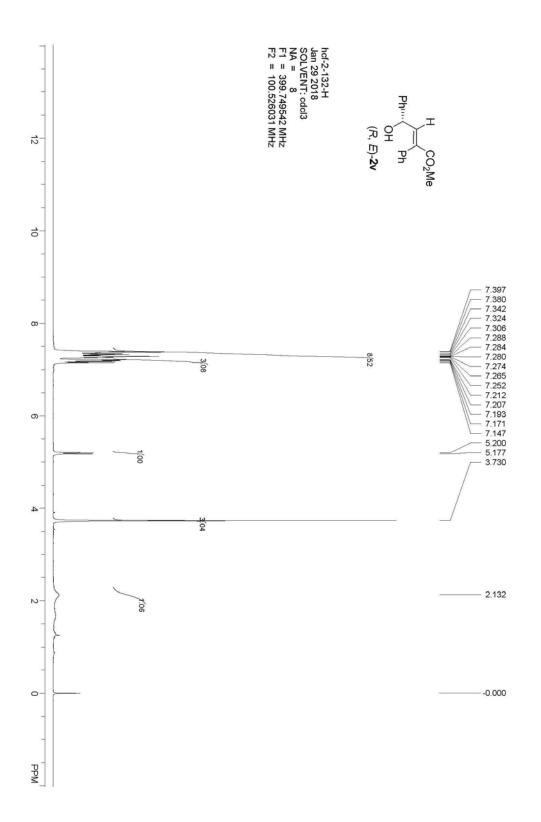
Report Method: Individual Report ASC Page: 1 (共计 1)

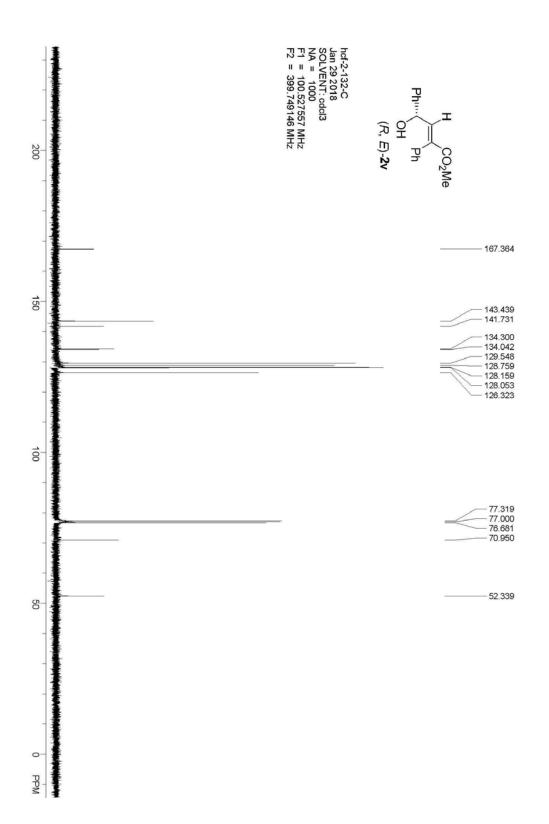
Printed 2018/1/24 15.26.10 PRC

中国科学院上海有机化学研究所 defaults for copy


Breeze user (Breeze)

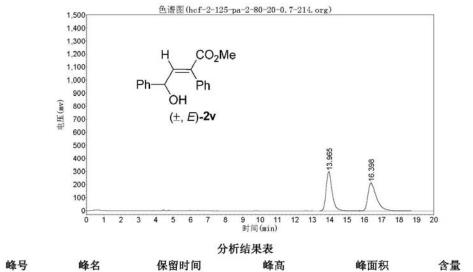
Project Name




	SAMPLE	INFORMATIO	ON
Sample Name:	hcy-2-118as-h97-3-1-214	Acquired By:	Breeze
Sample Type:	未知	Date Acquirect	2018/1/24 12:30.05 CST
Vial:	999	Acq. Method:	zg97
Injection#.	288	Date Processed	2018/1/24 15:25:06 CST
Injection Volume:	10.00 ul	Channel Name	W2489 ChA
Run Time:	20.00 Mnutes	Channel Desc.:	W2489 ChA 214nm
Column Type:		Sample Set Name	

Report Method: Individual Report ASC Page: 1 (共计 1)

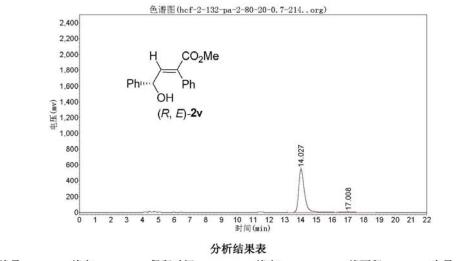
Printed 2018/1/24 15:26:56 PRC



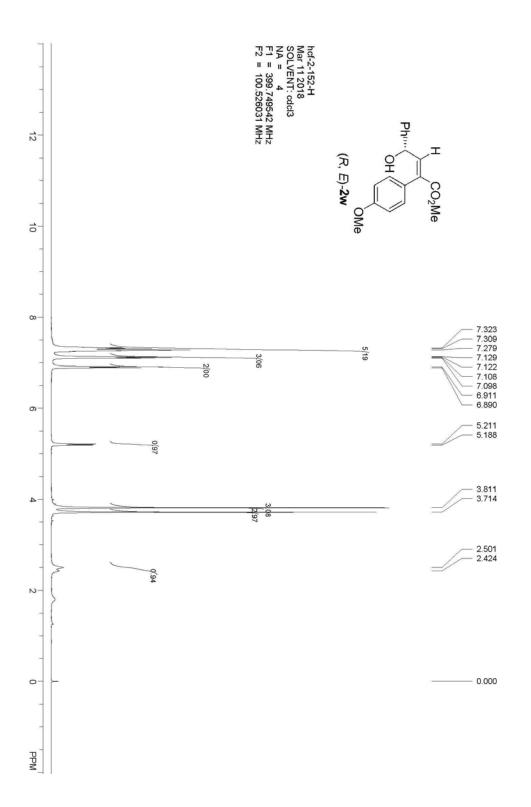
hcf-2-125-pa-2-80-20-0.7-214

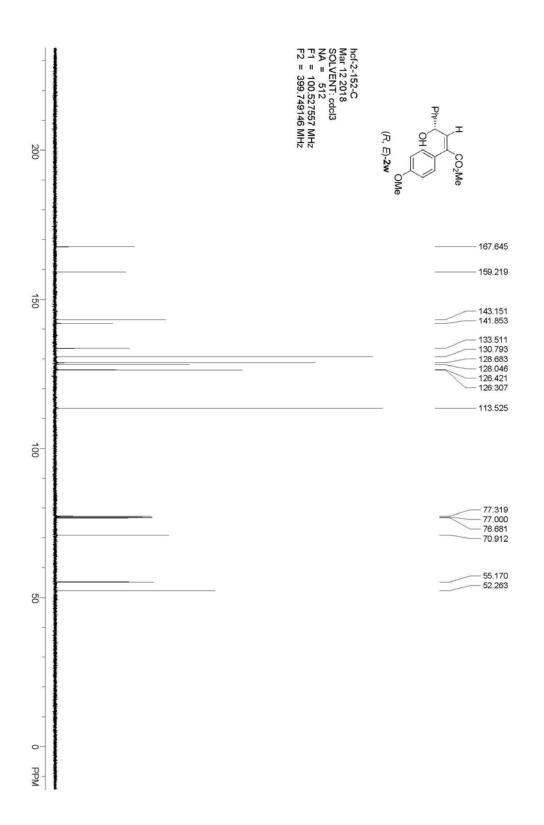
报告时间: 2018-02-02, 17:16:54

实验时间: 2018-02-02, 15:21:17 谱图文件:D:\zhuguangjiong\hef\20180131\hef-2-125-pa-2-80-20-0. 7-214. org



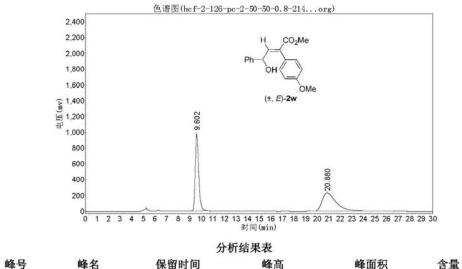
- + J	** 10	NA EL PU PU	m# [EU	"中国小八	口里	
1		13.965	298364.969	7329453.500	49.5159	
2		16.398	212095.734	7472764.000	50.4841	
总计			510460.703	14802217.500	100.0000	_


hcf-2-132-pa-2-80-20-0.7-214


报告时间: 2018-02-02, 17:18:24

实验时间: 2018-02-02, 16:06:47 谱图文件:D:\zhuguangjiong\hef\20180131\hef-2-132-pa-2-80-20-0.7-214..org

峰号	峰名	保留时间	峰高	峰面积	含量
1		14.027	546686.625	13619557.000	99.4113
2		17.008	1243.959	80652.625	0.5887
总计			547930. 584	13700209.625	100.0000



hcf-2-126-pc-2-50-50-0.8-214

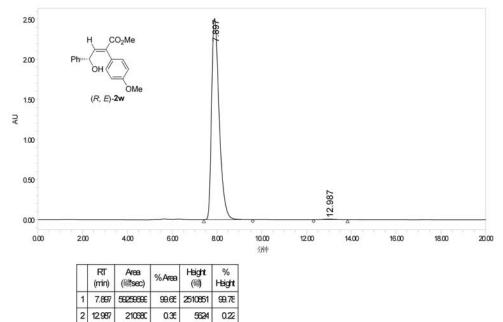
报告时间: 2018-02-06, 12:29:43

实验时间: 2018-02-06, 10:26:57 谱图文件:D:\zhuguangjiong\hef\20180205\hef-2-126-pe-2-50-50-0.8-214...org

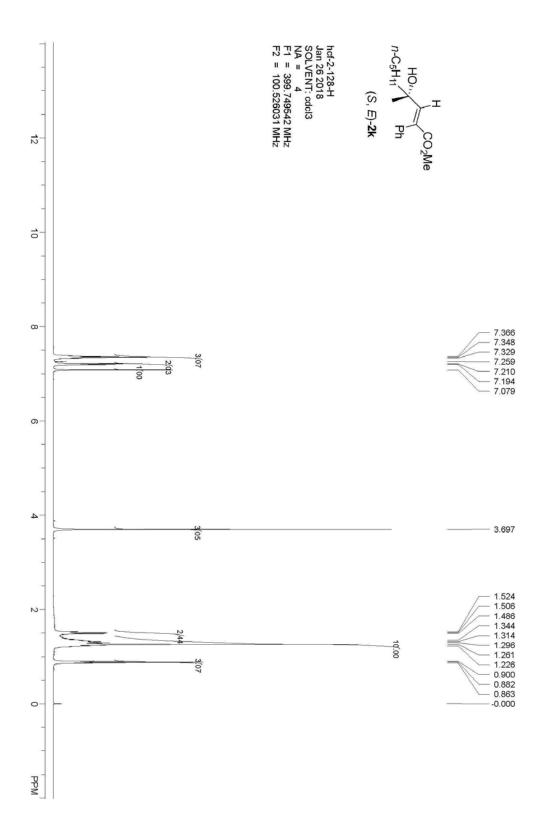
实验内容简介:

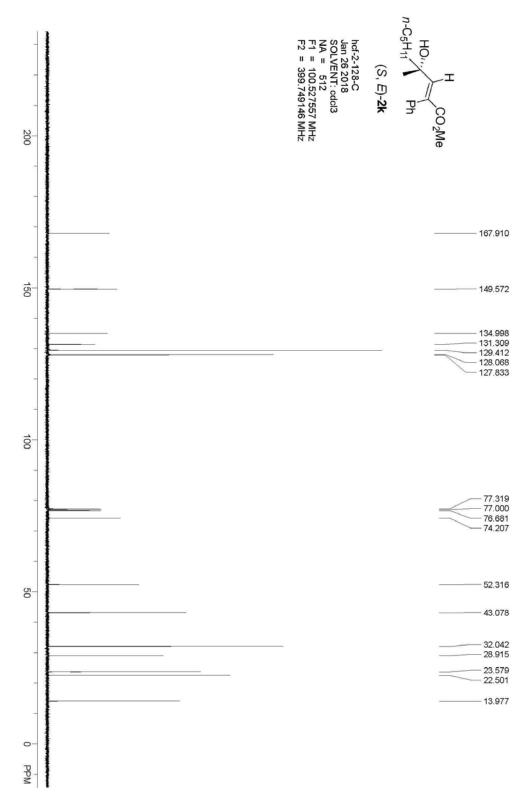
峰号	峰名	保留时间	峰高	峰面积	含量
1		9.602	973350.625	19930722.000	50.1094
2		20.880	232116.125	19843714.000	49.8906
总计			1205466.750	39774436.000	100.0000

中国科学院上海有机化学研究所 defaults for copy


Breeze user (Breeze)

Project Name




	SAMPLE	INFORMATIO	NC
Sample Name:	hcf-2-152-pc-2-50-500.8-214	Acquired By:	Breeze
Sample Type:	未知	Date Acquirect	2018/3/13 18:23:01 CST
Vial:	999	Acq. Method:	zgj50
Injection#	17	Date Processed	2018/3/13 18:47:07 CST
Injection Volume:	10.00 ul	Channel Name	W2489 ChA
Run Time	20.00 Mnutes	Channel Desc.:	W2489 ChA 214nm
Column Type:		Sample Set Name	

Report Method: Individual Report ASC Page: 1 (共计 1)

Printed 2018/3/13 18:47:21 PRC

55

中国科学院上海有机化学研究所 defaults for copy

Project Name

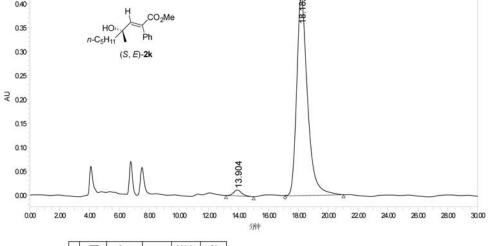
			S	SAMPL	-E I	NFORM	ATIO	N			
Sample Name: Sample Type: Vial: Injection #: Injection Volume Run Time: Column Type:	ਤ 9 2 ਵ 1	cf-246pa-2-9 時日 99 0.00 ul 0.00 Minutes	55-1-214			Acquired By: Date Acquired Acq. Method: Date Process Channel Nam Channel Desc Sample Set N	edt er	zgj95			
0.80			¢.								
0.70			13.542	17.771			H .c	O ₂ Me			
0.60				11.		n-C5H11	Ph	2			
0.50							OH (±, <i>E</i>)- 2⊧	¢			
0.40			11								
0.40 0.30											
0.30											
0.30 0.20	۸										
0.30 0.20 0.10	500	10.00	15.00	200	0	25.00 分中	30.00	35.00	40.00	45.00	50.00
0.20 0.10 0.00	5.00 RT (min	Area	15:00 %Area	Height	0 % Height		30.00	35.00	40.00	4500	50.00

Report Method: Individual Report ASC Page: 1 (共计 1)

2 17.771 29318203

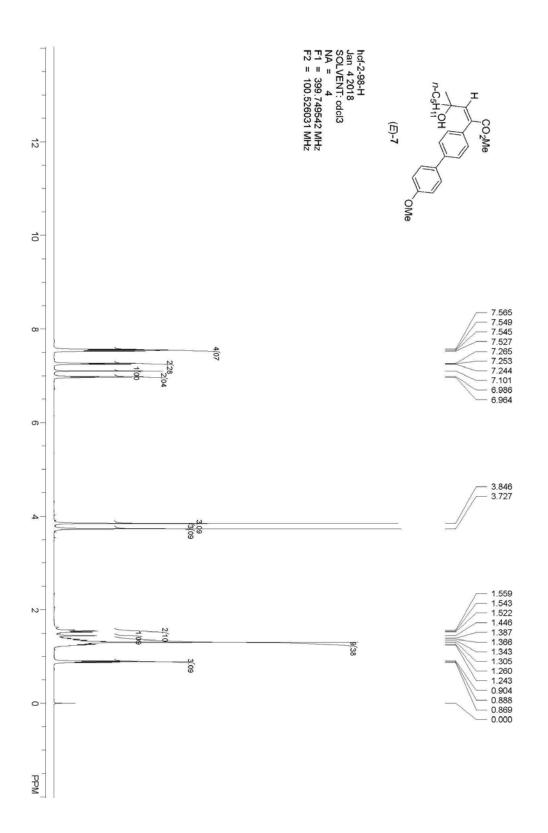
49.64 593792 43.25

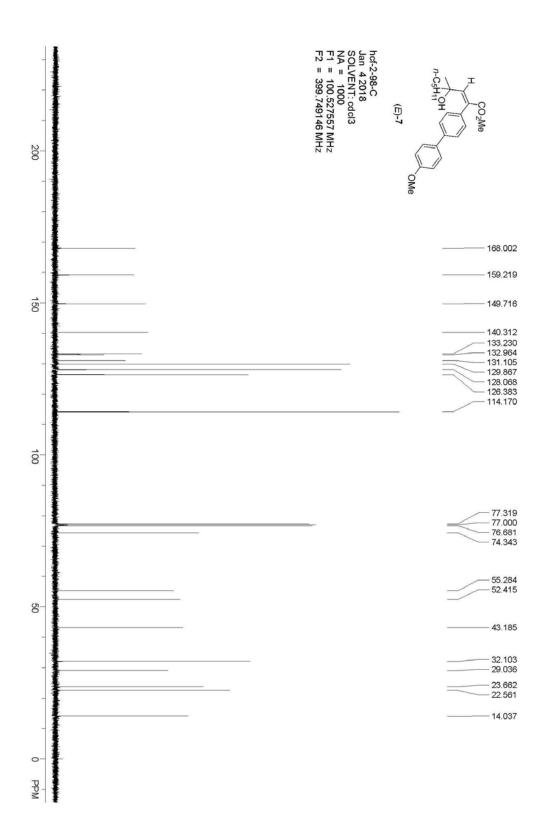
Printed: 2018/1/2£ 18:40.30 PRC

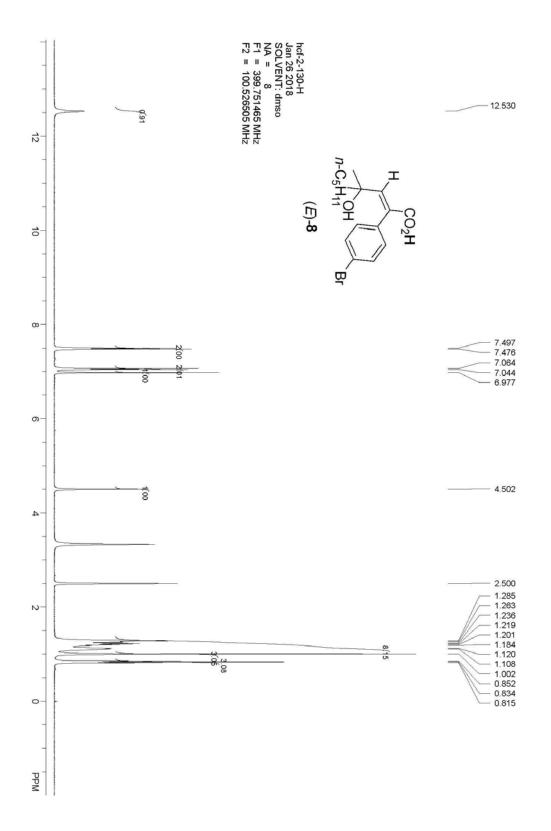

中国科学院上海有机化学研究所 defaults for copy

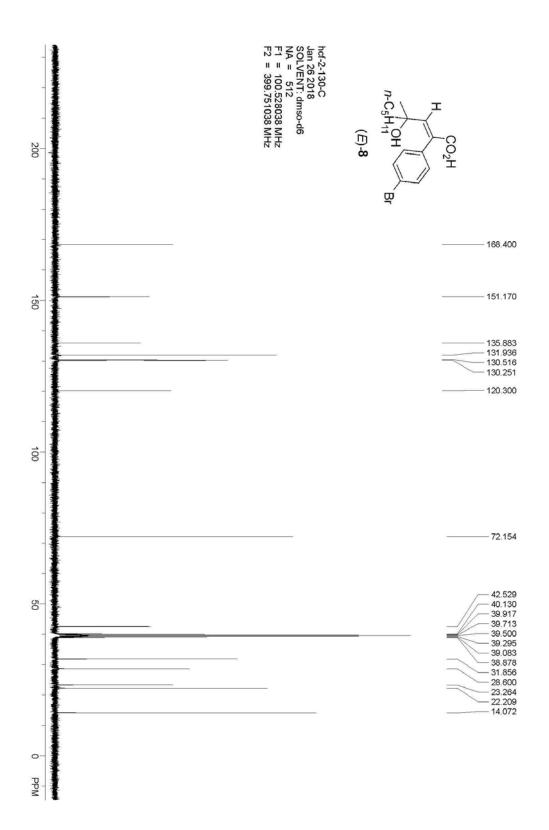
Project Name

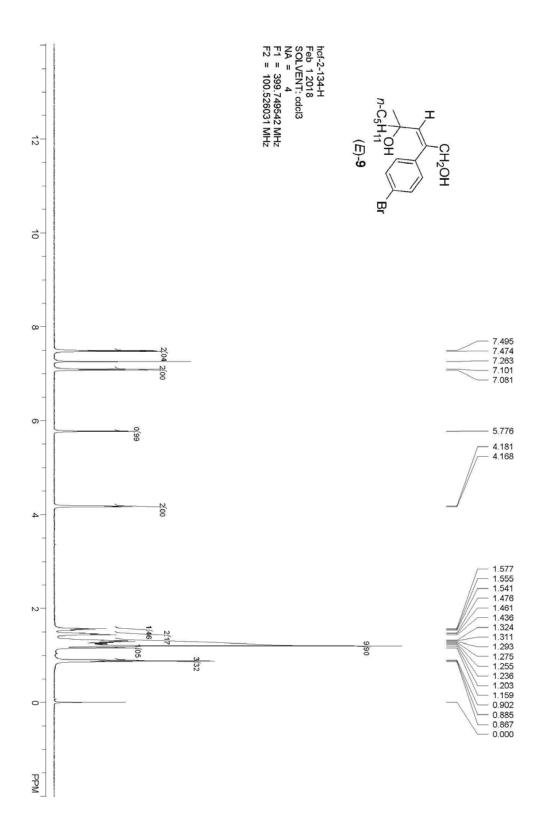
Reported by User. Breeze user (Breeze)

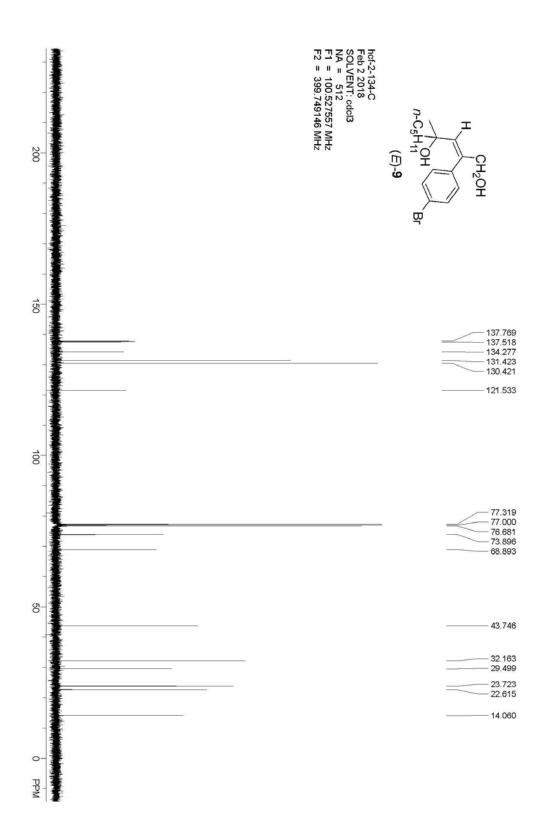

Sample Name:	hdf-2-128-pa-2-95-5-1-214	Acquired By:	Breeze
Sample Type:	萩印	Date Acquirect	2018/1/26 15:33:53 CST
Vial:	999	Acq. Method:	zgi95
Injection#	293	Date Processed	2018/1/26 18:40:14 CST
Injection Volume:	10.00 ul	Channel Name	W2489 ChA
Run Time:	30.00 Mnutes	Channel Desc.:	W2489 ChA 214nm
Colurm Type:		Sample Set Name:	

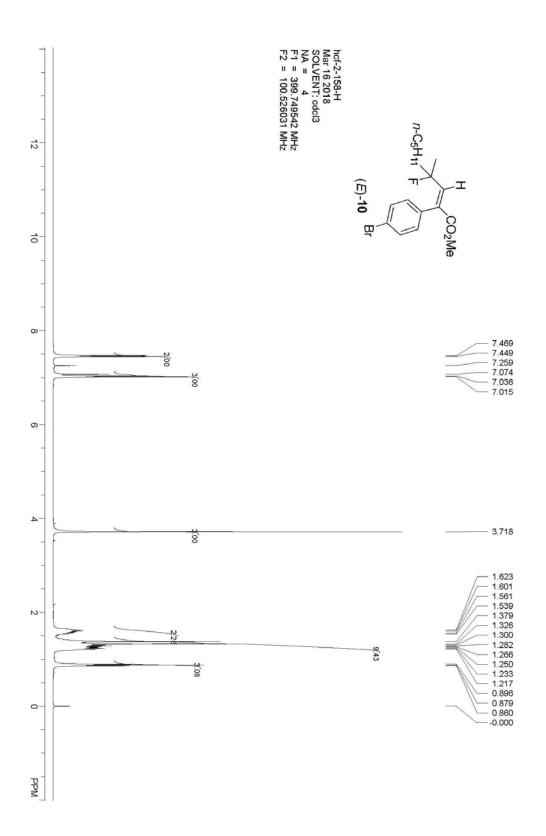


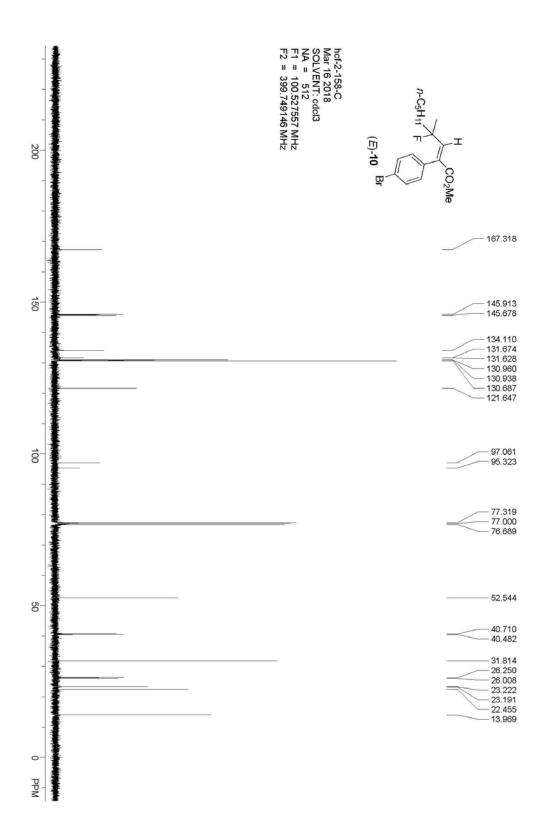

	RT (min)	Area (硼tsec)	%Area	Height (确)	% Height
1	13.904	470903	219	12428	289
2	18.182	21049956	97.81	417943	97.11

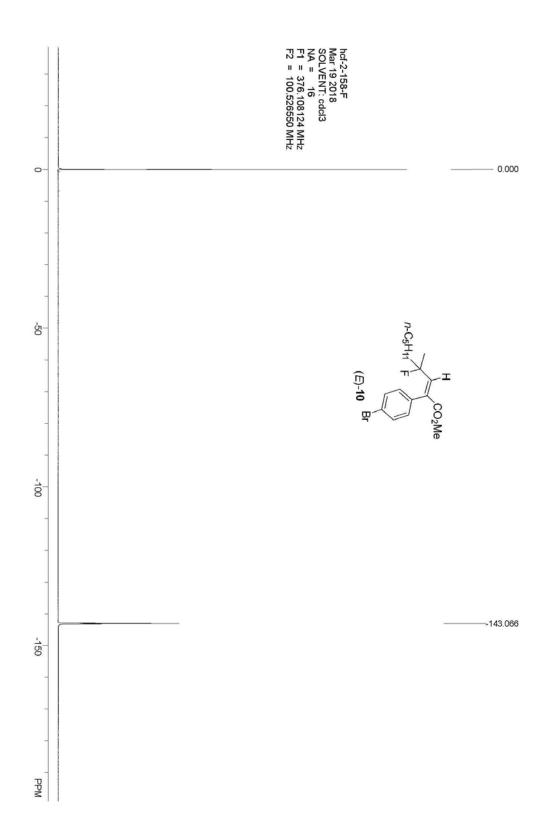

Report Method: Individual Report ASC Page: 1 (共计 1)

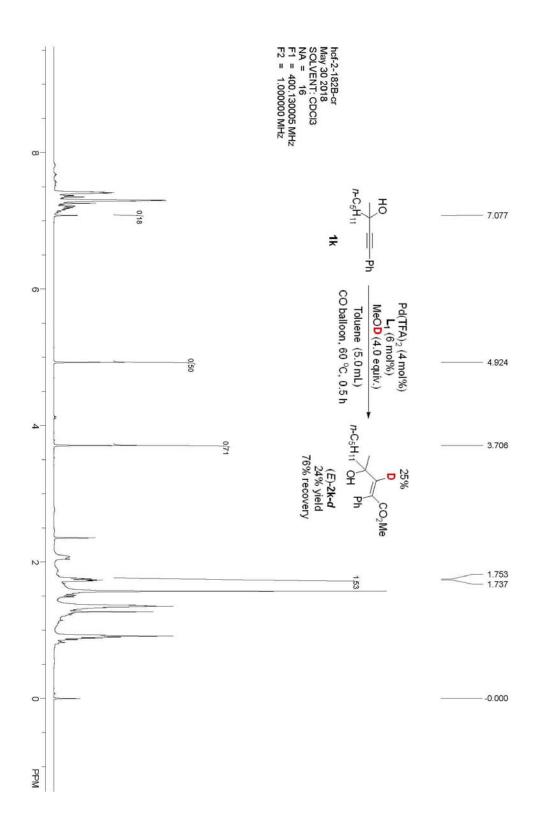

Printed 2018/1/28 18:41:35 PRC

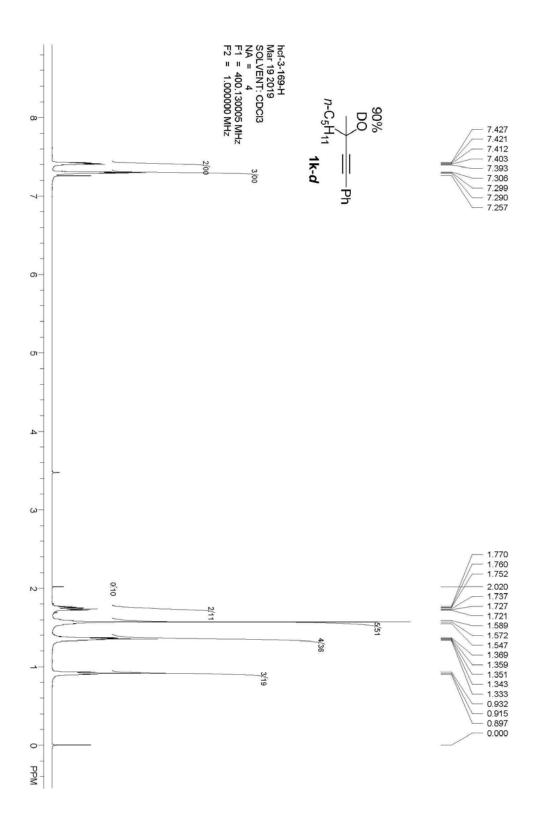


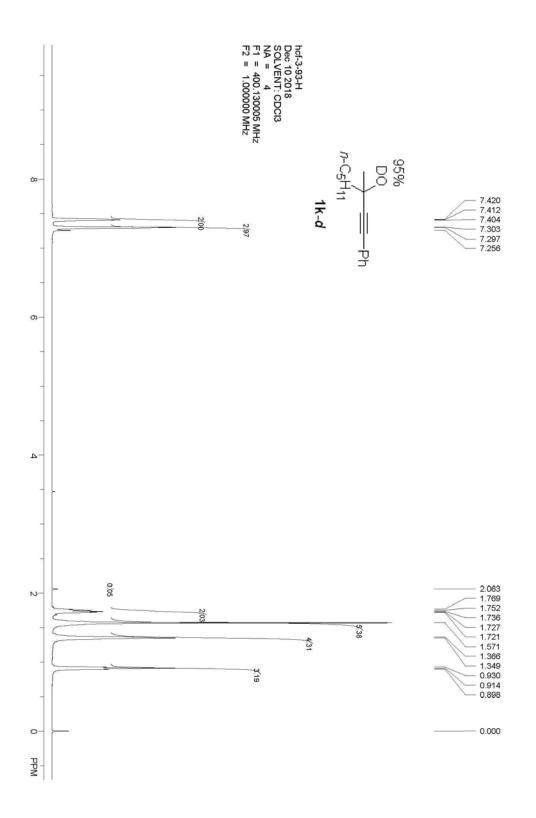


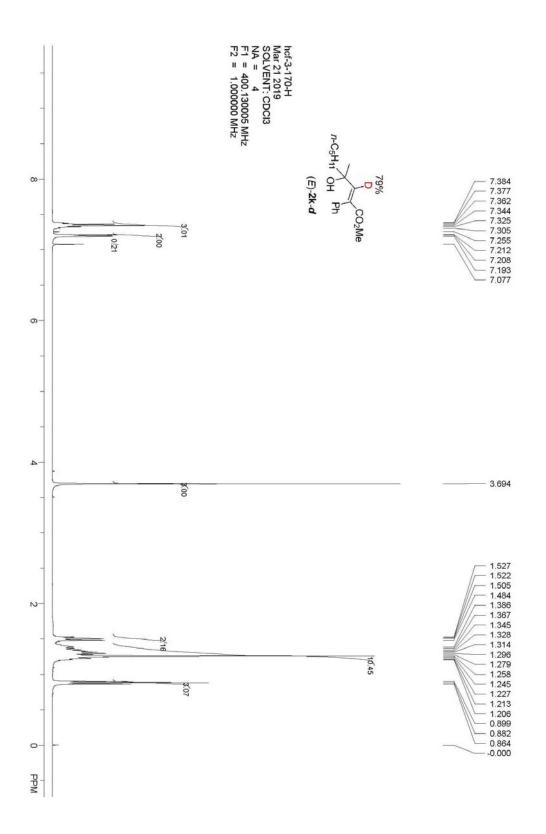


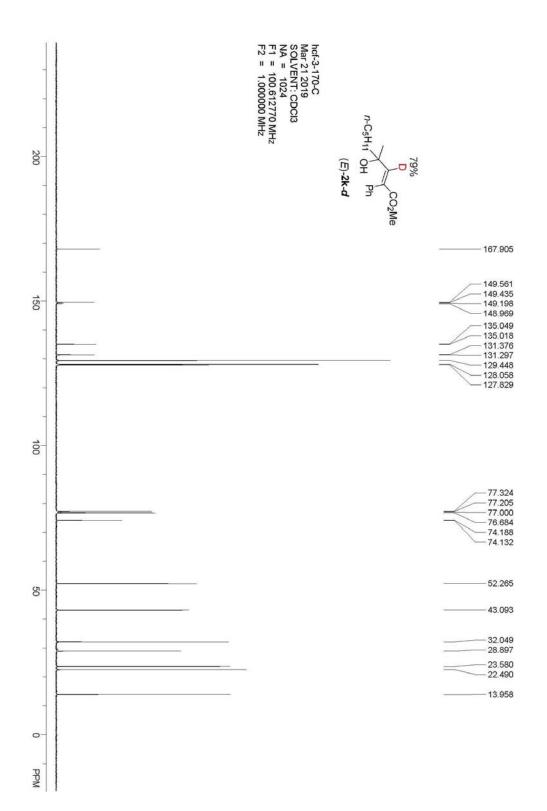


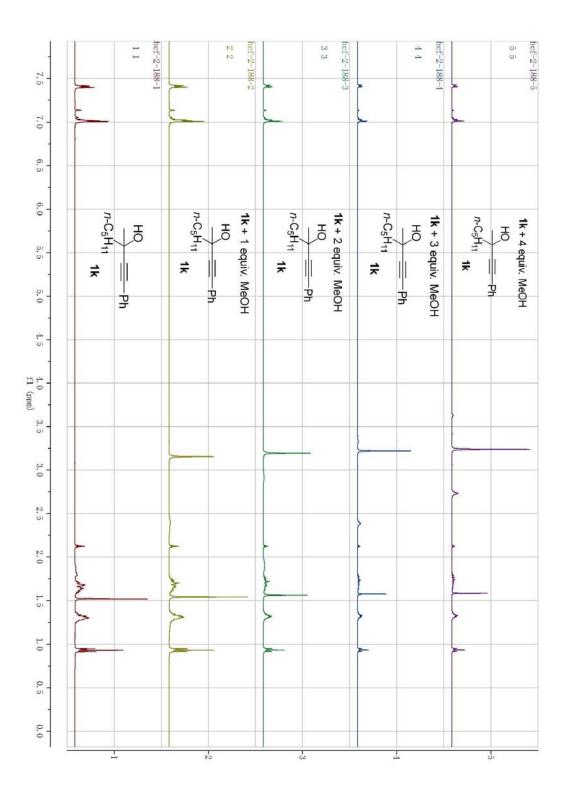


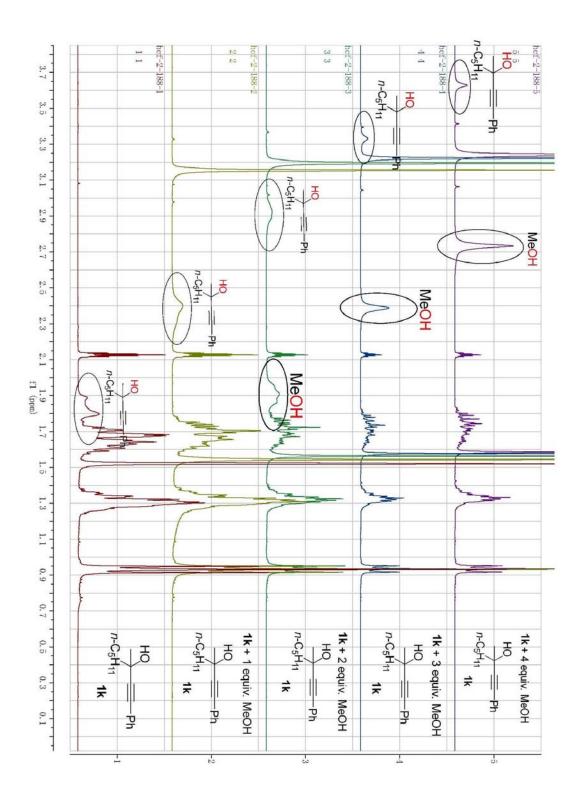


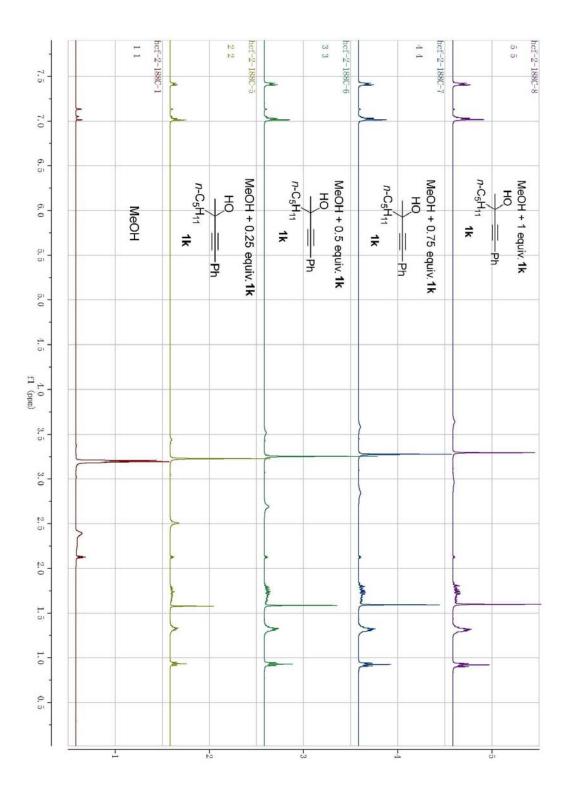


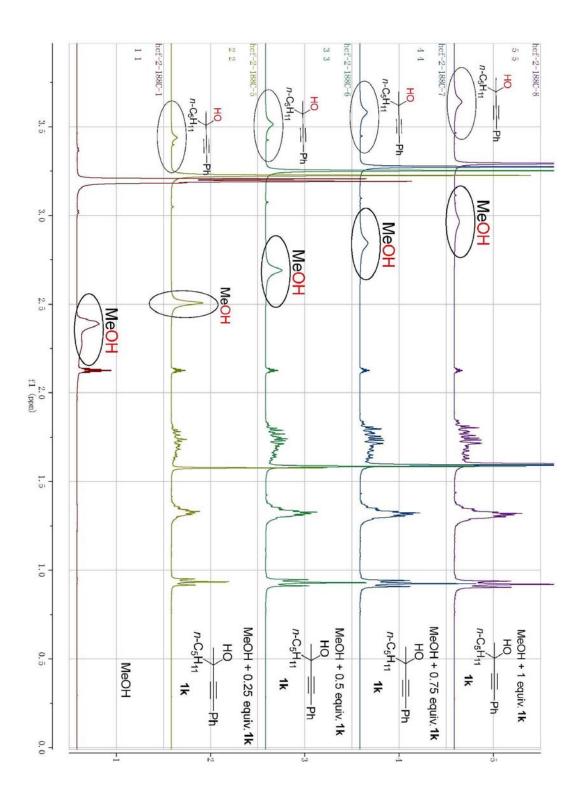


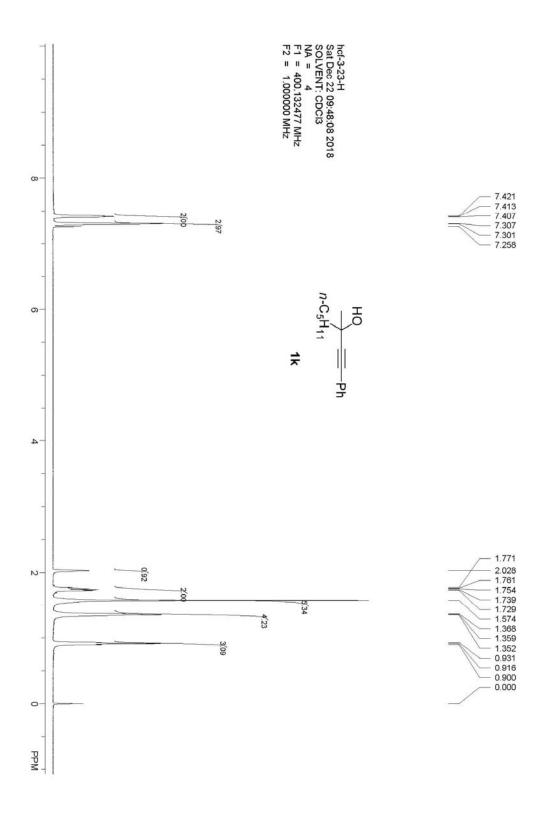


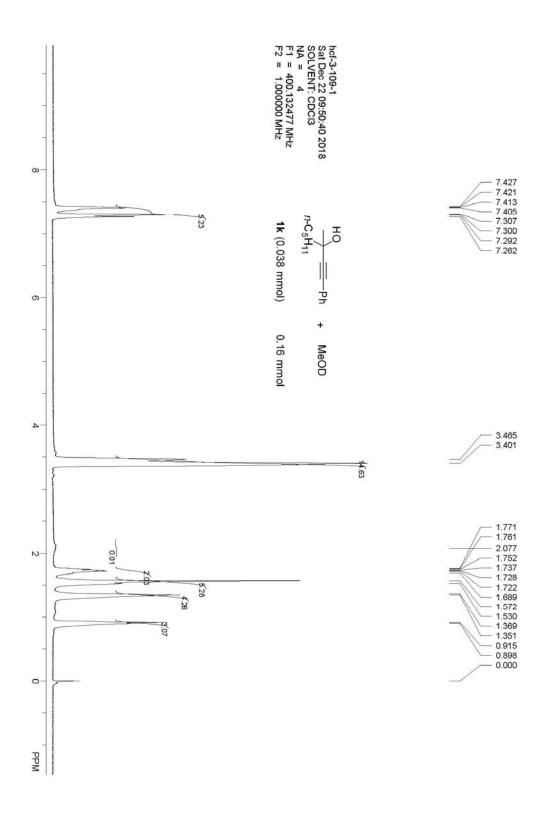


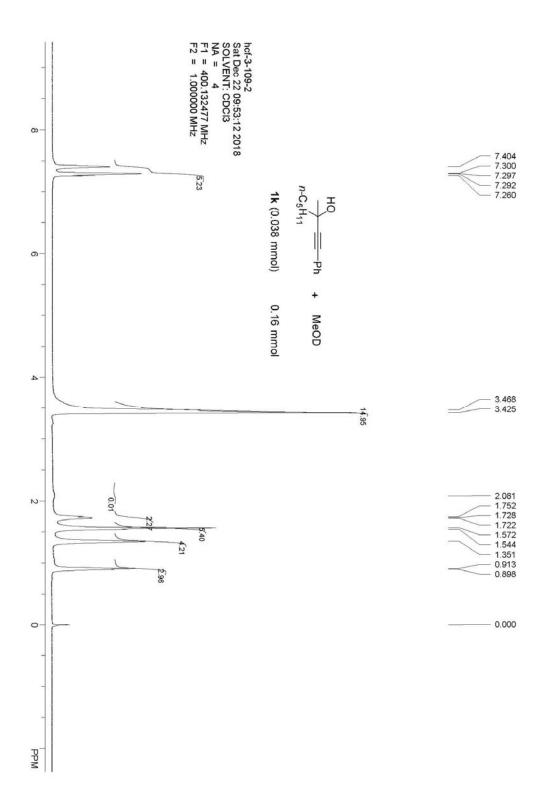


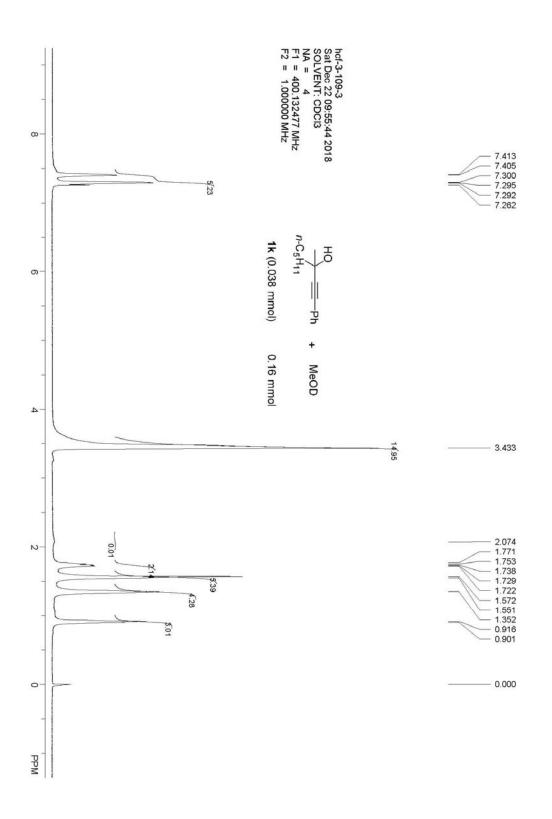


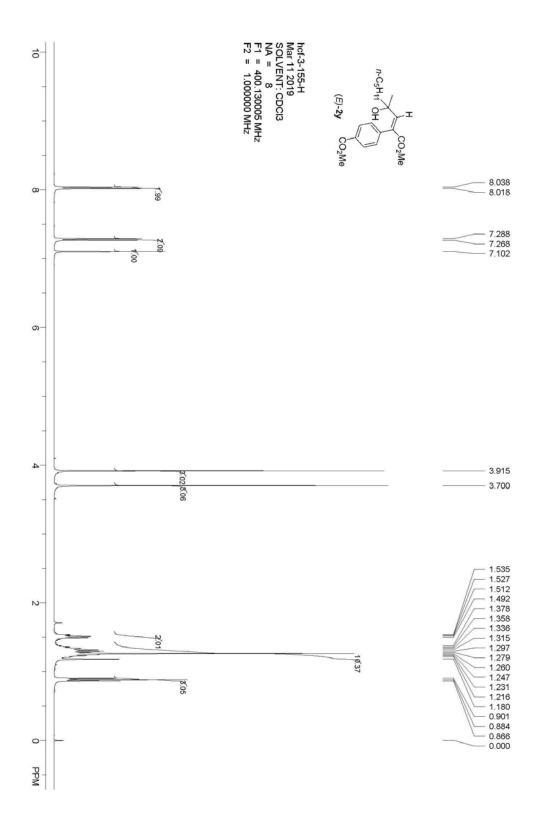


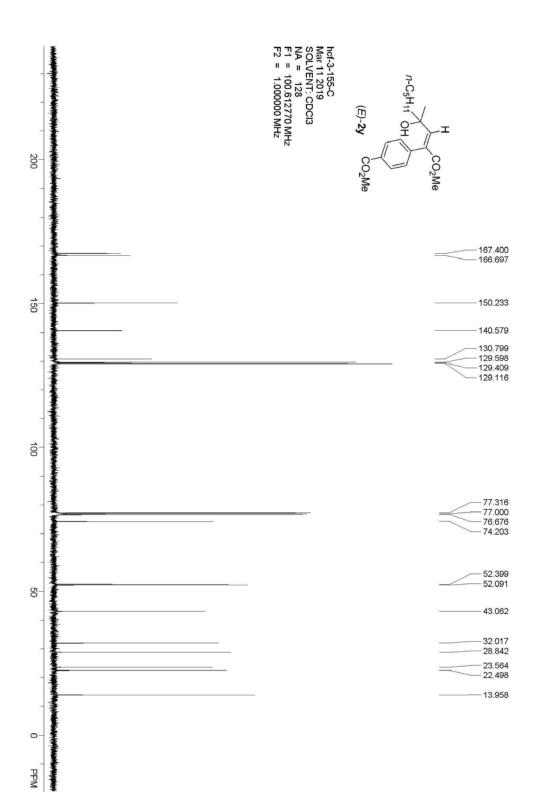


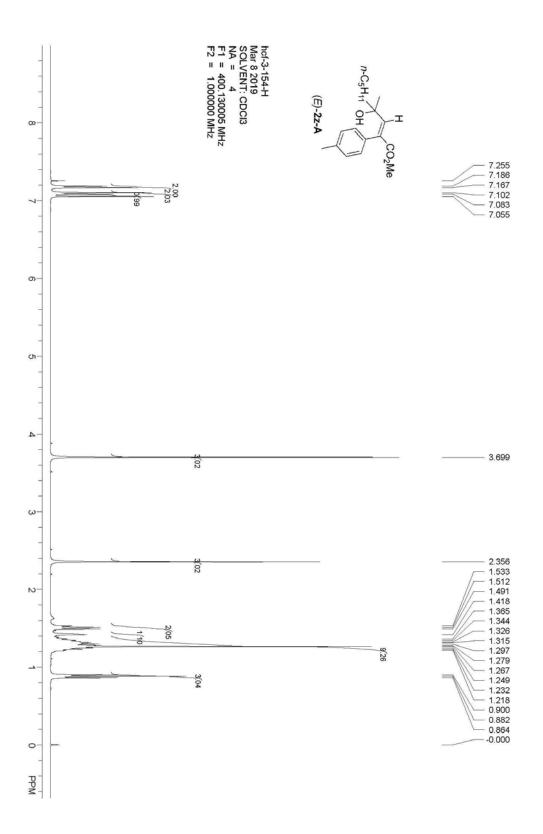


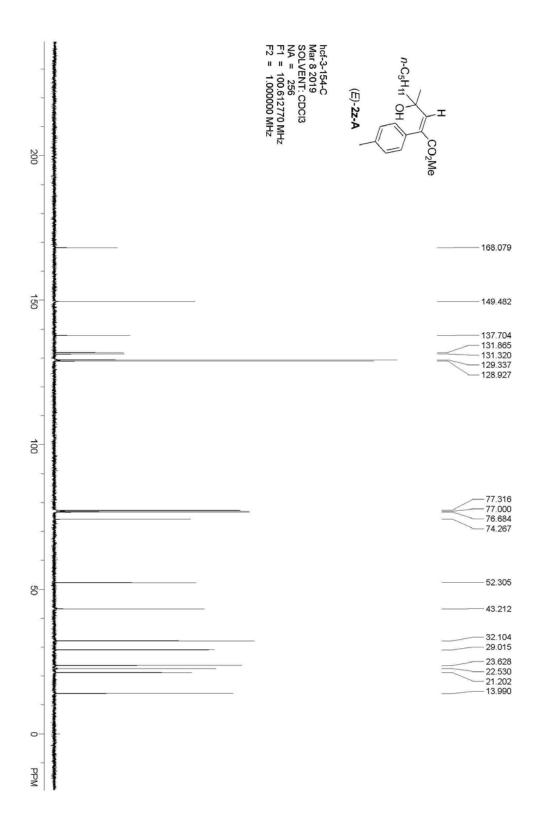


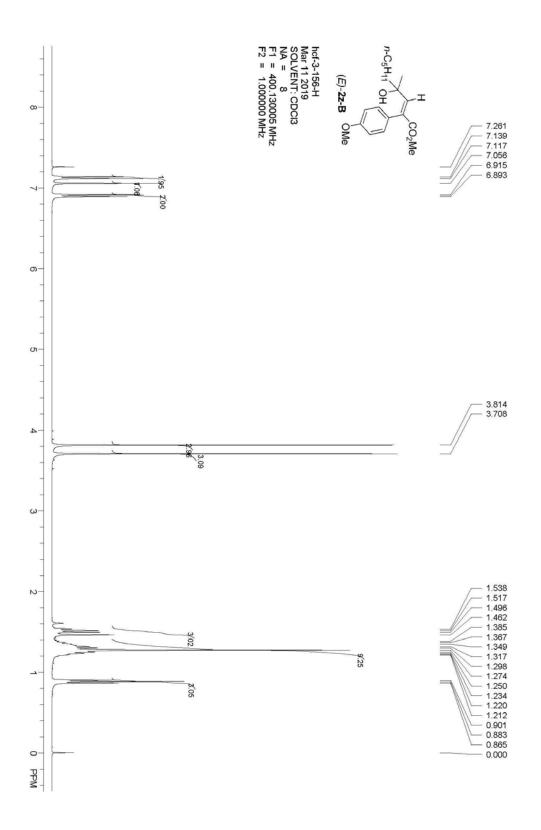


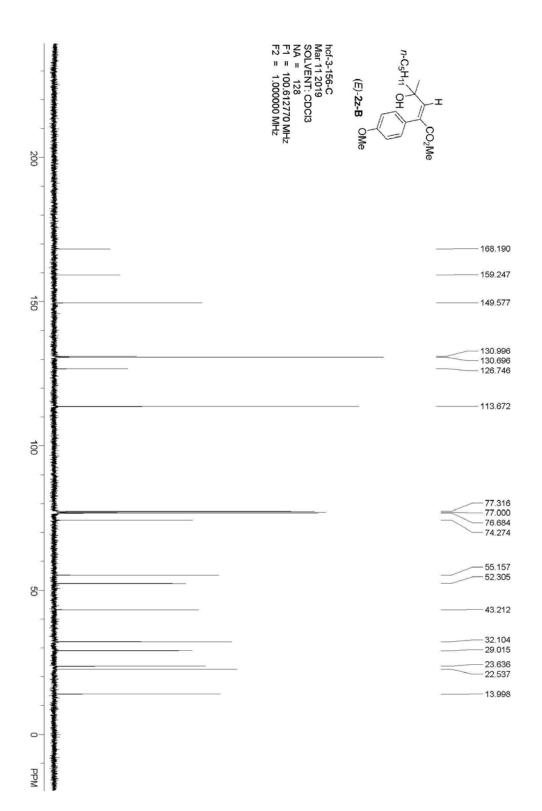


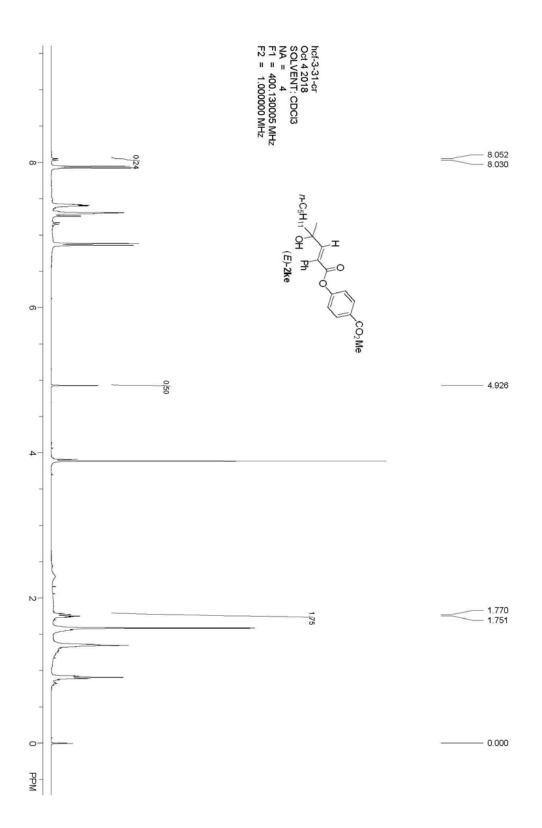


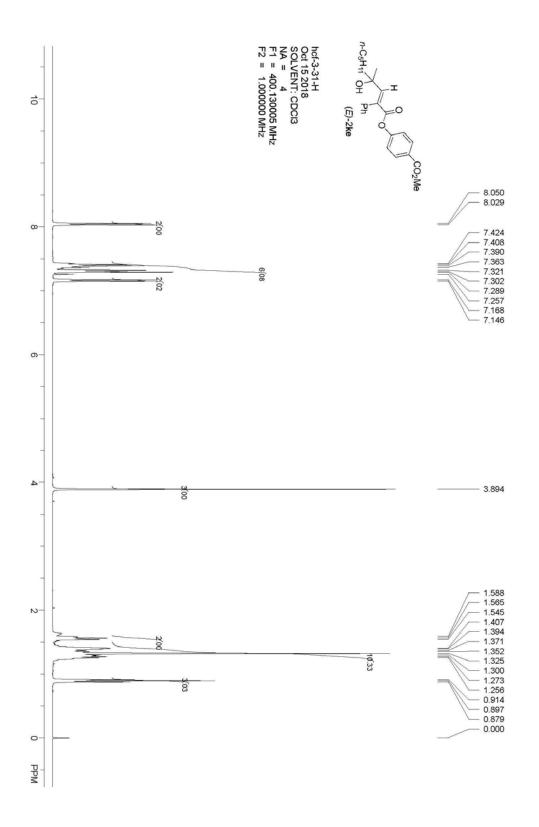


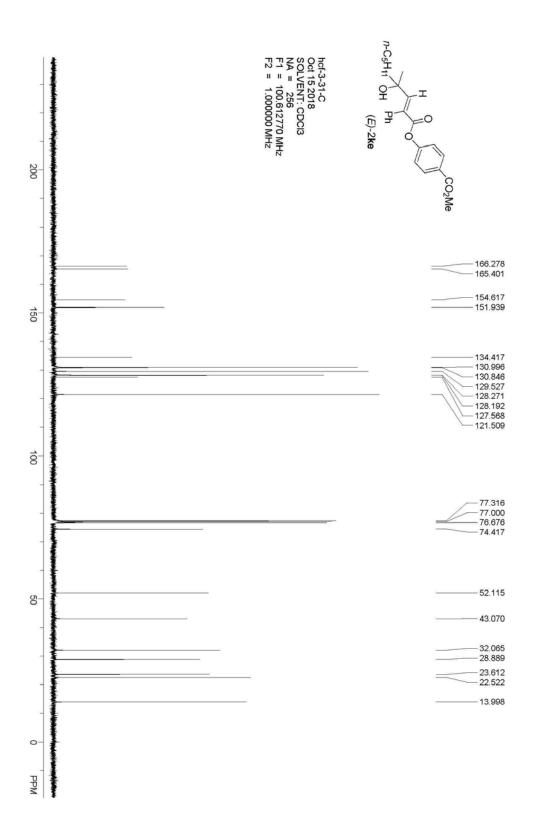


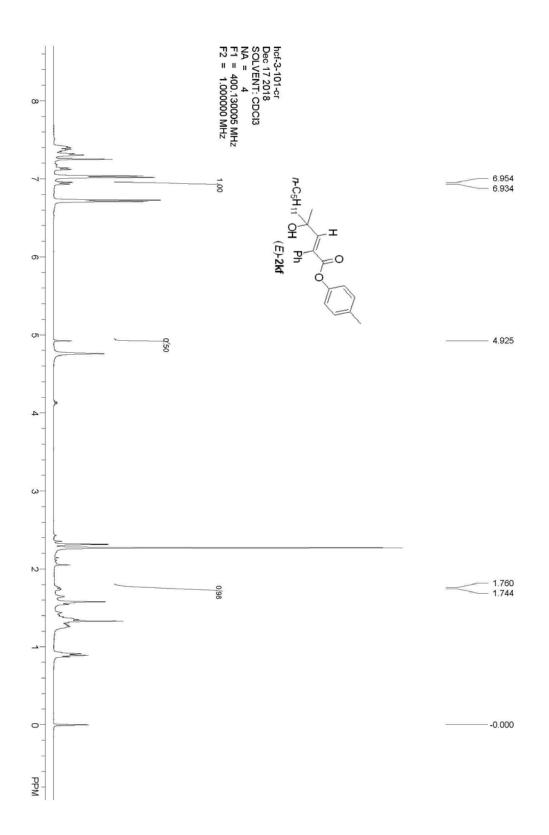


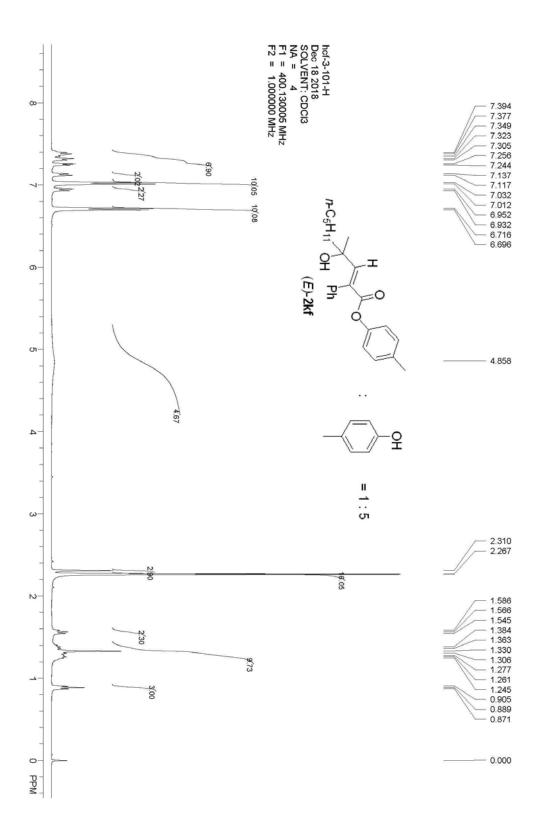

S212

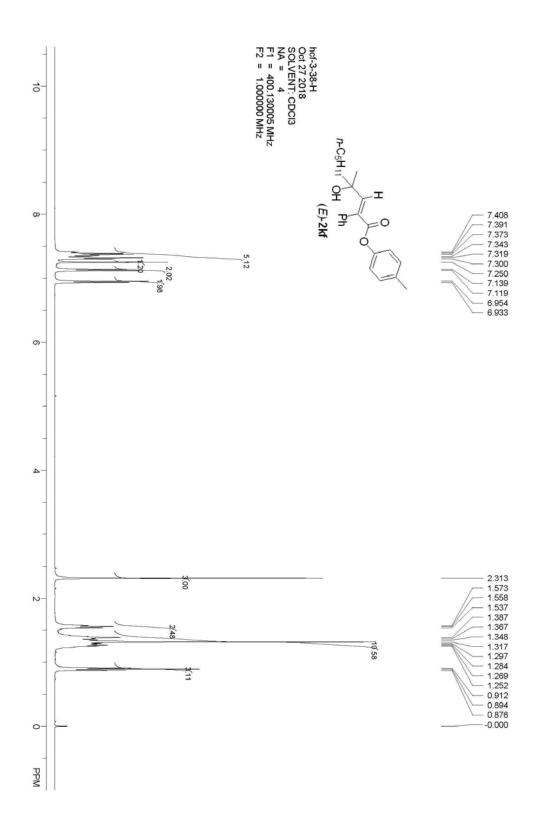



S214








S217

