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Binary Ni2FeOx anchored on modified graphite towards efficient and durable 

oxygen evolution electrocatalysis
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Experimental

Materials and reagents

All chemicals were analytical grade and used as purchased without further 

purification. Solutions were prepared using high purity water (Millipore Milli-

Q purification system, resistivity > 18 MΩ•cm).

Synthesis of G-Ph

Typically, the dark gray graphite powder (0.5 g, 41.6 mmol of carbon) was 

dispersed in benzene (400 mL) in a 500 mL three necked round-bottom flask 

equipped with a magnetic stir bar. The contents were then stirred vigorously 

after benzoyl peroxide (10.1 g, 41.6 mmol) was added. The mixture was then 

heated at 80 °C for 12 h with continuous vigorous stirring. After cooling down, 

the contents of the flask were centrifuged and washed with ethanol for four 

times. The black solid was dried at 60 °C overnight, which was nominated as 

G-Ph.

Synthesis of G-Ph-SO3H
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The typical experimental processes include as follows: the phenylated 

graphite (G-Ph) (200 mg) was dispersed in oleum (70 mL, H2SO4, 25% as free 

SO3), and heated at 80 °C for 5 h to yield phenyl sulfonated graphite. After 

cooling down, 300 g of ice block was then carefully added into the suspension. 

The mixture was then centrifuged and washed with water several times until the 

pH value of the filtrate reached ~7. The obtained solid was dried at 60 °C 

overnight, which was nominated as G-Ph-SO3H.

Synthesis of NinFeOx@G-Ph-SN

Typically, stoichiometric Ni(NO3)2•6H2O, 0.03 g Fe(NO3)3•9H2O, 0.1 g G-Ph-

SO3H, and 50 µL of deionized water were added in 20.0 mL of ethanol solution. 

Under stirring, 75 µL of 28% ammonia was added to the mixture. Afterwards, it was 

transferred into 30 mL Teflon autoclave and heated at 150 °C for 2 h. After cooling 

down, the solid was obtained by filtering, washing with water for several times, and 

drying at 70 °C overnight, which was denoted as NinFeOx@G-Ph-SN (where n 

presents the atomic ratio of Ni/Fe). The loading content of Fe is ca. 4.0 wt.% 

measured by ICP-AES. The Ni content in NiFeOx@G-Ph-SN, Ni2FeOx@G-Ph-SN, 

and Ni3FeOx@G-Ph-SN, is 3.9 wt.%, 7.7 wt.%, and 11.5 wt.% determined by ICP-

AES.

Characterizations of samples
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The as-prepared samples were characterized by X-ray powder diffraction 

(XRD) on a Rigaku D/Max-2500/PC powder diffractometer. The sample 

powder was scanned using Cu-Kα radiation with an operating voltage of 40 kV 

and current of 200 mA. The scan rate of 5°/min was applied to record the 

patterns in the range of 10-80°. Transmission electron microscope (TEM) 

images were observed by a Hitachi HT7700. High resolution TEM (HRTEM) 

images were recorded on a JEM-2100 transmission electron microscope (Tokyo, 

Japan) at 200 kV. The loading amount of manganese oxide in the catalyst was 

determined using inductively coupled plasma atomic emission spectrometer 

(ICP-AES) on a Shimadzu ICPS-8100. Prior to ICP-AES measurement, 

supported manganese oxide was dissolved in aqua regia. The valence state of 

cobalt oxide cluster was determined using XPS recorded on a Thermo 

ESCALAB 250Xi. The X-ray source selected was monochromatized Al Kα 

source (15 kV, 10.8 mA). Region scans were collected using a 20 eV pass 

energy. Peak positions were calibrated relative to C 1s peak position at 284.6 

eV.

Electrochemical characterization

The electrochemical water oxidation performances of all the manganese-based 

electrodes were tested in a conventional three-electrode electrochemical cell with a 

platinum plate as the auxiliary electrode and a saturated calomel electrode (SCE, 

saturated KCl) as the reference electrode. 1 M KOH aqueous solution was used as 
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electrolyte with pH measured at ca. 13.6. The scanning rate was 5 mV/s. All 

potentials measured were calibrated to RHE using the following equation: E(RHE) = 

E(SCE) + 0.241V + 0.0591pH. The steady-state activity and long-term activity were 

evaluated by chronopotentiometry measurements. The ECSA was determined by 

measuring the capacitive current associated with doublelayer charging from the scan 

rate CV-dependence. Here, the CV potential window was 0.15 to 0.25 vs SCE. The 

scan rates were 20, 40, 60, 80, and 100 mV s–1. The double-layer capacitance (Cdl) 

was estimated Δj = (jcharge−joff charge) at 0.2 V vs SCE against the scan rate. The liner 

slop is twice of the double-layer capacitance Cdl. Electrochemical impedance 

spectroscopy (EIS) measurements were performed at open-circuit potential in the 

frequency range from 100 kHz to 0.1 Hz with an a.c. perturbation of 10 mV.
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Figure S1. SEM image of G-Ph-SO3H.
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Figure S2. TEM image of G-Ph-SO3H.
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Figure S3. The histogram of size distribution of typical samples: FeOx@G-Ph-SN (a), 

and NiOx@G-Ph-SN.
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Figure S4. XRD patterns of graphite, FeOx@G-Ph-SN, NiOx@G-Ph-SN, and 

Ni2FeOx@G-Ph-SN.



9

 

 
 

In
te

ns
ity

 (a
.u

.)

 

300 600 900 1200 1500 1800

Ni2FeOx@G-Ph-SN

NiOx@G-Ph-SN

G-Ph-SO3H

 

Raman shift (cm-1)

NiO

Figure S5. Raman spectra of NiO, G-Ph-SO3H, NiOx@G-Ph-SN, and Ni2FeOx@G-

Ph-SN
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Figure S6. N2 adsorption and desorption isotherms of the Ni2FeOx@G-Ph-SN sample.
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Figure S7. TEM image of IrO2 nanoparticles.
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Figure S8. Polarization curves of FeOx@G-Ph-SN with different Fe loadings.



13

20 40 60 80 100

0.4

0.8

1.2

1.6

2.0

FeOx
@G-Ph-SN, 7.15 mFcm-2

NiO x
@G-Ph-SN, 15.89 mFcm

-2

Ni 3
FeO x

@G-Ph-S
N, 18

.94
 mFc

m
-2

NiFeO x
@G-Ph-S

N, 19
.22

 mFc
m
-2

 

 

j
 (m

A 
cm

-2
)

Scan Rate (mV/s)
Figure S9. Capacitive j vs scan rate for FeOx@G-Ph-SN, NiOx@G-Ph-SN, 

NiFeOx@G-Ph-SN, and Ni3FeOx@G-Ph-SN. The linear slope is equivalent to twice 

of the double-layer capacitance Cdl.



14

0 5 10 15 20
0

5

10

15

20

 Ni2FeOx@G-Ph-SN
 NiOx@G-Ph-SN
 FeOx@G-Ph-SN

 

 

-Z
" (

oh
m

 c
m

2 )

Z' (ohm cm2)
Figure S10. EIS of FeOx@G-Ph-SN, NiOx@G-Ph-SN, and Ni2FeOx@G-Ph-SN. The 

inset is an equivalent circuit model.
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Figure S11. LSV polarization curves of fresh Ni2FeOx@G-Ph-SN, Ni2FeOx@G-Ph-

SN after CV for 200 cycles, and Ni2FeOx@G-Ph-SN after CV for 2000 cycles.
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Table 1. Comparison of the OER performance of different transition-metal 

electrocatalysts in 1 M KOH

Catalyst η@ 10 mA•cm-2 (mV) Tafel slope (mV•dec-

1)

References

Ni2FeOx@G-Ph-SN 265 60.2 This Work

α-FeCoOx 300 33 1

NiFeOOH 340 60 2

NiFe LDH 300 40 3

Ni0.75Fe0.25OOH 258 - 4

NiCo2.7(OH)x 350 65 5

CCS Ni-Co 302 43.6 6

Ni-Co LDHs 350 93 7
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