Supporting information for

Mechanistic Understanding of Salt-Assisted Autocatalytic Hydrolysis of

Cellulose

Zhicheng Jiang,^{a,b} Jiajun Fan,^b Vitaliy L. Budarin,^b Duncan J. Macquarrie,^b Yang Gao,^b Tianzong Li,^b Changwei Hu,*,^a James H. Clark*,^b

^a Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.

^b Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, U.K.

Email: changweihu@scu.edu.cn; james.clark@york.ac.uk.

1. Experimental

2. Figures

Fig. S1 TGA analysis of cellulose and the solid residue in NaCl-H₂O system at 220 °C for 30 min. **Fig. S2** Comparison of cellulose conversion by one step and two steps.

Fig. S3 Yield of the monomeric products in the liquid fraction under different reaction temperatures and systems.

Fig. S4 HPLC analysis of salt-assisted conversion of glucose.

Fig. S5 Application of NaCl-H₂O in a biphasic system for the conversion of cellulose.

Fig. S6 (A) pH values in sulfuric acid (SA)-H₂O and NaCl-SA-H₂O solutions after addition of cellulose at room temperature; (B) Ratio of the protons adsorption on the surface of cellulose in NaCl-SA-H₂O and SA-H₂O solutions;

Fig. S7 Reaction solid residues and liquid products from FA-H₂O and FA-NaCl-H₂O systems.

Fig. S8 HPLC analysis of glucose and HMF in FA-H₂O and NaCl-FA-H₂O systems.

Fig. S9 The effect of NaCl addition (20 wt%) in different acidic reaction medium on cellulose conversion at 210 °C.

Fig. S10 HPLC analysis of the liquid fraction in (A) HCl and (B) levulinic acid solutions.

Fig. S11 FT-IR analysis of the original cellulose and the pretreated cellulose in H_2O and D_2O system at 210 °C for 30 min.

Fig. S12 XRD analysis of cellulose before and after treatment using microwave at 220 °C.

Fig. S13 FT-IR analysis of cellulose before and after treatment in NaCl-H₂O system using microwave at 220 $^{\circ}$ C.

Fig. S14 ¹³C solid-state NMR analysis of cellulose before and after treatment in H_2O and NaCl- H_2O systems using microwave at 220 °C.

3. Tables

Table S1 The pH values of the liquid fractions after the reaction at 210 °C.

Table S2 Conversion of cellulose (%) in the four reaction systems at different temperatures for 15 min treatment.

1. Experimental

Typical microwave treatment

Microcrystalline cellulose (Sigma Aldrich) and salts were mixed directly with deionised water in a 1:20 mass ratio in a microwave glass tube. This reaction tube was subsequently heated using a Mono Anton Parr microwave with continuous stirring at 1000 rpm. Temperature was monitored inside the reaction tube using a Ruby probe. Each reaction was heated from room temperature to the target temperature within 5 min, and held for differing periods. After treatment, the reaction system was cooled down below 70 °C using compressed air. The post-treatment slurry was filtered to separate the solid residue from the liquid fraction. The collected solid residue was dried in an oven at 105 °C overnight. The conversion of cellulose was determined by subtraction of "the amount of remaining solid" from "the amount of original cellulose added", and the generation of humins in remaining solid was igored.

Charaterisation of the liquid fraction

HPLC analysis was run on an Agilent 1260 fitted with an Infinity II RI Detector. For sugars and acids analysis, the column used was an Agilent Hi-Plex H (7.7×300 mm, 8 µm (p/n PL1170-6830)). 0.005 M H₂SO₄ solution was adopted as the mobile phase. An ACE C18 (250 x 4.6mm, 5um particle size) column was used to analyse HMF and furfural with acetonitrile/water (25/75, vol. : vol.) used as the mobile phase with 0.8 ml/min flowing rate. The NMR samples were run on Bruker 400 MHz NMR spectrometer. The liquid products were fully dissolved into 0.5 mL D₂O after all water was removed.

Charaterisation of the solid samples

The crystalline structures of microcrystalline cellulose and its reaction residues were examined by XRD measurement on a Bruker AXS D8 Advance. The diffracted intensity of Cu K α radiation (40 kV and 40 mA) was measured over the 2 θ range of 5° to 40°, and the crystallinity index (CI) of cellulose samples was calculated. FT-IR spectra of solid samples was performed on a Perkin Elmer Spectrum 400. The spectra of samples were recorded in attenuated total reflectance (ATR) mode, in the range of 4000-600 cm⁻¹ with a resolution of 4 cm⁻¹ and 32 scans. The ¹³C CPMAS solid-state NMR experiments were carried out with a BRUKER AVIII 400 HD and a total of 800 scans were accumulated for each sample. The spin rate was 10000 Hz, and the relaxation delay was 5 s. Adamantane was used as reference for calibration of chemical shift.

2. Figures

Fig. S1 TGA analysis of cellulose and the solid residue in NaCl-H₂O system at 220 °C for 30 min.

Fig. S2 Comparison of cellulose conversion by one step and two steps.

Fig. S3 Yield of the monomeric products in the liquid fraction under different reaction temperatures and systems. (Monosugars: glucose, fructose and rhamnose. Acids: formic acid, levulinic acid, lactic acid and acetic acid. Others: cellobiose, levoglucosan, levoglucosenone and furfural).

Fig. S4 HPLC analysis of salt-assisted conversion of glucose.

Fig. S5 Application of NaCl-H₂O in a biphasic system for the conversion of cellulose.

Fig. S6 (A) pH values in sulfuric acid (SA)-H₂O and NaCl-SA-H₂O solutions after addition of cellulose at room temperature; (B) Ratio of the protons adsorption on the surface of cellulose in NaCl-SA-H₂O and SA-H₂O solutions;

Fig. S7 Reaction solid residues and liquid products from FA-H₂O (black-dot labled) and FA-NaCl-H₂O (red-dot labled) systems.

Fig. S8 HPLC analysis of glucose, HMF and FA+LeA in FA-H₂O and NaCl-FA-H₂O systems.

Fig. S9 The effect of NaCl addition (20 wt%) in different acidic reaction medium on cellulose conversion at 210 °C. (A) HCl; (B) levulinic acid.

Fig. S10 HPLC analysis of the liquid fraction in (A) HCl and (B) levulinic acid solutions. (Solid lines for NaCl-acid-H₂O system; dash lines for acid-H₂O system)

Fig. S11 FT-IR analysis of the original cellulose and the pretreated cellulose in H_2O and D_2O system at 210 °C for 30 min.

Fig. S12 XRD analysis of cellulose before and after treatment in H₂O and NaCl-H₂O systems using microwave at 220 °C.

Fig. S13 FT-IR analysis of cellulose before and after treatment in NaCl-H₂O system using microwave at 220 $^{\circ}$ C.

Fig. S14 ¹³C solid-state NMR analysis of cellulose before and after treatment in H_2O and NaCl- H_2O systems using microwave at 220 °C.

3. Tables Table S1 The pH values of the liquid fractions after the reaction at 210 °C.

	Holding time						
	0	5	15	30	45	60	90
H ₂ O system	6.56	6.01	5.25	4.75	4.32	4.19	3.63
H ₂ O-NaCl system	5.33	3.87	3.39	3.12	2.66	2.34	1.99

Table S2 Conversion of cellulose (%) in the four reaction systems at different temperatures for 15min treatment.

	170 °C	180 °C	190 °C
H ₂ O	17.89	18.08	17.43
NaCl-H ₂ O	18.85	18.68	18.02
FA-H ₂ O	19.58	22.47	24.63
FA-NaCl-	20.02	26.61	33.03
H ₂ O			