Supplementary Information

Crystalline niobium phosphates with water-tolerant Lewis acid sites for the production of lactic acid from triose sugars

Xincheng Wang,*ab Yongji Song,ab Chongpin Huangc and Bin Wang*d

^a Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology,

Beijing 102617, PR China. Email: wxcnathan@foxmail.com; wangxc@bipt.edu.cn.

^b College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China.

^c State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.

^{*d*} Beijing Research Institute of Chemical Industry, Sinopec Group, Beijing 100013, PR China. E-mail: binwang@126.com.

Table of contents

Fig. S1 SEM images of (a) NbOPO₄, (b) NbOPO₄-CTAB, (c) SnO₂/NbOPO₄, (d) SnO₂/NbOPO₄-P123, (e) SnO₂/NbOPO₄-F127, and (f) SnO₂/NbOPO₄-CTAB.

Fig. S2 FTIR spectra of (a) SnO₂/NbOPO₄-P123, (b) SnO₂/NbOPO₄-F127, and (c) SnO₂/NbOPO₄-SDBS after pyridine sorption and evacuation at various temperatures.

Fig. S3 FTIR spectra of SnO₂/NbOPO₄-CTAB (calcined at 300 °C) after pyridine sorption and evacuation at various temperatures.

Fig. S4 Reaction profile of PA during the conversion of DHA to LA with SnO₂/NbOPO₄-CTAB (conditions: 0.222 M DHA, 50 mg catalysts).

Fig. S5 SEM image of SnO₂/NbOPO₄-CTAB after the sixth run.

Fig. S6 Wide-angle XRD pattern of SnO₂/NbOPO₄-CTAB after the sixth run.

Fig. S7 FTIR spectra of pyridine dosed onto the recycled SnO₂/NbOPO₄-CTAB catalyst after the sixth run (pure powder pressed disks) and then desorbed at i) RT, ii) 100 °C, iii) 150 °C, iv) 200 °C.

Fig. S8 Consecutive outgassing of fresh $SnO_2/NbOPO_4$ -CTAB at 150 °C, followed by steaming and further outgassing (As a supplementary to Fig. 7).

Table S1 The concentration of BrØnsted and Lewis acid sites of SnO₂/NbOPO₄ catalysts.

Table S2 Catalytic activities of NbOPO₄-P123 and $SnO_2/NbOPO_4$ -F127 for sugars dehydration in water

Fig. S1 SEM images of (a) NbOPO₄, (b) NbOPO₄-CTAB, (c) SnO₂/NbOPO₄, (d) SnO₂/NbOPO₄-P123, (e) SnO₂/NbOPO₄-F127, and (f) SnO₂/NbOPO₄-CTAB.

It could be concluded that the addition of CTAB tend to split the bulk catalyst into crystalline pieces. And the doping of SnO_2 made the surface of the bulk NbOPO₄ catalysts into smaller particles compared with the pure NbOPO₄, thus leading to relatively higher specific surface areas. However, the decrease of specific surface area of CTAB modified $SnO_2/NbOPO_4$ might result from the crystallinity of tin oxide and niobium phosphate species as shown in Fig. S1f.

Fig. S2 FTIR spectra of (a) $SnO_2/NbOPO_4$ -P123, (b) $SnO_2/NbOPO_4$ -F127, and (c) $SnO_2/NbOPO_4$ -SDBS after pyridine sorption and evacuation at various temperatures.

Fig. S3 FTIR spectra of $SnO_2/NbOPO_4$ -CTAB (calcined at 300 °C) after pyridine sorption and evacuation at various temperatures.

Fig. S4 Reaction profile of PA during the conversion of DHA to LA with $SnO_2/NbOPO_4$ -CTAB (conditions: 0.222 M DHA, 50 mg catalysts).

Fig. S5 SEM image of SnO₂/NbOPO₄-CTAB after the sixth run.

Fig. S6 Wide-angle XRD pattern of SnO₂/NbOPO₄-CTAB after the sixth run.

Fig. S7 FTIR spectra of pyridine dosed onto the recycled SnO₂/NbOPO₄-CTAB catalyst after the sixth run (pure powder pressed disks) and then desorbed at i) RT, ii) 100 °C, iii) 150 °C, iv) 200 °C.

Fig. S8 Consecutive outgassing of fresh $SnO_2/NbOPO_4$ -CTAB at 150 °C, followed by steaming and further outgassing (As a supplementary to Fig. 7).

Entry	Catalysts	BrØnsted acid sites (mmol g ⁻¹)	Lewis acid sites (mmol g ⁻¹)		
1	SnO ₂ /NbOPO ₄	0.113	0.407		
2	SnO ₂ /NbOPO ₄ -P123	0.096	0.214		
3	SnO ₂ /NbOPO ₄ -F127	0.068	0.142		
4	SnO ₂ /NbOPO ₄ -SDBS	0.05	0.20		
5	SnO ₂ /NbOPO ₄ -CTAB	-	0.27		

Table S1 The concentration of BrØnsted and Lewis acid sites of SnO₂/NbOPO₄ catalysts.

Table S2 Catalytic activities of NbOPO₄-P123 and SnO₂/NbOPO₄-F127 for sugars dehydration in water^a

Entry	Substrate -	SnO ₂ /NbOPO ₄ -P123		SnO ₂ /NbOPO ₄ -F127			SnO ₂ /1	SnO ₂ /NbOPO ₄ -SDBS			
		Conv. (%)	5- HMF	Furfural		Conv. (%)	5- HMF	Furfural	Conv. (%)	5- HMF	Furfural
1	Sucrose	50.3	3.7	4.2		57.5	4.3	4.3	53.2	4.8	3.9
2	Glucose	85.2	14.5	4.1		82.5	15.0	4.1	86.7	13.9	2.8
3	Xylose	88.5	-	29.0		86.8	-	23.4	87.5	-	24.1
4	Maltose	63.7	12.2	0.1		60.9	10.8	0.1	66.2	12.2	0.1
5	Fructose	90.5	24.2	4.4		87.2	19.2	4.1	88.2	20.5	3.1

^{*a*} Reaction conditions: 60 mg sugars, 3 mL water, 30 mg catalyst, T=413 K, t= 1h.