Supplementary Information for:

Quadrafunctional electrocatalyst of nickel/nickel oxide embedded N-graphene for oxygen reduction, oxygen evolution, hydrogen evolution and hydrogen peroxide oxidation reactions

Shaikh Nayeem Faisal,^{a, f*} Enamul Haque, ^a Nikan Noorbehesht,^a Hongwei Liu ^b, Md. Monirul Islam,^c Luba Shabnam,^a Anup Kumar Roy,^a Ehsan Pourazadi^d, Mohammod S. Islam^e Andrew T. Harris^a and Andrew I. Minett^{a*}

^aLaboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.

^bAustralian Centre of Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia.

^cSchool of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW-2308, Australia.

^dDepartment of Chemical & Process Engineering, The University of Canterbury, Christchurch, New Zealand.

^eSchool of Mechanical and Manufacturing Engineering, University of New South Wales, NSW 2052, Australia.

^fARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW-2522, Australia

Email: shaikh.faisal@sydney.edu.au and andrew.minett@sydney.edu.au

Table of Contents

Item	Page			
SEM image of Ni/Gr				
SEM image of NGr	1			
TEM-EDS Line profile.				
TEM-EDS elemental peak profile.				
HRTEM image of Nickel Lattice.				
Raman of Ni/NGr, Ni/Gr and NGr				
XRD Comparison of Ni/NGr and Ni/Gr.				
XPS peak of Ni2P _{3/2} of Ni/NGr.				
XPS peak of Ni2P _{3/2} of Ni/Gr.				
TGA graph of Ni/Gr.	5			
TGA graph of Ni/NGr.				
Comparison table of recent Nanostructured Electrocatalysts				

Figure S1: SEM image of Ni-Gr.

Figure S2: SEM image of NGr.

Figure S3: TEM-EDS Line profile.

Figure S4: TEM-EDS elemental peak profile.

Figure S5: HRTEM image of Nickel Lattice.

Figure S6: Raman of Ni/NGr, Ni/Gr and NGr.

Figure S7: XRD Comparison of Ni/NGr and Ni/Gr.

Figure S8: XPS peak of $Ni2P_{3/2}$ of Ni/NGr.

Figure S9: XPS peak of Ni2P_{3/2} of Ni/Gr.

Figure S10: TGA graph of Ni/Gr.

Figure S11: TGA graph of Ni/NGr.

Table	T1:	Comparison	with Nanostructured	Electrocatalysts
		1		5

	ORR & OER		HER		
Catalyst	ORR potential (V vs. RHE) at 3 mA cm ⁻²	OER potential (V vs. RHE) at 10 mA cm ⁻²	Overpotential (mV vs. RHE) at 10 mA cm ⁻² in alkaline media	Overpotential (mV vs. RHE) at 10 mA cm ⁻² in acidic media	Ref.
Ir/C	0.69	1.61			1
RuO ₂ /C	0.68	1.62			2
Ni ₃ Fe/N-C Sheets	0.78	1.62			3
Fe-N-doped Carbon capsules	0.83 at $E_{1/2}$				4
Ni/NiO/NiCo ₂ O ₄ /N-CNT	0.74	1.60			5
NCNT/CoO-NiO-NiCo	0.83 at $E_{1/2}$	1.50			6
Ni/NiO-CNT			80		7
NiMoN _x				225	8
Co-NG			275	115	9
Mo-N/C@MoS ₂	0.8	1.39	250		10
N,P co-doped carbon foam	0.8	1.8			11
N,P Graphene/carbon nanosheets	0.86 at $E_{1/2}$	1.57			12
Ni/NGr	0.62	1.62	410	100	Present work

References:

- 1. Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612-13614.
- 2. Y. Zhan, C. Xu, M. Lu, Z. Liu, J. Y. Lee, J. Mater. Chem. A 2014, 2, 16217-16223.
- G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang, J. B. Goodenough, *Adv. Energy Mater.* 2017, 7, 1601172(1)-101172(8).
- G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla and M. –M. Titirici, *ACS Nano*, 2016, **10(6)**, 5922-5932.
- 5. N. Ma, Y. Jia, X. Yang, X. She, L. Zhang, Z. Peng, X. Yao, D. Yang, J. Mater. Chem. A, 2016, 4, 6376-6384.
- 6. Y. Hou, S. Cui, Z. Wen, X. Guo, X. Fen, J. Chen, Small 2015, 11, 5940-5948.
- M. Gong, W. Zhou, M. –C. Tsai, J. Zhou, M. Guan, M. –C. Lin, B. Zhang, Y. Hu, D. –Y. Wang, J. Yang, *Nat. Commun.* 2014, 5, 4695-4701.
- W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, R. R. Adzic, *Angew. Chem. Intl. Ed.* 2012, **51**, 6131-6135.
- H. Fei, J. Dong, M. J. A. Jimenez, G. Y. N. D. Kim, E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour, *Nat. Commun.* 2015, 6, 8668-8676.
- I. S. Amiinu, Z. Pu, X. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H. Zhang, S. Mu, *Adv. Funct. Mater.* 2017, 27(44), 1702300 (1)-1702300 (11).
- 11. J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 2015, 10, 444-452.
- 12. R. Li, Z. Wei, X. Gou, ACS Catal. 2015, 5, 4133-4142.