An Option for Stranded Renewables:

Electrolytic-Hydrogen in Future Energy Systems

Thomas Grube^a, Larissa Doré^b, André Hoffrichter^c, Laura Elisabeth Hombach^b, Stephan Raths^c,
Martin Robinius^a, Moritz Nobis^c, Sebastian Schiebahn^a, Vanessa Tietze^a,
Armin Schnettler^c, Grit Walther^b, Detlef Stolten^a

^a Electrochemical Process Engineering (IEK-3), Forschungszentrum Jülich, 52425 Jülich, Germany

^b Chair of Operations Management, RWTH Aachen University, 52072 Aachen, Germany

^c Institute for High Voltage Technology, RWTH Aachen University, 52056 Aachen, Germany

^d Chair for Fuel Cells, RWTH Aachen University, 52056 Aachen, Germany

Supplementary Information

Table 10: Data for the evaluation of the different energy sources in terms of GHG emissions (data is taken from the GEMIS database, version 4.95 and "IPCC 2013 (100 years)" is chosen as Impact Assessment Method)

Energy source	GHG emissions [g _{CO2-eq.} /kWh _e]	
Waste	996	
Lignite	918	
Gas	562	
Oil	764	
Coal	763	
Other (approached with furnace gas)	1118	
Onshore wind	0	
Offshore wind	0	
Photovoltaics	0	

Table 11: Results of the environmental evaluation for case 2 assuming different grid extension levels according to Table 2.

Grid extension level	"Start + A2"	"BBP"	"Base"
GHG emissions of H ₂ production via electrolysis (g _{CO2-eq.} /kg _{H2})	16,669	16,788	16,420
GHG emissions of H ₂ logistics (g _{CO2-eq.} /kg _{H2})	437	440	431
Total GHG emissions (g _{CO2-eq.} /kg _{H2})	17,106	17,228	16,851