Supporting information

Modification of BiVO₄/WO₃ composite photoelectrodes with Al₂O₃ via chemical vapor deposition for highly efficient oxidative H₂O₂ production from H₂O

List of authors

Yuta Miyase^{a,b}, Soichi Takasugi^a, Shoji Iguchi^a, Yugo Miseki^a, Takahiro Gunji^{a,b}, Kotaro Sasaki^c, Etsuko Fujita^c and Kazuhiro Sayama *^{a,b}

- a. Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, Center 5, 1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan. Email: <u>k.sayama@aist.go.jp</u>
- b. Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamasaki, Noda, Chiba 2788514, Japan.
- c. Chemistry department, Brookhaven National Laboratory, Upton, New York, 11973, USA.

Figure S1. Concentration of H_2O_2 produced on an $Al_2O_3(CVD5)/BiVO_4/WO_3$ photoelectrode (6 cm²). Using a two-electrode photoelectrochemical cell with an $Al_2O_3(CVD5)/BiVO_4/WO_3$ as an anode and a Pt mesh as a cathode, the concentration of electrolyte solutions were varied: (a) 0.1 M, (b) 0.5 M, (c) 1.0 M and (d) 2.0 M KHCO_3 aqueous solution under CO₂ bubbling and simulated solar irradiation by controlling the stable current of 1.0 mA.

Figure S2. Time course of (A) concentration of H_2O_2 produced in the photoelectrochemical reaction using various photoelectrodes and (B) Applied external bias under stable current of 1 mA. Using a two-electrode photoelectrochemical cell with a photoanode (6 cm²): (a) Al₂O₃(CVD5)/BiVO₄/WO₃; (b) Al₂O₃(MOD)/BiVO₄/WO₃; and (c) BiVO₄/WO₃. A Pt electrode was used as a cathode with 2.0 M KHCO₃ aqueous solution under CO₂ bubbling and simulated solar irradiation by controlling the stable current of 1.0 mA.

Figure S3. Time course of (A) concentration of produced H_2O_2 and (B) $FE(H_2O_2)$ in the prolonged photoelectrochemical reaction using the photoelectrode under an applied external bias of 1.0 V vs Pt. Using a two-electrode photoelectrochemical cell with a photoanode (6 cm²): (a) $Al_2O_3(CVD5)/BiVO_4/WO_3$ and (b) $BiVO_4/WO_3$. A Pt mesh electrode was used with 2.0 M KHCO₃ aqueous solution under CO₂ bubbling and simulated solar irradiation.

Figure S4. The faradaic efficiency (FE) of H_2O_2 production in the photoelectrochemical reaction after passing 0.9 C using photoelectrode (6 cm²) (a) $Al_2O_3(CVD5)/BiVO_4/WO_3$, (b) $Al_2O_3(MOD)/BiVO_4/WO_3$, and (c) $BiVO_4/WO_3$ with an applied external bias of 0.6 V – 2.1 V vs a Pt counter electrode in a two-electrode photoelectrochemical cell containing a 2.0 M KHCO₃ aqueous solution under CO₂ bubbling and simulated solar irradiation.

Figure S5. XRD patterns of (a) $Al_2O_3(CVD5)/BiVO_4/WO_3$, (b) $Al_2O_3(MOD)/BiVO_4/WO_3$, and (c) $BiVO_4/WO_3$.

Figure S6. Concentration of H_2O_2 produced after 0.9 C of electric charge was passed (left) and surface elemental ratio calculated from XPS spectra of $Al_2O_3(CVDn)/BiVO_4/WO_3$ (n = 0 - 10) photoelectrodes (6 cm²) (right). A 0.5 M KHCO₃ aqueous solution (CO₂ bubbling) was used with a Pt mesh electrode under CO₂ bubbling and simulated solar irradiation by controlling the stable current of 1.0 mA during the reaction.

Figure S7. Time courses of FE for (a) H_2O_2 , (b) O_2 , and (c) $H_2O_2 + O_2$ in the photoelectrochemical reaction using $Al_2O_3(CVD5)/BiVO_4/WO_3$ photoelectrode (6 cm²). A two-electrode photoelectrochemical cell with an photoanode and a Pt wire as a cathode electrode was used in a 2.0 M KHCO₃ aqueous solution under CO₂ bubbling and simulated solar irradiation by controlling the stable current of 1.0 mA.

Figure S8. Photodecomposition rate (C/C₀) of H_2O_2 on each electrode (6 cm²): (a) $Al_2O_3(CVD5)/BiVO_4/WO_3$, (b) $Al_2O_3(MOD)/BiVO_4/WO_3$, (c) $BiVO_4/WO_3$, (d) $BiVO_4$, (e) WO_3 and (f) FTO without external bias. Electrolyte solution: 0.5 M KHCO₃ aqueous solution with 550 μ M H_2O_2 under CO₂ bubbling and simulated solar irradiation.

Figure S9. Light harvesting efficiency (LHE) of (a) $BiVO_4/WO_3$, (b) $BiVO_4$, and (c) WO_3 photoelectrode by irradiation from the front side.

Figure S10 Speculated scheme for the suppression of $\rm H_2O_2$ decomposition on Al_2O_3(CVD)/BiVO_4/WO_3 photoelectrode.

Figure S11 The comparison of I-V curve and faradaic efficiency (FE) for H_2O_2 production on WSoy/GnP-CP cathode. The cathode was utilized before / after 100 cycles of CV measurement operated under the same condition of Figure 7.