Supporting Information for

Ultralayered Core-shell Metal Oxide Nanosheet Arrays for

Supercapacitors With Long-term Electrochemical Stability

Dandan Han ^{a, b, *}, Ye Shen ^a, Yifan Pan ^a, Zhenyu Cheng ^a, Yen Wei ^{b*}, Guangjian Zeng ^c, Liucheng Mao ^c

^a College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
^b Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, China
^c Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

Figure S1. Co₃O₄ nanowire@NiO nanosheet core-shell arrays with different electrodeposition time. (a, b) 15min. (c, d) 30min. (e, f) 105min.

Figure S2. XRD patterns for Co_3O_4 @NiO UNAs and Co_3O_4 nanosheet

Figure S3. (a) CV curves with different scan rates and (b) galvanostatic charge-

discharge curves at various of current density for Ni foam.

Figure S4. (a, c) CV curves at different scan rates for Co_3O_4 @NiO UNAs and Co_3O_4 nanosheet, and (b, d) galvanostatic charge-discharge curves at various of current density for Co_3O_4 @NiO UNAs and Co_3O_4 nanosheet, respectively.

Number	Electrode structure	Current density	Cycling stability	Reference
	Co ₃ O ₄ @NiO//AC			
1	ultralayered core/shell	30 mA·cm ⁻²	6000 cycles	This work
	nanosheet arrays		(102%)	
2	CoMoO ₄ @MnO ₂ core-shell	20 mA·cm ⁻²	3000 cycles	[3]
	nanosheet		(93%)	
3	NiCo2O4@Co(OH)2//AC	$1 \text{ A} \cdot \text{g}^{-1}$	5000 cycles	[10]
	nanotube		(70.10%)	[12]
	CoO@MnO2 //AC		10000 avalag	
4	nanosheet@nanosheet	20 mA·cm ⁻²	(95.40%)	[13]
	arrays			
5	Co ₃ O ₄ @NiO hierarchical	$1 \text{ A} \cdot \text{g}^{-1}$	2000 cycles	cycles 8%) [18]
	nanowire arrays		(98.8%)	
	NiCo ₂ S ₄ @Ni(OH) ₂ //AC		2000 avalas	
6	Core-Shell Nanosheet	20 mA·cm ⁻²	(98.8%)	[26]
	Arrays			
7	Co ₉ S ₈ nanorod@Ni(OH) ₂	$4 \text{ A} \cdot \text{g}^{-1}$	2000 cycles	[27]
	nanosheet		(104.5%)	
8	Co ₃ O ₄ @Co-Ni//AC	60 mA·cm ⁻²	4000 cycles	[41]
	sulfides core/shell nanowire		(91%)	
9	NiCo2O4@Co3O4//AC	2 A·g ⁻¹	7000 cycles	[42]
			(97%)	
10	NiO@MnOOH//AC	$4 \text{ A} \cdot \text{g}^{-1}$	5000 cycles	[43]
			(105.7%)	
11	a-Fe ₂ O ₃ @MnO ₂ core-shell	$1 \text{ A} \cdot \text{g}^{-1}$	1200 cycles	[44]
	nanotubes		(85.3%)	

Table S5. Compared cycle lifetime for different core-shell structured composites.