Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2018

Supporting Information

2

1

³ Cooking with active oxygen and solid alkali facilitates

- 4 lignin degradation in bamboo pretreatment
- 5 Ning Ding^a, Xiaoqiang Song^a, Yetao Jiang^a, Bin Luo^a, Xianhai Zeng^{*ab}, Yong

6 Sun^{ab}, Xing Tang^{ab}, Tingzhou Lei^c, Lu Lin^{*ab}

- 7 ^aCollege of Energy, Xiamen University, Xiamen 361102, PR China.
- 8 ^b Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass;
- 9 Xiamen Key Laboratory of High-valued Conversion Technology of Agricultural Biomass;
- 10 Xiamen University, Xiamen 361102, PR China.
- 11 ° Henan Key Lab of Biomass Energy, Zhengzhou, Henan 450008, PR China.
- 12 * Corresponding Authors:
- 13 Xianhai Zeng: Tel/Fax: +86-592-2880701; Email: xianhai.zeng@xmu.edu.cn.
- 14 Lu Lin: Tel/Fax: +86-592-2880702, Email: <u>lulin@xmu.edu.cn.</u>
- 15
- 16

	Raw materials	1 h pulp	2 h pulp	3 h pulp	5 h pulp	10 h pulp
Dosage of raw materials/g		986.01	986.12	986.13	986.07	986.00
Wet weight of pulp/g		2336.73	2244.90	2224.49	2061.22	1881.11
Water content/%	11.25	68.37	76.77	77.12	76.70	74.62
Yield of pulp/%		74.95	52.88	51.62	48.71	48.41
Ash content/%	0.59	6.23	6.50	4.51	4.58	4.75

17 Table S1 Pulp yield with CAOSA process at different cooking times

Label	$\delta_C / \delta_H (ppm)$	Assignments	
C_{β}	53.1/3.46	C_{β} -H _{β} in phenylcoumaran (C)	
\mathbf{B}_{β}	53.5/3.07	C_{β} - H_{β} in β - β (resinol) (B)	
OCH_3	56.4/3.70	C-H in methoxyls	
A_{γ}	59.9/3.35-3.80	C_{γ} -H _{γ} in β -O-4 substructures (A)	
A'_{γ}	63.0/4.36	C_{γ} -H _{γ} in γ -acylated β -O-4 (A')	
C_{γ}	62.2/3.76	C_{γ} - H_{γ} in phenylcoumaran (C)	
\mathbf{B}_{γ}	71.2/3.82-4.18	C_{γ} - H_{γ} in β - β (resinol) (B)	
A_{α}	71.8/4.86	C_{α} -H _{α} in β -O-4 unit (A)	
$A_{\beta}(G)$	83.4/4.38	C_{β} -H _{β} in β -O-4 linked to G (A)	
\mathbf{B}_{α}	84.8/4.66	C_{α} - H_{α} in β - β (resinol) (B)	
$A'_{\beta}(G)$	80.8/4.52	C_{β} -H _{β} in β -O-4 linked to G (A')	
$A_{\beta}(S)$	85.8/4.12	C_{β} -H _{β} in β -O-4 linked to S (A)	
C_{α}	86.8/5.45	C_{α} -H _{α} in phenylcoumaran (C)	
T' _{2,6}	103.9/7.34	C' _{2,6} -H' _{2,6} in tricin (T)	
T_6	98.9/6.23	$C_{2,6}$ -H _{2,6} in tricin (T)	
T_8	94.2/6.60	C_8 -H ₈ in tricin (T)	
T ₃	106.2/7.07	C_3 - H_3 in tricin (T)	
S _{2,6}	103.9/6.70	C _{2,6} -H _{2,6} in syringyl unit (S)	
S' _{2,6}	106.3/7.32	C _{2,6} -H _{2,6} in oxidized S unit (S)	
G_2	110.8/6/97	C ₂ -H ₂ in guaiacyl unit (G)	
G ₅	114.5/6.70	C_5 -H ₅ in guaiacyl unit (G)	
G_6	119.0/6.78	C ₆ -H ₆ in guaiacyl unit (G)	
H _{2,6}	127.7/7.17	C _{2,6} -H _{2,6} in p-hydroxyphenyl unit (H)	
PCE _{3,5}	115.6/6.77	C _{3,5} -H _{3,5} in p-coumarate (PCE)	
PCE _{2,6}	130.2/7.48	C _{2,6} -H _{2,6} in p-coumarate (PCE)	
PCE ₇	144.8/7.51	C ₇ -H ₇ in p-coumarate (PCE)	
PCE ₈	113.7/6.24	C ₈ -H ₈ in p-coumarate (PCE)	
FA_2	110.7/7.35	C ₂ -H ₂ in p-FERULATE (FA)	
FA_6	123.1/7.20	C ₆ -H ₆ in p-FERULATE (FA)	
FA ₇	144.8/7.51	C7-H7 in p-FERULATE (FA)	

20 Table S2 Assignments of main ¹³C-¹H cross-signals in the HSQC spectra of the MWL

25 Figure S1 HSQC NMR spectra of PMWL (side chain region)

28 Figure S2 HSQC NMR spectra of YL (side chain region)

S4

31 Figure S3 HSQC NMR spectra of AIDPs (side chain region)

34 Figure S4 HSQC NMR spectra of AYL (aromatic region)