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Figure S1. A photograph of the laser set-up for the rapid fabrication of both mesoporous and 

compact TiO2 films. 
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Figure S2. A schematic representation of laser-patterned ITO on glass with a laser isolation line 

of 2.15 mm in width. 

 

Figure S3. SEM cross-sectional view of the PSCs fabricated in an environment with a relative 

humidity around 60% based on a configuration of ITO/compact TiO2/mp-TiO2/perovskite/spiro-

MeOTAD/Ag. 
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Figure S4. Raman spectra of untreated and laser sintered TiO2 mesoporous structures at 86, 

100 and 107 W cm-2. 

 

Figure S5. Raman spectra of untreated, furnace and laser treated compact TiO2 films at 86, 

100 and 107 W cm-2. 
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Figure S6. SEM images of top views of laser treated TiO2 mesoporous structures at (a) 86 and 

(b) 107 W cm-2. 
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Figure S7. Current density-voltage (J-V) curves of perovskite solar cells produced by (a) 2 h 

furnace treatment and (b) laser treated for 1 min at 107 W cm-2 densities under standard AM 

1.5G condition with a relative humidity at 60%. 

 

Figure S8. Current density-voltage (J-V) curves of perovskite solar cells produced by different 

scan rates under standard AM 1.5G condition with a relative humidity at 60%. 
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Table S1. Summary of photovoltaic parameters of the perovskite solar cells produced in our 

work at relative humidity around 60% with a one-step deposition method compared to several 

recent works.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Perovskite type Average 

PCE 

Deposition 

method 

Humidity Reference 

Our work CH3NH3PbI3 with 

5% Pb(SCN)2 

8.2 One-step 60 _ 

2017 CH3NH3PbI3 6.68 One-step 40 [1] 

2017 CH3NH3PbI3-xClx 6.3 One-step 20 [2] 

2017 CH3NH3PbI3 10.0 One-step 70 [3] 

2016 CH3NH3PbI3-xClx 7.63 One-step 50 [4] 

2017 CH3NH3PbI3 12 One-step 75 [5] 

2016 CH3NH3PbI3-xClx 8.3 Spay-cast 55 [6] 

2017 CH3NH3PbI3 7.19 Two-step 60-70 [7] 

2016 CH3NH3PbI3 6.16 Two-step 50 [8] 

2017 CH3NH3PbI3 10.88 Two-step 50-60 [9] 

2016 CH3NH3PbI3 8.3 Two-step 60 [10] 

2017 CH3NH3PbI3 8.0 Two-step _ [11] 

2016 CH3NH3PbI3 8.2 Two-step 60 [12] 
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