Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2018

Design aspects of all atomic layer deposited TiO_2 -Fe₂O₃ scaffold-absorber photoanodes for water splitting

Arto Hiltunen, Tero-Petri Ruoko, Tomi Iivonen, Kimmo Lahtonen, Harri Ali-Löytty, Essi Sarlin, Mika Valden, Markku Leskelä, Nikolai Tkachenko

Supporting Information

Figure S1: SEM image of a TiO_2 scaffold coated with 100 cycles of ALD-Fe₂O₃.

Figure S2: a) XPS spectra of Fe 2p and Ti 2p energy regions for TiO₂ scaffold sensitized with 100 cycles of ALD-Fe₂O₃ before and after annealing. The peak at 719.5 eV corresponds to Fe³⁺2p_{3/2} satellite. b) Zoomed-in view of the Ti 2p energy region to show the Ti peak shift to lower BE. Linear background was subtracted from the spectra.

Table S1: Concentrations and core level binding energies of all the detected elements for the TiO_2 scaffold coated with 100 cycles of Fe_2O_3 . The BE scale was calibrated according to the C 1s C-C/H component at 285.0 eV.

Sample	Concentration, at. % (XPS peak position, eV)										
	Fe $2p_{3/2}$	Ti $2p_{3/2}$	O $1s$	C $1s$	N $1s$	Ca $2p_{3/2}$	Na 1 s	Mg $1s$	Si $2s$	Al $2p$	
as-deposited annealed	9.70 (710.62) 6.25 (710.53)	$ \begin{array}{r} 11.23 \\ (458.84) \\ 12.66 \\ (458.43) \end{array} $	62.05 (530.07) 65.08 (529.78)	12.30 (285) 10.05 (285)	0.25 (399.66) 0.27 (400.18)	$0.40 \\ (347.8) \\ 0.32 \\ (347.23)$	$0.47 \\ (347.8) \\ 2.53 \\ (347.23)$	$0.10 \\ (1303.72) \\ 0.07 \\ (1304.45)$	$1.48 \\ (152.96) \\ 1.36 \\ (153.11)$	2.03 (73.63) 1.40 (73.66)	

Table S2: Lifetimes with error limits obtained from the global 3 exponential fitting

Sample	$\tau_1 \ (ps)$	$\tau_2 \ (ps)$	$ au_3 \ (\mathrm{ps})$
TiO ₂ FTO	0.50 ± 0.07	90 ± 20	4000 ± 1100
$Fe_2O_3 FTO$	0.29 ± 0.01	17 ± 6	320 ± 90
$\mathrm{Fe_2O_3} \mathrm{TiO_2} \mathrm{FTO} $	0.26 ± 0.04	4.7 ± 0.9	320 ± 80

(c) 400 cycles

Figure S3: XRD diffractograms before and after annealing.

Figure S4: IV-curves of the samples in as-deposited condition.

Figure S5: (a) IPCE of the porous structures and (b) UV-Vis absorption of annealed planar thin films where 100, 200 or 400 cycles of ALD-Fe₂O₃ were deposited on a 30 nm ALD-TiO₂|FTO|glass substrate.

Figure S6: a,b,c) Decay component spectra obtained from global three exponential fitting of the measured transient absorption spectra. The decays were fit with $f(t) = a + b \cdot \exp(-t/\tau_1) + c \cdot \exp(-t/\tau_2) + d \cdot \exp(-t/\tau_3)$. The individual lines represent the amplitudes of the specific exponential components at different wavelengths. d) Transient absorption spectrum for TiO₂.