Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Photocatalytic hydrogen evolution driven by platinated CdS nanorods with a hexacyanidoruthenate redox mediator

Hirotsugu Kitano, Atsushi Kobayashi,* Masaki Yoshida, and Masako Kato*

Department of Chemistry, Faculty of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810

Contents

Figure S1. TEM images of Pt/CdS-NR.

- Figure S2. Long-term photocatalytic H₂ evolution reaction driven by Pt/CdS-NR photocatalyst in the presence of K₄[Ru(CN)₆].
- **Figure S3**. Photocatalytic hydrogen evolution reaction with Pt/CdS-NR in a 200 mM acetate buffer which contained 0.01 M K₄[Ru(CN)₆], 0.01 M K₄[Fe(CN)₆], or 0.01 M K₂[CdRu(CN)₆] as electron sources.
- Table S1. Zeta potentials of Pt/CdS-NR in the absence/presence of K4[M(CN)6].
- Figure S4. SEM images of the Pt/CdS-NR after photocatalytic H₂ evolution reaction in the presence of K₄[Ru(CN)₆].
- Figure S5. Energy dispersive X-ray spectra of the Pt/CdS-NR sample after photocatalytic H₂ evolution reaction in the presence of K₄[Ru(CN)₆].
- Figure S6. Cyclic voltammogram of the Prussian-white analogue K₂[CdRu(CN)₆] modified ITO electrode.
- **Figure S7**. Change of UV-Vis absorption spectra of the reaction solution containing Pt/CdS-NR photocatalyst and 0.01 M K₄[Fe(CN)₆] in 200mM acetate buffer aqueous solution.
- **Figure S8**. Change of UV-Vis diffuse reflectance spectra of the Pt/CdS-NR photocatalyst after 6, 24, and 48 h light irradiation ($\lambda = 470 \pm 10$ nm) in the presence of 0.01 M K₄[Ru(CN)₆] in 200 mM acetate buffer aqueous solution.
- **Figure S9**. Photocatalytic hydrogen evolution reaction with Pt/CdS-NR in a 200 mM acetate buffer which contained 0.01 or 0.03 M K₄[Ru(CN)₆].

Estimation of the amount of CdRu-PW produced

Reference

Figure S1. TEM image of the as-prepared Pt/CdS-NR.

Figure S2. Long-term photocatalytic hydrogen evolution reaction with Pt/CdS-NR (2 mg) in a 200 mM acetate buffer (pH=5.0) which contained the 0.01 M K₄[Ru(CN)₆] as electron sources under Ar atmosphere. A blue LED ($\lambda = 470 \pm 10$ nm) was used as the light source.

Figure S3. Photocatalytic hydrogen evolution reaction with Pt/CdS-NR (2 mg) in a 200 mM acetate buffer (pH=5.0) which contained (red) 0.01 M K₄[Ru(CN)₆], (black) 0.1 M K₄[Fe(CN)₆], or (blue) 0.1 M K₂[CdRu(CN)₆] as electron sources under Ar atmosphere. A blue LED (λ = 470 ± 10 nm) was used as the light source. Green plots show the result in the absence of [M(CN)₆]⁴⁻ electron source.

	Zeta potential	Adsorption amount of
	(mV)	$[M(CN)_6]^{4-}$
		$(\text{mol}\cdot\text{cm}^{-2})^a$
Without	-11.7	-
With K ₄ [Fe(CN) ₆]	-28.9	1.72×10^{-11}
With K ₄ [Ru(CN) ₆]	-32.6	1.39×10^{-11}

Table S1. Zeta potentials of the Pt/CdS-NR in the absence/presence of $K_4[M(CN)_6]$ (M = Fe, Ru) in 0.2 M acetate buffer aqueous solution.

^{*a*} Estimated by the Guoy-Chapman-Stern (GCS) model of the double layer with the assumption that the zeta potential could be approximated as the potential at the Stern layer.^{S1}

Figure S4. SEM images of the Pt/CdS-NR sample after photocatalytic H₂ evolution reaction for (a) 30, (b) 45, (c) 90, (d) 360 min, and (e) 20 h in the presence of K₄[Ru(CN)₆]. Scale bar in each image shows 8 μm length.

Figure S5. Energy dispersive X-ray spectra of the Pt/CdS-NR samples after photocatalytic H_2 evolution reaction for (top) 90 min and (bottom) 20 h in the presence of $K_4[Ru(CN)_6]$.

Figure S6. Cyclic voltammogram of the Prussian-white analogue K₂Cd[Ru(CN)₆] modified ITO electrode. Black and red line were bare ITO electrode and K₂Cd[Ru(CN)₆] modified ITO electrode. 0.1 M TBAPF₆ CH₃CN solution, Pt wire, and Ag/Ag⁺ were used as the supporting electrolyte, counter electrode, and reference electrode, respectively. Scan rate was 50 mV/s.

Figure S7. Change of UV-Vis absorption spectra of the reaction solution containing Pt/CdS-NR photocatalyst (2.0 mg) and 0.01 M K₄[Fe(CN)₆] in 200 mM acetate buffer aqueous solution. A blue LED ($\lambda = 470 \pm 10$ nm) was used as the light source. The solution was diluted to 10 times by adding deionized water before the spectral measurement.

Figure S8. Change of UV-Vis diffuse reflectance spectra of the Pt/CdS-NR photocatalyst after (red) 6 h, (black) 24 h, and (green) 48 h light irradiation ($\lambda = 470 \pm 10$ nm) in the presence of 0.01 M K₄[Ru(CN)₆] in 200 mM acetate buffer aqueous solution. Each sample was isolated by centrifugation and washed by water for several times.

Figure S9. Photocatalytic hydrogen evolution reaction with Pt/CdS-NR (2.00 mg) in a 200 mM acetate buffer (pH=5.0) that contained (red closed circle) 0.03 M or (blue open circle) 0.01 M $K_4[Ru(CN)_6]$ as the electron source under an Ar atmosphere. A blue LED ($\lambda = 470 \pm 10$ nm) was used as the light source.

Estimation of the amount of CdRu-PW produced

To estimate the amount of CdRu-PW produced, we measured the sample mass after the photocatalytic H_2 evolution reaction by centrifugation to remove all solvent and soluble reagents (e.g., acetate buffer and $K_4[Ru(CN)_6]$ redox mediator). After washing with copious amounts of deionized water, the obtained precipitate including the powdery Pt/CdS-NR photocatalyst and insoluble CdRu-PW particles was dried under vacuum for 1 day. The sample mass was then measured using an electronic balance. In this estimation, we presumed the following points:

- A: The photocorrosion of CdS-NR produces the same amount of Cd^{2+} and S^{2-} ions.
- B: All produced Cd²⁺ cations precipitate as insoluble CdRu-PW (= K₂[CdRu(CN)₆]).
- C: All produced S^{2-} anions donate two electrons to the Pt/CdS-NR photocatalyst to form an equimolar amount of H₂ and are then oxidized to precipitate as insoluble S^0 .
- D: The mass of the Pt co-catalyst is negligibly smaller than that of CdS-NR.

On this basis, the following photochemical reaction could be expected to occur:

$$CdS + aK_4[Ru(CN)_6] + 2aH^+ \rightarrow (1-a)CdS + a\{K_2[CdRu(CN)_6]\} + aS + aH_2$$
(1)

where *a* denotes the molar ratio of photocorroded CdS-NR. Since the initial mass of Pt/CdS-NR was 2.00 mg (~13.8 μ mol), the term *a* can be expressed by Eq. (2) using the molecular weights of CdS (Mw = 144.38), K₂[CdRu(CN)₆] (Mw = 447.78), sulfur (Mw = 32.066), and the measured sample mass (shown as "*b*"):

$$144.48(13.8 - a) + 447.78a + 32.066a = b \tag{2}$$

The first, second, and third terms on the right-hand side of Eq. (2) correspond to the masses of the remaining CdS-NR, *in situ* generated CdRu-PW, and sulfur, respectively. As mentioned in the manuscript, after 6 and 21 h of irradiation, the sample mass "*b*" was measured to be 3980 and 4500 μ g, respectively. Then, the amount of CdRu-PW produced, which equals the amount of photo-corroded CdS-NR, was obtained by these values into term "*b*" of Eq. (2).

$a = 5.92 \mu mol$ (6 h irradiation), 7.47 μmol (21 h irradiation)

Since the initial molar amount of CdS-NR was 13.8 µmol, ~42.8 and 54.1% of CdS-NR was estimated to be photo-corroded after 6 and 21 h of irradiation, respectively. These results are listed in Table 1 in our manuscript.

References

S1. B. J. Kirby, E. F. Hasselbrink Jr., *Electrophoresis*, 2004, 25, 203-213.