Supplymentary Information

Triple synergistic effect from pitaya-like MoNi_x-MoC_x hybrids encapsulated in N-doped C nanospheres for efficient hydrogen evolution

Jing-Qi Chi^a, Jia-Hui Lin^{a, b}, Jun-Feng Qin^a, Bin Dong^{*a, b}, Kai-Li Yan^a, Zi-Zhang Liu^{a, b},

Xin-Yu Zhang ^{a, b}, Yong-Ming Chai ^{*a}, Chen-Guang Liu ^a

a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China),

Qingdao 266580, PR China

b College of Science, China University of Petroleum (East China), Qingdao 266580, PR China

^{*} Corresponding author. Email: dongbin@upc.edu.cn (B. Dong), ymchai@upc.edu.cn (Y.M. Chai)

Tel: +86-532-86981376, Fax: +86-532-86981787

Fig. S1 XRD patterns of NC.

Fig. S2 (a) XPS high-resolution scans for Mo₂C@NC in Mo 3d and (b) XPS high-

resolution scans for Ni@NC in Ni 2p.

Fig. S3 SEM images of NC, Ni@NC and MoC_x@NC.

Fig. S5 SEM mapping of (a) Ni@NC and (b) MoC_x@NC.

h _)					
	Element	Wt.%	At.%			
1 W 1	СК	51.06	82.16			
	NK	0.90	1.25			
	OK	6.8 7	8.30			
	Mo L	41.17	8.29			
	Total account	100	100			
1 Januar						
0 2	4 6	8	10	1:		
E (keV)						

Fig. S6 EDX of (a) Ni@NC and (b) MoC_x@NC.

Fig. S7 Nyquist plots of NC, Ni@NC, MoC_x@NC, Mixed Ni@NC-MoC_x@NC and

MoNi_x-MoC_x@NC in (a) 0.5 M H₂SO₄ and (b) 1 M KOH.

Fig. S8 Double-layer capacitance measurements for determining ECSA of the

MoNi_x-MoC_x@NC in (a) 0.5 M H₂SO₄ and (b) 1 M KOH.

Fig. S9 TEM images of $MoNi_x$ -MoC_x@NC after 1000 CV test in (a) 0.5 M H₂SO₄

and (b) 1 M KOH.

Fig. S10 HER polarization curves of bulk Mo₂C before and after 1000 CV cycles in (a)

 $0.5\ M\ H_2SO_4$ and (b) $1.0\ M\ KOH.$

Fig. S11 XRD patterns of MoNi_x-MoC_x@NC obtained at 600 °C, 700 °C, 800 °C,

and 900 °C.

Fig. S12 Raman spectrum of MoNi_x-MoC_x@NC obtained at (a) 600 °C, (b) 800 °C,

and (c) 900 °C.

Fig. S13 EDX of MoNi_x-MoC_x@NC obtained at 600 °C, 800 °C, and 900 °C.

	j	η	b	Electrolyte	Def
Electrocatalyst	$(mA cm^{-2})$	(mV)	(mV dec ⁻¹)	solution	Kel.
MoNi _x -MoC _x @NC	10	172	73	0.5 M H ₂ SO ₄	This work
	10	168	71	1.0 M KOH	This work
Mo ₂ C-NCNTs	10	147	71	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	1
	10	257	/	1.0 M KOH	
Mo ₂ C nanoparticles	10	198	56	$0.5 \text{ M H}_2\text{SO}_4$	2
	10	176	58	1.0 M KOH	
Mo ₂ C	10	210	/	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	3
	10	190	/	1.0 M KOH	
Mo ₂ C nanowires	10	200	55.8	$0.5 \text{ M H}_2 \text{SO}_4$	4
Mo ₂ C/GCSs	10	210	62.6	$0.5 \text{ M H}_2 \text{SO}_4$	5
MoS ₂ /Mo ₂ C-NCNTs	25	210	69	$0.5 \text{ M H}_2 \text{SO}_4$	6
Mo _{0.06} W _{1.94} C/CB	10	220	/	0.5 M H ₂ SO ₄	7
Mo ₂ C-carbon	5	260	/	0.5 M H ₂ SO ₄	8
Co ₄ Mo ₂ @NC	10	218	73.5	1.0 M KOH	9
Mo ₂ C-GNR	10	217	64	1.0 M NaOH	10
MoC _{0.654} @CNS	10	220	/	1.0 M KOH	11
Mo ₂ C-PC	10	238	140	1.0 M KOH	12
Ni/Mo ₂ C-PC	10	179	59	1.0 M KOH	12

Table S1. Comparison of the HER activity of MoNi_x-MoC_x@NC with the other

reported TMPs HER electrocatalysts in acidic and alkaline media.

media.					
Commission (0.5 M H ₂ SO ₄		1.0 M KOH		
Samples	R_s/Ω	$R_{ct}\!/\Omega$	R_s/Ω	$R_{ct}\!/\Omega$	
NC	11.66	28514	14.16	10661	
Ni@NC	12.04	2612	11.01	716.4	
MoC _x @NC	9.44	86.89	9.28	99.23	
Mixed Ni@NC-MoC _x @NC	13.27	91.37	12.79	285.2	
MoNi _x -MoC _x @NC	12.46	47.38	9.45	19.23	

 Table S2 Elemental values of fitted equivalent circuit for NC, Ni@NC, MoCx@NC,

Mixed Ni@NC-MoC_x@NC and MoNi_x-MoC_x@NC in acidic and alkaline

Somplas	0.5 M H ₂ SO ₄		1.0 M KOH	
Samples	R_s/Ω	R_{ct}/Ω	R_s/Ω	R_{ct}/Ω
600 °C	9.25	92.29	13.78	40.04
700 °C	12.46	47.38	9.45	19.23
800 °C	11.57	82.53	9.96	36.23
900 °C	12.12	85.33	9.43	30.48

Table S3. Elemental values of fitted equivalent circuit for $MoNi_x$ - $MoC_x@NC$ obtained at 600 °C, 700 °C, 800 °C and 900 °C in acidic and alkaline media.

References

- 1 K. Zhang, Y. Zhao, D. Fu and Y. Chen, J. Mater. Chem. A, 2015, 3, 5783-5788.
- 2 L. Ma, L. Ting, V. Molinari, C. Giordano and B. Yeo, *J. Mater. Chem. A*, 2015, **3**, 8361-8368.
- 3 H. Vrubel and X. L. Hu, Angew. Chem., Int. Ed., 2012, 51, 12703-12706.
- 4 C. Ge, P. Jiang, W. Cui, Z. Pu, Z. Xing, A. M. Asiri, A. Y. Obaid, X. Sun and J. Tian, *Electrochimica Acta*, 2014, **134**, 182-186.
- 5 W. Cui, N. Cheng, Q. Liu, C. Ge, A. M. Asiri and X. Sun, ACS Catal., 2014, 4, 2658-2661.
- 6 K. Zhang, Y. Zhao, S. Zhang, H. Yu, Y. Chen, P. Gao and C. Zhu, *J. Mater. Chem. A*, 2014, **2**, 18715-18719.
- 7 S. T. Hunt, T. Nimmanwudipong and Y. Roman-Leshkov, *Angew. Chem. Int. Ed.*, 2014, 53, 5131-5136.
- 8 N. S. Alhajri, D. H. Anjum and K. Takanabe, J. Mater. Chem. A, 2014, 2, 10548-10556.
- 9 J. Jiang, Q. Liu, C. Zeng and L. Ai, J. Mater. Chem. A, 2017, 5, 16929-16935.
- 10 W. Gao, Y. Shi, Y. Zhang, L. Zuo, H. Lu, Y. Huang, W. Fan and T. Liu, ACS Sustainable Chem. Eng., 2016, 4, 6313-6321.
- 11 J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti and T.-P. Fellinger, J. Am. Chem. Soc., 2015, 137, 5480-5485.
- 12 Z.-Y. Yu, Y. Duan, M.-R. Gao, C.-C. Lang, Y.-R. Zheng and S.-H. Yu, *Chem. Sci.*, 2017, **8**, 968-973.