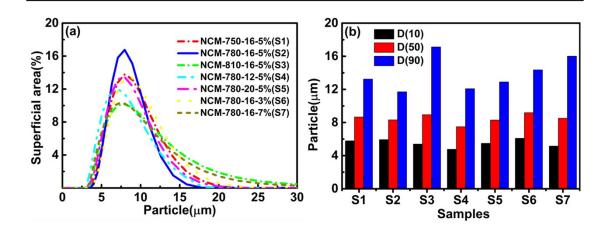
Supplementary Information

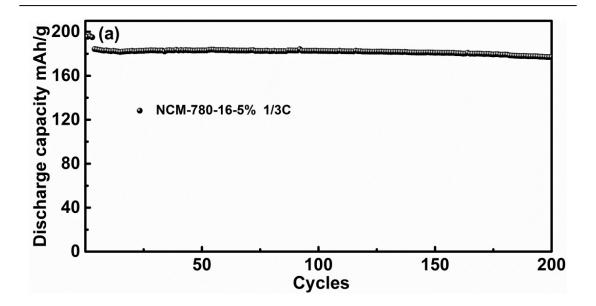
Optimal synthetic condition for a novel and high performance Ni-

rich cathode material of LiNi_{0.68}Co_{0.10}Mn_{0.22}O₂

Xing Li^{a,*}, Kangjia Zhang^a, Siyuan Wang, Mingshan Wang^{a,*}, Fei Jiang^a, Yang Liu^a,


Yun Huang^a, Jianming Zheng^{b,*}

^a The Center of New Energy Materials and Technology, Southwest Petroleum


University, Chengdu, Sichuan 610500, China

^bResearch Institute (RI), NingDe Amperex Technology Limited, Ningde, Fujian 352100, China

*Corresponding authors. E-mail addresses: lixing@swpu.edu.cn, wangmingshan@swpu.edu.cn, ZhengJM@ATLBattery.com.

Figure S1 Laser particle size analysis of the $LiNi_{0.68}Co_{0.10}Mn_{0.22}O_2$ cathode materials synthesized under different conditions, (a) the normal distribution, and (b) the bar chart.

Figure S2 Cycling stability of the $LiNi_{0.68}Co_{0.10}Mn_{0.22}O_2$ cathode material synthesized with the optimized condition at the current rate of C/3. The electrode experienced the 3 formation cycles at C/10 before the long-term cycling testing.

Table S1. The I(003)/I(104) ratios of the $LiNi_{0.68}Co_{0.10}Mn_{0.22}O_2$ products prepared at different calcining temperature (750 °C, 780 °C and 810 °C) with the fixed calcining time of 16 h and excess lithium (Li) amount of 5%.

Samples	I(003)/I(104)
NCM-750-16-5%	1.206
NCM-780-16-5%	1.339
NCM-810-16-5%	1.318

Table S2. The I(003)/I(104) ratios of the LiNi_{0.68}Co_{0.10}Mn_{0.22}O₂ products prepared at different calcining time (12 h, 16 h and 20 h) with the fixed calcining temperature of 780 °C and excess lithium (Li) amount of 5%.

Samples	I(003)/I(104)
NCM-780-12-5%	1.212
NCM-780-16-5%	1.339
NCM-780-20-5%	1.346

Table S3. The I(003)/I(104) ratios of the $\text{LiNi}_{0.68}\text{Co}_{0.10}\text{Mn}_{0.22}\text{O}_2$ products prepared with different excess Li amount (3%, 5% and 7%, molar percent) with the fixed calcining temperature of 780 °C and calcining time of 16 h.

Samples	I(003)/I(104)
NCM-780-16-3%	1.151
NCM-780-16-5%	1.339
NCM-780-16-7%	1.247

Table S4. The initial Coulombic efficiency of the $LiNi_{0.68}Co_{0.10}Mn_{0.22}O_2$ cathode materials synthesized under different conditions.

Samples	Initial Coulombic efficiency	
NCM-750-16-5%	81.1%	
NCM-780-16-5%	85.1%	
NCM-810-16-5%	85.7%	
NCM-780-12-5%	82.8%	
NCM-780-20-5%	81.5%	
NCM-780-16-3%	82.5%	
NCM-780-16-7%	82.8%	

Table S5. The calculated D_{Li}^+ of the corresponding electrodes as shown in Figure S2.

Sample	NCM-780-16-5%	NCM-810-16-5%	NCM-780-20-5%
cycles	D_{Li}^{+} (cm ² s ⁻¹)	D_{Li}^{+} (cm ² s ⁻¹)	D_{Li}^{+} (cm ² s ⁻¹)
10 th	3.83*10-8	2.62*10-8	2.45*10-8
30 th	1.80*10 ⁻⁸	8.01*10 ⁻⁹	1.19*10-8
60 th	1.73*10 ⁻⁸	4.41*10 ⁻⁹	4.42*10-9
100 th	1.51*10-8	7.32*10-9	9.78*10 ⁻⁹