Supporting Information

MOFs as electron-transfer-bridge for dye photosensitizer and low cost Ni₂P cocatalyst to increased photocatalytic H₂ generation

Li Wu,†^a Youchi Tong,†^a Lina Gu,^a Zhaoming Xue,^a Yupeng Yuan, *^{a,b}

^a School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.

^b Institute of Physical Science anAd Information Technology, Anhui University, Hefei 230601, P. R.

China.

† Li wu and Youchi Tong contribute equally to this work.

Corresponding authors:

Email: <u>yupengyuan@ahu.edu.cn</u> (Y. Yuan).

1. Synthesis of UiO-66 octahedrons

The catalyst UiO-66 was prepared following the previous protocols with slight modification.[1] In a typical synthesis, 200 mL DMF solution containing $ZrCl_4$ (204.0 mg, 8.75 mM) and 1,4-benzenedicarboxylic acid (BDC) (145.0 mg, 8.75 mM) were added by acetic acid (24 mL) to obtain the homogenereous solution. The as-made solution was sealed and then put into an oven for reaction at 120 °C for 24 h. The resultant product was collected by centrifugation, washed with DMF for three times, and then immersed in methanol for three 24 h periods to replace the DMF within MOFs. Finally, UiO-66 was activated by removing the methanol solvent under vacuum for 12 h at 150 °C.

2. Synthesis of UiO-66/Ni(OH)₂ composites

Ni(OH)₂ was hydrothermally grown upon the surface of UiO-66 octahedrons to obtain UiO-66/Ni(OH)₂ composite. In a typical experiment, 100 mg of UiO-66 was ultrasonically dispersed into a mixed solution of ethanol (30 mL) and water (0.625 mL) for 0.5 h. The Ni(OAc)₂·4H₂O with desirable amount (1.75mg, 3.5mg, 7.0mg and 13.8mg) and 0.625 mL of NH₄OH are then added at room temperature. After 30 min stirring, the suspension was transferred to a 50 mL Teflon-lined stainless steel autoclave and heated to 180 °C for 8 h. The resultant product was centrifugally separated, washed with water and ethanol, and finally dried at 80 °C in oven to obtain UiO-66/Ni(OH)₂ composite.

3. Synthesis of UiO-66/Ni₂P hybrid photocatalysts

UiO-66/Ni₂P hybrid photocatalysts were prepared by phosphating the UiO-66/Ni(OH)₂ composites at 300 °C for 2 h. Typically, 100 mg of UiO-66/Ni(OH)₂ composite and 50 mg of sodium hypophosphite were mixed and grinded by using a mortar and pestle. The mixture was then thermally treated at 300 °C for 2 h in Ar atmosphere. The obtained product was washed with water and ethanol, and dried at 80 °C overnight in oven to the final UiO-66/Ni₂P-xwt% (x=0.35, 0.69, 1.38, and 2.76, respectively), where x is the mass content of Ni₂P in UiO-66/Ni₂P.

4. Characterization

X-ray powder diffraction (XRD) analysis was carried out on a DX-2700X-ray diffractometer using Cu Ka1 radiation. The voltage and current were 40 kV and 40 mA, respectively. Morphology and microstructure were observed by field emission scanning electron microscopy (SEM: Hitachi S-4800) and transmission electron microscopy (TEM:JEM-2100). FT-IR spectra were collected on an Vertex80+Hyperion2000 spectrometer. UV-vis diffuse reflectance spectra (DRS) were recorded on HITACHI3900 UV-Vis spectrophotometer. BaSO₄ was used as a reflectance standard. Photoluminescence (PL) measurements were performed on a HITACHI F-4600 fluorometer. X-ray photoelectron spectra (XPS) were recorded on ESCALAB250Xi spectrometer (Thermo-VG Scientific) using Mg Ka radiation (1253.6 eV).

5. Photocatalytic measurements

Photocatalytic H_2 generation was tested in a 70-mL closed Pyrex reactor with a quartz widow for passing visible light. In a typical photocatalytic reaction, UiO-66/Ni₂P photocatalysts (10 mg) and Erythrosin B dye (30 mg) wasdispersed in 10 mL TEOA solution (10vol%). Prior photocatalytic H_2 generation reaction, the suspension was bubbled with argon for 30 min to drive off residual air inside the reactor. A 300 W Xe lamp was used to evoke the photocatalytic H_2 generation. A 420 nmcutoff filter was equipped to offer the visible light. The generated gases were sampled intermittently and analyzed by a gas chromatography (GC-1690, Kexiao, China) with a TCD detector.

6. Photoelectrochemical measurements

Photoelectrochemical measurements were tested using a three-electrode configuration in mixed solution of 10% (v/v) TEOA and 0.1 mol/L Na₂SO₄ at pH = 10 by an electrochemical analyzer(CHI-660D, Chen hua, China). The electrodes were prepared by dropping the sample suspension (100 μ L) onto the surface of ITO glass. The suspension was prepared as follows: samples (5 mg) were added into ErB solution (1 mL, 3.4×10⁻³ M), and then 50 μ L Nafion (5 vol%) solution was added under the ultrasonication for 30 min. The as-made electrodes, Hg/Hg₂Cl₂, and Pt were working, reference, and counter electrode, respectively. Photocurrent densities were measured using under the visible light irradiation, and the photoresponse were measured with chopped light at 0.5 V bias. The electrochemical impedance spectroscopy (EIS) was performed with a bias potential of -0.2 V at frequency range from 10⁻² to 10⁶ Hz. The cathodic polarization curves were obtained using the linear sweep voltammetry (LSV) technique with a scan rate of 5 mV⁻¹.

Fig. S1 EDS spectrum of UiO-66/Ni(OH)_2 $\,$

Fig. S2 SEM image of UiO-66 after thermally treated at 300 °C for 2 h in Ar atmosphere.

Fig. S3 TG-DSC thermograms of UiO-66, showing the weight loss and corresponding enthalpic change during heating up UiO-66 in N₂ atmosphere. The ~ 8 wt% loss less than 100 °C should be caused by the adsorbed water loss, as evidenced by the very distinct endothermic peak shown in Fig. R1. The ~ 5 wt% loss at 300 °C results from the removal of guest methanol molecules as methanol was used to replace DMF in the synthesis of UiO-66 MOFs, as signified by the small endothermic peak in DSC curve.

Fig. S4 SEM image of (a) UiO-66/Ni₂P-0.35 and (b) UiO-66/Ni₂P-2.76 samples.

Fig. S5 Effect of NaH_2PO_2 on photocatalytic H_2 generation on UiO-66/Ni₂P-0.69 hybrid. Sample 1: addition of 25 mg NaH_2PO_2 . Sample 2: no NaH_2PO_2 addition.

Fig. S6 XRD patterns of UiO-66/Ni₂P x=0.69% hybrid (a) before and (b) after H_2 generation for 12 h.

Fig. S7 TEM images of after H_2 production for 12 h. No aggregation, phase and morphology change for Ni₂P were detected after 12 h long-term H_2 generation reactions.

Fig. S8 N₂ adsorption-desorption isotherms of produced UiO-66 octahedrons.

Fig. S9 Schematic illustration of the charge transfer route in the system of ErB/UiO-66/Ni₂P.

Reference:

[1] J.D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.H. Yu, H.L. Jiang, Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters, Angewandte Chemie, 128 (2016) 9535-9539.